EP0355506B1 - Arrangement for measuring local bioelectric currents in biological tissue - Google Patents

Arrangement for measuring local bioelectric currents in biological tissue Download PDF

Info

Publication number
EP0355506B1
EP0355506B1 EP89114280A EP89114280A EP0355506B1 EP 0355506 B1 EP0355506 B1 EP 0355506B1 EP 89114280 A EP89114280 A EP 89114280A EP 89114280 A EP89114280 A EP 89114280A EP 0355506 B1 EP0355506 B1 EP 0355506B1
Authority
EP
European Patent Office
Prior art keywords
signal
stage
correlation
threshold value
spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89114280A
Other languages
German (de)
French (fr)
Other versions
EP0355506A1 (en
Inventor
Klaus Dipl.-Phys. Abraham-Fuchs
Siegfried Dr. Schneider
Gerhard Dr. Röhrlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0355506A1 publication Critical patent/EP0355506A1/en
Application granted granted Critical
Publication of EP0355506B1 publication Critical patent/EP0355506B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • A61B5/245Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents specially adapted for magnetoencephalographic [MEG] signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/35Detecting specific parameters of the electrocardiograph cycle by template matching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]

Definitions

  • the invention relates to an arrangement for measuring local bioelectric currents in biological tissue complexes according to the preamble of claim 1.
  • Such an arrangement is known from US Pat. No. 4,736,751. It is used to analyze brain activity on a statistical basis with the help of a digital computer.
  • sensors are distributed in the usual way over the skull, the measurement signals of which are digitized and stored.
  • the patient to be examined is exposed to a set of stimulating sensory stimuli that trigger electrical or magnetic fields in localized areas of the brain. These fields are converted into electrical signals by the sensors, which are statistically evaluated and analyzed in order to verify the respective location of the activity. Due to the spatial and temporal relationships of these spontaneous events, the location of their origin and their spread can be shown on a three-dimensional skull model, produced for example by a computer tomogram using the magnetic resonance method (MR).
  • MR magnetic resonance method
  • the disadvantage of this method is that it only leads to useful results if the evoked potentials are large enough to stand out clearly from the noise level. This generally applies to evoked potentials after a larger number of stimuli and their averaging.
  • the method is not suitable for the determination of so-called spontaneous events, such as those that occur during an epileptic attack.
  • spontaneous events such as those that occur during an epileptic attack.
  • EEG electroencephalogram
  • these are characterized by characteristic signal patterns, e.g. so-called "Spike and wave complexes" of about 200 to 500 ms duration noticeable.
  • These signal patterns can also be determined between acute attacks (interictal), but with a very different frequency from patient to patient. In extreme cases, such signal patterns can occur every second or only once a week.
  • a time-resolved localization has so far been practically impossible to achieve, since due to the low signal-to-noise ratio from a single signal event, localization with the required accuracy is not possible and, as a rule, there were not enough such events available for averaging signal events.
  • the invention is based on the object of processing the electrical signals emanating from sensors arranged spatially distributed over the biological tissue complex to be examined for the measurement of electrical or magnetic field strength values in such a way that certain signal patterns occurring within a time interval form the basis for the search for similar patterns can serve the current signal and determine their temporal occurrence and their spatial allocation.
  • the spatial correlation is formed by averaging the correlation function over the assigned time interval of the signal pattern and the temporal correlation function with subsequent averaging over the assigned space according to certain mathematical relationships. Through their subsequent multiplication, peak signals can be obtained that stand out particularly clearly from the noise.
  • the arrangement described in claim 2 enables the determination of the similarity threshold characteristic of a measurement data set.
  • the sensor electrodes 1 of an electroencephalograph (EEG) and the squid sensor of a multi-channel magnetoencephalograph (MEG) 2 are arranged spatially distributed over the skull cap 3 of a patient.
  • the sensors generate electrical signals corresponding to the measured electrical or magnetic fields, which are fed via leads 4, 5 to an N-channel A / D converter 6.
  • the A / D converter can trigger signals from an EKG device via a feed line 7 and trigger signals controlled by breathing can be fed via the feed line 8, which serve in a known manner to determine the measured value acquisition within certain respiratory rate and / or cardiac activity trigger time limits.
  • the digital signals of the EEG and MEG channels are fed to an N-channel digital frequency filter 9, which filters out periodically occurring interference frequencies, such as the network frequency or excitation centers of the so-called alpha waves emanating from the brain.
  • the output of the frequency filter 9 is connected to an EEG monitor 10, which displays the output signals in an evaluable form (digital or analog) and thus makes them available for analysis by the doctor.
  • the recognized signal pattern must then be defined in time. For this purpose, a start time and an end time are defined. A Such a time-defined signal pattern is referred to as a "template”.
  • the template recognized and defined in this way is stored in the template storage stage 13.
  • the continuously measured signal at the output of the digital frequency filter 9 is fed to a correlation stage 14 which can also call up the template stored in the template storage stage 13 in order to compare it with the continuously incoming signal.
  • the time interval defined as a template is pushed over the incoming data as a "time window".
  • the correlation coefficient of each signal pattern corresponding in time is calculated with the aid of its first arithmetic circuit 24 according to the following mathematical relationship and averaged over all measurement locations:
  • the correlation coefficient of the signal curves in the window in question is determined using a second arithmetic circuit 25 according to the following formula calculated at each measuring location and averaged over all times of the window.
  • the correlation signal obtained in this way, formed according to the correlated space-time function, is fed to a comparison stage 16, which compares this correlation signal with a threshold value signal, which is generated in a threshold value definition stage 15 from the output signal of the frequency filter 9 is obtained.
  • the threshold value signal is fed to an averaging stage 17.
  • the signal pattern averaged by the averaging stage 17 is fed to a localization stage 18, which calculates the geometric location of the pathological, electrically active source that has occurred and feeds this data to a coordinate transformation stage 19, which the coordinate system of the EEG or MEG measurement coincides with that, for example a computer tomogram stored in the image storage stage 20, so that both representations can be displayed on a monitor 21 as a sectional image or as a spatial image.
  • An alternative method of finding very weak signal patterns which leads to better results from case to case, consists in that the sum amounts of the signals of all channels are formed with the aid of an amount sum stage 22 and are fed to a pattern recognition stage 23 which corresponds to the pattern recognition stage 11, 12. Instead of the signal coming from the comparison stage 16, the recognized pattern is fed to the averaging stage 17 and processed in the manner described.
  • the sum signal can alternatively also be supplied to the pattern recognition stage 11, 12 and used for the definition of the template. This type of signal processing is particularly suitable for signal generation only via MEG sampling.
  • FIG. 2 shows an EEG curve of the signal curve generated by an EEG electrode, in which triangular signals S1 to S9, which are referred to by the neurologist as "Sharp-Wave", are noticeable and whose pathological significance is apparent however, is not clear.
  • the complex S2, S3 stands out from the rest. This was therefore used as a template and is shown hatched.
  • the averaged signal obtained after the spatio-temporal correlation is shown hatched in the same EEG channel.
  • the signal pattern averaged in this way fulfills the criteria of a pathological "spike-wave complex" considerably more clearly, but shows a more complicated structure than was represented in the previously known EEG.
  • the arrangement described so far allows the detection of certain events from a continuous recording of bioelectric or biomagnetic signals by means of a digital spatio-temporal correlation analysis by comparing the continuously arriving signal recording with a stored defined signal pattern (template).
  • a value between -1 and +1 is obtained in the data set for the correlation coefficient at each comparison time, which is a measure of the similarity of the signal recording within the time window determined by the signal pattern at each comparison time. If the correlation coefficient is +1, the agreement under the same sign is maximal. The correlation coefficient reaches the worst match at zero and a maximum match at -1, with the opposite sign of the signals.
  • the aim of the further development of the invention is not only to find out from the signal sequence those signal areas which are identical to the template, but also to have a characteristic degree of similarity. Those signal areas are to be registered which exceed a similarity threshold which is characteristic of the relevant data record.
  • the frequency of the occurrence of all possible similarity measures between the signal recording and the comparison signal is shown in FIG. 4 using a typical distribution curve. If the examined signal area consists only of white noise, the frequency distribution of all correlation coefficients represents a Gaussian normal distribution, as shown as a dashed curve N in FIG. 4. Any deviation of the frequency distribution, the so-called histogram, from the normal distribution, as shown for example in the solid curve H in Fig. 4, is a clear sign that there are signal complexes which, depending on the size of their respective correlation coefficient, one are more or less similar to the given curve shape of the template. Such deviations are expressed in peaks P1 ... P8, which overlay the normal distribution curve N. The closer such a peak is to +1, the greater the degree of similarity.
  • the base point on the left (i.e. in the direction of small correlation coefficients) of the tip that is closest to the correlation coefficient +1 determines the characteristic similarity threshold sought.
  • the similarity threshold sought would be determined from the peak P8 with 0.48. Each exceeding of this threshold value defines a point in time in the examined signal that is sufficiently similar to the template.
  • FIG. 5 A circuit arrangement for determining the similarity threshold is shown in FIG. 5. Those stages which have the same function as those in FIG. 1 are provided with the same reference symbols.
  • the difference from the circuit arrangement shown in FIG. 1 is that the measurement signal in the memory stage 27 and the correlation signal formed by the correlation stage 14 is stored in a storage stage 28.
  • This signal is fed to a computing stage 29 for computing the histogram and at the same time to the comparison stage 16.
  • the histogram signal occurring at the output of the computing stage 29 is fed to a threshold value determination stage 30, which determines the characteristic threshold value from the distribution curve and also feeds it to the comparison stage 16.
  • the stored correlation signal from the storage stage 28 is compared with the characteristic threshold value from the threshold value determination stage 30 and, if the threshold value is exceeded, the signal section belonging to this time is fed to the averaging stage 17 and from there evaluated via the localization stage 18 as already described.
  • FIG. 6 shows the image recognizable on the monitor 20, in which the computer tomogram is made to coincide with the coordinate-transformed MEG localization image. From this, the area of the pathological electrical activity through the points marked with crosses can be clearly recognized by a line characterizing the temporal activity course.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

Die Erfindung betrifft eine Anordnung zum Messen lokaler bioelektrischer Ströme in biologischen Gewebekomplexen nach dem Oberbegriff des Patentanspruchs 1. Eine solche Anordnung ist aus der US-PS 4,736,751 bekannt. Sie dient dazu, Hirnaktivitäten auf statistischer Basis mit Hilfe eines Digitalrechners zu analysieren. Dazu werden in der üblichen Weise Sensoren über der Schädeldecke verteilt, deren Meßsignale digitalisiert und gespeichert werden. Der zu untersuchende Patient wird dabei einem Satz von stimulierenden Sinnesreizen ausgesetzt, die in lokalisierbaren Hirnbereichen elektrische oder magnetische Felder auslösen. Diese Felder werden von den Sensoren in elektrische Signale umgesetzt, die statistisch ausgewertet und analysiert werden, um den jeweiligen Ort der Aktivität zu verifizieren. Aufgrund der räumlichen und zeitlichen Zusammenhänge dieser spontanen Ereignisse kann der Ort ihrer Entstehung und ihrer Ausbreitung an einem dreidimensionalen Schädelmodell, hergestellt etwa durch ein Computertomogramm nach der magnetischen Resonanzmethode (MR), dargestellt werden.The invention relates to an arrangement for measuring local bioelectric currents in biological tissue complexes according to the preamble of claim 1. Such an arrangement is known from US Pat. No. 4,736,751. It is used to analyze brain activity on a statistical basis with the help of a digital computer. For this purpose, sensors are distributed in the usual way over the skull, the measurement signals of which are digitized and stored. The patient to be examined is exposed to a set of stimulating sensory stimuli that trigger electrical or magnetic fields in localized areas of the brain. These fields are converted into electrical signals by the sensors, which are statistically evaluated and analyzed in order to verify the respective location of the activity. Due to the spatial and temporal relationships of these spontaneous events, the location of their origin and their spread can be shown on a three-dimensional skull model, produced for example by a computer tomogram using the magnetic resonance method (MR).

Der Nachteil dieser Methode besteht darin, daß sie nur dann zu brauchbaren Ergebnissen führt, wenn die evozierten Potentiale groß genug sind, um sich aus dem Rauschpegel deutlich erkennbar herauszuheben. Dies trifft bei evozierten Potentialen im allgemeinen nach einer größeren Anzahl von Reizen und deren Mittelwertbildung zu. Die Methode eignet sich aber nicht ohne weiteres zur Feststellung sogenannter spontaner Ereignisse, wie sie etwa bei einem epileptischen Anfall auftreten. Diese machen sich nach dem heutigen Stand des Wissens im Elektroenzephalogramm (EEG) durch charakteristische Signalmuster, z.B. sogenannten "Spike and Wave-Komplexen" von etwa 200 bis 500 ms Dauer bemerkbar. Diese Signalmuster sind auch zwischen akuten Anfällen (interiktal) feststellbare, allerdings mit von Patient zu Patient sehr unterschiedlicher Häufigkeit. Solche Signalmuster können in Extremfällen jede Sekunde oder auch nur einmal pro Woche auftreten. Aufgrund des geringen Signal-Rausch-Verhältnisses sind solche interiktalen Signalmuster im EEG meist nur schwer und nur von erfahrenen Neurologen, im Magnetoenzephalogramm (MEG) mit bloßem Auge praktisch gar nicht erkennbar. Der Ursprungsort solcher spontan auftretenden Signalmuster wird als epileptogener Herd gedeutet. Ziel der Auswertung eines EEG oder MEG in der Epilepsie-Diagnostik ist es, den Ort dieses Herdes möglichst exakt zu lokalisieren. Außerdem ist für den Neurologen von Bedeutung, Aussagen über die räumliche Ausbreitung signalbildender elektrischer Erregungen sowohl innerhalb eines Signalmusters als auch bei aufeinanderfolgenden unterschiedlichen Signalmustern zu gewinnen. Solche Aussagen sind bisher nur invasiv mittels EEG-Tiefenelektroden und auch damit nur sehr eingeschränkt möglich. Eine zeitauflösende Lokalisierung war bisher praktisch nicht zu erreichen, da aufgrund des geringen Signal-Rausch-Verhältnisses aus einem einzelnen Signalereignis eine Lokalisierung mit der erforderlichen Genauigkeit nicht möglich ist und für eine Mittelung von Signalereignissen in der Regel nicht genügend solche Ereignisse zur Verfügung standen.The disadvantage of this method is that it only leads to useful results if the evoked potentials are large enough to stand out clearly from the noise level. This generally applies to evoked potentials after a larger number of stimuli and their averaging. However, the method is not suitable for the determination of so-called spontaneous events, such as those that occur during an epileptic attack. According to the current state of knowledge in the electroencephalogram (EEG), these are characterized by characteristic signal patterns, e.g. so-called "Spike and wave complexes" of about 200 to 500 ms duration noticeable. These signal patterns can also be determined between acute attacks (interictal), but with a very different frequency from patient to patient. In extreme cases, such signal patterns can occur every second or only once a week. Due to the low signal-to-noise ratio, such interictal signal patterns are usually difficult to recognize in the EEG and only practically impossible to see with the naked eye in the magnetoencephalogram (MEG) by experienced neurologists. The origin of such spontaneously occurring signal patterns is interpreted as an epileptogenic focus. The aim of evaluating an EEG or MEG in epilepsy diagnostics is to localize the location of this focus as precisely as possible. It is also important for the neurologist to make statements about the spatial spread of signal-forming electrical excitations both within a signal pattern and in the case of successive different signal patterns. Such statements have so far only been possible invasively using EEG depth electrodes and are therefore also only possible to a very limited extent. A time-resolved localization has so far been practically impossible to achieve, since due to the low signal-to-noise ratio from a single signal event, localization with the required accuracy is not possible and, as a rule, there were not enough such events available for averaging signal events.

Der Erfindung liegt die Aufgabe zugrunde, die von über dem zu untersuchenden biologischen Gewebekomplex räumlich verteilt angeordneten Sensoren für die Messung von elektrischen oder magnetischen Feldstärkewerten ausgehenden elektrischen Signale derart zu verarbeiten, daß bestimmte, innerhalb eines Zeitintervalls auftretende Signalmuster als Grundlage für das Aufsuchen ähnlicher Muster aus dem laufenden Signal dienen können sowie deren zeitliches Auftreten und deren räumliche Zuordnung festzustellen.The invention is based on the object of processing the electrical signals emanating from sensors arranged spatially distributed over the biological tissue complex to be examined for the measurement of electrical or magnetic field strength values in such a way that certain signal patterns occurring within a time interval form the basis for the search for similar patterns can serve the current signal and determine their temporal occurrence and their spatial allocation.

Diese Aufgabe wird durch die im Patentanspruch 1 und 2 angegebene Erfindung gelöst. Die darin vorgeschlagene räumliche und zeitliche Korrelation der gemittelten Signalmuster zeigt brauchbare Signalwerte, die sich ausreichend vom Rauschen abheben und entsprechend ausgewertet werden können.This object is achieved by the invention specified in patent claims 1 and 2. The spatial and temporal correlation of the averaged signal pattern proposed therein shows usable signal values that stand out sufficiently from the noise and can be evaluated accordingly.

In einer Weiterbildung der Erfindung gemäß Patentanspruch 3 ist erreicht, daß auswertbare Störfrequenzen, wie beispielsweise die Netzfrequenz oder bestimmte periodisch auftretende spontane Biosignale aus den Signalkanälen der Sensoren ausgefiltert werden können.In a development of the invention according to claim 3 it is achieved that evaluable interference frequencies, such as the network frequency or certain periodically occurring spontaneous biosignals can be filtered out of the signal channels of the sensors.

Gemäß einer weiteren Ausbildung nach Patentanspruch 4 wird die räumliche Korrelation durch die Mittelung der Korrelationsfunktion über das zugeordnete Zeitintervall des Signalmusters und die zeitliche Korrelationsfunktion mit anschließender Mittelwertbildung über den zugeordneten Raum nach bestimmten mathematischen Zusammenhängen gebildet. Durch deren anschließende Multiplikation können Spitzensignale gewonnen werden, die sich besonders deutlich aus dem Rauschen abheben.According to a further embodiment according to claim 4, the spatial correlation is formed by averaging the correlation function over the assigned time interval of the signal pattern and the temporal correlation function with subsequent averaging over the assigned space according to certain mathematical relationships. Through their subsequent multiplication, peak signals can be obtained that stand out particularly clearly from the noise.

Die in Patentanspruch 2 beschriebene Anordnung ermöglicht die Bestimmung der für einen Meßdatensatz charakteristischen Ähnlichkeitsschwelle.The arrangement described in claim 2 enables the determination of the similarity threshold characteristic of a measurement data set.

Die erforderlichen Rechenoperationen nehmen, wenn sie von den üblichen Digitalrechnern ausgeführt werden, eine erhebliche Rechenzeit in Anspruch. Bei einer Weiterbildung der Erfindung nach Patentanspruch 7 ist durch die Verwendung eines Arrayprozessor-Rechners in Zusammenhang mit einem Algorithmus zur sogenannten schnellen Faltung eine wesentliche Verkürzung der Rechenzeit erzielbar, die es erlaubt, Ergebnisse kurz nach Ablauf der Untersuchung zu erhalten, so daß der Patient für eine eventuelle Wiederholung mit der Meßanordnung verbunden bleiben kann.The required arithmetic operations, when carried out by the usual digital computers, take up a considerable amount of computing time. In a further development of the invention according to claim 7, the use of an array processor computer in conjunction with an algorithm for so-called fast folding enables a significant reduction in the computing time to be achieved, which allows results to be obtained shortly after the examination, so that the patient can be used for a possible repetition can remain connected to the measuring arrangement.

Zwar ist es aus "Biogmagnetism" 1987, "Proceedings of the 6th International Conference on Biomagnetism" unter dem Titel "New Method for the Study of Spontaneous Brain Aktivity" zur Detektion von epileptischen und von Alpha-Aktivitäten bekannt, eine Korrelation der Ortsmuster zur Erkennung von "Spike-Wave-Komplexen" in nur einem EEG-Kanal vorzunehmen. Diese Methode ist jedoch nur dann ausreichend, wenn ein signifikantes Ereignis in einem Kanal deutlich erkennbar ist. Es hat sich jedoch gezeigt, daß im Rahmen der in der Praxis auftretenden Signal-Rausch-Verhältnisse signifikante Korrelationen von "Spike-Wave-Komplexen" bei der einfachen Korrelationsfunktion gar nicht und in den räumlich und zeitlich gemittelten Korrelationsfunktionen eines MEG nur sehr schlecht zu beobachten sind. Erst durch die Behandlung der Signalkomplexe nach der vorliegenden Erfindung heben sich die charakteristischen Signalmuster so deutlich vom Rauschen ab, daß sie für die weitere Signalbehandlung und Signalauswertung verwendet werden können.It is known from "Biogagnetism" 1987, "Proceedings of the 6th International Conference on Biomagnetism" under the title "New Method for the Study of Spontaneous Brain Activity" for the detection of epileptic and alpha activities, a correlation of the spatial patterns for recognition of "spike wave complexes" in only one EEG channel. However, this method is only sufficient if a significant event can be clearly recognized in a channel. However, it has been shown that in the context of the signal-to-noise ratios that occur in practice, significant correlations of "spike-wave complexes" cannot be observed at all in the simple correlation function and only very poorly in the spatially and temporally averaged correlation functions of an MEG are. Only by treating the signal complexes according to the present invention do the characteristic signal patterns stand out so clearly from the noise that they can be used for further signal treatment and signal evaluation.

Weitere Einzelheiten der Erfindung ergeben sich aus den nachfolgenden Erläuterungen zu einem in den Figuren 1 bis 4 dargestellten Ausführungsbeispiel. Darin zeigen:

FIG 1
eine Meßanordnung für die Behandlung der von den am Patienten angeordneten Sensoren gelieferten Meßwerte;
FIG 2
ein typisches Signalmuster eines spontanen Ereignisses im Hirnbereich eines Patienten;
FIG 3
das nach einer Raum-zeitlichen Korrelation erhaltene gemittelte Signal gemäß FIG 2;
FIG 4
eine typische Verteilungskurve, die die Häufigkeit des Auftretens eines bestimmten Ähnlichkeitsmaßes (Korrelationskoeffizienten) zwischen der Signalaufzeichnung und dem Vergleichssignal darstellt;
FIG 5
eine Schaltungsanordnung zur Bestimmung der Ähnlichkeitsschwelle; und
FIG 6
das von einem Computertomographen gewonnene Schichtbild des Gehirns mit einer eingezeichneten typischen Erregungsbahn eines spontanen Ereignisses.
Further details of the invention result from the following explanations of an exemplary embodiment shown in FIGS. 1 to 4. In it show:
FIG. 1
a measuring arrangement for the treatment of the measured values supplied by the sensors arranged on the patient;
FIG 2
a typical signal pattern of a spontaneous event in the brain area of a patient;
FIG 3
the averaged signal obtained after a space-time correlation according to FIG. 2;
FIG 4
a typical distribution curve representing the frequency of the occurrence of a certain measure of similarity (correlation coefficient) between the signal recording and the comparison signal;
FIG 5
a circuit arrangement for determining the similarity threshold; and
FIG 6
the slice image of the brain obtained by a computer tomograph with a typical path of excitation of a spontaneous event.

In FIG 1 sind die Sensorelektroden 1 eines Elektroenzephalographen (EEG) sowie der Squid-Sensor eines Mehrkanal-Magnetoenzephalographen (MEG) 2 über der Schädelkalotte 3 eines Patienten räumlich verteilt angeordnet. Die Sensoren erzeugen den gemessenen elektrischen bzw. magnetischen Feldern entsprechende elektrische Signale, die über Zuleitungen 4, 5 einem N-Kanal A/D-Wandler 6 zugeführt sind. Weiterhin können dem A/D-Wandler Triggersignale aus einem EKG-Gerät über eine Zuleitung 7 und von der Atmung gesteuerte Triggersignale über die Zuleitung 8 zugeführt werden, die in bekannter Weise dazu dienen, die Meßwerterfassung innerhalb bestimmter, von Atemfrequenz und/oder Herztätigkeit bestimmter zeitlicher Grenzen auszulösen. Die Digitalsignale der EEG- und MEG-Kanäle werden einem N-kanaligen digitalen Frequenzfilter 9 zugeleitet, der periodisch auftretende Störfrequenzen, wie beispielsweise die Netzfrequenz oder Erregungszentren der vom Hirn ausgehenden, sogenannten Alpha-Wellen, ausfiltert. Der Ausgang des Frequenzfilters 9 ist mit einem EEG-Monitor 10 verbunden, der die Ausgangssignale in auswertbarer Form (digital oder analog) anzeigt und damit einer Analyse durch den Arzt zugänglich macht.In FIG. 1, the sensor electrodes 1 of an electroencephalograph (EEG) and the squid sensor of a multi-channel magnetoencephalograph (MEG) 2 are arranged spatially distributed over the skull cap 3 of a patient. The sensors generate electrical signals corresponding to the measured electrical or magnetic fields, which are fed via leads 4, 5 to an N-channel A / D converter 6. Furthermore, the A / D converter can trigger signals from an EKG device via a feed line 7 and trigger signals controlled by breathing can be fed via the feed line 8, which serve in a known manner to determine the measured value acquisition within certain respiratory rate and / or cardiac activity trigger time limits. The digital signals of the EEG and MEG channels are fed to an N-channel digital frequency filter 9, which filters out periodically occurring interference frequencies, such as the network frequency or excitation centers of the so-called alpha waves emanating from the brain. The output of the frequency filter 9 is connected to an EEG monitor 10, which displays the output signals in an evaluable form (digital or analog) and thus makes them available for analysis by the doctor.

Alternativ besteht die Möglichkeit, anstelle des EEG-Monitors 10 eine frei programmierbare Mustererkennungsstufe 11 vorzusehen, die mittels eines Programmiergerätes 12 für die Erkennung bestimmter Signalmuster programmierbar ist.Alternatively, it is possible to provide a freely programmable pattern recognition stage 11 instead of the EEG monitor 10, which can be programmed by means of a programming device 12 for the recognition of certain signal patterns.

Das erkannte Signalmuster muß dann zeitlich definiert werden. Dazu werden ein Anfangszeitpunkt und ein Endzeitpunkt festgelegt. Ein solches zeitlich definiertes Signalmuster wird als "Template" bezeichnet. Das so erkannte und definierte Template wird in der Template-Speicherstufe 13 abgespeichert.The recognized signal pattern must then be defined in time. For this purpose, a start time and an end time are defined. A Such a time-defined signal pattern is referred to as a "template". The template recognized and defined in this way is stored in the template storage stage 13.

Das fortlaufend gemessene Signal am Ausgang des digitalen Frequenzfilters 9 wird einer Korrelationsstufe 14 zugeführt, die auch das in der Template-Speicherstufe 13 gespeicherte Template abrufen kann, um es mit dem laufend eingehenden Signal zu vergleichen. Dazu wird das als Template definierte Zeitintervall als "Zeitfenster" über die eingehenden Daten geschoben. In jedem Zeitfenster wird der Korrelationskoeffizient jedes zeitlich korrespondierenden Signalmusters mit Hilfe seines ersten Rechenschaltkreises 24 nach der folgenden mathematischen Beziehung berechnet und über alle Meßorte gemittelt:

Figure imgb0001

Ebenso wird der Korrelationskoeffizient der Signalkurven in dem betreffenden Fenster mit Hilfe eines zweiten Rechenschaltkreises 25 nach der folgenden Formel
Figure imgb0002

an jedem Meßort berechnet und über alle Zeitpunkte des Fensters gemittelt. Die so berechneten Zeitfunktionen der zeitlichen und räumlichen Korrelation werden anschließend mit Hilfe eines dritten Rechenschaltkreises 26 nach der Formel

K RT (t i ) = K R (t i ) . K T (t i )
Figure imgb0003


multipliziert.The continuously measured signal at the output of the digital frequency filter 9 is fed to a correlation stage 14 which can also call up the template stored in the template storage stage 13 in order to compare it with the continuously incoming signal. To do this, the time interval defined as a template is pushed over the incoming data as a "time window". In each time window, the correlation coefficient of each signal pattern corresponding in time is calculated with the aid of its first arithmetic circuit 24 according to the following mathematical relationship and averaged over all measurement locations:
Figure imgb0001

Likewise, the correlation coefficient of the signal curves in the window in question is determined using a second arithmetic circuit 25 according to the following formula
Figure imgb0002

calculated at each measuring location and averaged over all times of the window. The time functions of the temporal and spatial correlation calculated in this way are then calculated using a third computing circuit 26 according to the formula

K RT (t i ) = K R (t i ). K T (t i )
Figure imgb0003


multiplied.

Darin bedeuten:
C₁ ... CN N magnetische Meßkanäle in beliebiger Ortsverteilung

Figure imgb0004

magnetisches Signal im Kanal Ci zum Zeitpunkt ti
τ₀ ... τi ... τM Zeitintervall des Templates, Beginn τo, Ende τM, mit M Abtastwerten im Zeitintervall;
τi Zeitpunkt im Zeitintervall τo ≦ τi ≦ τM
KT (ti) zeitlicher Korrelationsfaktor, (Korrelationskoeffizient zum Zeitpunkt ti von Template und Meßsignal)
KR (ti) räumlicher Korrelationsfaktor (Korrelationskoeffizient zum Zeitpunkt ti von Template und Meßsignal)
KRT (ti) Raum-zeitlicher Korrelationsfaktor
Das so erhaltene, nach der korrelierten Raum-Zeit-Funktion gebildete Korrelationssignal wird einer Vergleichsstufe 16 zugeführt, welche dieses Korrelationssignal mit einem Schwellwertsignal vergleicht, das in einer Schwellwertdefinitionsstufe 15 aus dem Ausgangssignal des Frequenzfilters 9 gewonnen wird. Bei Überschreiten der Schwelle wird das Schwellwertsignal einer Mittelungsstufe 17 zugeführt. Diese bildet ein Mittelwertsignal aller aus den vorgenannten Kriterien erkannter Signalmuster über der Zeit an allen Meßorten, welches einerseits der Template-Speicherstufe 13 und andererseits der Schwellendefinitionsstufe 15 zur laufenden Korrektur der Templates zugeführt ist. Darüber hinaus werden die von der Mittelungsstufe 17 gemittelten Signalmuster einer Lokalisierungsstufe 18 zugeführt, welche den geometrischen Ort der aufgetretenen pathologischen elektrisch aktiven Quelle berechnet und diese Daten einer Koordinatentransformationsstufe 19 zuführt, die das Koordinatensystem der EEG-bzw. MEG-Messung mit demjenigen, beispielsweise eines in der Bildspeicherstufe 20 gespeicherten Computertomogramms, zur Deckung bringt, so daß beide Darstellungen auf einem Monitor 21 als Schnittbild oder als räumliches Bild zur Darstellung gebracht werden können.Where:
C₁ ... C N N magnetic measuring channels in any local distribution
Figure imgb0004

magnetic signal in channel C i at time t i
τ₀ ... τ i ... τ M time interval of the template, start τ o , end τ M , with M samples in the time interval;
τ i time in the time interval τ o ≦ τ i ≦ τ M
K T (t i ) temporal correlation factor, (correlation coefficient at time t i of template and measurement signal)
K R (t i ) spatial correlation factor (correlation coefficient at time t i of template and measurement signal)
K RT (t i ) spatio-temporal correlation factor
The correlation signal obtained in this way, formed according to the correlated space-time function, is fed to a comparison stage 16, which compares this correlation signal with a threshold value signal, which is generated in a threshold value definition stage 15 from the output signal of the frequency filter 9 is obtained. If the threshold is exceeded, the threshold value signal is fed to an averaging stage 17. This forms an average value signal of all signal patterns recognized from the aforementioned criteria over time at all measuring locations, which is supplied on the one hand to the template storage stage 13 and on the other hand to the threshold definition stage 15 for the ongoing correction of the templates. In addition, the signal pattern averaged by the averaging stage 17 is fed to a localization stage 18, which calculates the geometric location of the pathological, electrically active source that has occurred and feeds this data to a coordinate transformation stage 19, which the coordinate system of the EEG or MEG measurement coincides with that, for example a computer tomogram stored in the image storage stage 20, so that both representations can be displayed on a monitor 21 as a sectional image or as a spatial image.

Eine alternative, von Fall zu Fall zu besseren Ergebnissen führende Methode zur Auffindung sehr schwacher Signalmuster besteht darin, daß mit Hilfe einer Betragssummenstufe 22 die Betragssummen der Signale aller Kanäle gebildet und einer Mustererkennungsstufe 23 zugeführt werden, die der Mustererkennungsstufe 11, 12 entspricht. Das erkannte Muster wird anstelle des von der Vergleichsstufe 16 kommenden Signals der Mittelungsstufe 17 zugeführt und in der beschriebenen Weise bearbeitet. Das Summensignal kann alternativ auch der Mustererkennungsstufe 11, 12 zugeführt und zur Templatedefinition verwendet werden. Diese Art der Signalverarbeitung eignet sich besonders bei einer Signalerzeugung nur über die MEG-Abtastung.An alternative method of finding very weak signal patterns, which leads to better results from case to case, consists in that the sum amounts of the signals of all channels are formed with the aid of an amount sum stage 22 and are fed to a pattern recognition stage 23 which corresponds to the pattern recognition stage 11, 12. Instead of the signal coming from the comparison stage 16, the recognized pattern is fed to the averaging stage 17 and processed in the manner described. The sum signal can alternatively also be supplied to the pattern recognition stage 11, 12 and used for the definition of the template. This type of signal processing is particularly suitable for signal generation only via MEG sampling.

In FIG 2 ist ein EEG-Kurvenzug des von einer EEG-Elektrode erzeugten Signalverlaufs dargestellt, bei dem mit bloßem Auge dreieckförmige Signale S1 bis S9 auffallen, die vom Neurologen als "Sharp-Wave" bezeichnet werden, deren pathologische Signifikanz allerdings nicht eindeutig ist. Dabei hebt sich der Komplex S₂, S₃ von den übrigen ab. Dieser wurde daher als Template verwendet und ist schraffiert dargestellt.FIG. 2 shows an EEG curve of the signal curve generated by an EEG electrode, in which triangular signals S1 to S9, which are referred to by the neurologist as "Sharp-Wave", are noticeable and whose pathological significance is apparent however, is not clear. The complex S₂, S₃ stands out from the rest. This was therefore used as a template and is shown hatched.

In FIG 3 ist das nach der raum-zeitlichen Korrelation erhaltene gemittelte Signal im selben EEG-Kanal schraffiert dargestellt. Das so gemittelte Signalmuster erfüllt erheblich deutlicher die Kriterien eines pathologischen "Spike-Wave-Komplexes", zeigt jedoch eine kompliziertere Struktur, als sie sich in dem bisher bekannten EEG darstellte.In FIG. 3, the averaged signal obtained after the spatio-temporal correlation is shown hatched in the same EEG channel. The signal pattern averaged in this way fulfills the criteria of a pathological "spike-wave complex" considerably more clearly, but shows a more complicated structure than was represented in the previously known EEG.

Die bisher beschriebene Anordnung erlaubt das Erkennen bestimmter Ereignisse aus einer kontinuierlichen Aufzeichnung bioelektrischer oder biomagnetischer Signale mittels einer digitalen raum-zeitlichen Korrelationsanalyse durch den Vergleich der kontinuierlich eintreffenden Signalaufzeichnung mit einem gespeicherten definierten Signalmuster (template).The arrangement described so far allows the detection of certain events from a continuous recording of bioelectric or biomagnetic signals by means of a digital spatio-temporal correlation analysis by comparing the continuously arriving signal recording with a stored defined signal pattern (template).

Als Ergebnis dieses Vergleichs erhält man zu jedem Vergleichszeitpunkt im Datensatz für den Korrelationskoeffizienten einen Wert zwischen -1 und +1, der ein Maß ist für die Ähnlichkeit der Signalaufzeichnung innerhalb des vom Signalmuster bestimmten Zeitfensters in jedem Vergleichszeitpunkt. Ist der Korrelationskoeffizient gleich +1, so ist die Übereinstimmung unter gleichem Vorzeichen maximal. Der Korrelationskoeffizient erreicht bei Null die schlechteste Übereinstimmung und bei -1 eine maximale Übereinstimmung, unter umgekehrtem Vorzeichen der Signale. Die weitere Ausbildung der Erfindung hat zum Ziel, nicht nur jene Signalbereiche aus der Signalfolge herauszufinden, die mit dem Template identisch sind, sondern auch ein charakteristisches Maß an Ähnlichkeit aufweisen. Es sollen also diejenigen Signalbereiche registriert werden, die eine für den betreffenden Datensatz charakteristische Ähnlichkeitsschwelle überschreiten.As a result of this comparison, a value between -1 and +1 is obtained in the data set for the correlation coefficient at each comparison time, which is a measure of the similarity of the signal recording within the time window determined by the signal pattern at each comparison time. If the correlation coefficient is +1, the agreement under the same sign is maximal. The correlation coefficient reaches the worst match at zero and a maximum match at -1, with the opposite sign of the signals. The aim of the further development of the invention is not only to find out from the signal sequence those signal areas which are identical to the template, but also to have a characteristic degree of similarity. Those signal areas are to be registered which exceed a similarity threshold which is characteristic of the relevant data record.

In Fig. 4 ist anhand einer typischen Verteilungskurve die Häufigkeit des Auftretens aller möglichen Ähnlichkeitsmaße zwischen der Signalaufzeichnung und dem Vergleichssignal dargestellt. Wenn der untersuchte Signalbereich nur aus weißem Rauschen besteht, stellt die Häufigkeitsverteilung aller Korrelationskoeffizienten eine Gaus'sche Normalverteilung dar, wie sie als gestrichelte Kurve N in Fig. 4 gezeigt ist. Jede Abweichung der Häufigkeitsverteilung, dem sogenannten Histogramm, von der Normalverteilung, wie sie etwa in der ausgezogenen Kurve H in Fig. 4 dargestellt ist, ist ein eindeutiges Zeichen dafür, daß Signalkomplexe vorhanden sind, die, je nach der Größe ihres jeweiligen Korrelationskoeffizienten, eine mehr oder weniger große Ähnlichkeit zum vorgegebenen Kurvenverlauf des Templates besitzen. Solche Abweichungen äußern sich in Spitzen P₁ ... P₈, die die Normalverteilungskurve N überlagern. Je näher eine solche Spitze am Wert +1 liegt, umso größer ist das Ähnlichkeitsmaß. Demzufolge bestimmt der links (d.h. in Richtung kleiner Korrelationskoeffizienten) liegende Fußpunkt derjenigen Spitze, die am nähesten am Korrelationskoeffizienten +1 liegt, die gesuchte charakteristische Ähnlichkeitsschwelle. Im vorliegenden Fall würde also die gesuchte Ähnlichkeitsschwelle aus der Spitze P₈ mit 0,48 bestimmt werden. Jede Überschreitung dieses Schwellwertes definiert einen Zeitpunkt im untersuchten Signal, der eine ausreichende Ähnlichkeit mit dem Template besitzt.The frequency of the occurrence of all possible similarity measures between the signal recording and the comparison signal is shown in FIG. 4 using a typical distribution curve. If the examined signal area consists only of white noise, the frequency distribution of all correlation coefficients represents a Gaussian normal distribution, as shown as a dashed curve N in FIG. 4. Any deviation of the frequency distribution, the so-called histogram, from the normal distribution, as shown for example in the solid curve H in Fig. 4, is a clear sign that there are signal complexes which, depending on the size of their respective correlation coefficient, one are more or less similar to the given curve shape of the template. Such deviations are expressed in peaks P₁ ... P₈, which overlay the normal distribution curve N. The closer such a peak is to +1, the greater the degree of similarity. As a result, the base point on the left (i.e. in the direction of small correlation coefficients) of the tip that is closest to the correlation coefficient +1 determines the characteristic similarity threshold sought. In the present case, the similarity threshold sought would be determined from the peak P₈ with 0.48. Each exceeding of this threshold value defines a point in time in the examined signal that is sufficiently similar to the template.

Eine Schaltungsanordnung zur Bestimmung der Ähnlichkeitsschwelle ist in Fig. 5 dargestellt. Dabei sind diejenigen Stufen, die mit denjenigen in Fig. 1 funktionsgleich sind, mit gleichen Bezugszeichen versehen.A circuit arrangement for determining the similarity threshold is shown in FIG. 5. Those stages which have the same function as those in FIG. 1 are provided with the same reference symbols.

Der Unterschied zu der in Fig. 1 gezeigten Schaltungsanordnung besteht darin, daß das Meßsignal in der Speicherstufe 27 und das von der Korrelationsstufe 14 gebildete Korrelationssignal in einer Speicherstufe 28 gespeichert wird. Dieses Signal wird einer Rechenstufe 29 zur Berechnung des Histogramms und gleichzeitig der Vergleichsstufe 16 zugeführt. Das am Ausgang der Rechenstufe 29 auftretende Histogramm-Signal wird einer Schwellwertbestimmungsstufe 30 zugeleitet, die aus der Verteilungskurve den charakteristischen Schwellwert bestimmt und ebenfalls der Vergleichsstufe 16 zuführt. In der Vergleichsstufe 16 wird nun das gespeicherte Korrelationssignal aus der Speicherstufe 28 mit dem charakteristischen Schwellwert aus der Schwellwertbestimmungsstufe 30 verglichen und und bei Überschreitung des Schwellwertes der zu diesem Zeitpunkt gehörende Signalabschnitt der Mittelungsstufe 17 zugeführt und von dort über die Lokalisierungsstufe 18 wie bereits beschrieben ausgewertet. Auf diese Weise werden auch solche Signale für die Auswertung erfaßt, die eine charakteristische Ähnlichkeitsschwelle zum Template-Signal überschreiten, so daß auch bei nicht bekannter Rausch-Amplitude oder bei einer Summierung des Gesamtsignals aus gesuchtem Signal, Rauschen und anderen charakteristischen Signalkomplexen eine Erkennung der gesuchten Signalkomplexe mit nachfolgender Mittelwertbildung möglich ist.The difference from the circuit arrangement shown in FIG. 1 is that the measurement signal in the memory stage 27 and the correlation signal formed by the correlation stage 14 is stored in a storage stage 28. This signal is fed to a computing stage 29 for computing the histogram and at the same time to the comparison stage 16. The histogram signal occurring at the output of the computing stage 29 is fed to a threshold value determination stage 30, which determines the characteristic threshold value from the distribution curve and also feeds it to the comparison stage 16. In the comparison stage 16, the stored correlation signal from the storage stage 28 is compared with the characteristic threshold value from the threshold value determination stage 30 and, if the threshold value is exceeded, the signal section belonging to this time is fed to the averaging stage 17 and from there evaluated via the localization stage 18 as already described. In this way, signals are also detected for evaluation that exceed a characteristic similarity threshold to the template signal, so that even if the noise amplitude is unknown or if the total signal from the searched signal, noise and other characteristic signal complexes is recognized, the sought-after signal is recognized Signal complexes with subsequent averaging is possible.

In FIG 6 ist das auf dem Monitor 20 erkennbare Bild dargestellt, bei dem das Computertomogramm mit dem koordinatentransformierten MEG-Lokalisationsbild zur Deckung gebracht ist. Daraus ist der Bereich der pathologischen elektrischen Aktivität durch die mit Kreuzen markierten Punkte durch eine den zeitlichen Aktivitätsverlauf charakterisierende Linie deutlich erkennbar.FIG. 6 shows the image recognizable on the monitor 20, in which the computer tomogram is made to coincide with the coordinate-transformed MEG localization image. From this, the area of the pathological electrical activity through the points marked with crosses can be clearly recognized by a line characterizing the temporal activity course.

Claims (7)

  1. An arrangement for localizing bioelectrical current sources in biological tissue complexes with sensors arranged spatially distributed over said tissue complexes for the formation of electrical measured values on the basis of measured electrical or magnetic field quantities produced by the bioelectrical current sources with
    - a stage (17) for the averaging of similar signal patterns,
    - with a stage (18) for the spatial assignment of the averaged signal patterns to the signal-triggering current sources and
    - with a stage (21) for the spatial representation of the current sources within an image of the tissue complex, characterised by a signal processing arrangement consisting of a stage (11, 12, 13) for visual or automatic recognition of individual signal patterns present in the measured values, temporal limitation of the signal pattern (time window), and storage of the measured values, present in the time window, from each sensor (template), a further stage (14) for spatial and temporal correlation of the continuous measured values of each sensor with the signal pattern present within the time window and assigned to the respective sensor for the formation of a correlation signal, a threshold value definition stage (15) which produces a threshold value from the continuous measured values, a comparator stage (16) which compares the correlation signal with the threshold value and on the overshooting of the threshold value supplies continuous measured values, from which the correlation signal overshooting the threshold value has been formed, to the averaging stage (17).
  2. An arrangement for the localization of bioelectrical current sources in biological tissue complexes with sensors arranged spatially distributed over said tissue complexes for the formation of electrical measured values on the basis of measured electrical or magnetic field quantities produced by the bioelectrical current sources with
    - a stage (17) for the averaging of similar signal patterns,
    - with a stage (18) for the spatial assignment of the averaged signal patterns to the signal-triggering current sources and
    - with a stage (21) for the spatial representation of the current sources within an image of the tissue complex, characterised by a signal processing arrangement consisting of a stage (11, 12, 13) for visual or automatic recognition of individual signal patterns present in the measured values, temporal limitation of the signal pattern (time window), and storage of the measured values present in the time window from each sensor (template), a further stage (14) for spatial and temporal correlation of the continuous measured values of each sensor with the signal pattern which is present within the time window and is assigned to the respective sensor for the formation of a correlation signal, a storage stage (28) for the intermediate storage of the correlation signal and with a calculating stage (19) for the calculation of a frequency distribution (histogram) of the stored correlation signal, a threshold value determining stage (30) which, on the basis of a defined deviation of the frequency distribution from a Gaussian normal distribution curve, establishes a similarity threshold characteristic of the investigated signal portion and supplies the latter to a comparator stage (16) which compares the intermediately stored correlation signal with the similarity threshold value and in the event of the overshooting of the threshold value supplies continuous measured values, from which the correlation signal overshooting the threshold value has been formed, from the storage stage (27) to the averaging stage (17).
  3. An arrangement as claimed in Claim 1 or 2, characterised in that the electrical signal patterns formed by the sensors (1, 2) are digitalized by an analogue-digital converter (6) arranged at the output end of the sensors (1, 2) and are fed to a digital frequency filter (9) which filters out selectable interference frequencies from the signal channels (4, 5).
  4. An arrangement as claimed in one of Claims 1 to 3, characterised in that the stage (14) for the spatial and temporal correlation is formed from a first calculating circuit (24) for the formation of the temporal correlation function and its averaging over the assigned space in accordance with the formula
    Figure imgb0009
    a second circuit (25) for the formation of the spatial correlation function with subsequent averaging over the assigned time window in accordance with the formula
    Figure imgb0010
    and a third calculating circuit (26) for the multiplication of the two functions, where the formula symbols have the following significance:
    C₁ ...CN N magnetic measuring channels in arbitrary local distribution
    Figure imgb0011
    magnetic signal in the channel Ci at the time ti
    τ₀...τi...τM time interval of the template, start τo, end τM, with M sample values in the time interval; τi time in the time interval τo ≦ τi ≦ τM
    KT (ti) temporal correlation factor, (correlation coefficient at the time ti of template and measured signal)
    KR (ti) spatial correlation factor (correlation coefficient at the time ti of template and measured signal)
    KRT (ti) space-time correlation factor.
  5. An arrangement as claimed in Claim 1 or 2, characterised in that the stage (14) for the spatial and temporal correlation comprises one single calculating circuit which undertakes the correlation in accordance with the formula
    Figure imgb0012
    where the formula symbols have the significance defined in Claim 4.
  6. An arrangement as claimed in one of Claims 3 to 5 in association with Claim 1, characterised in that the average signal formed by the averaging stage (17) is fed to the template storage stage (13) and/or to the threshold value definition stage (15) for the continuous correction of the templates.
  7. An arrangement as claimed in one of the preceding claims, characterised in that an array processor computer is used for the formation of the space-time correlation functions, and that the correlation function is formed using a "fast convolution" algorithm.
EP89114280A 1988-08-16 1989-08-02 Arrangement for measuring local bioelectric currents in biological tissue Expired - Lifetime EP0355506B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3827799 1988-08-16
DE3827799 1988-08-16

Publications (2)

Publication Number Publication Date
EP0355506A1 EP0355506A1 (en) 1990-02-28
EP0355506B1 true EP0355506B1 (en) 1994-12-14

Family

ID=6360965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89114280A Expired - Lifetime EP0355506B1 (en) 1988-08-16 1989-08-02 Arrangement for measuring local bioelectric currents in biological tissue

Country Status (4)

Country Link
US (1) US4974602A (en)
EP (1) EP0355506B1 (en)
JP (1) JP2694737B2 (en)
DE (1) DE58908764D1 (en)

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331969A (en) * 1985-07-30 1994-07-26 Swinburne Limited Equipment for testing or measuring brain activity
US5199439A (en) * 1990-01-16 1993-04-06 Stanley Zimmerman Medical statistical analyzing method
EP0470270A1 (en) * 1990-07-30 1992-02-12 Siemens Aktiengesellschaft Process for selection, presentation and graphic conversion of spacially definable biomagnetic or bioelectric signals onto a graphic display screen
JPH04117945A (en) * 1990-09-07 1992-04-17 Daikin Ind Ltd Plane tomography image interpolation display device
US5119816A (en) * 1990-09-07 1992-06-09 Sam Technology, Inc. EEG spatial placement and enhancement method
CU22179A1 (en) * 1990-11-09 1994-01-31 Neurociencias Centro Method and system for evaluating abnormal electro-magnetic physiological activity of the heart and brain and plotting it in graph form.
DE4039648A1 (en) * 1990-12-12 1992-07-16 Rolf Wendler Measurement value processing system for biological object - mathematically evaluates and compares with given measurement value structures
EP0504027A3 (en) * 1991-03-15 1993-04-21 Centro De Neurociencias De Cuba Method and system for three-dimensional tomography of activity and connectivity of brain and heart electromagnetic waves generators
JPH0531087A (en) * 1991-08-05 1993-02-09 Nec Corp Vpc wave-form detection system
JPH0542116A (en) * 1991-08-13 1993-02-23 Hitachi Ltd Signal processing method for estimating in-vivo current distribution from biosurface potential distribution
US5320109A (en) * 1991-10-25 1994-06-14 Aspect Medical Systems, Inc. Cerebral biopotential analysis system and method
US5458117A (en) * 1991-10-25 1995-10-17 Aspect Medical Systems, Inc. Cerebral biopotential analysis system and method
US5370126A (en) * 1992-01-22 1994-12-06 Neurotech, Inc. Method and apparatus for three-dimensional mapping of evoked potentials
EP0582885A3 (en) * 1992-08-05 1997-07-02 Siemens Ag Procedure to classify field patterns
FI98337C (en) * 1992-11-30 1997-06-10 Risto Juhani Ilmoniemi Method and apparatus for distinguishing between brain excitation responses and spontaneous function and different components of signals measured from the heart
US5474082A (en) * 1993-01-06 1995-12-12 Junker; Andrew Brain-body actuated system
US5692517A (en) * 1993-01-06 1997-12-02 Junker; Andrew Brain-body actuated system
US5325862A (en) * 1993-03-26 1994-07-05 The United States Of America As Represented By The Secretary Of The Navy Method and/or system for personal identification and impairment assessment from brain activity patterns
US5445162A (en) * 1993-08-27 1995-08-29 Beth Israel Hospital Association Apparatus and method for recording an electroencephalogram during magnetic resonance imaging
US5601090A (en) * 1994-07-12 1997-02-11 Brain Functions Laboratory, Inc. Method and apparatus for automatically determining somatic state
USRE36450E (en) * 1994-01-12 1999-12-21 Brain Functions Laboratory, Inc. Method and apparatus for automatically determining somatic state
JP2540728B2 (en) * 1994-03-31 1996-10-09 株式会社脳機能研究所 Brain activity automatic determination device
JP3519141B2 (en) * 1994-10-31 2004-04-12 株式会社東芝 In vivo current source estimation method
DE4439691A1 (en) * 1994-11-07 1996-05-09 Philips Patentverwaltung Procedure for determining the spatial field distribution
US5632276A (en) * 1995-01-27 1997-05-27 Eidelberg; David Markers for use in screening patients for nervous system dysfunction and a method and apparatus for using same
GB9511964D0 (en) * 1995-06-13 1995-08-09 Rdm Consultants Limited Monitoring an EEG
US6731976B2 (en) 1997-09-03 2004-05-04 Medtronic, Inc. Device and method to measure and communicate body parameters
US6473518B1 (en) * 1997-10-02 2002-10-29 Hitachi, Ltd. Method of measuring a biomagnetic field, method of analyzing a measured biomagnetic field, method of displaying biomagnetic field data, and apparatus therefor
US6266556B1 (en) 1998-04-27 2001-07-24 Beth Israel Deaconess Medical Center, Inc. Method and apparatus for recording an electroencephalogram during transcranial magnetic stimulation
AUPP354798A0 (en) 1998-05-15 1998-06-11 Swinburne Limited Decentralised patient management system
AUPP354898A0 (en) 1998-05-15 1998-06-11 Swinburne Limited Mass communication assessment system
US6198958B1 (en) 1998-06-11 2001-03-06 Beth Israel Deaconess Medical Center, Inc. Method and apparatus for monitoring a magnetic resonance image during transcranial magnetic stimulation
JP4027746B2 (en) * 2002-08-07 2007-12-26 株式会社日立ハイテクノロジーズ Biomagnetic field measurement device
US7840248B2 (en) * 2003-01-27 2010-11-23 Compumedics Limited Online source reconstruction for eeg/meg and ecg/mcg
DE10331800A1 (en) * 2003-07-14 2005-02-03 Daimlerchrysler Ag Load probing for drivers
US20050182313A1 (en) * 2004-02-17 2005-08-18 Tucker Don M. Method and apparatus for noise extraction in measurements of electromagnetic activity in biological sources
US20050203366A1 (en) * 2004-03-12 2005-09-15 Donoghue John P. Neurological event monitoring and therapy systems and related methods
US7350919B2 (en) 2004-12-03 2008-04-01 Searete Llc Vision modification with reflected image
US7486988B2 (en) 2004-12-03 2009-02-03 Searete Llc Method and system for adaptive vision modification
US7470027B2 (en) 2004-12-03 2008-12-30 Searete Llc Temporal vision modification
US7390088B2 (en) 2004-12-03 2008-06-24 Searete Llc Adjustable lens system with neural-based control
US7931373B2 (en) 2004-12-03 2011-04-26 The Invention Science Fund I, Llc Vision modification with reflected image
US8104892B2 (en) 2004-12-03 2012-01-31 The Invention Science Fund I, Llc Vision modification with reflected image
US9155483B2 (en) 2004-12-03 2015-10-13 The Invention Science Fund I, Llc Vision modification with reflected image
US7344244B2 (en) 2004-12-03 2008-03-18 Searete, Llc Adjustable lens system with neural-based control
US7594727B2 (en) 2004-12-03 2009-09-29 Searete Llc Vision modification with reflected image
US8244342B2 (en) 2004-12-03 2012-08-14 The Invention Science Fund I, Llc Method and system for adaptive vision modification
US7656569B2 (en) 2004-12-03 2010-02-02 Searete Llc Vision modification with reflected image
US7334892B2 (en) 2004-12-03 2008-02-26 Searete Llc Method and system for vision enhancement
US7334894B2 (en) 2004-12-03 2008-02-26 Searete, Llc Temporal vision modification
JP5065275B2 (en) 2005-09-02 2012-10-31 エムセンス コーポレイション Apparatus and method for detecting electrical activity in an organization
US20080269835A1 (en) * 2006-04-21 2008-10-30 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US20070249956A1 (en) * 2006-04-21 2007-10-25 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US7761146B2 (en) * 2006-04-21 2010-07-20 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US8165683B2 (en) * 2006-04-21 2012-04-24 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US20070249953A1 (en) * 2006-04-21 2007-10-25 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US7761145B2 (en) * 2006-04-21 2010-07-20 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US7764989B2 (en) * 2006-04-21 2010-07-27 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US9101276B2 (en) * 2006-07-06 2015-08-11 Regents Of The University Of Minnesota Analysis of brain patterns using temporal measures
FI20065759A0 (en) * 2006-11-29 2006-11-29 Senseg Oy Techniques for determining the hearing threshold
EP2083686B1 (en) * 2006-11-29 2014-07-02 Senseg OY Techniques for determining hearing threshold
JP5361131B2 (en) * 2007-01-03 2013-12-04 エレクタ アクチボラゲット Analysis of multi-channel measurement data using orthogonal virtual channels
US20090070798A1 (en) * 2007-03-02 2009-03-12 Lee Hans C System and Method for Detecting Viewer Attention to Media Delivery Devices
US8230457B2 (en) * 2007-03-07 2012-07-24 The Nielsen Company (Us), Llc. Method and system for using coherence of biological responses as a measure of performance of a media
US9215996B2 (en) 2007-03-02 2015-12-22 The Nielsen Company (Us), Llc Apparatus and method for objectively determining human response to media
US8473044B2 (en) 2007-03-07 2013-06-25 The Nielsen Company (Us), Llc Method and system for measuring and ranking a positive or negative response to audiovisual or interactive media, products or activities using physiological signals
US20080221969A1 (en) * 2007-03-07 2008-09-11 Emsense Corporation Method And System For Measuring And Ranking A "Thought" Response To Audiovisual Or Interactive Media, Products Or Activities Using Physiological Signals
US8764652B2 (en) 2007-03-08 2014-07-01 The Nielson Company (US), LLC. Method and system for measuring and ranking an “engagement” response to audiovisual or interactive media, products, or activities using physiological signals
US8782681B2 (en) 2007-03-08 2014-07-15 The Nielsen Company (Us), Llc Method and system for rating media and events in media based on physiological data
US8376952B2 (en) 2007-09-07 2013-02-19 The Nielsen Company (Us), Llc. Method and apparatus for sensing blood oxygen
US8327395B2 (en) 2007-10-02 2012-12-04 The Nielsen Company (Us), Llc System providing actionable insights based on physiological responses from viewers of media
US20090133047A1 (en) * 2007-10-31 2009-05-21 Lee Hans C Systems and Methods Providing Distributed Collection and Centralized Processing of Physiological Responses from Viewers
US20090150919A1 (en) * 2007-11-30 2009-06-11 Lee Michael J Correlating Media Instance Information With Physiological Responses From Participating Subjects
US8347326B2 (en) 2007-12-18 2013-01-01 The Nielsen Company (US) Identifying key media events and modeling causal relationships between key events and reported feelings
JP5077823B2 (en) * 2008-01-23 2012-11-21 横河電機株式会社 Brain activity analysis method
US8655438B2 (en) * 2009-02-25 2014-02-18 Dartmouth College Electroencephalography monitoring device having a self-adaptive analog-to-digital converter
EP2745239A1 (en) * 2011-09-12 2014-06-25 Koninklijke Philips N.V. Device and method for disaggregating a periodic input signal pattern
KR101426591B1 (en) * 2012-03-13 2014-08-06 연세대학교 산학협력단 Apparatus and method for removing noise from biosignals
US9814426B2 (en) 2012-06-14 2017-11-14 Medibotics Llc Mobile wearable electromagnetic brain activity monitor
US8989835B2 (en) 2012-08-17 2015-03-24 The Nielsen Company (Us), Llc Systems and methods to gather and analyze electroencephalographic data
CN104955388B (en) * 2012-11-13 2018-12-25 艾欧敏达有限公司 The neurophysiological data analysis divided using space-time
US9320450B2 (en) 2013-03-14 2016-04-26 The Nielsen Company (Us), Llc Methods and apparatus to gather and analyze electroencephalographic data
US9622702B2 (en) 2014-04-03 2017-04-18 The Nielsen Company (Us), Llc Methods and apparatus to gather and analyze electroencephalographic data
JP6945251B2 (en) * 2016-05-25 2021-10-06 国立大学法人鳥取大学 Diagnosis support device, diagnosis support program and diagnosis support method for status epilepticus acute encephalopathy
JP6996203B2 (en) * 2017-03-17 2022-01-17 株式会社リコー Information processing equipment, information processing methods, programs and biological signal measurement systems
WO2018168722A1 (en) 2017-03-17 2018-09-20 Ricoh Company, Ltd. Information processing apparatus, information processing method, program, and biological signal measurement system
EP3684463A4 (en) 2017-09-19 2021-06-23 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
CN108478214B (en) * 2018-01-29 2021-03-30 成都琅瑞医疗技术股份有限公司 Anti-confusion superposition method and device for electrocardiogram data analysis
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
JP2021069929A (en) * 2019-10-30 2021-05-06 株式会社リコー Waveform generation specification method and program
CN111714120A (en) * 2020-05-08 2020-09-29 广东食品药品职业学院 Brain-computer interface system capable of evaluating visual positioning ability and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532591A (en) * 1982-08-03 1985-07-30 Thomas Jefferson University Method and apparatus for tomographic diagnosis
US4753246A (en) * 1986-03-28 1988-06-28 The Regents Of The University Of California EEG spatial filter and method
US4832480A (en) * 1986-06-24 1989-05-23 Quintron, Inc. Differential diagnosis of sensory abnormalities using a normalized, ratiometric analysis of steady state evoked potentials
US4705049A (en) * 1986-08-04 1987-11-10 John Erwin R Intraoperative monitoring or EP evaluation system utilizing an automatic adaptive self-optimizing digital comb filter
US4800895A (en) * 1986-09-03 1989-01-31 Interspec, Inc. Electroencephalographic data display method and system
US4736751A (en) * 1986-12-16 1988-04-12 Eeg Systems Laboratory Brain wave source network location scanning method and system

Also Published As

Publication number Publication date
JPH0282941A (en) 1990-03-23
DE58908764D1 (en) 1995-01-26
JP2694737B2 (en) 1997-12-24
EP0355506A1 (en) 1990-02-28
US4974602A (en) 1990-12-04

Similar Documents

Publication Publication Date Title
EP0355506B1 (en) Arrangement for measuring local bioelectric currents in biological tissue
DE3751195T2 (en) System activity change indicator.
DE69330644T2 (en) METHOD AND DEVICE FOR SEPARATING THE DIFFERENT SIGNAL COMPONENTS FROM EVOZED AND SPONTANEOUS BRAIN ACTIVITY AND THE HEART ACTIVITY
EP0538739B1 (en) Method and device for determining the state of health of a living being
EP0856181B1 (en) Method and device for evaluating an eeg carried out in the context of anaesthesia or intensive care
DE69114517T2 (en) METHOD FOR DETECTING A PATHOLOGICAL STATE OF THE VENTILATION FOR AN AUTOMATIC DEFIBRILLATION.
EP0828225A1 (en) Process and means for analysing EEG data
DE2716739A1 (en) METHOD OF DETECTING SIGNALS
EP0638869B1 (en) Procedure for a high-resolution spectral analysis for multichannel observations
EP0582885A2 (en) Procedure to classify field patterns
EP1483017B1 (en) Device for locating the target spot of electrodes used for brain stimulation, particularly deep brain stimulation
DE10246404B4 (en) Method and system for measuring T-wave alternations
EP1059875A1 (en) Evaluation system for obtaining diagnostic information from the signals and data of medical sensor systems
DE102015116044A1 (en) Method and device for quantifying a respiratory sinus arrhythmia and use of such a method or device [
EP0150352B1 (en) Method of determining the beginning and the end of a physiological signal displayed as a closed loop
DE4039648A1 (en) Measurement value processing system for biological object - mathematically evaluates and compares with given measurement value structures
DE2344211C2 (en) Electromagnetic blood flow meter
DE4405827A1 (en) ECG data compression in implanted monitor system
EP1071368A1 (en) Method and device for diverting an electroencephalogram in a nuclear spin tomograph
EP2471004B1 (en) Method for calibrating a diagnostic measuring device
DE69732757T2 (en) Procedure and installation for QRS-Dektektion
DE4427991C2 (en) Method and device for measuring and displaying changes in blood pressure
EP1192897B1 (en) Risk monitoring
DE69603729T2 (en) METHOD AND DEVICE FOR IMAGING BODIES
DE102011114045B4 (en) Method, arrangement and computer program for detecting derivations of event-related potentials of neural activity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT NL

17P Request for examination filed

Effective date: 19900328

17Q First examination report despatched

Effective date: 19930105

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941214

Ref country code: NL

Effective date: 19941214

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19941214

REF Corresponds to:

Ref document number: 58908764

Country of ref document: DE

Date of ref document: 19950126

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980714

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601