EP1091444A2 - Antenne plane pour véhicules à moteur - Google Patents

Antenne plane pour véhicules à moteur Download PDF

Info

Publication number
EP1091444A2
EP1091444A2 EP00121650A EP00121650A EP1091444A2 EP 1091444 A2 EP1091444 A2 EP 1091444A2 EP 00121650 A EP00121650 A EP 00121650A EP 00121650 A EP00121650 A EP 00121650A EP 1091444 A2 EP1091444 A2 EP 1091444A2
Authority
EP
European Patent Office
Prior art keywords
planar antenna
motor
antenna
radiant element
vehicles according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00121650A
Other languages
German (de)
English (en)
Other versions
EP1091444A3 (fr
EP1091444B1 (fr
Inventor
Guido Biffi Gentili
Bruno Angelo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ask Industries SpA
Original Assignee
Zendar SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zendar SpA filed Critical Zendar SpA
Publication of EP1091444A2 publication Critical patent/EP1091444A2/fr
Publication of EP1091444A3 publication Critical patent/EP1091444A3/fr
Application granted granted Critical
Publication of EP1091444B1 publication Critical patent/EP1091444B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3291Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted in or on other locations inside the vehicle or vehicle body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present invention relates to a planar antenna for motor-vehicles. More particularly, the present invention relates to a microstrip (patch) planar antenna, particularly suitable for use in motor-cars both for cell-phones and for different applications.
  • a microstrip (patch) planar antenna particularly suitable for use in motor-cars both for cell-phones and for different applications.
  • the planar antenna of the present invention is preferably located on the windows of motor-vehicles, in particular on the rear window. It may be utilized both in the cell-phones of the present frequency field of 800/900 MHz (GSM, ETACS, AMPS, PCD) up to the higher frequencies of 2.5 GHz (DCS, UMTS, PCN, PDC, 1.5) and for applications other than telephony, such as for instance: reception in L, DAB, GPS band and the like, and at higher frequencies up to 6 GHz, as well as for Telepass type transponder systems of the, and the like.
  • Radiophony systems for motor-vehicles are known that utilize frequencies in the UHF band; at present systems are widespreading that use higher frequency systems, suitable to obtain an increasing number of transmission channels.
  • the present antennas adopted in such systems are of the stylus type; they are installed on the vehicles' metal roofs and provide acceptable performances, with an almost omnidirectional radiation and vertical polarization.
  • the metal roof acts as a mass plane and provides a good shielding for the interior compartment from the electromagnetic radiation emitted by the antenna.
  • said antennas while having proved to have satisfactory radioactive characteristics, have some drawbacks.
  • these antennas while allowing the application without making holes in the body, comprise always an external protruding part subject to damages, tampering and/or vandalisms.
  • antennas have been realized that are directly mounted on the windscreen or the rear glass, in the inside of the passengers' compartment. They are constituted of flat leads having various shapes similar to monopoles or dipoles which however, because of their elongated shape, are mainly installed in an horizontal position, with ensuing distortion of the polarization of the magnetic field and a severe degradation of the radiation diagram, because of the electromagnetic coupling with the metal structures of the vehicle. Besides, their emission takes place indifferently both towards the inside and the outside of the passengers' compartment, exposing said passengers to high levels of electromagnetic field.
  • Planar antennas suitable for the frequencies of the radiotelephone systems can be derived from the theory of the so-called patch-antennas, that consist essentially of two conductive surfaces, one of which has generally a size greater than the other one, aligned in parallel at a distance shorter than the wave length; between the two leads a dielectric material may be interposed or, more simply, the leads are maintained in the position by insulating spacers exploiting air as a dielectric.
  • This class of antennas includes also the one called "QWSCM" (Quarter Wave Short Circuited Microstrip Antenna) wherein the resonating length of the upper lead is reduced by ⁇ /2 to ⁇ /4, shorting a radiant edge.
  • VSWR 2 (Voltage Standing Wave Ratio) and a prevailingly isotropic radiation diagram.
  • Object of this invention is to eliminate the above drawbacks.
  • planar antenna for motor-vehicles having the features of the characterizing part of claim 1.
  • the antenna of the present invention has a low profile with contained dimensions, is of simple construction and low cost, and can be easily installed in the inside of vehicles' compartments.
  • the antenna of the present invention lies essentially in that it has a band length equal to or higher than 10%; it can irradiate uniformly throughout the horizontal plane with a prevailingly vertical polarization of the electric field, as it may be compared to a horizontal radiant slot (magnetic current) and allows an adequate containment of the radiation emitted in the inside of passengers' compartment, avoiding the exceeding of the electromagnetic field limits indicated by the norms in force. It may be installed, on a prior simple tuning, on any type of vehicle.
  • the figures refer to a planar patch-antenna for use in motor-car applications of cellular telephony, of the known type indicated by the initials "QWSCM”.
  • the microstrip planar antenna (patch) of the present invention comprises a radiant element 1, that adheres to glass 2 constituting the windshield or the rear window of a vehicle: a mass plane 8 parallel to said radiant element 1 and a continuous striped metal lead 9 connecting said radiant element to said mass plane 8, and constituting the mass shorting element.
  • Said antenna is fed by a coaxial cable 5 fixed to a capacitive coupling 4 applied to the mass plane 8 and spaced from the radiant element 1 by a portion which depends on the operating band of the antenna.
  • the radiant element 1, the shorting lead 9 arranged orthogonally and the mass plane 8 are realized by punching and subsequent bending of one only continuos wall (9) which is oriented in a substantially orthogonal manner with respect to the radiant element 1 and the mass plane 8, parallel with each other.
  • the antenna is fed through a flat armor 13 capacitive coupling 4.
  • the lower distance of armor 13 from the upper radiant element 1 can be adjusted in order to optimize the radioactive and circuit characteristics of the antenna, in particular to optimize its band width.
  • the mass plane 8 may be possibly extended by means of a suitable transparent metallization of the low resistance, high optical transmittance rear window.
  • transparent conductive films 2' applied on normal glasses may be utilized, or glasses already metallized by vacuum evaporation or sputtering, such as those already mounted on many models of motor-vehicles.
  • the main characteristics of the antenna of the present invention are basically the following:
  • Such characteristics cause the antenna of the present invention to be substantially universal for applications on any types of motor-cars and allow to operate in a band width equal to or higher than 10%, with a uniform irradiation on the horizontal plane, with a prevailingly vertical polarization of the electric field and boundary emissions of the electromagnetic field in the inside of the vehicle comprised within those indicated by the norms in force.
  • the mass shorting wall instead of being constituted of a continuous lead 9, is constituted of several suitably spaced strips 9' whose number and shape or size are characterizing parameters of the project of the antenna, depending on the determination of the overall entity of the inductive charge and the entity of the reduction in the physical size of the antenna.
  • the width determines the equivalent inductance associated to each strip.
  • Figure 4 schematizes the circuit configuration equivalent to a transmission line, wherefrom one understands that the inductive charging, realized by means of a plurality of strips 9' spaced by gaps, allows to shorten the resonant length of the antenna and, as a consequence, to reduce the size thereof.
  • the broken lines represent the width of RF voltage within the antenna.
  • a further embodiment realizable even more easily and which is more suitable for mass industrialization, is obtained by forming the mass plane 8 of the antenna from a printed circuit board metallized on one side only, for instance by means of a surface coppering, and having a coplanar transmission line printed or etched as shown in Figure 6.
  • the feeding line can be realized in the form of a coplanar microstrip, with the following advantages:
  • the radiant element 1 that comprises arc-shaped strips 9'' is directly fastened to the conductive layer 12 of the mass plane 8 of the board by means of welding or rivets.
  • the fastening is carried out along the lower ends of said strips 9''.
  • the capacitive coupling 4' is realized by means of a suspended foil 13, also provided with an arc-shaped strip 14 whose lower end is welded or tied with rivets or the like, at an end of the coplanar transmission line whose other end is connected to the connector or, more simply, to the coaxial cable 5.
  • Figure 7 shows the diagram of SWR or ROS (Stationary Waive Ratio) of an antenna according to the invention, measured with a 50 ohm standard instruments: as can be observed, its band with SWR ⁇ 2 is given by frequencies (700-1130) MHz and that the percent value with respect to the central frequency is > 20%.
  • the planar antenna of the present invention is applied in particular in cellular telephony, from the present frequencies of 800/900 MHz (GSM, ETACS, AMPS, PCD) up to the higher ones of 2.5 GHz (DCS, UMTS, PCN, PCD 1.5); besides, it may be utilized for applications other than telephony, such as L, DAB, GPS band reception and the like and at higher frequencies up to 6 GHz, also for Telepass type transponder systems, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Support Of Aerials (AREA)
EP00121650A 1999-10-08 2000-10-04 Antenne plane pour véhicules à moteur Expired - Lifetime EP1091444B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT1999RE000101A IT1309775B1 (it) 1999-10-08 1999-10-08 Antenna planare per autoveicoli.
ITRE990101 1999-10-08

Publications (3)

Publication Number Publication Date
EP1091444A2 true EP1091444A2 (fr) 2001-04-11
EP1091444A3 EP1091444A3 (fr) 2002-04-17
EP1091444B1 EP1091444B1 (fr) 2003-12-17

Family

ID=11399497

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00121650A Expired - Lifetime EP1091444B1 (fr) 1999-10-08 2000-10-04 Antenne plane pour véhicules à moteur

Country Status (3)

Country Link
EP (1) EP1091444B1 (fr)
DE (1) DE60007254T2 (fr)
IT (1) IT1309775B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825517A1 (fr) * 2001-06-01 2002-12-06 Socapex Amphenol Antenne a plaque
DE102004027692A1 (de) * 2004-03-10 2005-10-06 Daimlerchrysler Ag Verwendung einer invertierten L-Antenne in einem Kraftfahrzeug
EP1624527A1 (fr) * 2003-04-24 2006-02-08 Asahi Glass Company Ltd. Dispositif d'antenne
JPWO2019151407A1 (ja) * 2018-02-02 2021-01-14 Agc株式会社 アンテナ装置、車両用窓ガラス及び窓ガラス構造

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004041014B3 (de) * 2004-08-24 2006-01-19 Siemens Ag Antenne und Verfahren zu deren Herstellung
DE102009048229B4 (de) * 2009-10-05 2021-01-21 Sennheiser Electronic Gmbh & Co. Kg Antenneneinheit für eine Drahtlos-Audioübertragung
DE102018126361A1 (de) * 2018-10-23 2020-04-23 Fuba Automotive Electronics Gmbh Folienantenne

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134605A (ja) * 1983-12-23 1985-07-17 Mitsubishi Electric Corp マイクロストリツプアンテナ
EP0526643A1 (fr) * 1991-01-28 1993-02-10 Mitsubishi Denki Kabushiki Kaisha Dispositif a antenne
EP0801435A2 (fr) * 1996-04-09 1997-10-15 FUBA Automotive GmbH Antenne plate
EP0851528A2 (fr) * 1996-12-30 1998-07-01 General Motors Corporation Antenne de vitre pour véhicule

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134605A (ja) * 1983-12-23 1985-07-17 Mitsubishi Electric Corp マイクロストリツプアンテナ
EP0526643A1 (fr) * 1991-01-28 1993-02-10 Mitsubishi Denki Kabushiki Kaisha Dispositif a antenne
EP0801435A2 (fr) * 1996-04-09 1997-10-15 FUBA Automotive GmbH Antenne plate
EP0851528A2 (fr) * 1996-12-30 1998-07-01 General Motors Corporation Antenne de vitre pour véhicule

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENICHI KAGOSHIMA ET AL: "ANALYSIS OF A PLANAR INVERTED F ANTENNA FED BY ELECTROMAGNETIC COUPLING" PROCEEDINGS OF THE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSIS). CHICAGO, JULY 20 - 24, 1992, NEW YORK, IEEE, US, vol. 3, 20 July 1992 (1992-07-20), pages 1702-1705, XP000340013 ISBN: 0-7803-0730-5 *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 295 (E-360), 21 November 1985 (1985-11-21) -& JP 60 134605 A (MITSUBISHI DENKI KK), 17 July 1985 (1985-07-17) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825517A1 (fr) * 2001-06-01 2002-12-06 Socapex Amphenol Antenne a plaque
EP1624527A1 (fr) * 2003-04-24 2006-02-08 Asahi Glass Company Ltd. Dispositif d'antenne
EP1624527A4 (fr) * 2003-04-24 2007-02-21 Asahi Glass Co Ltd Dispositif d'antenne
US7365685B2 (en) 2003-04-24 2008-04-29 Asahi Glass Company, Limited Antenna device
DE102004027692A1 (de) * 2004-03-10 2005-10-06 Daimlerchrysler Ag Verwendung einer invertierten L-Antenne in einem Kraftfahrzeug
JPWO2019151407A1 (ja) * 2018-02-02 2021-01-14 Agc株式会社 アンテナ装置、車両用窓ガラス及び窓ガラス構造
US11522278B2 (en) 2018-02-02 2022-12-06 AGC Inc. Antenna device, window glass for vehicle, and window glass structure

Also Published As

Publication number Publication date
ITRE990101A0 (it) 1999-10-08
EP1091444A3 (fr) 2002-04-17
EP1091444B1 (fr) 2003-12-17
DE60007254T2 (de) 2004-09-30
DE60007254D1 (de) 2004-01-29
ITRE990101A1 (it) 2001-04-08
IT1309775B1 (it) 2002-01-30

Similar Documents

Publication Publication Date Title
CA1287916C (fr) Radiateur a microruban surprofile quasi-isotrope particulierement approprie aux vehicules
US10811760B2 (en) Multi-band window antenna
EP2660930B1 (fr) Antenne
US7742006B2 (en) Multi-band loop antenna
US10050329B2 (en) Window-glass antenna for vehicle
US20110032164A1 (en) Multi-Element Cavity-Coupled Antenna
KR20120034722A (ko) 차량용 창 유리 및 안테나
KR20010081072A (ko) 하프 루프 안테나
US7742005B2 (en) Multi-band strip antenna
US10923795B2 (en) Hidden multi-band window antenna
US7109921B2 (en) High-bandwidth multi-band antenna
JP5115359B2 (ja) 車両用ガラスアンテナ及び車両用窓ガラス板
US9837699B2 (en) Multi-element window antenna
EP1091444B1 (fr) Antenne plane pour véhicules à moteur
JP2008022538A (ja) 自動車用高周波ガラスアンテナ
US20220263218A1 (en) Vehicle antenna glazing
KR20220106203A (ko) 다층 유리 패치 안테나
US11735823B2 (en) Coplanar antenna structure having a wide slot
CN109473779A (zh) 一种车载lte天线
WO2005060046A2 (fr) Antenne de vehicule dissimulee utilisant une fente menagee dans un pan
CN209357917U (zh) 一种车载lte天线
US20210184333A1 (en) Vehicle antenna glazing
KR101171298B1 (ko) 차량용 측후방 레이더 센서용 안테나

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020806

17Q First examination report despatched

Effective date: 20020930

AKX Designation fees paid

Free format text: DE ES FR GB

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASK INDUSTRIES S.P.A.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60007254

Country of ref document: DE

Date of ref document: 20040129

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041004

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040920

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041004

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071026

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191031

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60007254

Country of ref document: DE