EP1088240B1 - Procede et appareil pour la mesure de la capacite d'une batterie - Google Patents

Procede et appareil pour la mesure de la capacite d'une batterie Download PDF

Info

Publication number
EP1088240B1
EP1088240B1 EP99926967A EP99926967A EP1088240B1 EP 1088240 B1 EP1088240 B1 EP 1088240B1 EP 99926967 A EP99926967 A EP 99926967A EP 99926967 A EP99926967 A EP 99926967A EP 1088240 B1 EP1088240 B1 EP 1088240B1
Authority
EP
European Patent Office
Prior art keywords
battery
signal
current
time
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99926967A
Other languages
German (de)
English (en)
Other versions
EP1088240A1 (fr
Inventor
Chul Oh Yoon
Yevgen Barsukov
Jong Hyun Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumho Petrochemical Co Ltd
Original Assignee
Korea Kumho Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019980022540A external-priority patent/KR100264515B1/ko
Priority claimed from KR1019980024134A external-priority patent/KR100262465B1/ko
Application filed by Korea Kumho Petrochemical Co Ltd filed Critical Korea Kumho Petrochemical Co Ltd
Publication of EP1088240A1 publication Critical patent/EP1088240A1/fr
Application granted granted Critical
Publication of EP1088240B1 publication Critical patent/EP1088240B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC

Definitions

  • the present invention relates to a method of and apparatus for determining an unknown capacity of a battery by applying current or voltage to a primary and secondary battery and by measuring and analyzing an output signal based on an applied input signal. More particularly, it relates to a method of and apparatus for measuring battery capacity using parameters obtained from a voltage response signal of a current wave form or an impedance spectrum generated thereof which provide a nondestructive measurement of battery capacity, for measuring an unknown remaining capacity of a standardized battery product, or in case of a manufacturing, grading the rated capacity of the batteries.
  • a general method used for measuring battery capacity includes a real-time discharge method, which is to measure the discharge time t d for a consumption of electrical energy by the battery at a constant current I d .
  • Equation I the discharge time t d that a battery supplies electrical energy.
  • a real-time discharge method is one for measuring battery capacity in a direct way and takes a long time throughout the entire discharge period in real time.
  • the real-time discharge method is inapplicable to the measurement of battery for purpose of duality control of products.
  • a more efficient method used for measuring battery capacity is one that enables a measurement of the battery characteristics for a short time relative to the discharge period of the battery in real-time, as a result of which precise information can be obtained concerning charge/discharge condition or remaining capacity of the battery.
  • a use of these various methods provides a measurement of battery capacity for a short time relative to a real-time discharge method.
  • U.S. Patent No. 3.808.487 discloses a method for sensing the charge condition of a storage battery with a response signal based on a pulse signal which has been periodically applied to the battery during charging.
  • information concerning the charge condition and battery capacity is not extracted from the response signal but by a detection of changes in the measured signal, which is expected at the end point of charge.
  • the remaining capacity can be calculated from the measured voltage and the discharge characteristic which is expressed in voltage-hour function including the Peukert parameter.
  • EP 119.547 discloses a method used for measuring discharge voltage as a function of time and determining the discharge condition from the averaged change rate of discharge voltage in a predetermined time interval.
  • a battery having a plateau of voltage provides extremely small variations in the voltage against a change of discharge condition.
  • the method is not considered to be a proper measurement for sensing the discharge condition of a battery.
  • the measurement time or discharge current should increase to enhance the precision of a correlation between the measured value and battery capacity, which obviously reduces the efficiency of measurement.
  • US Patent No. 3,562,634 describes a method for determining the state of charge a secondary battery, especially nickel-cadmium battery, from the measured Faraday capacitance by using a bridge. According to US Patent No. 3,562,634, the relationship between the internal impedance of battery and the battery capacity substantially depends on the impedance response characteristic of chemical material used as an active material of the battery.
  • U.S. Patent No. 4,678,998 describes a method for examining the charge/discharge condition of battery using a correlation between the remaining capacity and the internal impedance at a specified frequency. This method has been proposed for the users to determine the charge/discharge condition of an automobile battery continuously.
  • US Patent No. 4,743,855 describes a method of using two complex impedances separately measured in the lower and higher frequency regions
  • US Patent Nos. 5,241,275 and 5,717,336 disclose the use of the linear impedance characteristic in the lower frequency region.
  • the related art method using the relationship between battery capacity and impedance at a specified frequency or in a narrow frequency region is hardly excellent in aspects of efficiency of measurement and accuracy of correlation.
  • Impedance characteristic of battery can be expressed as a simple equivalent circuit composed of several resistors, capacitors and transmission lines, and the value of model parameters of the equivalent circuit can be calculated from the measured impedance spectrum.
  • values of parameters are determined by measuring a voltage response upon applied current waveform and subsequent fitting of time domain function of proposed equivalent circuit to the data, or alternatively converting the time domain response into frequency domain impedance data and then fitting complex function of equivalent circuit to this data.
  • a method using pulse signals provides the same model parameters as obtained in an impedance spectrum measurement method to determine equivalent circuit impedance model parameters at low frequencies.
  • the present invention uses a simple apparatus including a current generator for applying a current waveform, a voltmeter for measuring the output voltage, a control unit of the voltmeter, and an algorithm, as a result of which a similar time is taken in a measurement but more efficiency can be provided than the above-mentioned conventional methods.
  • the present invention presents a greatly efficient method and apparatus to be used in a manufacturing of battery products, since when measuring a plurality of batteries at the same time, a charging/discharging device used in measuring battery capacity in a real time can be reuscd or used after slight modification.
  • an object of the present invention is to provide a method of and apparatus for measuring an unknown battery capacity by measuring voltage response upon applied current waveform and determining parameters correlating with battery capacity either directly from voltage response or after its conversion to frequency dependent impedance, which take less time than the real-time discharge method and is excellent in efficiency and reliability.
  • a method for measuring battery capacity characterised in that the method comprises the steps of: measuring, as a function of time, a voltage or current response signal resulting from the application of a current or voltage excitation signal to both ends of a battery; analyzing the measured signal to determine a parameter or parameters of a predefined impedance model of the battery; examining a correlation between the parameter or parameters and the capacity of the battery measured by a real-time discharge method; and based on the correlation, determining the capacity of the battery from the parameter or parameters.
  • an apparatus for measuring a capacity of a battery characterised in that the apparatus comprises: control means adapted to: generate either (i) a perturbation signal comprising a combination of non-overlapping sine waves with selected frequencies, or (ii) a pulse signal; transfer the generated signal as a control signal to measuring means; receive a time-varying response signal detected by the measuring means; analyze the response signal to obtain a parameter or parameters of a predefined impedance model of the battery; correlate the parameter or parameters and the capacity of the battery measured by a real-time discharge method; and determine the capacity of the battery based on the correlation; measuring means adapted to: apply the generated perturbation signal or pulse signal to a test battery; detect the time-varying current and voltage response signals of the test battery; and transmit the response signal to the control means.
  • the present invention takes a shorter time than a real-time discharge method and delivers efficiency and reliability in determining model parameters of an equivalent circuit which are in close correlation with the charge/discharge condition of the battery.
  • Model parameters determined in this invention either directly from voltage response or after its conversion into impedance can be considered as follows, which have a correlation with capacity in the electrochemical reaction of an electrode active material related to the charge/discharge condition.
  • C ps S ⁇ F z d E / d c
  • S the surface area of the electrode.
  • F the Faraday constant.
  • z the number of migrating charges, and dE/dc is a potential-concentration coeflicient.
  • c 0 is the equilibrium concentration of species related to the redox reaction.
  • E is electrochemical potential in the charge/dischage state or battery
  • E 0 is electrochemical potential in the equilibrium state.
  • R is gas constant and T is temperature, respectively.
  • the pseudocapacitance C ps is a model parameter related to the amount of redox species.
  • the reaction mechanism may be more complicated in an actual battery because the species are not simply adsorbed to the electrode surface but distributed in the space of a porous electrode material. But, it can be approximated to an electrode adsorption model at a low frequency of several mHz, so that the pseudocapacitance can be obtained from a relationship with the imaginary part of the complex impedance at the low frequency.
  • the Fourier transform method is used by applying a perturbation current signal galvanostatically to both terminals of battery to be measured and by Fourier-transforming a recorded voltage response signal in time domain to frequency domain.
  • the ratio of the highest and lowest frequencies in the frequency domain is at least 100.
  • the time required to measure the voltage characteristic in response to the excitation signal is less than 1/10 of the full discharge time at a given current or voltage calculated from a rated battery capacity.
  • the perturbation current signal used as an input signal is generated by superposition of multiple sinusoidal waves corresponding to multiply selected frequencies. If the lowest frequency is f min , for example, the oscillation current signal can be composed of 3f min , 5f min , 7f min and the like.
  • the excitation signal is a combination of non-overlapping sine-waves having selected frequencies, and the excitation signal can be transformed into the frequency domain so that the ratio between the amplitude of a wave at a selected frequency to the amplitude of a wave at another frequency is more than 100.
  • the finite multiple frequency Fourier transform method is different from that using pulses (US Patent No. 5633801).
  • a fast Fourier transform is used to obtain impedance spectra from the measured response signal.
  • the applied signal is a current or voltage pulse
  • a Laplace transform is used to obtain the impedance spectra.
  • the maximum frequency that can be determined by the Fourier transform impedance measurement using multiple frequencies is limited by the sampling time of a signal recorder.
  • the perturbation current is applied for two cycles of the lowest frequency and only the second cycle data are used in the analysis in order to avoid transient effect in the lower frequency region.
  • impedance spectrum is by Fourier transform method, it is possible to determine the linearity of the measurement system with respect to the current applied to the battery by comparing magnitudes of complex voltages at applied frequencies and those detected at unselected frequencies.
  • the impedance spectrum of battery measured as a function of frequency usually differs from the case of ideal interfacial adsorption as illustrated in FIG. 2 when it is expressed on a complex plane.
  • the semicircular spectrum is distorted into the oval form and has an inclination of 45 degrees in the mid-frequency band.
  • the transmission Hue model consists of specific resistance of electrode active material ⁇ and interfacial impedance Zi of electrode in FIG.1a which are equivalent to distributed serial resistance and distributed parallel impedance in the form of transmission line as usual in electronics.
  • the de approximation R r to which the specific resistance of electrode active material contributes and prescribed pseudocapacitance C ps can be model parameters having correlation with battery capacity.
  • the parameters of characteristic impedance function obtained from the solution of differential equation of equivalent circuit can be calculated from the measured impedance spectrum by the complex nonlinear least square fitting method.
  • the complex nonlincar least square fit of lithium ion battery obtained by using the transmission line model is represented by the solid line in FIG. 3.
  • model parameters having a relation with battery capacity are primarily determined by the impedance characteristic at a low frequency.
  • Equation 4 Equation 4
  • Equation 6 The inverse Laplace transform of the integrated function in Equation 6 is realized simply with reference to the Laplace transform table of an analytical function. or through a numerical analysis (see. T. Hosono. 'Fast Inversion of Laplace Transform in BASIC'. Kyoritsu Shupan. Tokyo (1984)).
  • the response voltage characteristic based on a pulse current is expressed by a function having model parameters constituting an equivatent circuit according to Equation 7.
  • the model parameters can be calculated by fitting the measured response characteristic to the function by way of linear regression or nonlinear least square fitting method.
  • Equation 5 the equivalent circuit expressed by Equation 5 can be approximated to the simpler form as shown in FIG. 1c. This results in a linear response curve plotting the voltage against the current pulse as shown in FIG. 5.
  • the current to be applied to the battery must be in a range of intensity such that the internal resistance causes a voltage drop not larger than 200mV, preferably not larger than 50mV.
  • the intensity of the excitation signal is less than the signal required to fully discharge the battery in 1 hour, based on a rated battery capacity.
  • the pulse has to be selected to have a length that the voltage signal can be approximated to have linearity.
  • FIG. 6 is a block diagram of a unit for measuring battery capacity by applying to a test battery a perturbation current signal generated by superposition of non-overlapping multiple frequencies or a defined pulse current and measuring the current and voltage response signals of the battery based on the applied perturbation current signal or defined pulse current.
  • reference number 10 is a control means for controlling to apply to a test battery the perturbation current signal generated by superposition of non overlapping multiple frequencies or the defined pulse current, and measuring the capacity of the test battery 30 by inputting the current and voltage response signals of the test battery 30 based on the applied perturbation current signal and defined pulse current.
  • the control means 10 includes: a control/arithmetic unit 11 for controlling the apply of the perturbation current signal generated by superposition of non-overlapping multiple frequencies or a defined pulse current to a test battery 30 and controlling the measurement of the capacity of test battery 30 with the current and voltage response signals of the test battery 30 according to the applied perturbation current signal and defined pulse current: a memory 13 for storing and outputting the current and voltage response signals of the test battery 30 inputted; an input/output(I/O) unit 15 for outputting the perturbation current signul of the control/arithmetic unit 11 or the apply control command of the defined pulse current, and inputting the measured current and voltage response signals of the test battery 30, and thereby applying them to the memory 13; an impedance spectrum measuring means 17 for Fourier-transforming the current and voltage response signals of the test battery 30 stored in the memory 13 according to the control of the control/arithmetic unit 11 and approximating to a value of characteristic factor; and a pulse current measuring means 19 for approximating the current and voltage response signals of the test battery
  • Reference number 20 denotes a measuring means for applying to the test battery the perturbation current signal generated by superposition of non-overlapping multiple frequencies or a defined pulse current according to the control of the control means 10. and measuring the current and voltage response signals of the test battery based on the applied perturbation current signal and defined pulse current, thus inputting them to the control means 10.
  • the measuring means 20 includes: a signal generating unit 21 for generating a perturbation current signal generated by superposition of non-overlapping multiple frequencies or a defined pulse current according to the control of the control means 10 on order to apply them to the test battery 30: a constant current control unit 23 for applying the perturbation current signal and the defined pulse current output from the signal generating unit 21 to the test battery 30, and defined pulse current and outputting voltage rcsponsc signal V out and current response signal I out of the test battery 30 based on the applied perturbation current signal and the defined pulse current: first and second filters 25 and 25A for filtering each of the voltage response signal V out and current response signal I out output from the constant current control unit 23 and removing noise out of them; first and second amplifiers 27 and 27A for amplifying the output signal of the first and second filters 25 and 25A; and a two-channel analog/digital(A/D) converter 29 for convening an output signal of the first and second amplifiers 27 and 27A into digital signal and inputting it to the control means 10.
  • the measuring means 20 has multi-channels. Therefore, a plurality of measuring means are connected to one control means 10. thereby individually measuring the capacity of the test battery 30 simultaneously.
  • the control/arithmetic means 11 of the control means 10 when the measuring method is selected and a capacity is measured by connecting the measuring means to the test battery 30. the control/arithmetic means 11 of the control means 10 generates a control command, which is then input to a signal generating unit 21 of the measuring means 20 through the input/output unit 15.
  • the signal generating unit 21 stores/outputs a perturbation current signal I in made by superposition of non-overlapping multiple frequency in case it measures an impedance of the test battery 30 by generating an input current signal I m supposed to be input to the test battery 30 according to the control command, and stores/outputs a pulse current signal I m with a defined length and size in case of measuring in a pulse current measuring method.
  • the constant current control unit 23 According to the current signal I in output from the signal generating unit 21, the constant current control unit 23 generates constant current, followed by applying it to the test battery 30 and outputs a voltage response signal V out and a current response signal l out of the test battery 30 based on the constant current of the input current signal I in applied.
  • the voltage and current response signals V out and I out output from the constant current control unit 23 are filtered in the first and second filters 25 and 25A individually in order to remove noise. amplified in the first and second amplifiers 27 and 27A. and converted into the digital signal in the analog/digital(A/D) converter 29.
  • the digital signal from the analog/digital(A/D) converter 29 is input to the input/output unit(I/O) 15 of the control means 10 and stored in the memory 13.
  • the current response signal I out is not used, and there is no need to convert it into the digital signal.
  • control means 10 approximates the measuring result stored in the memory 13, namely, the voltage and current response signals V out and I out to the value of the characteristic factor.
  • the impedance spectrum measuring means 17 Fourier-transforms the digital signal of the voltage and current response signals V out and I out stored in the memory 13, namely, the impedance spectrum into a complex impedance value denoted by function of frequency, and then approximates the complex impedance value to a value of the characteristic factor predefined according to the function fitting algorithm.
  • the pulse current measuring means 19 fits the voltage response signal V out into the value of characteristic factor pre-defined according to the response voltage function fitting algorithm.
  • control means 10 when simultaneously measuring a pluraliy of test batteries 30 in a multichannel method, the control means 10 performs a successive calculation corresponding to the function fitting or a nonlinear fitting into the response voltage function, and the calculation arithmetical time, however, can be ignored in comparison to the time for measuring the input and output signal.
  • a Fourier transform impedance spectrometer is manufactured which is designed to apply an input current signal having superposition of multiple sine waves obtained by superposing odd-numbered times of the lowest frequency to a battery via a 16-bit D/A converter and a galvanostat, and transfer digital current and voltage signals measured by a two-channel 16-bit A/D converter to a computer for calculating a complex impedance by use of the digital discrete Fast Fourier transform algorithm.
  • the pulse current measurement unit is used by storing the pulse input signal to a 16-bit A/D converter.
  • Table 1 lists the required times in different measurements of the capacity of a charged battery.
  • a real-time discharging method a frequency scanning method which is performed by the number of selected frequencies at constant intervals in the range of 5 mHz to 20 kHz. e.g., 20, 40 and 60 frequencies: an impedance spectrum measuring method using a minimum sine wave of 5 mHz frequency: and a pulse current measuring method with a pulse signal.
  • Table 1 Comparison of required times in measurement of the battery capacity.
  • A real-time discharging method
  • B frequency scanning method
  • C impedance spectrum measuring method
  • D pulse current measuring method
  • a lithium ion battery (manufactured by Sony Co.) with regulated capacity of 1300 mAh is charged up to 4.2 volts under condition of constant current for one hour at room temperature and fully charged at the voltaye for 2.5 hours under condition of constant voltage. Then use is made of a Fourier transform impedance meter as described in embodiment 1 in measuring the impedance spectrum in the frequency range from 5 mHz to 20 kHz.
  • the battery is repeatedly discharged by 130 mAh under condition of constant current for 10 hours and the impedance spectra are measured successively.
  • the impedance spectra are fitted by the complex nonlinear least square fitting method for the impedance function corresponding to the transmission line equivalent circuit model shown in FIG. 4 to calculate a model parameter, pseudocapacitance C ps .
  • a comparison of the model parameter and remaining capacity in each discharge state measured by the real-time discharge method at constant current for 5 hours reveals that there is a close correlation between the model parameter and the remaining capacity, as shown in FIG. 7.
  • the time required for measuring the impedance spectrum in each discharge state and calculating the model parameter by fitting did not exceed 420 seconds.
  • Lithium ion batteries with nominal capacity of 1300 mAh with unknown user history are fully charged in the same manner as embodiment 2. Then impedance spectum is measured to calculate a model parameter, charge transfer resistance R ct .
  • the time required for measuring the impedance spectrum for each battery and calculating the model parameter by approximation did not exceed 420 seconds.
  • a nickel metal hydride bauery manufactured by Emmerich
  • a nominal capacity of 600 mAh is and discharge and stabilized for about 10 minutes.
  • +30 mA current (charging current) and -30 mA current (discharging current) each for 100 seconds is measured as a function of time.
  • the intensity of the current pulse. 30 mA is determined in the range that maintains the linearity of the voltage response.
  • Low-frequency limiting resistance R Lim , and low-frequency limiting capacitance C Lim which are model parameters of the equivalent circuit of FIG. I a are calculated from the slope and y-intercept of the linear line obtained through a linear regression from the voltage response characteristic based on charge current.
  • the nickel metal hydride battery is discharged each time by 30 mAh at a 60 mA constant current condition and repeatedty measured in regards 5 to the pulse current in an analogous manner as described above. Subsequently, model parameters such as low-frequency limiting resistance R Lim , and low-frequency limiting capacitance C Lim are calculated.
  • a lithium ion battery (manufactured by Sony) having a nominal capacity of 1300 mAh is charged to 4.2 volts at the 1-hour rate in a constant current for one hour and room temperature condition. and stabilized for 2.5 hours under a 4.2 V constant voltage condition. Atier this. a voltage response curve of the battery is obtained after performing the same current pulse measurement unit as described in embodiment 6.
  • the batterv is discharged each time by 60 mAh in a 120 mA constant current condition and repeatedly measured in regards to the pulse current.
  • the used pulse current is +100 mA in intensity and has a time width of 400 seconds.
  • model parameters such as low-frequency limitiny resistance R lim , and low-frequency limiting capacitance C Lim are calculated through a linear regression of an impedance function corresponding to the equivalent circuit of FIG. 1c.
  • FIGS. 12a and 12b a comparison of the remaining capacities of the battery which are measured in each discharge condition by a real-time discharge method using a constant current of 120 mA reveals that there is a close correlation between the remaining capacity and the model parameters. i.e. low-frequency limiting capacitance and low-frequency limiting resistance.
  • the time required to measure the voltage response curve and obtain model parameters through a fitting in each discharge condition did not exceed 200 seconds.
  • Model parameters are calculated by the non-linear least square fitting method according to Equation 7.
  • the batteries are discharged to a 2.7 volts at the 5-hour rate in a constant current and room temperature condition, and the discharge capacity of each battery for a measured discharge period is calculated.
  • the remaining capacity i.e., low-frequency limiting capacitance C dl and low-frequency limiting resistance C ps .
  • a measurement can be used for the user to measure the capacity of primary and secondary batteries used for portable electronics, power tools, communication equipment, automobiles and electric vehicles, or to measure or grade the battery capacity in production of the primary and secondary batteries on a large scale.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Claims (21)

  1. Procédé de mesure de la capacité d'une batterie, caractérisé en ce que le procédé comprend les étapes consistant à :
    (1) mesurer, en fonction du temps, un signal de réponse de tension ou de courant résultant de l'application d'un signal d'excitation de courant ou de tension aux deux extrémités d'une batterie ;
    (2) analyser le signal de réponse mesuré pour déterminer un ou des paramètres d'un modèle d'impédance prédéfini de la batterie ;
    (3) examiner une corrélation entre le ou les paramètres et la capacité de la batterie mesurée par un procédé de décharge dans le temps réel ; et
    (4) sur la base de la corrélation, déterminer la capacité de la batterie à partir du ou des paramètres.
  2. Procédé selon la revendication 1, dans lequel l'intensité du signal d'excitation est inférieure au signal requis pour décharger totalement la batterie en 1 heure, sur la base d'une capacité nominale de batterie.
  3. Procédé selon la revendication 1, dans lequel un temps nécessaire pour mesurer la caractéristique de tension en réponse au signal d'excitation est inférieur à 1/10 du temps de décharge total à un courant ou une tension donné(e) calculé(e) à partir d'une capacité nominale de batterie.
  4. Procédé selon la revendication 1, dans lequel le signal appliqué est une impulsion de courant ou de tension.
  5. Procédé selon la revendication 1 ou 4, dans lequel le ou les paramètres sont des paramètres modèles déterminés à partir de l'ajustement du signal de réponse mesuré à une fonction de réponse de domaine temporel obtenue à partir d'un circuit équivalent comprenant des résistances, des condensateurs ou des lignes de transmission.
  6. Procédé selon la revendication 4, dans lequel l'étape d'analyse du signal de réponse mesuré comprend l'ajustement du signal de réponse mesuré à une fonction de réponse obtenue en prenant une transformée de Laplace inverse de la fonction d'impédance du modèle de batterie multipliée par une fonction d'impulsion de courant exprimée dans le domaine de Laplace ou divisée par une fonction d'impulsion de tension exprimée dans le domaine de Laplace.
  7. Procédé selon la revendication 1, comprenant en outre l'étape consistant à :
    convertir le signal de réponse mesuré en spectre d'impédance complexe du modèle de batterie dans une région de fréquence prédéterminée avant l'étape d'analyse ; dans lequel l'étape d'analyse comprend le fait de déterminer un ou plusieurs paramètres à partir du spectre d'impédance complexe mesuré.
  8. Procédé selon la revendication 7, dans lequel le rapport de la fréquence la plus élevée sur la fréquence la plus faible dans la région de fréquence prédéterminée est au moins de 100.
  9. Procédé selon la revendication 7, dans lequel le ou les paramètres sont des paramètres modèles déterminés en mettant le spectre d'impédance complexe mesuré du modèle de batterie en correspondance avec une fonction d'impédance complexe d'un circuit équivalent comprenant des résistances, des condensateurs et des lignes de transmission.
  10. Procédé selon la revendication 7, dans lequel le signal d'excitation est appliqué aux deux bornes de la batterie dans des conditions galvanostatiques.
  11. Procédé selon la revendication 7, dans lequel le temps pendant lequel l'excitation de courant est appliquée à la batterie pour mesurer le spectre d'impédance complexe est de 1 heure.
  12. Procédé selon la revendication 7, dans lequel les paramètres sont des paramètres modèles déterminés en utilisant un ajustement par les moindres carrés, complexe, non linéaire des données d'impédance à une fonction d'impédance complexe d'un circuit modèle comprenant des résistances, des condensateurs ou des lignes de transmission.
  13. Procédé selon la revendication 7, dans lequel le signal d'excitation appliqué est une combinaison d'ondes sinusoïdales ne se chevauchant pas ayant des fréquences sélectionnées, et dans lequel le signal d'excitation peut être transformé dans le domaine de fréquence de sorte que le rapport entre l'amplitude d'une onde à une fréquence sélectionnée et l'amplitude d'une onde à une autre fréquence soit supérieur à 100.
  14. Procédé selon la revendication 7, dans lequel une transformée de Fourier rapide est utilisée pour obtenir un spectre d'impédance complexe à partir du signal de réponse mesuré.
  15. Procédé selon la revendication 7, dans lequel le signal d'excitation est une impulsion de courant ou de tension, et une transformée de Laplace est utilisée pour obtenir un spectre d'impédance complexe à partir du signal de réponse mesuré.
  16. Appareil de mesure de la capacité d'une batterie (30), caractérisé en ce que l'appareil comprend :
    un moyen de commande (10) adapté pour :
    (a) générer (i) un signal d'excitation comprenant une combinaison d'ondes sinusoïdales ne se chevauchant pas avec des fréquences sélectionnées, ou (ii) un signal d'impulsion ;
    (b) transférer le signal généré en tant que signal de commande vers un moyen de mesure (20) qui est adapté pour l'appliquer à la batterie ;
    (c) recevoir des signaux de réponse de courant et de tension variables dans le temps détectés par le moyen de mesure (20) ;
    (d) analyser les signaux de réponse de courant et de tension variables dans le temps pour obtenir un ou des paramètres d'un modèle d'impédance prédéfini de la batterie (30) ;
    (e) corréler le ou les paramètres et la capacité de la batterie (30) mesurée par un procédé de décharge dans le temps réel ; et
    (f) déterminer la capacité de la batterie (30) sur la base de la corrélation ;
    un moyen de mesure (20) adapté pour :
    (a) appliquer le signal d'excitation ou le signal d'impulsion généré à la batterie test (30) ;
    (b) détecter les signaux de réponse de courant et de tension variables dans le temps de la batterie test (30) ; et
    (c) transmettre le signal de réponse au moyen de commande (10).
  17. Appareil selon la revendication 16, dans lequel le moyen de commande (10) comprend :
    une unité de commande/arithmétique (11) destinée à commander l'application du signal d'excitation ou du signal d'impulsion à la batterie test (30), et à commander la mesure de la capacité de la batterie test (30) en utilisant les signaux de réponse de courant et de tension variables dans le temps de la batterie test (30) ;
    une mémoire (13) destinée à stocker et à sortir les signaux de réponse de courant et de tension variables dans le temps de la batterie test (30) reçus en provenance du moyen de mesure (20) ;
    une unité d'entrée/sortie (15) destinée à sortir le signal d'excitation de l'unité de commande/arithmétique (11) ou une commande pour le signal d'impulsion défini sur le moyen de mesure (20), et à recevoir les signaux de réponse de courant et de tension variables dans le temps mesurés sur la batterie test (30), et à sortir les signaux de réponse de courant et de tension variables dans le temps sur la mémoire (13) ;
    un moyen de mesure de paramètre modèle (17) destiné à mettre les signaux de réponse de courant et de tension variables dans le temps de la batterie test (30) en correspondance avec une fonction du domaine temporel d'un circuit modèle pour déterminer les valeurs du ou des paramètres.
  18. Appareil selon la revendication 16, dans lequel le moyen de commande (10) comprend :
    une unité de commande/arithmétique (11) destinée à commander l'application du signal d'excitation ou du signal d'impulsion à la batterie test (30), et à commander la mesure de la capacité de la batterie test (30) en utilisant les signaux de réponse de courant et de tension variables dans le temps de la batterie test (30) ;
    une mémoire (13) destinée à stocker et à sortir les signaux de réponse de courant et de tension variables dans le temps de la batterie test (30) reçus en provenance du moyen de mesure (20) ;
    une unité d'entrée/sortie (15) destinée à sortir le signal d'excitation de l'unité de commande/arithmétique (11) ou une commande pour le signal d'impulsion défini sur le moyen de mesure (20), et à recevoir les signaux de réponse de courant et de tension variables dans le temps mesurés sur la batterie test (30), et à sortir les signaux de réponse de courant et de tension variables dans le temps sur la mémoire (13) ;
    un moyen de mesure de paramètre modèle (17) comprenant un moyen de mesure de spectre d'impédance complexe pour effectuer une transformée de Fourier sur les signaux de réponse de courant et de tension variables dans le temps stockés de la batterie test (30) et mettant le spectre d'impédance complexe obtenu en correspondance avec une fonction d'impédance complexe du modèle de batterie pour déterminer les valeurs du ou des paramètres.
  19. Appareil selon la revendication 16, dans lequel l'appareil comprend en outre une pluralité de moyens de mesure (20) reliés chacun à une batterie respective (30) par le biais de canaux multiples, chacun étant adapté pour recevoir le signal d'excitation ou le signal d'impulsion défini, et détecter individuellement les signaux de réponse de courant et de tension variables dans le temps sur la base du signal d'excitation appliqué ; et les entrer dans le moyen de commande (10).
  20. Appareil selon la revendication 16, 17 ou 18, dans lequel le moyen de mesure (20) comprend :
    une unité de génération de signal (21) destinée à stocker un signal d'excitation prédéfini et un signal d'impulsion défini et à sortir le signal d'excitation et le signal d'impulsion défini sélectionnés par le moyen de commande (10) ;
    une unité de commande de courant constant (23) destinée à appliquer un courant de sortie de l'unité de génération de signal (21) sur la batterie (30) et à détecter les signaux de réponse de courant et de tension variables dans le temps sur la base du courant appliqué ; et
    un convertisseur analogique/numérique (29) destiné à convertir avec succès les signaux de réponse de courant et de tension variables dans le temps détectés par l'unité de commande de courant constant (23) en signaux numériques et à les entrer dans le moyen de commande (10).
  21. Appareil selon la revendication 20, comprenant en outre :
    des premier et second filtres (25, 25A) destinés à filtrer respectivement les signaux de réponse de courant et de tension variables dans le temps détectés par l'unité de commande de courant constant (23) pour éliminer le bruit ; et
    des premier et second amplificateurs (27, 27A) destinés à amplifier le signal de sortie des premier et second filtres (25, 25A) et à les entrer dans le convertisseur analogique/numérique (29).
EP99926967A 1998-06-16 1999-06-15 Procede et appareil pour la mesure de la capacite d'une batterie Expired - Lifetime EP1088240B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR9822540 1998-06-16
KR1019980022540A KR100264515B1 (ko) 1998-06-16 1998-06-16 임피던스 스펙트럼 분석에 의한 전지 용량 측정방법 및 측정장치
KR1019980024134A KR100262465B1 (ko) 1998-06-25 1998-06-25 펄스전류의 전압 응답신호를 이용한 전지용량 측정방법 및 측정장치
KR9824134 1998-06-25
PCT/KR1999/000304 WO1999066340A1 (fr) 1998-06-16 1999-06-15 Procede et appareil pour la mesure de la capacite d'une batterie

Publications (2)

Publication Number Publication Date
EP1088240A1 EP1088240A1 (fr) 2001-04-04
EP1088240B1 true EP1088240B1 (fr) 2006-04-05

Family

ID=36178402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99926967A Expired - Lifetime EP1088240B1 (fr) 1998-06-16 1999-06-15 Procede et appareil pour la mesure de la capacite d'une batterie

Country Status (9)

Country Link
EP (1) EP1088240B1 (fr)
CN (1) CN100495060C (fr)
AT (1) ATE322695T1 (fr)
CA (1) CA2334404C (fr)
DE (1) DE69930741D1 (fr)
IL (2) IL140090A0 (fr)
NO (1) NO20006099L (fr)
TW (1) TW440698B (fr)
WO (1) WO1999066340A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551690A3 (fr) * 2011-07-29 2015-12-16 Yokogawa Electric Corporation Dispositif de surveillance de batterie
DE102014012542A1 (de) 2014-08-28 2016-03-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Verfahren zum Bestimmen eines Betriebszustands eines Batteriesystems

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1402279A1 (fr) * 2001-06-22 2004-03-31 Johnson Controls Technology Company Systeme de caracterisation de batterie
AU2003254628A1 (en) * 2002-07-12 2004-02-09 Mir-Chem Gmbh Method for measuring a physical or chemical operating parameter for an analysis system
EP1480051A3 (fr) * 2003-05-19 2006-02-22 Akkumulatorenfabrik Moll GmbH & Co. KG Dispositif et procédé pour la détermination de la capacité à haut courant d'une batterie
JP4377164B2 (ja) * 2003-06-10 2009-12-02 株式会社日立製作所 蓄電装置の異常検出方法、蓄電装置の異常検出装置および蓄電システム
JP4736317B2 (ja) * 2003-11-14 2011-07-27 ソニー株式会社 バッテリーパック及びバッテリー残量算出方法
FR2877096B1 (fr) * 2004-10-27 2006-12-29 Peugeot Citroen Automobiles Sa Systeme de determination de l'etat de charge de moyens de stockage d'energie electrique pour vehicule
CN1967270B (zh) * 2005-11-18 2010-06-09 北华大学 一种电池阻抗谱测试方法与系统
EP1892536B1 (fr) * 2006-08-22 2012-04-11 Delphi Technologies, Inc. Système de surveillance d'une batterie
FR2907272B1 (fr) * 2006-10-13 2008-12-26 Commissariat Energie Atomique Procede de gestion de la fin de decharge d'une batterie rechargeable
CN101183142B (zh) * 2007-05-15 2011-03-16 李庆兰 蓄电池内阻的在线测量方法及电流工作模块及蓄电池内阻在线测量仪
DE102009050273B4 (de) 2008-10-24 2018-12-27 Audi Ag Verfahren zum Bestimmen der Kapazität einer Batterie
FR2942544B1 (fr) * 2009-02-24 2015-05-15 Helion Procede de caracterisation d'un systeme electrique par spectroscopie d'impedance.
TWI409487B (zh) * 2010-09-21 2013-09-21 Lite On Clean Energy Technology Corp 電池量測方法及裝置
FR2965360B1 (fr) 2010-09-27 2013-03-29 IFP Energies Nouvelles Procede de diagnostic in situ de batteries par spectroscopie d'impedance electrochimique
US9322884B2 (en) 2012-01-06 2016-04-26 Industrial Technology Research Institute Impedance analyzing device
US20130179103A1 (en) * 2012-01-06 2013-07-11 Industrial Technology Research Institute Battery analysis device and method thereof
CN102621391B (zh) * 2012-03-23 2014-08-13 哈尔滨工业大学 微弧氧化负载阻抗谱在线测试方法及实现该方法的在线测试系统
CN102661983B (zh) * 2012-04-27 2014-09-03 南京洁态环保科技有限公司 一种对于多孔性电极的电化学阻抗谱的数值迭代拟合方法
CN102794272A (zh) * 2012-06-30 2012-11-28 珠海市鹏辉电池有限公司 锂离子电池容量分级方法
FR2994745B1 (fr) 2012-08-21 2016-07-01 Centre Nat D' Etudes Spatiales (Cnes) Procede d'estimation du vieillissement d'une batterie
RU2531062C1 (ru) * 2013-03-26 2014-10-20 Открытое акционерное общество "Научно-производственное объединение измерительной техники" Устройство контроля аккумуляторной батареи
US9312722B2 (en) * 2014-05-09 2016-04-12 Ford Global Technologies, Llc System and method for battery power management
ES2554987B1 (es) * 2014-05-23 2016-11-16 Instalaciones Inabensa, S.A. Dispositivo y procedimiento de medida de impedancia de un elemento de almacenamiento energético
US10451678B2 (en) 2014-07-17 2019-10-22 Ford Global Technologies, Llc Battery system identification through impulse injection
TWI523297B (zh) 2014-11-07 2016-02-21 財團法人工業技術研究院 基於老化調適電池運作區間的電池調控方法
CN105301504A (zh) * 2015-09-24 2016-02-03 天津大学 基于单位脉冲响应估计锂电池荷电状态的方法
US11592490B2 (en) 2016-06-28 2023-02-28 Bayerische Motoren Werke Aktiengesellschaft Method and device for estimating a voltage of a battery
CN106226700A (zh) * 2016-07-17 2016-12-14 安徽卓越电气有限公司 锂电池检测平台系统及测试方法
CN106970266A (zh) * 2016-11-29 2017-07-21 北京交通大学 一种锂离子电池的eis快速测量方法
CN106991737B (zh) * 2017-03-30 2021-01-15 上海理工大学 电池管理系统数据的缩量存储和重构方法
CN106842066B (zh) * 2017-04-21 2019-03-08 惠州亿纬锂能股份有限公司 一种电池放电容量的检测方法和装置
EP3438682B1 (fr) * 2017-08-02 2023-06-07 Li.plus GmbH Procédé, appareil et programme informatique pour déterminer une impédance d'un dispositif électriquement conducteur
CN110068771B (zh) * 2019-05-28 2020-02-07 山东大学 基于输出响应重构的高精度电池模型参数辨识方法及系统
CN111090053B (zh) * 2019-11-29 2022-04-22 力神(青岛)新能源有限公司 一种用于动力电池分档的方法
CN111123129B (zh) * 2019-12-24 2021-12-28 天能电池集团股份有限公司 一种铅蓄电池容量检测方法
CN111337843B (zh) * 2020-02-21 2021-07-23 清华大学 动力电池差分电容的生成方法及容量估计方法、系统
SE545121C2 (en) * 2020-03-24 2023-04-04 Batixt IP AB Measuring device and method for determining an electrical property
US11424635B2 (en) * 2020-04-27 2022-08-23 GM Global Technology Operations LLC Battery state estimation using injected current oscillation
CN112946489B (zh) * 2021-01-20 2023-01-17 北京交通大学 一种基于低频eis的快速容量评估方法
CN114325434A (zh) * 2021-12-21 2022-04-12 上海磐动电气科技有限公司 燃料电池电化学阻抗谱检测装置及检测方法
CN116736118B (zh) * 2023-04-24 2024-01-30 广东华庄科技股份有限公司 一种电池组检测方法及系统
CN117590057B (zh) * 2024-01-17 2024-04-02 中国电力科学研究院有限公司 一种冲击电压峰值及时间参数全量程溯源实现方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146377A1 (fr) * 1983-12-16 1985-06-26 The Commonwealth Of Australia Circuit de test de batterie
FR2691260B1 (fr) * 1992-05-13 1994-07-01 Abb Control Sa Dispositif pour mesurer une tension continue.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551690A3 (fr) * 2011-07-29 2015-12-16 Yokogawa Electric Corporation Dispositif de surveillance de batterie
US9448287B2 (en) 2011-07-29 2016-09-20 Yokogawa Electric Corporation Battery monitoring device
DE102014012542A1 (de) 2014-08-28 2016-03-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Verfahren zum Bestimmen eines Betriebszustands eines Batteriesystems

Also Published As

Publication number Publication date
NO20006099D0 (no) 2000-11-30
TW440698B (en) 2001-06-16
ATE322695T1 (de) 2006-04-15
DE69930741D1 (de) 2006-05-18
NO20006099L (no) 2001-01-29
CN100495060C (zh) 2009-06-03
CA2334404C (fr) 2007-01-30
IL140090A (en) 2010-05-31
IL140090A0 (en) 2002-02-10
CA2334404A1 (fr) 1999-12-23
CN1305590A (zh) 2001-07-25
EP1088240A1 (fr) 2001-04-04
WO1999066340A1 (fr) 1999-12-23

Similar Documents

Publication Publication Date Title
EP1088240B1 (fr) Procede et appareil pour la mesure de la capacite d'une batterie
US6208147B1 (en) Method of and apparatus for measuring battery capacity by impedance spectrum analysis
JP3162030B2 (ja) パルス電流の電圧応答信号を用いた電池容量測定方法及び電池容量測定装置
Meddings et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review
EP1153311B1 (fr) Procede et appareil de determination des parametres de caracteristiques d'un dispositif de stockage de charge
US7675293B2 (en) Method and apparatus for in-situ characterization of energy storage and energy conversion devices
JP3069346B1 (ja) ラプラス変換インピ―ダンスの測定方法及びその測定装置
Karden et al. A method for measurement and interpretation of impedance spectra for industrial batteries
US6781382B2 (en) Electronic battery tester
US20030206021A1 (en) Method and apparatus for measuring and analyzing electrical or electrochemical systems
US20020036504A1 (en) Integrated conductance and load test based electronic battery tester
WO1997036182A1 (fr) Analyse et evaluation d'un dispositif generateur d'energie
Fan et al. Frequency domain non-linear characterization and analysis of lithium-ion battery electrodes
Kondratiev et al. Application of embedded electrochemical impedance spectroscopy for on-board battery diagnostics
CN117192395A (zh) 一种电池阻抗谱在线监测系统和方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040316

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060405

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KOREA KUMHO PETROCHEMICAL CO. LTD.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69930741

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: KOREA KUMHO PETROCHEMICAL CO. LTD.

Effective date: 20060412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060905

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20070108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060706

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160615

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615