EP1087200B1 - Missile mission unit - Google Patents

Missile mission unit Download PDF

Info

Publication number
EP1087200B1
EP1087200B1 EP00116828A EP00116828A EP1087200B1 EP 1087200 B1 EP1087200 B1 EP 1087200B1 EP 00116828 A EP00116828 A EP 00116828A EP 00116828 A EP00116828 A EP 00116828A EP 1087200 B1 EP1087200 B1 EP 1087200B1
Authority
EP
European Patent Office
Prior art keywords
missile
target
data
mission unit
situation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00116828A
Other languages
German (de)
French (fr)
Other versions
EP1087200A1 (en
Inventor
Uwe Dr. Krogmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl BGT Defence GmbH and Co KG
Original Assignee
Bodenseewerk Geratetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bodenseewerk Geratetechnik GmbH filed Critical Bodenseewerk Geratetechnik GmbH
Publication of EP1087200A1 publication Critical patent/EP1087200A1/en
Application granted granted Critical
Publication of EP1087200B1 publication Critical patent/EP1087200B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/007Preparatory measures taken before the launching of the guided missiles

Definitions

  • the invention relates to a missile mission unit for a missile, to which Sensors for the movement of a target relative to the missile and for the Self-motion of the missile are connected, containing means for detection and Identification and determination of the track of the target, that of data of the sensors resources for situational assessment and analysis from the information about location, type and track of the destination, a first database in which knowledge about potential targets are stored, a second database in which data about the Skills of the missiles are stored, and means of generating plans for Actions and from this are activated to generate decision criteria,
  • target-tracking Missiles On a combat aircraft are in use usually several target-tracking Missiles suspended in launchers under the wings.
  • the target-tracking Missiles have seekers with sensors that target one or more targets to capture.
  • the missile inertial sensors may contain, which on the Respond to movements of the missile in the inertial space. From viewfinder signals of Seekers are generated steering signals that lead the missile to the target.
  • From viewfinder signals of Seekers are generated steering signals that lead the missile to the target.
  • sensors which on the movement of the Aircraft, such as inertial sensors or satellites navigation receivers, and sensors that detect targets in the field of view, such as radar and / or Infrared devices.
  • sensors In a manned combat aircraft, the pilot must select a destination select a missile to attack the target and the missile to the target instruct, i. make sure the seeker has captured the target.
  • the type and He will be the one or the other select another missile and shoot.
  • a fast and agile target In With a short distance he will be a fast and agile missile may select a lower range. Another missile is possibly more suitable for slower targets at greater distances.
  • the vote between a missile with active radar seeker and a missile with a passive infrared seeker may u. depend on the distance of the target, the Environmental conditions and the available to the opponent Countermeasures. Also critical is the time of the launch of the selected Missile.
  • the pilot receives a variety of visual or audio signals from the various sensors, which he has to process and from which he has to make his decision. additionally of course, the pilot must fly the fighter jet in aerial combat. The pilot must also watch out for threats such as from enemy missiles and if necessary, avoid such threats and activate countermeasures. This can overwhelm the pilot and lead to fatal mistakes.
  • This missile mission unit contains stored knowledge in the form of data and / or facts necessary for the mission of Missile are relevant. This can be data showing the characteristics of the Characterize missiles themselves, such as speed, maneuverability (maximum lateral acceleration), range, etc. This can also be data over Characteristics of potential goals.
  • the missile mission unit receives data from Sensors. These are the data from your own sensors Missile. But this can also be data from sensors of the platform, e.g. the radar, or from the sensors of other missiles mounted on the platform.
  • the Missile Mission Unit then provides the pilot with decision criteria for the mission Use of the associated missile. It can then be e.g. be displayed that Missile "1" is more suitable for the present situation and a specific objective as missile "2". In a manned fighter but then the pilot is the make final decision. He is, however, relieved of a lot of information. This information is preprocessed by the missile mission unit.
  • missile-specific mission units can in DE 197 16 025 A1 the Missionary avionics also contain only a single mission unit, in which the Functions of the individual, missile-specific units are integrated. Preferably but is the or each missile mission unit in the associated missile arranged and connected to the platform via a standardized interface. Then is when inserting a certain type of missile into the launcher over the Automatically interface the missile mission unit designed for this type of missile switched on in the computer network. It is not an intervention in the platform-side mission avionics required.
  • the invention relates to an advantageous embodiment of a missile mission unit of the type mentioned, as described by DE 197 16 025 A1 and, in particular, the training of the means for the production of plans for actions.
  • the means for generating plans for actions contain means for Situation prediction, which to access the databases and on which Information is provided by the means for situational assessment and analysis, wherein the means for prediction of the situation of the target and its known Characteristics, the characteristics of the missile and the states of motion Extrapolate future situations.
  • the results of the situation prediction are on means for Calculation of missile ranges, possibly with respect to the target or, if applicable, different destinations may be available for different available types of missile.
  • the missile mission unit From the prediction of the future change of the situation, the missile mission unit recognize and if necessary make visible to the pilot, whether the goal of one launched missile at the flight condition of the platform (of own aircraft) can be detected or not. Does the platform carry several missiles? Types, it can be determined by the missile mission unit, which of these Missile with the best prospects of success should be shot down.
  • the results of the calculation are optimal Inferential for the production of reaction proposals switched.
  • These inference means are preferably of a learning capable, suitably trained neuro-fuzzy Structure formed. They contain “rules” approximately in the form: “If the goal without Another maneuver of the aircraft in the firing range of the missile is, then fire the Missile off "," If the target is slightly out of the firing range of the Is missile, then perform this or that maneuver to the target in the Shot area of the missile to bring "etc.
  • the inputs" within “or “marginally outside” are linquistic inputs, which are indicated by "Fuzzy-Logic” be detected.
  • the inference means give the pilot recommendations for action.
  • 10 is a target, in the present case an enemy combat aircraft, designated.
  • sensors are designated. These sensors 12 include a viewfinder 14 and inertial sensors 16 for determining the intrinsic movement of the target 10
  • Viewfinder 14 detects the movement of the target 10 relative to the missile. The movement of the target is symbolized by a block 18. The proper motion of the missile is represented by a block 20.
  • the viewfinder 14 contains a plurality of different ones Sensors. The viewfinder may u.U. "see" several objects at the same time.
  • Objects and potential targets supplied data are processed by image processing Detection of objects, ie a determination of where an object is located. Furthermore, it takes place an identification of the objects with regard to friend / enemy recognition.
  • image structures e.g. known types of aircraft with the image-resolving sensors supplied image structures.
  • the nature of the object is detected.
  • the Traced motion structures or traces of objects. The objects are classified, so that potential goals are picked out. This is through a block 22 shown.
  • the missile mission unit further includes means 26 for generating plans and actions. These means 26 comprise the elements 28, 30, 32, 34, 36 and 38 in Fig.1.
  • Block 28 is a database in which knowledge about potential goals is stored are. It is known what flight characteristics a type X aircraft has and which air combat tactics in a given situation usually with a Type X aircraft are applied. If the target as a type X aircraft and the situation is recognized, then one can estimate from it, how the goal in the next future is expected to behave.
  • Block 34 symbolizes the evaluation of the results of block 34 shown calculations. The result of this evaluation is on inference means 38 "Switched".
  • These inference means 38 are of a learning capable, suitably trained neuro-fuzzy Structure formed. They contain “rules” approximately in the form: “If the goal without further Maneuver of the aircraft in the firing range of the missile, then fire the missile from ",” If the target is slightly out of the firing range of the missile, then Perform this or that maneuver to bring the target into the firing range of the To bring missiles "etc. The inputs" within “or” slightly outside “ are thereby linquistic inputs, which are registered by "Fuzzy Logic”.
  • the Inference means 38 provide recommendations to the pilot or decision element 44 to trade. These recommendations are indicated in the figure by a parallelogram 46 shown.
  • Figure 2 illustrates the acquisition of the required knowledge by the lemimple Inference.
  • the adaptive inference unit may be from aerial combat simulations or real Air combat training automatically acquire realistic knowledge. That is the Prerequisite for correct and effective conclusions.
  • the own aircraft is designated 50.
  • the reference numeral 10 denotes again the goal or the goals.
  • the own plane 50 becomes real or in one Simulation controlled by the pilot 52, as shown by arrow 54.
  • simulation data or training data is transmitted the situational behavior of attackers, i. own plane 50, and destination 10 and generated via a simulated missile mission.
  • This simulation and / or Training data is stored in a data memory 60.
  • the behavior of the attacker is essentially determined by the recommendations of the inference unit 38 and thus by the knowledge stored therein in the form of rules.
  • the inference unit 38 is constructed as a fuzzy-neural network.
  • a set of rules representing heuristic prior knowledge is stored and processed a priori in the inference means.
  • the fuzzy-neural network of the inferring unit is continuously further trained on the basis of the rules stored a priori .
  • This is done according to known learning strategies and procedures, which are shown in Fig.2 by a block 62.
  • An arrow 64 symbolizes the change of the fuzzy-neural network of the inference unit 38.
  • the recorded data in the data memory 60 is also used to store the To complete and update databases 28 and 30 on targets and missiles.

Description

Die Erfindung betrifft eine Flugkörper-Missionseinheit für einen Flugkörper, auf welche Sensoren für die Bewegung eines Ziels relativ zu dem Flugkörper und für die Eigenbewegung des Flugkörpers aufgeschaltet sind, enthaltend Mittel zur Detektion und Identifikation und zur Bestimmung der Spur des Ziels, die von Daten der Sensoren beaufschlagt sind, Mittel zur Situations-Bewertung und -Analyse aus den Informationen über Ort, Art und Spur des Ziels, eine erste Datenbank, in welcher Kenntnisse über potentielle Ziele gespeichert sind, eine zweite Datenbank, in welcher Daten über die Fähigkeiten der Flugkörper gespeichert sind, und Mittel zur Erzeugung von Plänen für Aktionen und daraus zur Erzeugung von Entscheidungs-Kriterien aufgeschaltet sind,The invention relates to a missile mission unit for a missile, to which Sensors for the movement of a target relative to the missile and for the Self-motion of the missile are connected, containing means for detection and Identification and determination of the track of the target, that of data of the sensors resources for situational assessment and analysis from the information about location, type and track of the destination, a first database in which knowledge about potential targets are stored, a second database in which data about the Skills of the missiles are stored, and means of generating plans for Actions and from this are activated to generate decision criteria,

An einem Kampfflugzeug sind im Einsatz üblicherweise mehrere zielverfolgende Flugkörper in Startgeräten unter den Tragflächen aufgehängt. Die zielverfolgenden Flugkörper besitzen Suchköpfe mit Sensoren, welche ein Ziel oder mehrere Ziele erfassen. Weiterhin kann der Flugkörper Inertial-Sensoren enthalten, welche auf die Bewegungen des Flugkörpers im inertialen Raum ansprechen. Aus Suchersignalen der Suchköpfe werden Lenksignale erzeugt, die den Flugkörper auf das Ziel führen. Dabei können an einem Kampfflugzeug gleichartige oder unterschiedliche Flugkörper mit verschiedenen Suchköpfen aufgehängt sein, beispielsweise Flugkörper, die mit einem passiven Infrarot-Suchkopf ausgerüstet sind und Flugkörper mit einem Radar-Sucher, Flugkörper mit kombiniertem Infrarot- und Radarsucher oder Flugkörper mit unterschiedlicher Reichweite oder Geschwindigkeit. An dem Kampfflugzeug sind ebenfalls Sensoren vorgesehen, nämlich einmal Sensoren, welche auf die Bewegung des Flugzeugs ansprechen wie Inertial-Sensoren oder Empfänger für die Satelliten-Navigation, und Sensoren, welche Ziele im Gesichtsfeld erfassen, wie Radar- und/oder Infrarot-Geräte. Bei einem bemannten Kampfflugzeug muß der Pilot ein Ziel auswählen, einen Flugkörper zum Angriff auf das Ziel auswählen und den Flugkörper auf das Ziel einweisen, d.h. sicherstellen, daß der Suchkopf das Ziel erfaßt hat. Je nach Art und Entfernung des Ziels oder nach den Umgebungs-Bedingungen wird er den einen oder den anderen Flugkörper auswählen und abschießen. Für ein schnelles und wendiges Ziel in geringer Entfernung wird er einen schnellen und wendigen Flugkörper mit möglicherweise geringerer Reichweite auswählen. Ein anderer Flugkörper ist möglicherweise besser geeignet für langsamere Ziele in größerer Entfernung. Die Wahl zwischen einem Flugkörper mit aktivem Radar-Suchkopf und einem Flugkörper mit einem passiven Infrarot-Suchkopf wird u.U. abhängen von der Entfernung des Ziels, den Umgebungs-Bedingungen und den dem Gegner zur Verfügung stehenden Gegenmaßnahmen. Kritisch ist auch der Zeitpunkt des Abschusses des ausgewählten Flugkörpers.On a combat aircraft are in use usually several target-tracking Missiles suspended in launchers under the wings. The target-tracking Missiles have seekers with sensors that target one or more targets to capture. Furthermore, the missile inertial sensors may contain, which on the Respond to movements of the missile in the inertial space. From viewfinder signals of Seekers are generated steering signals that lead the missile to the target. there can use with a fighter aircraft similar or different missiles be hung on different seekers, such as missiles, with a passive infrared seeker are equipped and missile with a radar viewfinder, Missile with combined infrared and radar finder or missile with different range or speed. At the fighter plane are also provided sensors, namely once sensors, which on the movement of the Aircraft, such as inertial sensors or satellites navigation receivers, and sensors that detect targets in the field of view, such as radar and / or Infrared devices. In a manned combat aircraft, the pilot must select a destination select a missile to attack the target and the missile to the target instruct, i. make sure the seeker has captured the target. Depending on the type and He will be the one or the other select another missile and shoot. For a fast and agile target in With a short distance he will be a fast and agile missile may select a lower range. Another missile is possibly more suitable for slower targets at greater distances. The vote between a missile with active radar seeker and a missile with a passive infrared seeker may u. depend on the distance of the target, the Environmental conditions and the available to the opponent Countermeasures. Also critical is the time of the launch of the selected Missile.

Der Pilot erhält von den verschiedenen Sensoren eine Vielzahl von visuellen oder AudioSignalen, die er verarbeiten und aus denen er seine Entscheidung treffen muß. Zusätzlich muß der Pilot natürlich das Kampfflugzeug im Luftkampf fliegen. Der Pilot muß außerdem auf Bedrohungen etwa durch gegnerische Flugkörper achten und erforderlichenfalls solchen Bedrohungen ausweichen und Gegenmaßnahmen aktivieren. Das kann den Piloten überfordern und zu fatalen Fehlentscheidungen führen.The pilot receives a variety of visual or audio signals from the various sensors, which he has to process and from which he has to make his decision. additionally of course, the pilot must fly the fighter jet in aerial combat. The pilot must also watch out for threats such as from enemy missiles and if necessary, avoid such threats and activate countermeasures. This can overwhelm the pilot and lead to fatal mistakes.

Zugrundeliegender Stand der TechnikUnderlying state of the art

Es ist bekannt (DE 197 16 025 A1), in das Netzwerk der Missions-Avionik der Plattform, also z.B. des Kampfflugzeugs, für jeden Flugkörper eine flugkörperspezifische Flugkörper-Missionseinheit einzubauen. Diese Flugkörper-Missionseinheit enthält gespeichertes Wissen in Form von Daten und/oder Fakten, die für die Mission des Flugkörpers relevant sind. Das können Daten sein, welche die Eigenschaften des Flugkörpers selbst charakterisieren, beispielsweise Geschwindigkeit, Wendigkeit (maximale Querbeschleunigung), Reichweite usw. Das können auch Daten über Eigenschaften potentieller Ziele sein. Die Flugkörper-Missionseinheit erhält Daten von Sensoren. Das sind einmal die Daten von den eigenen Sensoren des betreffenden Flugkörpers. Das können aber auch Daten von Sensoren der Plattform, z.B. dem Radar, oder von den Sensoren anderer an der Plattform angebrachter Flugkörper sein. Die Flugkörper-Missionseinheit liefert dann dem Piloten Entscheidungs-Kriterien für den Einsatz des zugehörigen Flugkörpers. Es kann dann z.B. angezeigt werden, daß Flugkörper "1" für die vorliegende Situation und ein bestimmtes Ziel besser geeignet ist als Flugkörper "2". Bei einem bemannten Kampfflugzeug wird dann jedoch der Pilot die letzte Entscheidung treffen. Er ist jedoch von einer Vielzahl von Informationen entlastet. Diese Informationen werden von der Flugkörper-Missionseinheit vorverarbeitet. Statt flugkörperspezifischer Missionseinheiten kann bei der DE 197 16 025 A1 die Missionsavionik auch nur eine einzige Missionseinheit enthalten, in welcher die Funktionen der einzelnen, flugkörperspezifischen Einheiten integriert sind. Vorzugsweise ist aber die oder jede Flugkörper-Missionseinheit in dem zugehörigen Flugkörper angeordnet und mit der Plattform über eine standardisierte Schnittstelle verbunden. Dann ist beim Einsetzen eines bestimmten Typs von Flugkörper in das Startgerät über die Schnittstelle automatisch die für diesen Typ von Flugkörper ausgelegte Flugkörper-Missionseinheit in das Rechner-Netzwerk eingeschaltet. Es ist kein Eingriff in die plattformseitige Missions-Avionik erforderlich.It is known (DE 197 16 025 A1) into the mission avionics network of the platform, ie e.g. of the fighter aircraft, for each missile a missile-specific Build Missile Mission Unit. This missile mission unit contains stored knowledge in the form of data and / or facts necessary for the mission of Missile are relevant. This can be data showing the characteristics of the Characterize missiles themselves, such as speed, maneuverability (maximum lateral acceleration), range, etc. This can also be data over Characteristics of potential goals. The missile mission unit receives data from Sensors. These are the data from your own sensors Missile. But this can also be data from sensors of the platform, e.g. the radar, or from the sensors of other missiles mounted on the platform. The Missile Mission Unit then provides the pilot with decision criteria for the mission Use of the associated missile. It can then be e.g. be displayed that Missile "1" is more suitable for the present situation and a specific objective as missile "2". In a manned fighter but then the pilot is the make final decision. He is, however, relieved of a lot of information. This information is preprocessed by the missile mission unit. Instead of missile-specific mission units can in DE 197 16 025 A1 the Missionary avionics also contain only a single mission unit, in which the Functions of the individual, missile-specific units are integrated. Preferably but is the or each missile mission unit in the associated missile arranged and connected to the platform via a standardized interface. Then is when inserting a certain type of missile into the launcher over the Automatically interface the missile mission unit designed for this type of missile switched on in the computer network. It is not an intervention in the platform-side mission avionics required.

Offenbarung der ErfindungDisclosure of the invention

Die Erfindung bezieht sich auf eine vorteilhafte Ausbildung einer Flugkörper-Missionseinheit der eingangs genannten Art, wie sie durch die DE 197 16 025 A1 bekannt ist, und insbesondere auf die Ausbildung der Mittel zur Erzeugung von Plänen für Aktionen.The invention relates to an advantageous embodiment of a missile mission unit of the type mentioned, as described by DE 197 16 025 A1 and, in particular, the training of the means for the production of plans for actions.

Erfindungsgemäß enthalten die Mittel zur Erzeugung von Plänen für Aktionen Mittel zur Situations-Vorhersage, welche auf die Datenbanken .zugreifen und auf welche Informationen von den Mitteln zur Situationsbewertung und -analyse aufgeschaltet sind, wobei die Mittel zur Situationsvorhersage aus der Art des Ziels und seiner bekannten Eigenschaften, den Eigenschaften des Flugkörpers und den Bewegungszuständen auf zukünftige Situationen extrapolieren.According to the invention, the means for generating plans for actions contain means for Situation prediction, which to access the databases and on which Information is provided by the means for situational assessment and analysis, wherein the means for prediction of the situation of the target and its known Characteristics, the characteristics of the missile and the states of motion Extrapolate future situations.

Es sind Fakten und Daten über die Eigenschaften von potentiellen Zielen, z.B. von verschiedenen feindlichen Flugzeugtypen gespeichert. Die Anzahl der in Frage kommenden Flugzeugtypen ist begrenzt. Deren Eigenschaften und übliche, für den betreffenden Flugzeugtyp charakteristische Luftkampftaktiken sind bekannt. Daher kann aus der Situations-Bewertung, die wiederum aus den Signalen der verschiedenen Sensoren gewonnen wird und z.B. den Flugzeugtyp des Ziels und die relativen Positionsund Bewegungszustände von Ziel und Flugkörper oder Träger liefern, abgeschätzt werden, wie diese Situation sich in Zukunft entwickeln wird. Es kann also z.B. durch die Flugkörper-Missionseinheit u.U. ohne Mitwirkung des Piloten abgeschätzt werden, welches Ausweichmanöver das feindliche Flugzeug bei der bewerteten Situation ausführen wird und wie sich andererseits das eigene Flugzeug oder der Flugkörper bewegen wird. Der Pilot wird von diesen Aufgaben entlastet.There are facts and data about the properties of potential targets, e.g. from saved various enemy aircraft types. The number of in question upcoming aircraft types is limited. Their characteristics and usual, for the aircraft type characteristic air combat tactics are known. Therefore, can from the situation evaluation, in turn, from the signals of the various Sensors are obtained and e.g. the type of aircraft of the target and the relative positions and Provide motion states of target and missile or vehicle, estimated will be how this situation will develop in the future. So it can be e.g. through the Missile mission unit u.U. estimated without the participation of the pilot, which evasive maneuver the enemy plane in the assessed situation and how, on the other hand, your own plane or missile will perform will move. The pilot is relieved of these tasks.

Vorteilhafterweise sind die Ergebnisse der Situations-Vorhersage auf Mittel zur Berechnung von Flugkörper-Reichweiten ggf. in bezug auf das Ziel oder ggf. verschiedene Ziele ggf. für verschiedene verfügbare Flugkörpertypen aufgeschaltet.Advantageously, the results of the situation prediction are on means for Calculation of missile ranges, possibly with respect to the target or, if applicable, different destinations may be available for different available types of missile.

Aus der Vorhersage der zukünftigen Veränderung der Situation kann die Flugkörper-Missionseinheit erkennen und ggf. dem Piloten sichtbar machen, ob das Ziel von einem abgeschossenen Flugkörper bei dem Flugzustand der Plattform (des eigenen Flugzeugs) erfaßt werden kann oder nicht. Trägt die Plattform mehrere Flugkörper verschiedener Typen, so kann von der Flugkörper-Missionseinheit ermittelt werden, welcher dieser Flugkörper mit den besten Aussichten auf Erfolg abgeschossen werden sollte.From the prediction of the future change of the situation, the missile mission unit recognize and if necessary make visible to the pilot, whether the goal of one launched missile at the flight condition of the platform (of own aircraft) can be detected or not. Does the platform carry several missiles? Types, it can be determined by the missile mission unit, which of these Missile with the best prospects of success should be shot down.

Bei einer bevorzugten Ausführung sind die Ergebnisse der Berechnung auf optimale Inferenzmittel zur Erzeugung von Reaktionsvorschlägen aufgeschaltet.In a preferred embodiment, the results of the calculation are optimal Inferential for the production of reaction proposals switched.

Diese Inferenzmittel sind vorzugsweise von einer lernfähigen, geeignet trainierten neuro-fuzzy Struktur gebildet. Sie enthalten "Regeln" etwa in der Form: "Wenn das Ziel ohne weitere Manöver des Flugzeugs im Schußbereich des Flugkörpers ist, dann feure den Flugkörper ab", "Wenn das Ziel geringfügig außerhalb des Schußbereichs des Flugkörpers ist, dann führe dieses oder jenes Flugmanöver aus, um das Ziel in den Schußbereich des Flugkörpers zu bringen" usw. Die Eingaben "innerhalb" oder "geringfügig außerhalb" sind dabei linquistische Eingaben, die durch "Fuzzy-Logic" erfaßt werden. Die Inferenzmittel geben dem Piloten Empfehlungen zum Handeln. These inference means are preferably of a learning capable, suitably trained neuro-fuzzy Structure formed. They contain "rules" approximately in the form: "If the goal without Another maneuver of the aircraft in the firing range of the missile is, then fire the Missile off "," If the target is slightly out of the firing range of the Is missile, then perform this or that maneuver to the target in the Shot area of the missile to bring "etc. The inputs" within "or "marginally outside" are linquistic inputs, which are indicated by "Fuzzy-Logic" be detected. The inference means give the pilot recommendations for action.

Durch die beschriebenen Maßnahmen wird der sog. "Recognize-Act-Cycle", also die Zeitspanne zwischen dem Erkennen einer Situation und der Reaktion darauf erheblich verkürzt. Das kann in einem Luftkampf wesentlich sein für das Überleben.Through the measures described the so-called. "Recognize Act Cycle", ie the Time span between the recognition of a situation and the reaction to it considerably shortened. This can be essential in a dogfight for survival.

Ein Ausführungsbeispiel der Erfindung ist nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert.An embodiment of the invention is described below with reference to FIGS associated drawings explained.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Fig.1Fig.1
ist ein Blockdiagramm einer Struktur des Ablaufs vom Erkennen eines Ziels bis zur Reaktion durch den Piloten oder ein "Entscheidungselement" im Falle eines unbemannten Trägers.Fig. 10 is a block diagram of a structure of the process of recognizing a destination until the reaction by the pilot or a "decision element" in the Trap of an unmanned carrier.
Fig.2Fig.2
veranschaulicht den Erwerb von Wissen durch die Inferenzmittel bei einer Struktur von Fig.1.illustrates the acquisition of knowledge by the inference means at a Structure of Fig.1.
Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

In Fig.1 ist mit 10 ein Ziel, im vorliegenden Fall ein feindliches Kampfflugzeug, bezeichnet. Mit 12 sind Sensoren bezeichnet. Diese Sensoren 12 enthalten einen Sucher 14 sowie Inertialsensoren 16 zur Bestimmung der Eigenbewegung des Ziels 10. Der Sucher 14 erfaßt die Bewegung des Ziels 10 relativ zu dem Flugkörper. Die Bewegung des Ziels ist durch einen Block 18 symbolisiert. Die Eigenbewegung des Flugkörpers ist durch einen Block 20 dargestellt. Der Sucher 14 enthält eine Mehrzahl unterschiedlicher Sensoren. Der Sucher kann u.U. mehrere Objekte gleichzeitig "sehen".In Fig. 1, 10 is a target, in the present case an enemy combat aircraft, designated. With 12 sensors are designated. These sensors 12 include a viewfinder 14 and inertial sensors 16 for determining the intrinsic movement of the target 10 Viewfinder 14 detects the movement of the target 10 relative to the missile. The movement of the target is symbolized by a block 18. The proper motion of the missile is represented by a block 20. The viewfinder 14 contains a plurality of different ones Sensors. The viewfinder may u.U. "see" several objects at the same time.

Auf Grund der von den verschiedenen Sensoren des Suchers für die verschiedenen Objekte und potentiellen Ziele gelieferten Daten erfolgt durch Bildverarbeitung eine Detektion der Objekte, also eine Feststellung wo sich ein Objekt befindet. Ferner erfolgt eine Identifikation der Objekte hinsichtlich Freund/Feind-Erkennung. Durch Vergleich mit Bildstrukturen z.B. bekannter Flugzeugtypen mit den von bildauflösenden Sensoren gelieferten Bildstrukturen wird die Art des Objekts festgestellt. Weiterhin werden die Bewegungsstrukturen oder Spuren der Objekte verfolgt. Die Objekte werden klassifiziert, so daß potentielle Ziele herausgesucht werden. Die Das ist durch einen Block 22 dargestellt.Because of the different sensors of the viewfinder for the different ones Objects and potential targets supplied data are processed by image processing Detection of objects, ie a determination of where an object is located. Furthermore, it takes place an identification of the objects with regard to friend / enemy recognition. By comparison with image structures e.g. known types of aircraft with the image-resolving sensors supplied image structures, the nature of the object is detected. Furthermore, the Traced motion structures or traces of objects. The objects are classified, so that potential goals are picked out. This is through a block 22 shown.

Das Ergebnis dieser Detektierung, Identifizierung und Klassifizierung wird auf Mittel 24 zur Situations-Erkennung und -Analyse "aufgeschaltet". Diese Mittel 24 erkennen aus der Klassifizierung der Objekte eine bestimmte Situation, etwa: "Ein Flugzeug vom Typ X fliegt eine Kurve nach links oben".The result of this detection, identification and classification becomes 24 for situation detection and analysis "switched on". These means 24 recognize the classification of objects a certain situation, such as: "A plane of the type X flies a curve to the top left ".

Die Flugkörper-Missionseinheit enthält weiterhin Mittel 26 zur Erzeugung von Plänen und Aktionen. Diese Mittel 26 umfassen die Elemente 28, 30, 32, 34, 36 und 38 in Fig.1.The missile mission unit further includes means 26 for generating plans and actions. These means 26 comprise the elements 28, 30, 32, 34, 36 and 38 in Fig.1.

Block 28 ist eine Datenbank, in welcher Kenntnisse über potentielle Ziele gespeichert sind. Es ist bekannt, welche Flugeigenschaften ein Flugzeug vom Typ X besitzt und welche Luftkampftaktiken in einer bestimmten Situation üblicherweise mit einem Flugzeug vom Typ X angewandt werden. Wenn das Ziel als Flugzeug vom Typ X und die Situation erkannt ist, dann kann man daraus abschätzen, wie sich das Ziel in der nächsten Zukunft voraussichtlich verhalten wird.Block 28 is a database in which knowledge about potential goals is stored are. It is known what flight characteristics a type X aircraft has and which air combat tactics in a given situation usually with a Type X aircraft are applied. If the target as a type X aircraft and the situation is recognized, then one can estimate from it, how the goal in the next future is expected to behave.

In ähnlicher Weise ist in einer durch Block 30 dargestellten Datenbank abgespeichert, welche Eigenschaften und Fähigkeiten der vom eigenen Flugzeug abzuschießende Flugkörper oder jeder einzelne von verschiedenen verfügbaren Flugkörpern besitzt.Similarly, stored in a database represented by block 30, which qualities and abilities of the ones to be shot by the own plane Missile or each one of various available missiles.

Daraus läßt sich eine Situations-Vorhersage treffen. Das ist durch Block 32 dargestellt.From this, a situation prediction can be made. This is represented by block 32.

Aus dieser Situations-Vorhersage läßt sich berechnen, wie das Ziel zu dem Reichweite-Bereich 40 des Flugkörpers bzw. zu den Reichweite-Bereichen 40, 40A und 40B verschiedener verfügbarer Flugkörper liegt. Das ist in der Figur durch den Block 34 dargestellt. Block 36 symbolisiert die Auswertung der Ergebnisse der durch Block 34 dargestellten Berechnungen. Das Ergebnis dieser Auswertung ist auf Inferenzmittel 38 "aufgeschaltet".From this situation prediction, one can calculate how the target is to reach range 40 of the missile or to the reach areas 40, 40A and 40B various available missiles lies. This is in the figure by the block 34 shown. Block 36 symbolizes the evaluation of the results of block 34 shown calculations. The result of this evaluation is on inference means 38 "Switched".

Diese Inferenzmittel 38 sind von einer lernfähigen, geeignet trainierten neuro-fuzzy Struktur gebildet. Sie enthalten "Regeln" etwa in der Form: "Wenn das Ziel ohne weitere Manöver des Flugzeugs im Schußbereich des Flugkörpers ist, dann feure den Flugkörper ab", "Wenn das Ziel geringfügig außerhalb des Schußbereichs des Flugkörpers ist, dann führe dieses oder jenes Flugmanöver aus, um das Ziel in den Schußbereich des Flugkörpers zu bringen" usw. Die Eingaben "innerhalb" oder "geringfügig außerhalb" sind dabei linquistische Eingaben, die durch "Fuzzy-Logic" erfaßt werden. Die Inferenzmittel 38 geben dem Piloten oder dem Entscheidungs-Element 44 Empfehlungen zum Handeln. Diese Empfehlungen sind in der Figur durch ein Parallelogramm 46 dargestellt.These inference means 38 are of a learning capable, suitably trained neuro-fuzzy Structure formed. They contain "rules" approximately in the form: "If the goal without further Maneuver of the aircraft in the firing range of the missile, then fire the missile from "," If the target is slightly out of the firing range of the missile, then Perform this or that maneuver to bring the target into the firing range of the To bring missiles "etc. The inputs" within "or" slightly outside " are thereby linquistic inputs, which are registered by "Fuzzy Logic". The Inference means 38 provide recommendations to the pilot or decision element 44 to trade. These recommendations are indicated in the figure by a parallelogram 46 shown.

Fig.2 veranschaulicht den Erwerb des erforderlichen Wissens durch die lemfähige Inferenzeinheit.Figure 2 illustrates the acquisition of the required knowledge by the lemfähige Inference.

Die lernfähige Inferenzeinheit kann aus Luftkampfsimulationen oder während echten Luftkampftrainings automatisch realitätsnahes Wissen erwerben. Das ist die Voraussetzung für richtige und wirksame Schlußfolgerungen.The adaptive inference unit may be from aerial combat simulations or real Air combat training automatically acquire realistic knowledge. That is the Prerequisite for correct and effective conclusions.

In Fig.2 ist das eigene Flugzeug mit 50 bezeichnet. Das Bezugszeichen 10 bezeichnet wieder das Ziel oder die Ziele. Das eigene Flugzeug 50 wird -real oder in einer Simulation- von dem Piloten 52 gesteuert, wie durch Pfeil 54 dargestellt ist. Durch eine Luftkampf-Simulation, dargestellt durch Block 56, oder durch echtes Luftkampf-Training, dargestellt durch Block 58, werden Simulationsdaten oder Trainingsdaten über das situationsbedingte Verhalten von Angreifer, d.h. eigenem Flugzeug 50, und Ziel 10 sowie über einen simulierten Flugkörpereinsatz erzeugt. Diese Simulations- und/oder Trainingsdaten werden in einem Datenspeicher 60 gespeichert.In Figure 2, the own aircraft is designated 50. The reference numeral 10 denotes again the goal or the goals. The own plane 50 becomes real or in one Simulation controlled by the pilot 52, as shown by arrow 54. By a Air combat simulation, represented by block 56, or through real air combat training, represented by block 58, simulation data or training data is transmitted the situational behavior of attackers, i. own plane 50, and destination 10 and generated via a simulated missile mission. This simulation and / or Training data is stored in a data memory 60.

Das Verhalten des Angreifers wird im wesentlichen durch die Empfehlungen der Inferenzeinheit 38 bestimmt und damit durch das darin in Form von Regeln abgelegte Wissen. Die Inferenzeinheit 38 ist als fuzzy-neuronales Netz aufgebaut. Ein Satz von heuristisches Vorwissen repräsentierenden Regeln wird a priori in den Inferenzmitteln gespeichert und verarbeitet.The behavior of the attacker is essentially determined by the recommendations of the inference unit 38 and thus by the knowledge stored therein in the form of rules. The inference unit 38 is constructed as a fuzzy-neural network. A set of rules representing heuristic prior knowledge is stored and processed a priori in the inference means.

Durch die in dem Datenspeicher 60 gespeicherten Daten wird das fuzzy-neuronale Netz der Inferenzeinheit ausgehend von den a priori gespeicherten Regeln laufend weiter trainiert. Das geschieht nach an sich bekannten Lernstrategien und -prozeduren, die in Fig.2 durch einen Block 62 dargestellt sind. Ein Pfeil 64 symbolisiert die Veränderung des fuzzy-neuronalen Netzes der Inferenzeinheit 38. Durch diese Lernstrategien und - prozeduren können automatisch neue Regeln erzeugt werden, und/oder die Prämissen-(if) oder Konsequenzteile (then) der Regeln optimal an das Verhalten von Angreifer und Ziel angepaßt werden. Es können auch die Parameter der Fuzzy-Mengen, welche die Zugehörigkeitsfunktionen zu den linguistischen Wertebereichen der Variablen definieren, optimal an die Gegebenheiten angepaßt werden.By means of the data stored in the data memory 60, the fuzzy-neural network of the inferring unit is continuously further trained on the basis of the rules stored a priori . This is done according to known learning strategies and procedures, which are shown in Fig.2 by a block 62. An arrow 64 symbolizes the change of the fuzzy-neural network of the inference unit 38. By means of these learning strategies and procedures, new rules can be automatically generated and / or the premises (if) or consequence parts (then) of the rules optimally adapted to the behavior of the attacker and destination. It is also possible to optimally adapt the parameters of the fuzzy sets which define the membership functions to the linguistic value ranges of the variables to the circumstances.

Auf diese Weise wird das in den Regeln manifestierte Wissen über den Flugkörpereinsatz laufend und automatisch den sich verändernden Erfordernissen infolge neuer Taktiken, Zieltypen, Flugkörper etc. angepaßt.In this way, the knowledge manifested in the rules about the Flight crew use continuously and automatically to the changing requirements as a result new tactics, target types, missiles, etc. adapted.

Die aufgezeichneten Daten im Datenspeicher 60 werden außerdem benutzt, um die Datenbanken 28 und 30 über Ziele und Flugkörper zu ergänzen und zu aktualisieren.The recorded data in the data memory 60 is also used to store the To complete and update databases 28 and 30 on targets and missiles.

Claims (6)

  1. Missile-mission unit for a missile (10) to which sensors (12, 14, 16) for the movement (18) of a target (10) relative to the missile (42) and for the movement (20) of the missile (42), itself are connected
    (a) means (22) for the detection and identification and for the determination of the trace of the target, which are fed with the data of the sensors,
    (b) means (24) for the evaluation and analysis of the situation from the information about position, kind and trace of the target,
    (c) a first database (28), wherein knowledge about potential targets is stored,
    (d) a second database, wherein data about the abilities of the missile are stored, and
    (e) means (26) for generating plans for actions and therefrom for the generation of decision-criteria
    characterized in that
    (f) the means (26) for the generation of plans for actions comprise means (32) for prediction of situations, which access the databases (28, 30) and which are fed with information from the means (24) for the evaluation and analysis of the situation, the means (32) for prediction of the situation extrapolating future situations from the kind of the target and its known properties, the properties of the missile and the movement states.
  2. Missile-mission unit according to claim 1, characterized in that the results from the situation forcast are fed to means (34) for the calculation of missile ranges (40, 40A, 40B), possibly relative to the target (10) or possibly different targets possibly for different available types of missiles.
  3. Missile-mission unit according to claim 2, characterized in that the results of the calculation are fed to the optimal interference means (38) for the generation of proposals how to react (46).
  4. Missile-mission unit according to claim 3, characterized in that the proposals how to react are fed to a human-to-human-interface.
  5. Missile-mission unit according to claim 3, characterized in that
    (a) a data memory (60) is provided, wherein data are stored obtained from the simulation or a real air fight training,
    (b) the interference means (3 8) are formed by a fuzzy-neural network and
    (c) training method means (62) are provided, arranged to modify the fuzzy-neural network with the stored data in such a way that laws and/or membership functions of the interference means (38) are continuously adaptable to the actual environment.
  6. Missile mission unit according to claim 5, characterized in that the databases (28, 30) of the means (32) for predicting the situations are updated by the simulation- and training data stored in the data memory (60).
EP00116828A 1999-09-03 2000-08-04 Missile mission unit Expired - Lifetime EP1087200B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19942139A DE19942139A1 (en) 1999-09-03 1999-09-03 Flying body mission unit has situation evaluation and analysis devices, arrangement for generating plans of action that contains arrangement for predicting situations
DE19942139 1999-09-03

Publications (2)

Publication Number Publication Date
EP1087200A1 EP1087200A1 (en) 2001-03-28
EP1087200B1 true EP1087200B1 (en) 2005-01-19

Family

ID=7920728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00116828A Expired - Lifetime EP1087200B1 (en) 1999-09-03 2000-08-04 Missile mission unit

Country Status (2)

Country Link
EP (1) EP1087200B1 (en)
DE (2) DE19942139A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8779920B2 (en) 2008-01-21 2014-07-15 Thales Nederland B.V. Multithreat safety and security system and specification method thereof
CN107203493A (en) * 2017-06-09 2017-09-26 西北工业大学 Multiple target battle field situation method based on complicated ratio evaluation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129043A1 (en) * 2001-06-15 2003-01-02 Diehl Munitionssysteme Gmbh Methods and devices for determining the triggering of a braking device for the target-specific correction of the ballistic trajectory of a projectile
CN102663430B (en) * 2012-04-17 2013-11-27 清华大学 Object clustering method in situation assessment
DE102022001289A1 (en) 2022-04-13 2023-10-19 Diehl Defence Gmbh & Co. Kg Method for evading a missile from an interceptor missile

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3640427A1 (en) * 1986-12-01 1988-06-09 Siemens Ag Anti-rocket system (system for defence against rockets)
DE4130164A1 (en) * 1991-09-11 1993-03-18 Bodenseewerk Geraetetech CONTROLLER, ESPECIALLY FLIGHT CONTROLLER
DE4339606A1 (en) * 1993-11-20 1995-05-24 Bodenseewerk Geraetetech Pilot training device
DE19716025B4 (en) 1997-04-17 2009-12-03 Diehl Bgt Defence Gmbh & Co. Kg Platform with launchable, target-tracking missiles, in particular combat aircraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8779920B2 (en) 2008-01-21 2014-07-15 Thales Nederland B.V. Multithreat safety and security system and specification method thereof
CN107203493A (en) * 2017-06-09 2017-09-26 西北工业大学 Multiple target battle field situation method based on complicated ratio evaluation method

Also Published As

Publication number Publication date
DE50009264D1 (en) 2005-02-24
EP1087200A1 (en) 2001-03-28
DE19942139A1 (en) 2001-03-08

Similar Documents

Publication Publication Date Title
Scharre Robotics on the battlefield part II
Payne I, warbot: The dawn of artificially intelligent conflict
CN112180967B (en) Multi-unmanned aerial vehicle cooperative countermeasure decision-making method based on evaluation-execution architecture
McIntosh The wingman-philosopher of MiG alley: John Boyd and the OODA loop
CN113282061A (en) Unmanned aerial vehicle air game countermeasure solving method based on course learning
Zhang et al. Maneuver decision-making of deep learning for UCAV thorough azimuth angles
EP1087200B1 (en) Missile mission unit
Blair et al. The swarm, the cloud, and the importance of getting there first: what’s at stake in the remote aviation culture debate
Qiu et al. One-to-one air-combat maneuver strategy based on improved TD3 algorithm
EP0654776B1 (en) Pilot training device
DE69931216T2 (en) FLUGBAH COMMAND CONTROL WITH NEURONAL NETWORK
DE19716025B4 (en) Platform with launchable, target-tracking missiles, in particular combat aircraft
EP1014028B1 (en) Guidance, navigation and control system for missile
Tirpak The robotic air force
Feldman Technology and strategy: future trends
DE102018108204B4 (en) Intervention system for countering a swarm of unmanned aerial vehicles and method for countering a swarm of unmanned aerial vehicles using such an intervention system
Chao et al. An air combat simulation system for intelligent decision-making
Chunmei et al. Recognition of flight operation action based on expert system inference engine
Zhang et al. Intelligent Close Air Combat Design based on MA-POCA Algorithm
LUCHIAN et al. Distributed Communication And Control For Multi-Agent Systems: Microindustrial Vehicle Rotors (Mav)
Stehlin et al. Models for air combat simulation
Hu et al. An Intelligent MAV-UAV Cooperative Combat Planning Method Based on Deep Reinforcement Learning
Antal Manned Unmanned Teaming for Ground Combat
Rothkrantz SURVEILLANCE AND PROTECTION BY DRONES
Andriambololona et al. Implementing a dogfight artificial pilot

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB SE

17Q First examination report despatched

Effective date: 20030930

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50009264

Country of ref document: DE

Date of ref document: 20050224

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DIEHL BGT DEFENCE GMBH & CO.KG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050525

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140820

Year of fee payment: 15

Ref country code: SE

Payment date: 20140820

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141022

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50009264

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150804