EP1097439B1 - Method and device for detecting drifts, jumps and/or outliers of measurement values - Google Patents

Method and device for detecting drifts, jumps and/or outliers of measurement values Download PDF

Info

Publication number
EP1097439B1
EP1097439B1 EP99939929A EP99939929A EP1097439B1 EP 1097439 B1 EP1097439 B1 EP 1097439B1 EP 99939929 A EP99939929 A EP 99939929A EP 99939929 A EP99939929 A EP 99939929A EP 1097439 B1 EP1097439 B1 EP 1097439B1
Authority
EP
European Patent Office
Prior art keywords
parameter
measurement signal
value
alarm
outlier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99939929A
Other languages
German (de)
French (fr)
Other versions
EP1097439A1 (en
Inventor
Martin Dr. Daumer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daumer Martin Dr
Original Assignee
Daumer Martin Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19839047A external-priority patent/DE19839047A1/en
Application filed by Daumer Martin Dr filed Critical Daumer Martin Dr
Publication of EP1097439A1 publication Critical patent/EP1097439A1/en
Application granted granted Critical
Publication of EP1097439B1 publication Critical patent/EP1097439B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • G08B29/26Self-calibration, e.g. compensating for environmental drift or ageing of components by updating and storing reference thresholds

Definitions

  • the invention relates to a method for detecting an alarm condition or for Detection of drifts, jumps and / or outsiders by means of measured value acquisition means received Meßsignaf 17, with an alarm condition triggered is, if for a currently received Meßsignalwert or for one off Measured values derived value a predetermined limit or predetermined Interval limits are exceeded or will be.
  • an alarm condition triggered is, if for a currently received Meßsignalwert or for one off Measured values derived value a predetermined limit or predetermined Interval limits are exceeded or will be.
  • the threshold alarm system is for a fluctuating signal a given upper and lower threshold, where, when the signal is off an alarm is triggered which moves the interval defined by the thresholds becomes.
  • the threshold alarm has the following disadvantages. He is unstable towards Outliers. He is not adaptive, d. H. Borders have to be set by hand and, especially with a signal with a drift, z. B. caused by a temporal Change in detector sensitivity, permanently adjusted. Become the limits of the threshold alarm set too far, it comes to long Delay times until an alarm is detected. If the limits are too narrow on the other hand, false alarms often occur. Therefore, in practice, a so-called "borderline” or an option, such as "all alarms off for two Furthermore, the threshold alarm system is not in the case suitable that a plurality of signals are monitored by an alarm system got to.
  • the prior art is referred to the patent DE 35 23 232 C2. From this document is a fire alarm system for detecting and delivering a a change in a physical appearance of the environmental conditions corresponding analog value known.
  • a scanning device for sampling an analog output from a detection section Detection signal within a certain period of time
  • a data processing device for forming an average value from the sampling data, as well as a Memory device in which these sample data can be stored and an alarm device, the presence of a fire after evaluation of the mean indicates provided.
  • the data processing device is formed such that the sampling data sequentially in the memory device be inscribed, and from a certain number of the last saved Sampling data is continuously formed a moving average, each the oldest in the sequence sample data storage value by the newest is replaced.
  • DE 31 27 324 A1 discloses a method and an arrangement for increasing the sensitivity and noise immunity in a hazardous, in particular Fire alarm system, known.
  • DE 44 17 574 C2 relates to a patient alarm detection under Using a target mode.
  • a target mode In this procedure, at an intended Changing a physiological parameter of a patient dynamic Defines limits and then generates an alarm when the measured parameter values outside the dynamic limits. This document discloses Therefore, only a variant of the known threshold alarm.
  • the object of the present invention is therefore to overcome the disadvantages of To avoid prior art, and in particular a method of the beginning so-called type such that over the prior art an "alarm situation" detected faster and with a lower false alarm rate becomes.
  • the method becomes the currently received measured signal values with the mean and the fluctuation width representing scatter compared with the determined evaluation size is a measure of the existence represents a significant drift.
  • An advantage of the method according to the invention is that an on-line Detection of outliers is provided.
  • Femer is advantageous that the inventive Method is adaptive, d. H. for example, only physiological Limits must be preset. Furthermore, according to the invention drifting and / or jumps are detected automatically. Finally, the inventive Process only a short delay time.
  • the evaluation size becomes by subtraction between the measured signal value and the calculated mean value with subsequent normalization of the difference.
  • an outlier state is detected when the one weighted with the calculated scatter normalized difference between measured signal value and mean value of the set Outlier parameter exceeds.
  • an alarm condition is detected, if the weighted normalized difference between Measured signal value and mean exceeds the set alarm parameter.
  • a different substitution may be made, which is particularly preferred for statistical reasons. It can, for example a noise can be added or another imputation performed become. In this case, the outlier value can be determined in particular by an average value plus added random number, which derives from a probability distribution, be replaced. Finally, such a falsifying or falsified Measured value for the further calculation also simply be ignored.
  • the mean of the successive Measurement signal values formed from the summation of the individual measured signal values is, where the number of summation steps by the width of the time window is determined.
  • the standard deviation is used as the scatter, wherein the number of summation steps is determined by the width of the time window becomes.
  • a computationally advantageous embodiment of the invention Method is that by means of a time delay a positioning of the time window is made, even small gradients to be able to recognize in the time course of the detected measured variable, so that also long-term drifts by a correspondingly far away, delayed Detect window (delayed moving window). Similarly, short-term Drifting at a correspondingly close, delayed window (delayed moving window) are recognized.
  • the outlier parameter becomes a higher value set as the alarm parameter.
  • the width of the time window preferably set to 10 temporally successive measured signal values and the outlier parameter is set to 6 and the alarm parameter is set to 3 becomes.
  • a time window is provided in which on a length of i time sequential steps for those detected in the time window Measurement signal values an average value 2 and the associated scattering 3 of the measured signal values to calculate this mean.
  • the mean will be not calculated from a series of the immediately preceding measured values, but from a time window of width ⁇ in the past with the selectable one Time delay d.
  • the lower summation limit for the determination of the mean value thus results from the subtraction n-d- ⁇ , where n is the number of executed Time steps, d denotes the time delay and ⁇ the window width.
  • the upper summation limit results from the subtraction n-d, so that the summation index i runs from n-d- ⁇ to n-d.
  • the same summation limits apply to the determination of the dispersion 3.
  • an incrementation is performed in a process step 4.
  • the detected in a given time step n measurement signal value Y is compared with the calculated mean value in the initialization phase by a difference formation carried out, and this difference is provided with a normalization amount.
  • the absolute difference is weighted with the dispersion by including the dispersion as a divisor.
  • the evaluation variable thus obtained serves as a measure in the detection of occurring outlier states in this process step 4. Namely, if the evaluation variable obtained for the currently detected Meßsignalwert greater than a preset outlier parameter o (o> 0), the query results in this process step 4 that an outlier condition 6 is present.
  • the outlier condition can be ignored for the following calculation or replaced with a "reasonable" value.
  • imputation methods are suitable for this purpose. In this case, the sequence program returns to the increment instruction 4.
  • the query block will contain 7 determines whether the data obtained for the currently detected Meßsignalwert Evaluation size is greater than a preset alarm parameter a. At a positively determined result is an alarm condition 8 before. In the embodiment In this case, a return to the initialization phase is made while if there is a negative result, a return to the increment instruction is made. As a boundary condition in the distinction between Outlier states and alarm conditions becomes a higher value for the outlier parameter Value assigned as the alarm parameter. By the distinction between Outlier states and alarm conditions will be differentiated between significant states and false measurements, with erroneous measurements may be caused by supply line failure or metrological artifacts.
  • Fig. 2 shows the time course of a physiological measured variable.
  • the abscissa axis serves as the time axis ⁇ CP , while the ordinate axis reproduces the amplitude of the measured signal.
  • Fig. 3a shows a highly schematic representation of a drift.
  • Fig. 3b shows a strong schematic representation of a jump.
  • Fig. 3c shows a highly schematic Representation of an outlier. It is the temporal dependence of one measured signal.
  • the internal parameters of the algorithm are the window width ⁇ ( ⁇ > 0), the delay d (d> 0), the initialization length i (i> ⁇ + d), the outlier parameter o (o> 0) and the alarm parameter a (a> 0).
  • the algorithm After an initialization phase of the length of i time steps, the respective newly measured value with one estimated from the previous measured values Mean and associated dispersion (the empirical standard deviation) so far the algorithm is a natural generalization of the normal threshold alarm, where the mean and spread known be presupposed.
  • the average is not from a series of calculated directly preceding measured values, but from a time window the width ⁇ in the past, with the selectable time delay d.
  • Each newly measured Value is estimated with the current method according to the invention Mean value compared as follows: is the measured value more than the product from selectable outlier factor and scatter from estimated mean removed, it is classified as an outlier and is subject to further calculations the current mean (plus a random number with expected zero and Scatter according to the estimated spread). If this is not the case Case, but the measured value is more than the product of (selectable) alarm factor a and scatter away from the estimated mean, it is reported that There is a significant drift, depending on the direction of the deviation a drift up or down. In all other cases, no message is output. Then the next time step is processed.
  • the window width ⁇ influences the fluctuations the estimated mean value - the fluctuations decrease proportionally to the root of ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

A method for detection an alarm state of measurement signal values received by means for detecting measurement values, wherein an alarm state is triggered when for a currently received measurement signal value at least one pre-set limit value is exceeded, has a faster recognition of an alarm situation and at the same time a lower rate of false alarms when in a first step for measurement signal values which are subsequent in time their position parameter (2) and a corresponding deviation parameter (3) of the measurement signal values from the position parameter is calculated in an adjustable time window, wherein in a second step each further subsequent measurement signal value is compared to the position parameter (2) an weighted with the deviation parameter (3) in order to obtain a respective evaluation quantity, and wherein in a third step an outlier state (6) is detected when the evaluation quantity exceeds an adjustable outlier parameter, whereas an alarm state (8) indicating the presence of a significant drift or jump of the measurement signal values is detected when the evaluation quantity exceeds an adjustable alarm parameter.

Description

Die Erfindung betrifft ein Verfahren zur Erkennung eines Alarmzustands bzw. zur Erkennung von Driften, Sprüngen und/oder Ausßreißern von über Meßwerterfassungsmittel empfangenen Meßsignafwerten, wobei ein Alarmzustand ausgelöst wird, wenn für einen aktuell empfangenen Meßsignalwert bzw. für einen aus Meßwerten abgeleiteten Wert ein vorgegebener Grenzwert oder vorgegebene Intervallgrenzen überschritten wird bzw. werden. Als Beispiele für die äußerst zahlreichen Anwendungen des erfindungsgemäßen Verfahrens seien insbesondere auf dem Gebiet der Medizin die perioperative Überwachung, die Überwachung von Vitalparametern auf Intensivstationen, die Schlafüberwachung, CTG (Cardio-Tocographie), und auf anderen Gebieten Feuer- und Rauchwarnsysteme, akustische Überwachungssysteme, wie z. B. Babyphon, genannt.The invention relates to a method for detecting an alarm condition or for Detection of drifts, jumps and / or outsiders by means of measured value acquisition means received Meßsignafwerten, with an alarm condition triggered is, if for a currently received Meßsignalwert or for one off Measured values derived value a predetermined limit or predetermined Interval limits are exceeded or will be. As examples of the utmost numerous applications of the method according to the invention are in particular in the field of medicine perioperative monitoring, monitoring of vital signs in intensive care units, sleep monitoring, CTG (Cardio-tocography), and in other areas, fire and smoke alarm systems, acoustic monitoring systems, such. B. babyphone called.

Alarmsysteme bei intensivmedizinischen Monitoren, die typischerweise Herz-Kreislaufparameter (EKG, Blutdruck), Sauerstoffsättigung (SpO2), Gasaustausch und Stoffwechselparameter als auch EEG und EMG online darstellen und analysieren, sollen die Aufmerksamkeit des behandelnden Arztes oder Krankenpflegers auf potentiell lebensbedrohliche Bedingungen für den überwachten Patienten lenken. Ein ideales Alarmsystem würde sich durch folgende Eigenschaften auszeichnen, die alle beim Stand der Technik nicht optimal verwirklicht sind:

  • 1. Geringe Fehlalarmrate, um den unerwünschten Effekt der Gewöhnung an die Alarmsituation zu vermeiden und um der Neigung zum Desaktivieren des oft als störend empfundenen Alarms entgegenzuwirken.
  • 2. Kurze Verzögerungszeiten zwischen Anbahnung einer krititschen Situation und der Auslösung des Alarms, um einen unter Umständen lebenswichtigen Zeitvorsprung für therapeutische Eingriffe zu gewährleisten.
  • 3. Hohes Maß an Adaptionsvermögen, um zu vermeiden, daß allzuviele Parameter von Hand voreingestellt und während der Behandlung nachgestellt werden müssen, und damit von der eigentlichen Überwachungsaufgabe ablenken. Insbesondere sollen mehrere mit gewissem Zeitabstand aufeinanderfolgende Alarmsitutationen erkannt werden können.
  • 4. Hohes Maß an Aussagekraft der einstellbaren Parameter, um zu gewährleisten, daß das Alarmsystem auch leicht und fehlerfrei bedienbar ist.
  • 5. Größtmögliche Einfachheit und damit größtmögliche Rechengeschwindigkeit, um aufwendige Rechnungen zu vermeiden, die nur mit teuren Prozessoren und Speicherelementen durchführbar wären, und um etwaige Rechenzeitbeschränkungen zu umgehen.
  • 6. Große Aussagekraft, um differenzierte Reaktionen zu ermöglichen.
  • 7. Integrierte Erkennung von Ausreißern, um eine Differenzierung zwischen lebensbedrohlichen Zuständen, Gerät- und Zuleitungsversagen und Fehlmessungen zu ermöglichen.
  • 8. Klare Entscheidungsregeln, um Exportierbarkeit zu gewährleisten und eine retrospektive Analyse und Parameterkorrektur zu ermöglichen.
  • Intensive care monitor alarm systems, typically representing and analyzing cardiovascular parameters (ECG, blood pressure), oxygen saturation (SpO2), gas exchange and metabolic parameters, as well as EEG and EMG online, are designed to alert the attending physician or nurse to potentially life-threatening conditions for the monitored patient to steer. An ideal alarm system would be characterized by the following features, all of which are not optimally realized in the prior art:
  • 1. Low false alarm rate, to avoid the unwanted effect of habituation to the alarm situation and to counteract the tendency to deactivate the often annoying perceived alarm.
  • 2. Short delay times between the initiation of a critical situation and the triggering of the alarm, in order to ensure a possibly vital time lead for therapeutic interventions.
  • 3. High level of adaptability to avoid too many parameters having to be pre-set by hand and readjusted during the treatment, thus distracting from the actual monitoring task. In particular, several consecutive alarm situations should be detected with a certain interval.
  • 4. High degree of predictive value of the adjustable parameters to ensure that the alarm system is also easy and error-free to use.
  • 5. Greatest possible simplicity and thus the highest possible computing speed to avoid complex calculations that would be feasible only with expensive processors and memory elements, and to circumvent any computing time limitations.
  • 6. Great meaningfulness to allow differentiated reactions.
  • 7. Integrated outlier detection to allow differentiation between life-threatening conditions, device and lead failures and erroneous measurements.
  • 8. Clear decision rules to ensure exportability and allow for retrospective analysis and parameter correction.
  • Derzeitige Alarmsysteme in der Intensivmedizin haben eine Fehlalarmrate von 70% bis 99,5%, und zwar in Abhängigkeit von der überwachten physiologischen Größe. Die hohe Fehlalarmrate führt zur Desensibilisierung des Überwachungspersonals und zur häufigen manuellen Alarmdeaktivierung. Die bekannten Alarmsysteme werden ausgelöst, wenn die zu überwachende Größe voreingestellte obere bzw. untere Grenzen überschreitet. Derartige Alarmsysteme werden als Schwellenwertalarmsysteme bezeichnet. Um die Fehlalarmrate zu senken muß die obere Grenze eher hoch und die untere Grenze eher niedrig gewählt werden, was bei alarmwürdigen Situationen allerdings unvermeidlich zu größeren Zeitverzögerungen führt. Außerdem entspricht solch ein Alles-oder-Nichts-System nicht der ISO-Norm, die ein abgestuftes Alarmierungssystem mit verschiedenen Wamungseinteilungen vorschlägt.Current alarm systems in intensive care have a false alarm rate of 70% to 99.5%, depending on the monitored physiological Size. The high false alarm rate leads to desensitisation of the monitoring staff and for frequent manual alarm deactivation. The well-known Alarm systems are triggered when the size to be monitored is preset exceeds upper or lower limits. Such alarm systems will be referred to as threshold alarm systems. To lower the false alarm rate The upper limit is rather high and the lower limit rather low which, however, inevitably becomes larger in alarming situations Time delays leads. In addition, such an all-or-nothing system corresponds not the ISO standard, which has a tiered alerting system with different Suggesting menses.

    Bei dem bekannten Schwellenalarmsystem wird für ein fluktuierendes Signal eine obere und eine untere Schwelle vorgegeben, wobei, wenn sich das Signal aus dem von den Schwellenwerten definierten Intervall bewegt, ein Alarm ausgelöst wird. Der Schwellenwertalarm hat folgende Nachteile. Er ist instabil gegenüber Ausreißern. Er ist nicht adaptiv, d. h. Grenzen müssen per Hand eingestellt und, insbesondere bei einem Signal mit einer Drift, z. B. verursacht durch eine zeitliche Änderung der Detektorempfindlichkeit, permanent nachgestellt werden. Werden die Grenzen des Schwellenwertalarms zu weit eingestellt, kommt es zu langen Verzögerungszeiten, bis ein Alarm erkannt wird. Bei zu engen Grenzen treten dagegen häufig Fehlalarme auf. Daher wird in der Praxis ein sog. "Grenzenspagat" beziehungsweise eine Option, wie zum Beispiel "all alarms off for two minutes", eingestellt. Ferner ist das Schwellenwertalarmsystem nicht für den Fall geeignet, daß eine Vielzahl von Signalen durch ein Alarmsystem überwacht werden muß.In the known threshold alarm system is for a fluctuating signal a given upper and lower threshold, where, when the signal is off an alarm is triggered which moves the interval defined by the thresholds becomes. The threshold alarm has the following disadvantages. He is unstable towards Outliers. He is not adaptive, d. H. Borders have to be set by hand and, especially with a signal with a drift, z. B. caused by a temporal Change in detector sensitivity, permanently adjusted. Become the limits of the threshold alarm set too far, it comes to long Delay times until an alarm is detected. If the limits are too narrow on the other hand, false alarms often occur. Therefore, in practice, a so-called "borderline" or an option, such as "all alarms off for two Furthermore, the threshold alarm system is not in the case suitable that a plurality of signals are monitored by an alarm system got to.

    Zum Stand der Technik wird auf die Patentschrift DE 35 23 232 C2 verwiesen. Aus dieser Druckschrift ist ein Feueralarmsystem zum Ermitteln und Abgeben eines einer Änderung in einer physikalischen Erscheinung der Umgebungsverhältnisse entsprechenden analogen Wertes bekannt. Dabei sind eine Abtasteinrichtung zum Abtasten eines aus einem Ermittlungsabschnitt abgegebenen analogen Erfassungssignals innerhalb einer bestimmten Zeitspanne, eine Datenverarbeitungseinrichtung zur Bildung eines Mittelwertes aus den Abtastdaten, sowie eine Speichereinrichtung, in der diese Abtastdaten speicherbar sind und eine Alarmeinrichtung, die das Vorliegen eines Feuers nach Auswertung des Mittelwerts anzeigt, vorgesehen. Charakteristischerweise ist die Datenverarbeitungseinrichtung derart ausgebildet, daß die Abtastdaten sequentiell in die Speichereinrichtung eingeschrieben werden, und aus einer bestimmten Zahl der zuletzt gespeicherten Abtastdaten wird fortlaufend ein gleitender Mittelwert gebildet, wobei jeweils der in der Sequenz älteste Abtastdaten-Speicherwert durch den neuesten ersetzt wird.The prior art is referred to the patent DE 35 23 232 C2. From this document is a fire alarm system for detecting and delivering a a change in a physical appearance of the environmental conditions corresponding analog value known. There are a scanning device for sampling an analog output from a detection section Detection signal within a certain period of time, a data processing device for forming an average value from the sampling data, as well as a Memory device in which these sample data can be stored and an alarm device, the presence of a fire after evaluation of the mean indicates provided. Characteristically, the data processing device is formed such that the sampling data sequentially in the memory device be inscribed, and from a certain number of the last saved Sampling data is continuously formed a moving average, each the oldest in the sequence sample data storage value by the newest is replaced.

    Ferner ist aus der DE 31 27 324 A1 ein Verfahren und eine Anordnung zur Erhöhung der Ansprechempfindlichkeit und der Störsicherheit in einer Gefahren-, insbesondere Brandmeldeanlage, bekannt.Furthermore, from DE 31 27 324 A1 discloses a method and an arrangement for increasing the sensitivity and noise immunity in a hazardous, in particular Fire alarm system, known.

    Aus beiden oben genannten Druckschriften ist insbesondere nicht bekannt, einen Streuparameter aus den aufeinanderfolgenden Meßwerten zu berechnen, so daß das zur Alarmauslösung dienende Verfahren adaptiv, und somit lernfähig, ist. Daher sind die obigen Verfahren nicht in der Lage sich beispielsweise einer zeitlichen Änderung der Detektorempfindlichkeit anzupassen.From both publications mentioned above is not known in particular a Calculate scattering parameters from the successive measured values, so that the alarm triggering method is adaptive, and thus capable of learning. Therefore, the above methods are not capable of, for example, a temporal Adjust the change in detector sensitivity.

    Schließlich betrifft die DE 44 17 574 C2 eine Patientenalarmerfassung unter Verwendung eines Zielmodus. Bei diesem Verfahren werden bei einer beabsichtigten Änderung eines physiologischen Parameters eines Patienten dynamische Grenzen definiert und dann ein Alarm erzeugt, wenn die gemessenen Parameterwerte außerhalb der dynamischen Grenzen liegen. Diese Druckschrift offenbart daher lediglich eine Variante des an sich bekannten Schwellenalarms.Finally, DE 44 17 574 C2 relates to a patient alarm detection under Using a target mode. In this procedure, at an intended Changing a physiological parameter of a patient dynamic Defines limits and then generates an alarm when the measured parameter values outside the dynamic limits. This document discloses Therefore, only a variant of the known threshold alarm.

    Die Aufgabe der vorliegenden Erfindung besteht daher darin, die Nachteile des Standes der Technik zu vermeiden, und insbesondere ein Verfahren der eingangs genannten Art derart weiterzubilden, daß gegenüber dem Stand der Technik eine "Alarmsituation" schneller und mit einer geringeren Fehlalarmrate erkannt wird.The object of the present invention is therefore to overcome the disadvantages of To avoid prior art, and in particular a method of the beginning so-called type such that over the prior art an "alarm situation" detected faster and with a lower false alarm rate becomes.

    Die Aufgabe wird in verfahrenstechnischer Hinsicht durch die Merkmale des Anspruchs 1 gelöst.The object is achieved in procedural terms by the features of claim 1.

    Mithin wird bei dem erfindungsgemäßen Verfahren zwischen zwei Phasen unterschieden, wobei in einer ersten Phase ein Zeitfenster bereitgestellt wird, in dem der charakteristische Verlauf der darin erfaßten Meßsignalwerte ausgewertet wird, wobei der statistische Mittelwert und die Fluktuationsbreite der erfaßten Meßsignalwerte um diesen Mittelwert ermittelt wird. In der zweiten Phase des erfindungsgemäßen Verfahrens werden die aktuell empfangenen Meßsignalwerte mit dem Mittelwert und der die Fluktuationsbreite repräsentierenden Streuung verglichen, wobei die dabei ermittelte Bewertungsgröße ein Maß für das Vorliegen einer signifikanten Drift darstellt. Indem in diese so gewonnene Bewertungsgröße die zeitliche Entwicklung der in dem Zeitfenster erfaßten Meßsignalwerte eingeht, ergibt sich insgesamt ein höherer Zuverlässigkeitsgrad bei der Erkennung von Alarmzuständen gegenüber Verfahren nach dem Stand der Technik, so daß sich mithin eine geringere Fehlalarmrate erzielen läßt. Dies beruht insbesondere auf der automatischen Nachführung der Intervallgrenzen. Durch die aufgrund des erfindungsgemäßen Verfahrens vorgesehene Unterscheidung zwischen, zu Verfälschungen und/oder Fehlalarmen führenden, Ausreißerzuständen und Alarmzuständen wird bei intensivmedizinischen Anwendungen eine Differenzierung zwischen lebensbedrohlichen Zuständen einerseits und zu Fehlmessungen führenden Geräte- oder Zuleitungsversagen andererseits ermöglicht, was zu einer weiteren Reduktion der Fehlalarmrate führt.Thus, in the method according to the invention, a distinction is made between two phases, wherein in a first phase a time window is provided in which evaluated the characteristic course of the measured signal values detected therein with the statistical average and the fluctuation range of the detected Measured signal values around this mean value is determined. In the second phase of the invention The method becomes the currently received measured signal values with the mean and the fluctuation width representing scatter compared with the determined evaluation size is a measure of the existence represents a significant drift. By putting into this evaluation variable thus obtained the temporal evolution of the measured signal values acquired in the time window the overall result is a higher degree of reliability in the recognition of alarm conditions over prior art methods, so that can therefore achieve a lower false alarm rate. This is based in particular on the automatic tracking of the interval limits. Due to the of the method according to the invention, leading to adulterations and / or false alarms, outlier states and alarm conditions becomes a differentiation in intensive care applications between life-threatening conditions on the one hand and incorrect measurements leading device or supply failure on the other hand allows what to a further reduction of the false alarm rate leads.

    Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß eine on-line Erkennung von Ausreißem vorgesehen wird. Femer ist vorteilhaft, daß das erfindungsgemäße Verfahren adaptiv ist, d. h. beispielsweise nur physiologische Grenzen voreingestellt werden müssen. Ferner können erfindungsgemäß Driften und/oder Sprünge automatisch erkannt werden. Schließlich weist das erfindungsgemäße Verfahren lediglich eine kurze Verzögerungszeit auf.An advantage of the method according to the invention is that an on-line Detection of outliers is provided. Femer is advantageous that the inventive Method is adaptive, d. H. for example, only physiological Limits must be preset. Furthermore, according to the invention drifting and / or jumps are detected automatically. Finally, the inventive Process only a short delay time.

    Um eine hohe Rechengeschwindigkeit zu erzielen, wird die Bewertungsgröße durch Differenzbildung zwischen dem Meßsignalwert und dem berechneten Mittelwert mit anschließender Normierung der Differenz ermittelt. Dabei wird die Wichtung der Bewertungsgröße durch eine Divisionsbildung aus der normierten Differenz zwischen dem Meßsignalwert und dem Mittelwert mit der berechneten Streuung vorgenommen.In order to achieve a high computing speed, the evaluation size becomes by subtraction between the measured signal value and the calculated mean value with subsequent normalization of the difference. Here is the Weighting of the valuation variable by a division formation from the normalized Difference between the measured signal value and the mean value with the calculated value Scattering made.

    Nach einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird ein Ausreißerzustand detektiert, wenn die mit der berechneten Streuung gewichtete normierte Differenz zwischen Meßsignalwert und Mittelwert den eingestellten Ausreißerparameter übersteigt. Hingegen wird ein Alarmzustand detektiert, wenn die mit der berechneten Streuung gewichtete normierte Differenz zwischen Meßsignalwert und Mittelwert den eingestellten Alarmparameter übersteigt.According to an advantageous embodiment of the method according to the invention is an outlier state is detected when the one weighted with the calculated scatter normalized difference between measured signal value and mean value of the set Outlier parameter exceeds. On the other hand, an alarm condition is detected, if the weighted normalized difference between Measured signal value and mean exceeds the set alarm parameter.

    Um Meßfehler, die beispielsweise durch gerätetechnisches Versagen oder meßtechnische Artefakte zustandekommen, zu eliminieren, wird bei Auftreten eines Ausreißerzustands der entsprechende Meßsignalwert durch den aktuellen, in dem zeitversetzten Fenster berechneten, Mittelwert ersetzt und der nächstfolgende Meßsignalwert bearbeitet.To measurement errors, for example, by equipment failure or metrological Artifacts come about, eliminate, will occur when a Outlier state the corresponding measurement signal value by the current, in the calculated window, the mean value replaced and the next following Measured signal value edited.

    Alternativ dazu kann auch eine anders geartete Ersetzung vorgenommen werden, welche insbesondere aus statistischen Gründen bevorzugt ist. Es kann beispielsweise ein Rauschen addiert werden oder eine sonstige Imputation durchgeführt werden. Dabei kann der Ausreißerwert insbesondere durch einen Mittelwert plus addierter Zufallszahl, welche einer Wahrscheinlichkeitsverteilung entstammt, ersetzt werden. Schließlich kann ein derartiger verfälschender bzw. verfälschter Meßwert für die weitere Berechnung auch einfach ignoriert werden.Alternatively, a different substitution may be made, which is particularly preferred for statistical reasons. It can, for example a noise can be added or another imputation performed become. In this case, the outlier value can be determined in particular by an average value plus added random number, which derives from a probability distribution, be replaced. Finally, such a falsifying or falsified Measured value for the further calculation also simply be ignored.

    Als zweckmäßig hat sich erwiesen, wenn der Mittelwert der aufeinanderfolgenden Meßsignalwerte aus der Summation der einzelnen Meßsignalwerte gebildet wird, wobei die Anzahl der Summationsschritte durch die Breite des Zeitfensters bestimmt wird. Dabei wird als Streuung die Standardabweichung zugrundegelegt, wobei die Anzahl der Summationsschritte durch die Breite des Zeitfensters bestimmt wird.It has proved to be expedient if the mean of the successive Measurement signal values formed from the summation of the individual measured signal values is, where the number of summation steps by the width of the time window is determined. The standard deviation is used as the scatter, wherein the number of summation steps is determined by the width of the time window becomes.

    Eine in rechentechnischer Hinsicht besonders vorteilhafte Weiterbildung des erfindungsgemäßen Verfahrens besteht darin, daß mittels einer Zeitverzögerung eine Positionierung des Zeitfensters vorgenommen wird, um auch kleine Steigungen im zeitlichen Verlauf der erfaßten Meßgröße erkennen zu können, so daß sich auch Langzeitdrifts durch ein entsprechend weit entferntes, verzögertes Fenster (delayed moving window) erfassen lassen. Ebenso können auch kurzzeitige Driften bei entsprechend nahem, verzögertem Fenster (delayed moving window) erkannt werden.A computationally advantageous embodiment of the invention Method is that by means of a time delay a positioning of the time window is made, even small gradients to be able to recognize in the time course of the detected measured variable, so that also long-term drifts by a correspondingly far away, delayed Detect window (delayed moving window). Similarly, short-term Drifting at a correspondingly close, delayed window (delayed moving window) are recognized.

    Um eine Unterscheidung zwischen auftretenden Ausreißerzuständen und Alarmzuständen zu erleichtern, wird der Ausreißerparameter auf einen höheren Wert als der Alarmparameter gesetzt.To distinguish between occurring outlier conditions and alarm conditions To facilitate, the outlier parameter becomes a higher value set as the alarm parameter.

    Es hat sich als besonders zweckmäßig erwiesen, wenn die Breite des Zeitfensters vorzugsweise auf 10 zeitlich aufeinanderfolgende Meßsignalwerte festgelegt wird und der Ausreißerparameter auf 6 und der Alarmparameter auf 3 festgelegt wird.It has proved to be particularly useful when the width of the time window preferably set to 10 temporally successive measured signal values and the outlier parameter is set to 6 and the alarm parameter is set to 3 becomes.

    In vorrichtungstechnischer Hinsicht wird die oben angegebene Aufgabe durch die Merkmale des Anspruchs 14 gelöst. In device technical terms, the above object is achieved by the Characteristics of claim 14 solved.

    Durch Zusammenwirken der einzelnen Komponenten sind somit nach Maßgabe einer dadurch gewonnenen Bewertungsgröße Ausreißerzustände und Alarmzustände voneinander unterscheidbar, so daß sich mithin die Fehlalarmrate gegenüber Verfahren nach dem Stand der Technik signifikant reduzieren läßt.By interaction of the individual components are thus in accordance with a thus obtained evaluation size outlier states and alarm conditions distinguishable from each other, so that therefore the false alarm rate against Significantly reduce the method of the prior art.

    Anhand der beigefügten Zeichnung soll nachstehend eine Ausführungsform der vorliegenden Erfindung erläutert werden. In teilweise schematischen Ansichten zeigen:

    Fig. 1
    ein Flußdiagramm mit den wesentlichen Prozeßschritten des erfindungsgemäßen Verfahrens;
    Fig. 2
    ein Meßwertspektrum der zeitlichen Entwicklung einer physiologischen Meßgröße;
    Fig. 3a
    eine stark schematische Darstellung einer Drift;
    Fig. 3b
    eine stark schematische Darstellung eines Sprungs; und
    Fig. 3c
    eine stark schematische Darstellung eines Ausreißers.
    With reference to the accompanying drawings, an embodiment of the present invention will be explained below. In partial schematic views show:
    Fig. 1
    a flowchart with the essential process steps of the method according to the invention;
    Fig. 2
    a measured value spectrum of the temporal development of a physiological measurand;
    Fig. 3a
    a highly schematic representation of a drift;
    Fig. 3b
    a highly schematic representation of a jump; and
    Fig. 3c
    a highly schematic representation of an outlier.

    Das erfindungsgemäße Verfahren, das vorzugsweise als Softwareprogramm implementiert wird, ist mit seinen wesentlichen Prozeßschritten in einem im ganzen mit 10 bezeichneten Ablaufschema in Fig. 1 veranschaulicht. Während einer Initialisierungsphase 1 wird ein Zeitfenster bereitgestellt, in dem auf einer Länge von i zeitlich aufeinanderfolgenden Schritten für die in dem Zeitfenster erfaßten Meßsignalwerte ein Mittelwert 2 und die dazugehörige Streuung 3 der Meßsignalwerte um diesen Mittelwert errechnet wird. Der Mittelwert wird allerdings nicht aus einer Serie der unmittelbar vorangehenden Meßwerte berechnet, sondem aus einem Zeitfenster der Breite ω in der Vergangenheit mit der wählbaren Zeitverzögerung d. Die untere Summationsgrenze für die Ermittlung des Mittelwerts ergibt sich somit aus der Subtraktion n-d-ω, wobei n die Anzahl der ausgeführten Zeitschritte, d die Zeitverzögerung und ω die Fensterbreite bezeichnet. Demgegenüber ergibt sich die obere Summationsgrenze aus der Subtraktion n-d, so daß der Summationsindex i von n-d-ω bis n-d läuft. Die gleichen Summationsgrenzen gelten für die Ermittlung der Streuung 3.The method according to the invention, which preferably implements as a software program is, with its essential process steps in one in total illustrated with 10 flowchart in Fig. 1 illustrates. During an initialization phase 1, a time window is provided in which on a length of i time sequential steps for those detected in the time window Measurement signal values an average value 2 and the associated scattering 3 of the measured signal values to calculate this mean. The mean, however, will be not calculated from a series of the immediately preceding measured values, but from a time window of width ω in the past with the selectable one Time delay d. The lower summation limit for the determination of the mean value thus results from the subtraction n-d-ω, where n is the number of executed Time steps, d denotes the time delay and ω the window width. In contrast, the upper summation limit results from the subtraction n-d, so that the summation index i runs from n-d-ω to n-d. The same summation limits apply to the determination of the dispersion 3.

    In der eigentlichen Prozeßphase wird in einem Prozeßschritt 4 eine Inkrementierung vorgenommen. In einem weiteren Prozeßschritt 5 wird der in einem bestimmten Zeitschritt erfaßte Meßsignalwert Yn mit dem in der Initialisierungsphase ermittelten Mittelwert verglichen, indem eine Differenzbildung durchgeführt und diese Differenzbildung mit einer Betragsnormierung versehen wird. Um bei dem Vergleich auch die Streuung mitzuberücksichtigen, wird die betragsnormierte Differenz mit der Streuung gewichtet, indem die Streuung als Divisor einbezogen wird. Die dadurch gewonnene Bewertungsgröße dient als Maß bei der Erkennung von auftretenden Ausreißerzuständen in diesem Prozeßschritt 4. Ist nämlich die für den aktuell erfaßten Meßsignalwert gewonnene Bewertungsgröße größer als ein voreingestellter Ausreißerparameter o (o >0), so ergibt die Abfrage in diesem Prozeßschritt 4, daß ein Ausreißerzustand 6 vorliegt. Der Ausreißerzustand kann für die folgende Berechnung ignoriert oder durch einen "vernünftigen" Wert ersetzt werden. Dazu eignen sich insbesondere Imputationsverfahren. Für diesen Fall kehrt das Ablaufprogramm zur Inkrementierungsanweisung 4 zurück.In the actual process phase, an incrementation is performed in a process step 4. In a further process step 5, the detected in a given time step n measurement signal value Y is compared with the calculated mean value in the initialization phase by a difference formation carried out, and this difference is provided with a normalization amount. In order to take into account also the variance in the comparison, the absolute difference is weighted with the dispersion by including the dispersion as a divisor. The evaluation variable thus obtained serves as a measure in the detection of occurring outlier states in this process step 4. Namely, if the evaluation variable obtained for the currently detected Meßsignalwert greater than a preset outlier parameter o (o> 0), the query results in this process step 4 that an outlier condition 6 is present. The outlier condition can be ignored for the following calculation or replaced with a "reasonable" value. In particular, imputation methods are suitable for this purpose. In this case, the sequence program returns to the increment instruction 4.

    Ergibt die Abfrage in dem Block 5 ein negatives Ergebnis, so wird in dem Abfrageblock 7 ermittelt, ob die für den aktuell erfaßten Meßsignalwert gewonnene Bewertungsgröße größer als ein voreingestellter Alarmparameter a ist. Bei einem positiv ermittelten Ergebnis liegt ein Alarmzustand 8 vor. Im Ausführungsbeispiel wird in diesem Fall ein Rücksprung zur Initialisierungsphase vorgenommen, während bei einem negativen Ergebnis ein Rücksprung zur Inkrementierungsanweisung vorgenommen wird. Als Randbedingung bei der Unterscheidung zwischen Ausreißerzuständen und Alarmzuständen wird dem Ausreißerparameter ein höherer Wert als dem Alarmparameter zugewiesen. Durch die Unterscheidung zwischen Ausreißerzuständen und Alarmzuständen wird eine Differenzierung zwischen signifikanten Zuständen und Fehlmessungen erzielt, wobei Fehlmessungen durch Zuleitungsversagen oder meßtechnische Artefakte entstehen können. If the query in block 5 results in a negative result, the query block will contain 7 determines whether the data obtained for the currently detected Meßsignalwert Evaluation size is greater than a preset alarm parameter a. At a positively determined result is an alarm condition 8 before. In the embodiment In this case, a return to the initialization phase is made while if there is a negative result, a return to the increment instruction is made. As a boundary condition in the distinction between Outlier states and alarm conditions becomes a higher value for the outlier parameter Value assigned as the alarm parameter. By the distinction between Outlier states and alarm conditions will be differentiated between significant states and false measurements, with erroneous measurements may be caused by supply line failure or metrological artifacts.

    Die Erkennung und Eliminierung derartiger Fehlmessungen führt somit zu einer Reduktion von Fehlalarmen.The detection and elimination of such incorrect measurements thus leads to a Reduction of false alarms.

    Fig. 2 zeigt den zeitlichen Verlauf einer physiologischen Meßgröße. Dabei dient die Abszissenachse als Zeitachse τCP, während die Ordinatenachse die Amplitude des Meßsignals wiedergibt.Fig. 2 shows the time course of a physiological measured variable. The abscissa axis serves as the time axis τ CP , while the ordinate axis reproduces the amplitude of the measured signal.

    Fig. 3a zeigt eine stark schematische Darstellung einer Drift. Fig. 3b zeigt eine stark schematische Darstellung eines Sprungs. Fig. 3c zeigt eine stark schematische Darstellung eines Ausreißers. Es ist dabei die zeitliche Abhängigkeit eines gemessenen Signals dargestellt.Fig. 3a shows a highly schematic representation of a drift. Fig. 3b shows a strong schematic representation of a jump. Fig. 3c shows a highly schematic Representation of an outlier. It is the temporal dependence of one measured signal.

    Zusammenfassend ist für das erfindungsgemäße Verfahren mithin charakteristisch: Die internen Kenngrößen des Algorithmus sind die Fensterbreite ω (ω>0), die Verzögerung d (d>0), die Initialisierungslänge i (i>ω+d), der Ausreißerparameter o (o >0) und der Alarmparameter a (a>0).In summary, it is thus characteristic of the method according to the invention: The internal parameters of the algorithm are the window width ω (ω> 0), the delay d (d> 0), the initialization length i (i> ω + d), the outlier parameter o (o> 0) and the alarm parameter a (a> 0).

    Nach einer Initialisierungsphase der Länge von i Zeitschritten wird der jeweils neu gemessene Wert mit einem aus den bisherigen Meßwerten geschätzten Mittelwert samt zugehöriger Streuung (der empirischen Standardabweichung) verglichen - insofern ist der Algorithmus eine natürliche Verallgemeinerung des normalen Schwellenwertalarms, bei dem Mittelwert und Streubreite als bekannt vorausgesetzt werden. Der Mittelwert wird allerdings nicht aus einer Serie der unmittelbar vorangehenden Meßwerte berechnet, sondern aus einem Zeitfenster der Breite ω in der Vergangenheit, mit der wählbaren Zeitverzögerung d. Diese Art der Berechnung umgeht das Problem, daß die zur Schätzung des Mittelwertes und der Streubreite verwendeten Meßwerte bereits abzudriften begonnen haben und damit zu einem erheblichen Bias beitragen, der soweit gehen kann, daß eine genügend langsame Drift überhaupt nicht erkannt wird. Vielmehr ist über die frei wählbare Verzögerung d die Möglichkeit gegeben, den Grenzwinkel derjenigen Steigung zu wählen, die man gerade noch erkennen will. Naturgemäß muß d umso größer gewählt werden, je kleiner die Steigung ist. Jeder neu gemessene Wert wird mit dem aktuellen nach dem erfindungsgemäßen Verfahren geschätzten Mittelwert folgendermaßen verglichen: liegt der Meßwert mehr als das Produkt aus wählbarem Ausreißerfaktor und Streuung vom geschätzten Mittelwert entfernt, so wird er als Ausreißer klassifiziert und für weitere Berechnungen durch den aktuellen Mittelwert (plus eine Zufallszahl mit Erwartungswert Null und Streuung entsprechend der geschätzten Streuung) ersetzt. Falls dies nicht der Fall ist, der Meßwert jedoch mehr als das Produkt aus (wählbarem) Alarmfaktor a und Streuung vom geschätzten Mittelwert entfernt liegt, wird ausgegeben, daß eine signifikante Drift vorhanden ist, und zwar je nach Richtung der Abweichung eine Drift nach oben oder unten. In allen anderen Fällen wird keine Meldung ausgegeben. Danach wird der nächste Zeitschritt abgearbeitet. Es ist wählbar, ob nach einem ausgegebenen Alarm neu initialisiert werden soll, unter Umständen mit einer weiteren wählbaren Zeitverzögerung, oder ob ohne neue Initialisierung weitergerechnet werden soll. Die Fensterbreite ω beeinflußt die Schwankungen des geschätzten Mittelwertes - die Schwankungen verringern sich dabei proportional zur Wurzel aus ω.After an initialization phase of the length of i time steps, the respective newly measured value with one estimated from the previous measured values Mean and associated dispersion (the empirical standard deviation) so far the algorithm is a natural generalization of the normal threshold alarm, where the mean and spread known be presupposed. However, the average is not from a series of calculated directly preceding measured values, but from a time window the width ω in the past, with the selectable time delay d. These Type of calculation bypasses the problem that the estimation of the mean and the spread used measurements have already begun to drift and thus contribute to a considerable bias that can go so far that a sufficiently slow drift is not recognized at all. Rather, it is about the freely selectable delay d given the possibility of the limit angle of those To choose a slope that you just want to recognize. Naturally, d the smaller the slope, the larger the chosen. Each newly measured Value is estimated with the current method according to the invention Mean value compared as follows: is the measured value more than the product from selectable outlier factor and scatter from estimated mean removed, it is classified as an outlier and is subject to further calculations the current mean (plus a random number with expected zero and Scatter according to the estimated spread). If this is not the case Case, but the measured value is more than the product of (selectable) alarm factor a and scatter away from the estimated mean, it is reported that There is a significant drift, depending on the direction of the deviation a drift up or down. In all other cases, no message is output. Then the next time step is processed. It is selectable, whether should be reinitialized after an alarm has been issued, under certain circumstances with another selectable time delay, or without a new initialization should be further calculated. The window width ω influences the fluctuations the estimated mean value - the fluctuations decrease proportionally to the root of ω.

    Für viele Zwecke erweisen sich folgende Werte als günstige Ausgangswerte, die dann optimiert werden können: Fensterbreite ω>10, Ausreißerparameter o=6 und der Alarmparameter a=3. Die berechneten Informationen Ausreißer Ja/Nein, Alarm für Drift nach oben/unten, beziehungsweise keine signifikante Drift können entweder direkt am Bildschirm oder akustisch über vereinbarte Tonsequenzen ausgegeben werden, oder aber am Eingang in ein intelligentes Alarmsystem.For many purposes, the following values prove to be favorable starting values can then be optimized: window width ω> 10, outlier parameter o = 6 and the alarm parameter a = 3. The calculated information Outliers Yes / No, Alarm for drift up / down, respectively, no significant drift can either directly on the screen or acoustically via agreed tone sequences be issued, or at the entrance to an intelligent alarm system.

    Die Erfindung wurde zuvor anhand eines bevorzugten Ausführungsbeispiels näher erläutert. Für einen Fachmann ist es jedoch offensichtlich, daß verschiedene Abwandlungen und Modifikationen gemacht werden können, ohne von dem der Erfindung zugrundeliegenden Gedanken abzuweichen. Insbesondere sei bemerkt, daß in der vorliegenden Beschreibung unter dem Ausdruck "Lageparameter" insbesondere ein Mittelwert, Median, o.ä. und unter dem Ausdruck "Streuparameter" eine Standardabweichung, Quantil, o.ä. verstanden wird.The invention has been described in more detail above with reference to a preferred embodiment explained. However, it will be apparent to one skilled in the art that various Modifications and modifications can be made without departing from the Deviate from the underlying idea of the invention. In particular, it should be noted that in the present description under the term "positional parameter" in particular a mean, median, or similar and under the term "scattering parameter" a standard deviation, quantile, or similar is understood.

    Claims (15)

    1. Method for detecting an alarm state of measurement signal values received by measurement value sampling means wherein an alarm state is triggered when for a currently received measurement signal value at least one pre-determined limit value is exceeded, characterized in that in a first step for measurement signal values subsequent in time a position parameter (2), which is a mean value, median or similar, thereof and a corresponding deviation parameter (3), which is a standard deviation, quantile or similar, of the measurement signal values from the position parameter is calculated in an adjustable time window, in that in a second step each further subsequent measurement signal value is compared to the position parameter (2) and weighted with the deviation parameter (3) in order to obtain a respective evaluation quantity, and in that in a third step an outlier state (6) is detected when the evaluation quantity exceeds an adjustable outlier parameter, whereas an alarm state (8) indicating the presence of a significant drift or jump of the measurement signal values is detected when the evaluation quantity exceeds an adjustable alarm parameter.
    2. Method according to claim 1, characterized in that the evaluation quantity is calculated by taking the difference between the measurement signal value and the calculated position parameter (2) with a subsequent normalization of the difference.
    3. Method according to claim 2, characterized in that the weighting of the evaluation quantity is provided by a division of the normalized difference between the measurement signal value and the position parameter (2) and the calculated deviation parameter (3).
    4. Method according to claim 3, characterized in that an outlier state (6) is detected when the normalized difference which has been weighted with the calculated deviation parameter (3) between the measurement signal value and the position parameter (2) exceeds the set outlier parameter.
    5. Method according to claim 3 or 4, characterized in that an alarm state (8) is detected if the normalized difference weighted with the calculated deviation parameter (3) between the measurement signal value and the position parameter (2) exceeds the set alarm parameter.
    6. Method according to any of claims 1 to 5, characterized in that when an outlier state (6) is present the corresponding measurement signal value is replaced by a substitute value and the next subsequent measurement signal value is processed.
    7. Method according to claim 6, characterized in that the substitute value is the current position parameter (2).
    8. Method according to any of claims 1 to 5, characterized in that when an outlier state (6) is present the corresponding measurement signal value is left out for the further calculation and the next subsequent measurement signal value is processed.
    9. Method according to any of claims 1 to 8, characterized in that the position parameter of the subsequent measurement signal values is formed by a summation of the single measurement signal values, wherein the number of summation steps is determined by the width of the time window.
    10. Method according to any of claims 1 to 9, characterized in that as a deviation parameter (3) the standard deviation is used, wherein the number of the summation steps is determined by the width of the time window.
    11. Method according to any of claims 1 to 9, characterized in that a variable positioning of the time window is provided using a time delay.
    12. Method according to any of claims 1 to 11, characterized in that the outlier parameter is set to a higher value compared to the alarm parameter.
    13. Method according to any of claims 9 to 12, characterized in that the width of the time window is preferably set to be ten measurement signal values subsequent in time and that the outlier parameter is set to six and the alarm parameter is set to three.
    14. Apparatus for detecting an alarm state of measurement signal values received by measurement value sampling means wherein an alarm state is triggered when for a currently received measurement signal value at least one pre-determined limit value is exceeded, characterized in that the apparatus comprises calculation means to calculate in a first step in an adjustable time window for measurement signal values subsequent in time a position parameter (2), which is a mean value, median or similar, thereof and a corresponding deviation parameter (3), which is a standard deviation, quantile or similar, of the measurement signal values from the position parameter, wherein in a second step each further subsequent measurement signal value is compared to the position parameter (2) and weighted with the deviation parameter (3) in order to obtain a respective evaluation quantity, and in that the apparatus further comprises detection means which detect in a third step an outlier state (6) when the evaluation quantity exceeds an adjustable outlier parameter, whereas the detection means detect an alarm state (8) indicating the presence of a significant drift or jump of the measurement signal values when the evaluation quantity exceeds an adjustable alarm parameter.
    15. Apparatus according to claim 14 comprising a measurement value sampling device for receiving measurement value signals and a measurement value transfer device for converting and processing the received measurement value signals, as well as an alarm device triggerable when at least one limit value is exceeded, characterized in that a storage device is provided for sampling the measurement signal values in a time window adjustable in width and time delay, in that calculation means are provided for calculating the position parameters (2) and the corresponding deviations (3) in the adjustable time window for measurement signal values subsequent in time, and in that a processor device is provided for obtaining an evaluation quantity which actuates the alarm device when the evaluation quantity exceeds an adjustable alarm parameter.
    EP99939929A 1998-06-22 1999-06-22 Method and device for detecting drifts, jumps and/or outliers of measurement values Expired - Lifetime EP1097439B1 (en)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    DE19827508 1998-06-22
    DE19827508 1998-06-22
    DE19839047A DE19839047A1 (en) 1998-06-22 1998-08-28 Method and device for drift detection
    DE19839047 1998-08-28
    PCT/DE1999/001820 WO1999067758A1 (en) 1998-06-22 1999-06-22 Method and device for detecting drifts, jumps and/or outliers of measurement values

    Publications (2)

    Publication Number Publication Date
    EP1097439A1 EP1097439A1 (en) 2001-05-09
    EP1097439B1 true EP1097439B1 (en) 2004-03-03

    Family

    ID=26046929

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99939929A Expired - Lifetime EP1097439B1 (en) 1998-06-22 1999-06-22 Method and device for detecting drifts, jumps and/or outliers of measurement values

    Country Status (4)

    Country Link
    US (1) US6556957B1 (en)
    EP (1) EP1097439B1 (en)
    AT (1) ATE261164T1 (en)
    WO (1) WO1999067758A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102011120406A1 (en) 2011-12-08 2013-06-13 Trium Analysis Online Gmbh Method for displaying alarm conditions of e.g. fetal heart rate signal in cardiotocography system during monitoring birth vital parameters, involves assigning alarm conditions to strips of bands, and displaying alarm conditions

    Families Citing this family (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6618631B1 (en) * 2000-04-25 2003-09-09 Georgia Tech Research Corporation Adaptive control system having hedge unit and related apparatus and methods
    JP2003536162A (en) * 2000-06-21 2003-12-02 コンコード・コミュニケーションズ・インコーポレーテッド Live Exceptions System
    JP3832281B2 (en) * 2001-06-27 2006-10-11 日本電気株式会社 Outlier rule generation device, outlier detection device, outlier rule generation method, outlier detection method, and program thereof
    CN1278096C (en) * 2002-03-13 2006-10-04 博里利斯技术公司 Equipment for checking deformation of pipes
    US20030177850A1 (en) * 2002-03-19 2003-09-25 The Washington Post Company System and method for verifying the roll roundness of rolls of paper used for newspapers
    DE10345717B4 (en) * 2003-10-01 2005-12-08 Trium Analysis Online Gmbh Method and device for determining the fetal heart rate
    US7249287B2 (en) * 2004-04-19 2007-07-24 General Electric Company Methods and apparatus for providing alarm notification
    CA2653616C (en) * 2005-06-08 2013-02-12 Philip Michael Sher Fluctuating blood glucose notification threshold profiles and methods of use
    US7215129B1 (en) * 2006-03-30 2007-05-08 General Electric Company Multi tip clearance measurement system and method of operation
    US7917338B2 (en) * 2007-01-08 2011-03-29 International Business Machines Corporation Determining a window size for outlier detection
    AT507019B1 (en) * 2008-07-04 2011-03-15 Siemens Vai Metals Tech Gmbh METHOD FOR MONITORING AN INDUSTRIAL PLANT
    US8046468B2 (en) * 2009-01-26 2011-10-25 Vmware, Inc. Process demand prediction for distributed power and resource management
    US8798889B2 (en) 2010-12-20 2014-08-05 Ford Global Technologies, Llc Automatic transmission and method of control for rejecting erroneous torque measurements
    DE102012200997A1 (en) * 2011-08-29 2013-02-28 Robert Bosch Gmbh Method and device for checking the correct function of a serial data transmission
    US8929236B2 (en) * 2012-07-30 2015-01-06 Hewlett-Packard Development Company, L.P. Network flow analysis
    DE102015223253A1 (en) * 2015-11-25 2017-06-01 Minimax Gmbh & Co. Kg Method for determining threshold values of a condition monitoring unit for a fire detection and / or extinguishing control center and condition monitoring unit and system therewith
    EP3632333A1 (en) 2018-10-05 2020-04-08 Koninklijke Philips N.V. Interventional device positioning respective an ultrasound image plane
    WO2020030665A1 (en) 2018-08-08 2020-02-13 Koninklijke Philips N.V. Interventional device positioning respective an ultrasound image plane

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4587620A (en) * 1981-05-09 1986-05-06 Nippon Gakki Seizo Kabushiki Kaisha Noise elimination device
    DE3127324A1 (en) * 1981-07-10 1983-01-27 Siemens AG, 1000 Berlin und 8000 München METHOD AND ARRANGEMENT FOR INCREASING THE SENSITIVITY AND EMERGENCY SAFETY IN A DANGER, IN PARTICULAR FIRE DETECTING SYSTEM
    DE3463582D1 (en) * 1983-03-04 1987-06-11 Cerberus Ag Circuit arrangement for the interference level control of detectors, arranged in a danger detection device
    US4846190A (en) * 1983-08-23 1989-07-11 John Erwin R Electroencephalographic system data display
    JPS6115300A (en) 1984-06-29 1986-01-23 ホーチキ株式会社 Fire alarm
    US4639885A (en) * 1984-12-24 1987-01-27 United Technologies Corporation EMI suppression for electronic engine control frequency signal inputs
    CH669859A5 (en) * 1986-06-03 1989-04-14 Cerberus Ag
    US5464012A (en) 1993-09-13 1995-11-07 Hewlett-Packard Company Patient alarm detection using target mode

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102011120406A1 (en) 2011-12-08 2013-06-13 Trium Analysis Online Gmbh Method for displaying alarm conditions of e.g. fetal heart rate signal in cardiotocography system during monitoring birth vital parameters, involves assigning alarm conditions to strips of bands, and displaying alarm conditions

    Also Published As

    Publication number Publication date
    US6556957B1 (en) 2003-04-29
    ATE261164T1 (en) 2004-03-15
    WO1999067758A1 (en) 1999-12-29
    EP1097439A1 (en) 2001-05-09

    Similar Documents

    Publication Publication Date Title
    EP1097439B1 (en) Method and device for detecting drifts, jumps and/or outliers of measurement values
    DE4417610C2 (en) Alert detection in patient monitoring using trend vector analysis
    EP1589438B1 (en) Method and device for monitoring concentration of an analyte in a living human or animal body
    EP0355506B1 (en) Arrangement for measuring local bioelectric currents in biological tissue
    EP1702559B1 (en) Method and system for analyzing glucose metabolism
    DE69532244T2 (en) IMPEDANCE MONITORING SYSTEM
    EP2302606B1 (en) Method for alarm generation, control device and device for carrying out the method
    DE69530940T2 (en) CONTROL SYSTEM FOR CONTROLLING THE AIR COMPOSITION OF WAREHOUSES FOR BREATHABLE PLANT PRODUCTS
    CH632848A5 (en) DEVICE FOR DETECTING SIGNALS, ESPECIALLY FETAL HEART SIGNALS.
    EP1687788A1 (en) Method and computer programme for recognition of inattentiveness in the driver of a vehicle
    DE4039648A1 (en) Measurement value processing system for biological object - mathematically evaluates and compares with given measurement value structures
    EP2908720A1 (en) Device and method for detecting and signalling a stress state of a person
    DE102004029825A1 (en) Method and device for detecting fatigue in the driver of a vehicle
    DE102016210014B4 (en) Monitoring device, vehicle control device and monitoring method
    WO1999014686A2 (en) Method for detecting time dependent modes of dynamic systems
    EP1793321B1 (en) Evaluation method and analysis system of an analyte in the bodily fluid of a human or animal
    EP0464896A2 (en) Method of image enhancement and arrangement to implement the method
    DE3511697A1 (en) METHOD FOR AUTOMATICALLY PROCESSING ELECTROOCULOGRAPHIC SIGNALS
    EP1192897B1 (en) Risk monitoring
    DE19839047A1 (en) Method and device for drift detection
    DE10013682C2 (en) Device and method for determining a visual field of a test subject
    EP4014845B1 (en) Output device for outputting a change in a measurement over time
    DE102015122645B3 (en) Risk blood pressure monitor for adaptive monitoring of arterial blood pressure
    EP2630910B1 (en) Method for detecting artefacts
    EP4312760A1 (en) Method for determining a current glucose value in a transported fluid

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010118

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

    17Q First examination report despatched

    Effective date: 20010511

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: DAUMER, MARTIN, DR.

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: DAUMER, MARTIN, DR.

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    PUAC Information related to the publication of a b1 document modified or deleted

    Free format text: ORIGINAL CODE: 0009299EPPU

    AK Designated contracting states

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4C

    Free format text: THIS CORRECTION WILL BE PUBLISHED IN EUROPEAN PATENT BULLETIN 03/40 DATED 20031001.

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PK

    Free format text: BERICHTIGUNG.

    DB1 Publication of patent cancelled
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59906785

    Country of ref document: DE

    Date of ref document: 20031002

    Kind code of ref document: P

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040303

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040303

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20040303

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040303

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040303

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040303

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040603

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040603

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040622

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040630

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040625

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    26N No opposition filed

    Effective date: 20041206

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040803

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040630

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59906785

    Country of ref document: DE

    Representative=s name: VERSCHT, THOMAS K., DIPL.-PHYS.(UNIV.), DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59906785

    Country of ref document: DE

    Owner name: TRIUM ANALYSIS ONLINE GMBH, DE

    Free format text: FORMER OWNER: DAUMER, MARTIN, DR., 81825 MUENCHEN, DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: TRIUM ANALYSIS ONLINE GMBH, DE

    Effective date: 20160901

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20161020 AND 20161026

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20180630

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20180625

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20180731

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59906785

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20190621

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20190621