EP1084199A2 - Nicht-ionisch stabilisierte pulverklarlack-dispersion - Google Patents

Nicht-ionisch stabilisierte pulverklarlack-dispersion

Info

Publication number
EP1084199A2
EP1084199A2 EP99917932A EP99917932A EP1084199A2 EP 1084199 A2 EP1084199 A2 EP 1084199A2 EP 99917932 A EP99917932 A EP 99917932A EP 99917932 A EP99917932 A EP 99917932A EP 1084199 A2 EP1084199 A2 EP 1084199A2
Authority
EP
European Patent Office
Prior art keywords
component
agents
dispersion
aqueous
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99917932A
Other languages
English (en)
French (fr)
Inventor
Claudia Sierakowski
Karl-Heinz Grosse-Brinkhaus
Egon Wegner
Thomas Frey
Jürgen Niemann
Joachim Woltering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Coatings GmbH
Original Assignee
BASF Coatings GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19912661A external-priority patent/DE19912661A1/de
Application filed by BASF Coatings GmbH filed Critical BASF Coatings GmbH
Publication of EP1084199A2 publication Critical patent/EP1084199A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/068Copolymers with monomers not covered by C09D133/06 containing glycidyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a non-ionically stabilized powder clearcoat dispersion which is particularly suitable as a coating for automobile bodies coated with waterborne basecoat.
  • Liquid coatings are preferably used today for the coating of automobile bodies. These cause numerous environmental problems due to their solvent content. This also applies to the use of water-based paints.
  • a powder clear coat dispersion is also known, which is composed of two components.
  • the first component comprises epoxy-containing binders, crosslinking agents and catalysts, auxiliaries and additives.
  • the second component is a non-ionic thickener, which may be in a mixture with catalysts, auxiliary substances, defoaming agents, wetting agents, antioxidants, UV adsorbents, radical scavengers, biocides, solvents, leveling agents, neutralizing agents.
  • Carboxy-functional dispersants are preferably used as dispersion aids.
  • the previous powder clearcoats generally contain dispersants based on ionically stabilized polymers. In the case of the wet-on-wet application, these lead to cracks in the clear lacquer. Additional difficulties are the tendency to sediment and the pumpability of the paint dispersion.
  • powder clear coat dispersion is used as a synonym for Puiverkiarlack slurry.
  • the object of the present invention is now to provide an aqueous powder clearcoat dispersion which can be applied to automobile bodies using the previous liquid paint technology, in particular can be baked in at temperatures of 130 ° C. and especially after the wet-on-wet application does not lead to cracks in the clear lacquer.
  • aqueous powder clearcoat dispersion consisting of a solid, powdery component A and an aqueous component B, wherein
  • Component A. is a powder clearcoat comprising a) at least one epoxy-containing binder with a content of 25 to 45%, preferably 30 to 35% of glycidyl-containing monomers, optionally with a content of vinyl aromatic compounds, preferably styrene, b) at least one crosslinking agent, preferably straight-chain , aliphatic dicarboxylic acids, carboxy-functional polyesters and / or tris (alkoxycarbonylamino) triazine and c) if necessary.
  • Catalysts, auxiliaries, additives typical for powder clearcoat such as degassing agents, leveling agents, UV absorbers, radical scavengers, antioxidants and component B.
  • An aqueous dispersion is at least a) a non-ionic thickener and b) optionally catalysts, auxiliary substances, defoaming agents, dispersion aids, wetting agents, antioxidants, UV absorbers, radical scavengers, small amounts of solvents, leveling agents, biocides and / or water retention agents, c) a dispersant in the form of a non-ionic Polyurethane dispersion
  • Component A a) 60-80 parts b) 15-30 parts c) 3-10 parts
  • Component B 20-50 parts component a 80-50 parts component b 20-50 parts component c 1000-5000 parts distilled water
  • the dispersion preferably contains 25-100 parts of component A and 100 parts of component B.
  • Suitable epoxy functional binders for the solid powder clearcoat used for the preparation of the dispersion are, for example, epoxy group-containing polyacrylate resins which are obtained by copolymerizing at least one ethylenically unsaturated monomer which contains at least one epoxide group in the molecule with at least one further ethylenically unsaturated monomer which is none Contains epoxy group in the molecule can be produced, at least one of the monomers being an ester of acrylic acid or methacrylic acid.
  • epoxy group-containing polyacrylate resins are e.g. known from EP-A-299 420, DE-B-22 14 650, DE-B-27 49 576, US-A-4,091, 048 and US-A-3,781, 379).
  • ethylenically unsaturated monomers which contain no epoxy groups in the molecule
  • acid amides such as, for example, acrylic acid and methacrylic acid amide
  • vinylaromatic compounds such as styrene, methylstyrene and vinyltoluene
  • nitriles such as acrylonitrile and methacrylonitrile
  • vinyl and vinylidene halides such as vinyl chloride and vinylidene fluoride
  • Vinyl esters such as vinyl acetate and monomers containing hydroxyl groups, such as, for example, hydroxyethyl acrylate and hydroxyethyl methacrylate.
  • the epoxy group-containing polyacrylate resin usually has an epoxy equivalent weight of 400 to 2500, preferably 420 to 700, a number average molecular weight (determined by gel permeation chromatography using a polystyrene standard) from 2,000 to 20,000, preferably from 3,000 to 10,000, and a glass transition temperature (T G ) from 30 to 80 , preferably from 40 to 70, particularly preferably from 40 to 60 ° C. (measured with the aid of differential scanning calometry (DSC). Very particularly preferred are approximately 50 ° C. Mixtures of two or more acrylate resins can also be used.
  • the epoxy group-containing polyacrylate resin can be prepared by polymerization using generally well-known methods.
  • Suitable crosslinkers are carboxylic acids, in particular saturated, straight-chain, aliphatic dicarboxylic acids with 3 to 20 carbon atoms in the molecule. Dodecane-1, 12-diacid is very particularly preferably used. To modify the properties of the finished powder clearcoat materials, other crosslinkers containing carboxyl groups may also be used. Examples of these are saturated branched or unsaturated straight-chain di- and polycarboxylic acids and polymers with carboxyl groups.
  • Tris (alkoxycarbonylamino) triazines according to US Pat. No. 4,939,213, US Pat. No. 5,084,541 and EP 0 624 577 can also be used as crosslinking agents.
  • R methyl, butyl, ethylhexyl groups. Derivatives of the compounds mentioned can also be used.
  • methyl, butyl mixed esters are preferred according to the invention. Compared to pure methyl esters, these have the advantage of better solubility in polymer melts and mixed butyl-ethylhexyl esters.
  • the pure butyl esters are also preferred according to the invention.
  • tris (aikoxycarbonylamino) triazines and their derivatives can also be used according to the invention in a mixture with conventional crosslinking agents (component C).
  • Blocked polyisocyanates other than tris (alkoxycarbonylamino) triazines are particularly suitable here.
  • Aminoplast resins are also e.g. Melamine, can be used. In principle, any aminoplast resin suitable for transparent topcoats or a mixture of such aminoplast resins can be used.
  • crosslinkers mentioned can be used individually or in any combination with one another.
  • Powder clearcoats which contain an epoxy-functional crosslinker and an acid-functional binder are also suitable.
  • Suitable acid-functional binders are, for example, acidic polyacrylate resins which can be prepared by copolymerizing at least one ethylenically unsaturated monomer which contains at least one acid group in the molecule with at least one further ethylenically unsaturated monomer which does not contain any acid group in the molecule.
  • the epoxy group-containing binder or the epoxy group-containing crosslinking agent and the carboxyl or the binder are usually used in an amount such that 0.5 to 1.5, preferably 0.75 to 1.25, equivalents of carboxyl groups are present per equivalent of epoxy groups.
  • the amount of carboxyl groups present can be determined by titration with an alcoholic KOH solution.
  • the binder contains vinyl aromatic compounds, in particular styrene.
  • the content is not more than 35% by weight. 10 to 25% by weight are preferred.
  • the solid powder coatings may contain one or more suitable catalysts for curing epoxy resin.
  • Suitable catalysts are phosphonium salts of organic or inorganic acids, quaternary ammonium compounds, amines, imidazole and imidazole derivatives.
  • the catalysts are generally used in proportions of 0.001% by weight to about 2% by weight, based on the total weight of the epoxy resin and the crosslinking agent.
  • Suitable phosphonium catalysts are ethyltriphenylphosphonium iodide, ethyltriphenylphosphonium chloride,
  • Ethyltriphenylphosphonium thiocyanate ethyltriphenylphosphonium acetate-acetic acid complex
  • tetrabutylphosphonium iodide tetrabutylphosphonium bromide and tetrabutylphosphonium acetate-acetic acid complex.
  • suitable phosphonium catalysts are described, for example, in US Pat. No. 3,477,990 and US Pat. No. 3,341,580.
  • Suitable imidazole catalysts are, for example, 2-styrylimidazole, 1-benzyl-2-methylimidazole, 2-methylimidazole and 2-butylimidazole. These and other imidazole catalysts are e.g. described in Belgian Patent No. 756,693.
  • the solid powder coatings may also contain auxiliaries and additives.
  • auxiliaries and additives examples include leveling agents, antioxidants, UV absorbers, free radical scavengers, trickling aids and degassing agents, such as, for example, benzoin.
  • Sales agents based on polyacrylates, polysiloxanes or fluorine compounds are suitable.
  • Antioxidants that can be used are reducing agents such as hydrazienes and phosphorus compounds and free radical scavengers, e.g. 2,6 di-tert-butylphenol derivatives.
  • UV adsorbers that can be used are preferably triazines and benzotriphenol.
  • 2,2,6,6-Tetramethylpiperdine derivatives are preferably used as radical scavengers.
  • the solid powder coatings may also contain auxiliaries and additives. Examples of these are leveling agents, antioxidants, UV absorbers, radical scavengers, trickle piles and degassing agents such as benzoin.
  • Component B contains a non-ionic thickener a). Examples of these are modified celluloses and polyurethane thickeners.
  • Structural features of such associative thickeners a) are: aa) a hydrophilic scaffold which ensures sufficient water solubility and ab) hydrophobic groups which are capable of an associative interaction in the aqueous medium.
  • Long-chain alkyl residues such as e.g. Dodecyl, hexadecyl or octadecyl residues, or alkaryl residues, such as e.g. Octylphenyl or nonylphenyl radicals used.
  • Polyacrylates, cellulose ethers or particularly preferably polyurethanes which contain the hydrophobic groups as polymer building blocks are preferably used as the hydrophilic frameworks.
  • Polyurethanes which contain polyether chains as building blocks, preferably made of polyethylene oxide, are very particularly preferred as the hydrophilic frameworks.
  • the di- and / or polyisocyanates preferably aliphatic diisocyanates, particularly preferably optionally alkyl-substituted 1,6-hexamethylene diisocyanate, are used to link the hydroxyl group-terminated polyether units to one another and to link the polyether units with the hydrophobic end group units, for example monofunctional alcohols and / or amines with the long-chain alkyl radicals or aralkyl radicals already mentioned.
  • the nonionic associative thickeners are designed in such a way that they can form both hydrophobic / hydrophobic interactions with the solid particles contained in the powder coating dispersion and also with one another by the design of their hydrophobic groups. This creates and controls a three-dimensional network. Furthermore, the associative thicker must have such a high content of hydrophilic groups that they are distributed homogeneously in the water and no phase separation towards the water occurs. Examples of suitable non-ionic associative thickeners and their mechanism of action are described in detail in the textbook "paint additives" by Johan Bieleman, Wiley-VCH, Weinheim, New York, 1998.
  • Component B may also contain catalysts, leveling agents, antioxidants, UV absorbers, radical scavengers and wetting agents. Essentially, the substances already listed for component A come into consideration here.
  • component B Auxiliaries, defoaming agents, biocides, solvents and neutralizing agents can also be added to component B.
  • Modified polysiloxanes are preferred as defoaming agents.
  • Neutralizers that can be used are amines, ammonia and metal hydroxides.
  • dispersants c) are compounds based on polyurethanes.
  • non-ionic dispersants c) essential to the invention in the form of a polyurethane dispersion differ from the non-ionic associative thickeners in two ways:
  • hydrophobic groups of the dispersants c) are designed so that preferably hydrophobic / hydrophobic contacts to those in the
  • Particles containing powder coating dispersion are formed so that no three-dimensional network is formed, as is typical for the associative thicker.
  • hydrophilicity is reduced. There are only so many hydrophilic groups in the dispersant c) that the particles are enveloped and shielded by the hydrophilic structural elements. The effect of the hydrophilic structural elements is not so strong that they can detach the hydrophobic structural elements from the particles and introduce them into the aqueous phase. It expresses itself clearly comparatively low hydrophilicity due to the formation of a second phase in water by the dispersants as such.
  • the polyurethane resins c) used according to the invention preferably consist of
  • the organic component of the polyurethane composition c) comprises a polyester polyol, a low molecular weight diol and / or triol or mixtures thereof. If necessary. a monomer containing trifunctional hydroxyl groups can be used.
  • the polyurethane comprises c)
  • a non-ionic stabilizer i.e. a non-ionic dispersant c
  • a monofunctional polyether with a component containing polyisocyanate to produce an isocyanate intermediate and ii. a component with at least one active amine and at least two active hydroxyl groups and
  • the organic component preferably comprises
  • Polyether polyester polyol a low molecular weight diol and / or triol or mixtures thereof.
  • the polyester component can be prepared by reacting at least one dicarboxylic acid and at least one alcohol component, the alcohol having at least two hydroxyl groups contains.
  • the carboxylic acid component contains two or more
  • Dimer fatty acids and cycloaliphatic dicarboxylic acids such as isophthalic acid.
  • the polyester resin can also contain one or more low molecular weight diols or triols. In principle, any polyol can be used.
  • polyester resins or mixtures of the polyester resins used preferably contain terminal hydroxyl groups. This is done by adding an excess of polyols.
  • Both monocarboxylic acids and monoalcohols can be used to synthesize the polyesters.
  • the monocarboxylic acids and / or monoalcohols are preferably present in the polyester resin in a very small amount by weight.
  • the polyester diol components preferably used comprise between 20 and 80% by weight of the polyurethane resin.
  • the amounts are preferably between 50 and 70% by weight. 55 to 65% by weight are very particularly preferred.
  • Polyester polyols with a molecular weight between 500 and 5000 are used to produce the polyurethane c). Molecular weights between 1000 and 3500 are preferred.
  • the polyurethane resins can contain further organic components with at least two reactive hydrogen atoms. These are preferably diols and triols, thiols and / or amines or mixtures of these substances.
  • the components that are used to synthesize the polyester component can also be used as separate components here.
  • Ie, as an additional organic component in the Polyurethane can also be di- or trial alcohols, such as neopentyl glycol or 1, 6-hexanediol or trimethylol propane.
  • the molecular weight of the diols and / or triols used in the polyurethane resin is between 0 and 20% by weight. 1 to 6% by weight are preferred.
  • the polyurethane resin also contains polyisocyanates, especially diisocyanates.
  • the isocyanates are between 5 and 40% by weight based on the polyurethane mass. 10 to 30% by weight and very particularly 10 to 20% by weight are particularly preferred.
  • a monofunctional polyether is used to produce the polyurethane.
  • a non-ionic stabilizer c) is produced in which a monofunctional polyether is preferably reacted with a diisocyanate. The reaction product formed is then reacted with a component which contains at least one active amine group and at least two active hydroxyl groups.
  • the polyurethane c) comprises a reaction product of:
  • polyester polyol which in turn is a reaction product of a carboxylic acid with at least two carboxyl groups and a component with at least two hydroxyl groups,
  • a non-ionic stabilizer prepared by reacting a monofunctional ether with a polyisocyanate and then reacting the reaction product obtained with a component which contains at least one active amine and at least two active hydroxyl groups.
  • the polyurethane c) comprises a reaction product
  • the polyesters are synthesized with the carboxylic acid components described above and an excess of polyols.
  • the excess of polyols is chosen so that terminal hydroxyl groups are preferably formed.
  • the polyols preferably have a hydroxyl functionality of at least two.
  • the polyester resin preferably consists of one or more polyols, preferably a diol.
  • Preferred diols are alkylene glycols, such as ethylene glycol, propylene glycol, butylene glycol and neopentyl glycol, 1,6-hexanediol or other glycols, such as bisphenol-A, cyclohexanedimethanol, caprolactone diol, hydroxyalkylated bisphenol and similar compounds.
  • the low molecular weight diols preferably used according to the invention are known from the prior art. These include aliphatic diols, preferably alkylene polyols having 2 to 18 carbon atoms. Examples include 1,4-butanediol, cycloaiiphatic diols such as 1,2-cyclohexanediol and cyclohexanedimethanol.
  • suitable organic polyisocyanates are preferably those which comprise at least two isocyanate groups. More specifically, the isocyanates are preferred, for example p-phenylene, biphenyl, 4,4 '-Diisocyanate, toluene diisocyanates, 3,3' -dimethyl-4,4 Biphenylendiisocyanate, 1, 4-
  • Tetramethylene diisocyanates 1,6-hexamethylene diisocyanates, 2,2,4-trimethylhexane-1,6-diisocyanates, methylene bis (phenyl isocyanates), 1,5 Naphthalene diisocyanates, bis (isocyanatoethyl fumarate),
  • Isophorone diisocyanates and methylene bis (4-cyclohexyl isocyanates).
  • diisocyanates In addition to the diisocyanates mentioned, other multifunctional isocyanates are also used. Examples are 1,2,4-benzene diisocyanates and polymethylene polyphenyl isocyanates.
  • aliphatic diisocyanates e.g. 1, 6-hexamethylene diisocyanate, 1, 4-butylene diisocyanate, methylene bis (4-cyclohexyl isocyanate), isophorone diisocyanate and 2,4-toluene diisocyanate.
  • Longer chain polyurethane resins c) can be obtained by chain extension with components containing diol and / or triol groups.
  • Chain extenders with at least two active hydrogen groups e.g. Diols, thioien, diamines or mixtures of these substances, e.g. Alkanolamines, aminoalkyl mercaptans, hydroxyalkyl mercaptans and similar compounds.
  • diols used as chain extenders are 1, 6-hexanediol, cyclohexanedimethylol and 1, 4-butanediol.
  • a particularly preferred diol is neopentyl glycol.
  • the polyethers used according to the invention are preferably mono- or difunctional polyethers.
  • the monofunctional ones include, for example, those produced by polymerizing ethylene oxides, propylene oxides or mixtures thereof.
  • An example of a suitable polyether is methoxypolyethylene glycol from Union Carbide Chemicals under the brand name Carbowax® MPEG 2000.
  • the polyurethane product c) described can be mixed with conventional crosslinking agents. These preferably include aminoplast resins, for example melamine. Likewise, condensation products other amines and amides are used, for example aldehyde condensates of triazines, diazines, triazoles, guanidines, guanamines or alkyl- and aryl-substituted derivatives of such components.
  • Diaminopyrimidines 2,4,6-triethyltriamino-1, 3,5-triazines and similar substances.
  • Formaldehydes are preferred as aldehyde. Acetaldehydes, crotonaldehydes, acrolein, benzaldehydes, furfural can also be used.
  • the amine-aldehyde condensation products can contain methylol or similar alcohol groups.
  • usable alcohols are methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, benzyl alcohol and aromatic alcohols, cyclic alcohols such as cyclohexanol, monoethers or glycols and substituted alcohols, e.g. 3-chloropropanol.
  • blocked polyisocyanates according to the invention can also be used as crosslinking agents.
  • These include, for example, organic polyisocyanates such as trimethylene, tetramethylene, hexamethylene, 1,2-propylene, 1,2-butylene and 2,3-butylene diisocyanates.
  • cycloalkene components such as 1,3-cyclopentane, 1,4-cyclohexane and 1,2-cyclohexane diisocyanates.
  • aromatic components such as phenylene, p-phenylene, 4,4 '- diphenyl, 1, 5-naphthalene and 1, 4-naphthalene diisocyanates usable.
  • aliphatic-aromatic components such as 4,4 '- diphenylene methane, 2,4- or 2,6-tolylene or mixtures thereof, 4,4' - toluidine and 1, 4 xylylene into consideration.
  • nucleus-substituted aromatic components such as 4,4 ' -
  • Triisocyanates which can be used are triphenylmethane-4,4 ' , 4 " -triisocyanates, 1,3,5- Triisocyanate benzene and 2,4,6-triisocyanate toluene.
  • a tetraisocyanate are finally 4,4'-diphenyl-dimethyl methane, 2,2 '-, 5,5' -Tetraisocyanate.
  • Aliphatic, cycloaliphatic aromatic alkyl mono alcohols can be used as blocking agents. These include, for example, methyl, ethyl, chloroethyl, propyl, butyl, cyclohexyl, heptyl, octyl, nonyl 3,3,5-trimethylhexanol, decyl and lauryl alcohols.
  • phenolic components e.g. Phenols or substituted phenols can be used. Examples include cresol, xylenol, nitrophesol, chlorophenol, ethylphenol, 1-butylphenol and 2,5-di-t-butyl-4-hydroxytoluene.
  • Suitable blocking agents are tertiary hydroxylamines, e.g. Diethylethanolamine and oximes such as methyl ethyl ketone oxime, acetone oxime and cyclohexanone oxime.
  • crosslinking agents described are present in the polyurethane dispersion c) in amounts of 2 to 15% by weight, preferably 4 to 8% by weight.
  • the polyurethane dispersion c) obtained is present in the powder slurry in a proportion of 0.5 to 20% by weight, preferably 2 to 15% by weight.
  • the solid powder coatings are produced by known methods (cf., for example, product information from the company BASF Lacke + Wegner AG, "powder coatings", 1990) by homogenization and dispersion, for example by means of an extruder, screw kneader and others Powder coatings are prepared for dispersion by grinding and, if necessary, sifting and sieving.
  • the aqueous can then be obtained from the powder by wet grinding or by stirring in dry-ground powder coating Powder clearcoat dispersion can be produced. Wet grinding is particularly preferred.
  • the present invention also relates to a process for producing an aqueous powder coating dispersion based on component A described, which is dispersed in component B according to the invention.
  • component A After component A has been dispersed in component B, grinding is carried out if necessary, the pH is adjusted to 4.0 to 7.0, preferably 5.5 to 6.5 and filtered.
  • the average grain size is between 1 and 25 ⁇ m, preferably less than 20 ⁇ m. Particularly preferred at 3 to 10 microns.
  • the solids content of the aqueous powder clearcoat dispersion is between 15 and 50%.
  • defoamers, dispersing aids, wetting agents and / or thickeners are preferably first dispersed in water. Then small portions of the powder clear lacquer are stirred in. Then defoamers, dispersing aids, thickeners and wetting agents are dispersed again. Finally, powder clear lacquers are stirred in again in small portions.
  • the pH is preferably adjusted with ammonia or amines.
  • the pH value can initially rise here, resulting in a strongly basic dispersion. However, the pH drops back to the above values within several hours or days.
  • Another variant for the preparation of the powder clearcoat dispersion according to the invention is that a liquid melt of the binders and injuries and optionally the additives c) of component A is mixed, added to an emulsifying device, preferably with the addition of water and stabilizers, the emulsion obtained is cooled and be filtered.
  • the polymeric components are fed as viscous resin melts into the dispersing units.
  • binders and crosslinkers have to be melted.
  • the ratio of crosslinkers to binders is 0.6 to 1: 1.4, preferably 0.8: 1 to 1: 1.2.
  • the crosslinker and binder are preferably heated in separate containers. The temperature is selected so that both components are melted and their viscosity allows further processing, especially conveying. The higher the temperature of the melt, the lower the viscosity and the better the quality of the mix.
  • a crosslinking reaction must be largely excluded. The crosslinking reaction takes place much faster at higher temperatures. Therefore there is only a narrow temperature-time window, in which the available dwell time until cooling down is sufficiently long, and at the same time good emulsification is possible. In order to use this as efficiently as possible, the binder and crosslinker melts are only brought together immediately before the mixing zone.
  • the components Before the components are conveyed through the system, they can preferably be heated to the desired process temperature with steam.
  • the molten binder-additive mixture and the crosslinker melt are then conveyed through the entire system in preferably separate, heated feed lines with pumps and metered into a mixer.
  • About the volume flow of the feed pumps a stoichiometric ratio of
  • the liquid mixture is then immediately emulsified in water.
  • An emulsifier is added to the organic phase and / or the water. If an aqueous emulsifier / stabilizer solution is used, it is heated under pressure to a temperature in the vicinity of the mixing temperature and the liquid binder / crosslinker mixture is emulsified therein.
  • Mixing and emulsification can be carried out in two separate machines or in a multi-stage machine.
  • the second solution has significant advantages for reasons of crosslinking, since the residence time at the high temperatures is minimized here. Possibly. Any organic solvent present can subsequently be separated off from the aqueous phase directly by vacuum distillation at low temperatures.
  • cooling is carried out immediately. This must be realized in such a way that, on the one hand, there is no sticking of the disperse resin particles, and, on the other hand, the dwell time until the point at which no crosslinking reaction can take place is as short as possible.
  • This goal can e.g. B. can be achieved by using a heat exchanger, cooling by injecting cold water or by spraying the emulsion into cold water.
  • the dwell time from the beginning of the mixing phase to the end of the cooling phase must be kept as short as possible. This is less than 5 s, preferably less than 1 s. Continuous processes are therefore preferred.
  • machines such as rotor-stator dispersers (tooth colloid or wet rotor mills, gear rim dispersing machines, intensive mixers) and static mixers are used.
  • the binder / crosslinker mixture can be atomized in water or component B. If sufficient fineness is not achieved, rotor-stator units or static mixers can be used.
  • a further increase in the local power input is possible through the use of a high-pressure homogenizer described above.
  • the emulsion is pressed through fine openings at pressures in the range of 100-1500 bar, preferably 100 to 1000 bar, particularly 100 to 200 bar, which leads to a significant reduction in the droplet size and thus to a greater stability of the emulsion during storage .
  • micronization variants lead to solvent-free dispersions with the average particle sizes in the range of 100-10000, preferably 150 to 6000, particularly preferably 400 to 4000, most preferably 600-3500 nm and are thus even more finely divided than those by wet grinding of powder coatings according to the prior art Technically producible aqueous dispersions (particle size 3-20 ⁇ m).
  • the process described can be used to produce finely divided polymer dispersions having molecular weights in the range from 1000 to 20,000, preferably 1000 to 10,000, particularly preferably 1500 to 6000, most preferably 1500 to 4000 g / mol.
  • the powder clearcoat dispersion according to the invention can be used as a coating for basecoats, preferably in the automotive industry.
  • the clear lacquer dispersion is particularly suitable for water-based lacquers based on a polyester, polyurethane resin and an aminoplast resin.
  • the powder clear dispersion according to the invention can be applied using the methods known from liquid coating technology. In particular, they can be applied by spraying.
  • the powder clear dispersion applied to the basecoat is regularly flashed off before baking. This is expediently done first at room temperature and then at a slightly elevated temperature. As a rule, the elevated temperature is 40 to 70 ° C., preferably 50 to 65 ° C.
  • the flash off is carried out for 2 to 10 minutes, preferably 4 to 8 minutes at room temperature. At an elevated temperature, the mixture is vented again during the same time period.
  • the baking can be carried out at temperatures of 130 ° C.
  • the stoving can be carried out at 130 to 180 ° C., preferably 135 to 155 ° C.
  • layer thicknesses of 30 to 50, preferably 35 to 45 ⁇ m can be achieved.
  • clear lacquers of comparable quality could only be achieved using powder clear lacquers by applying layer thicknesses of 65 to 80 ⁇ m.
  • Pripol 1013 commercially available dimer fatty acid from Unichema
  • 22.413 parts by weight of hexanediol 12.051 parts by weight of isophthalic acid are slowly increased to max. Heated 220 ° C until the acid number is less than 4.
  • the product is then cooled to 80 ° C. and diluted with 24.025 parts by weight of methyl ethyl ketone.
  • the ground material was treated with 0.5% Byk 345 (leveling agent containing silicone),
  • 10% aqueous DMEA solution was added to adjust the pH to 6.0 and adjusted to spray viscosity with water (300 Pas at 1000 s "1 ).
  • the silver metallic WBL (Würzburg system, PAT EP 0 228 003 B2 or DE 38 25 278 and
  • the clear lacquer film from the exemplary embodiment C2. is characterized by a significantly lower tendency to cracking.
  • the semi-finished product (regrind) and the wet paint have a lower tendency to sedimentation than the wet paint of the comparative example C3 ..
  • the regrind is better temperature resistant and shear stable.

Abstract

Die vorliegende Erfindung betrifft eine wäßrige Pulverklarlack-Dispersion bestehend aus einer festen, pulverförmigen Komponente A und einer wäßrigen Komponente B, wobei Komponente A ein Pulverklarlack ist enthaltend a) wenigstens ein epoxidhaltiges Bindemittel mit einem Gehalt von 25 bis 45 Gew.-%, vorzugsweise 25 bis 35 Gew.-% an glycidylhaltigen Monomeren ggf. mit einem Gehalt an vinylaromatischen Verbindungen, vorzugsweise Styrol, b) wenigstens ein Vernetzungsmittel, vorzugsweise geradkettige, aliphatische Dicarbonsäuren und/oder carboxyfunktionelle Polyester und c) ggf. Katalysatoren, Hilfsstoffe, pulverklarlacktypische Additive wie Entgasungsmittel, Verlaufsmittel, UV-Absorber, Radikalfänger, Antioxidantien und Komponente B eine wäßrige Dispersion ist enthaltend a) wenigstens einen nicht-ionischen Verdicker und b) ggf. Katalysatoren, Hilfsstoffe, Entschäumungsmittel, Netzmittel, Antioxidantien, UV-Absorber, Radikalfänger, Biozide, geringe Mengen Lösemittel, Verlaufsmittel, Neutralisierungsmittel, vorzugsweise Amine und/oder Wasserrückhaltemittel und c) ein Dispergiermittel in Form einer nicht-ionischen Polyurethandispersion.

Description

Nicht-ionisch stabilisierte Pulverklarlack-Dispersion
Die vorliegende Erfindung betrifft eine nicht-ionisch stabilisierte Pulverklarlack-Dispersion, die sich insbesondere als Überzug für mit Wasserbasislack beschichtete Automobilkarosserien eignet.
Für die Beschichtung von Automobilkarosserien werden heute vorzugsweise Flüssiglacke verwendet. Diese verursachen zahlreiche Umweltprobleme aufgrund ihres Lösemittelgehaltes. Dies gilt auch für die Fälle des Einsatzes von Wasserlacken.
Aus diesem Grund sind in den letzten Jahren vermehrte Anstrengungen unternommen worden, für die Beschichtung Pulverlacke zu verwenden. Die Ergebnisse sind jedoch bisher nicht zufriedenstellend, insbesondere sind zur Erzielung eines gleichmäßigen Aussehens erhöhte Schichtdicken erforderlich. Auf der anderen Seite bedingt der Einsatz von pulverförmigen Lacken eine andere Applikationstechnologie. Die für Flüssiglacke ausgelegten Anlagen können daher hierfür nicht verwendet werden. Daher ist man bestrebt, Pulverlacke in Form wäßriger Dispersionen zu entwickeln, die sich mit Flüssiglacktechnologien verarbeiten lassen.
Aus der US-Patentschrift 4268542 ist beispielsweise ein Verfahren bekannt, bei dem eine Pulveriack-Slurry verwendet wird, die sich für die Beschichtung von Automobilen eignet. Hierbei wird zunächst eine herkömmliche Pulverschicht auf die Karosserie aufgetragen und als zweite Schicht die Klarlack-Slurry. Bei dieser Klarlack-Slurry auf Basis von Acrylatharzen werden ionische Verdicker verwendet. Ferner weisen diese in einem der Beispiele einen Gehalt von 0,5 bis 30 % an glycidylhaltigen Monomeren auf. Zudem muß mit hohen Einbrenntemperaturen (über 160° C) gearbeitet werden. Aus der DE-OS 196 13 547 ist eine wäßrige Pulverlack-Dispersion bekannt, die die genannten Anforderungen erfüllt. Die dort beschriebene Pulverklarlack-Dispersion zeigt jedoch nach der Applikation und Vernetzung ebenso wie die bisher bekannten festen Pulverklarlacke geringe Werte hinsichtlich der Anätzbeständigkeit gegenüber Wasser, Baumharz und Schwefelsäure auf. Außerdem zeigt das System eine Neigung zur Vergilbung.
Aus der nicht veröffentlichten deutschen Patentanmeldung 19518392.4 ist ferner eine Pulverklarlack-Dispersion bekannt, die aus zwei Komponenten zusammengesetzt ist. Die erste Komponente umfaßt epoxidhaltiges Bindemittel, Vernetzungsmittel sowie Katalysatoren, Hilfsstoffe und Additive. Die zweite Komponente ist ein nicht-ionischer Verdicker, der ggfs. im Gemisch mit Katalysatoren, Hilfsstoffen, Entschäumungsmitteln, Netzmitteln, Antioxidantien, UV-Adsorbem, Radikalfängern, Bioziden, Lösemitteln, Verlaufsmitteln, Neutraiisationsmitteln vorliegt. Als Dispersionshilfsmittel werden vorzugsweise carboxyfunktionelle Dispergiermittel verwendet.
Die bisherigen Pulverklarlacke enthalten in der Regel Dispergiermittel auf der Basis von ionisch stabilisierten Polymeren. Diese führen bei der Naßin-Naß-Applikation zu Rißbildungen im Klarlack. Zusätzliche Schwierigkeiten sind die Sedimentationsneigung und die Pumpbarkeit der Lackdispersion.
Im folgenden wird der Begriff Pulverklarlack-Dispersion als Synonym für Puiverkiarlack-Slurry verwendet.
Die vorliegende Erfindung hat sich nunmehr die Aufgabe gestellt, eine wäßrige Pulverklarlack-Dispersion zur Verfügung zu stellen, die sich mit der bisherigen Flüssiglacktechnologie auf Automobilkarosserien auftragen läßt, insbesondere bereits bei Temperaturen von 130°C einbrennbar ist und vor allem nach der Naß-in-Naß-Applikation nicht zu Rißbildungen im Klarlack führt.
Diese Aufgabe wird gelöst durch eine wäßrige Pulverklarlack-Dispersion bestehend aus einer festen, pulverförmigen Komponente A und einer wäßrigen Komponente B, wobei
Komponente A. ein Pulverklarlack ist enthaltend a) wenigstens ein epoxidhaltiges Bindemittel mit einem Gehalt von 25 bis 45 %, vorzugsweise 30 bis 35 % an glycidylhaltigen Monomeren ggf. mit einem Gehalt an vinylaromatischen Verbindungen, vorzugsweise Styrol, b) wenigstens ein Vernetzungsmittel, vorzugsweise geradkettige, aliphatische Dicarbonsäuren, carboxyfunktionelle Polyester und/oder Tris(alkoxycarbonylamino)Triazin und c) ggfs. Katalysatoren, Hilfsstoffe, pulverklarlacktypische Additive, wie Entgasungsmittel, Verlaufsmittel, UV-Absorber, Radikalfänger, Antioxidantien und Komponente B. eine wäßrige Dispersion ist enthaltend a) wenigstens einen nicht-ionischen Verdicker und b) ggf. Katalysatoren, Hiifsstoffe, Entschäumungsmittel, Dispersionshilfsmittel, Netzmittel, Antioxidantien, UV-Absorber, Radikalfänger, geringe Mengen Lösemittel, Verlaufsmittel, Biozide und/oder Wasserrückhaltemittel, c) ein Dispergiermittel in Form einer nicht-ionischen Polyurethandispersion
Bevorzugt werden erfindungsgemäß folgende Mengenverhältnisse:
Komponente A a) 60-80 Teile b) 15-30 Teile c) 3-10 Teile Komponente B 20-50 Teile Komponente a 80-50 Teile Komponente b 20-50 Teile Komponente c 1000-5000 Teile Destilliertes Wasser
Die Dispersion enthält vorzugsweise 25-100 Teile Komponente A 100 Teile Komponente B
Als epoxifunktionelles Bindemittel für den festen Puiverklarlack, der zur Herstellung der Dispersion verwendet wird, sind beispielsweise epoxidgruppenhaltige Polyacrylatharze geeignet, die durch Copolymerisation von mindestens einem ethylenisch ungesättigten Monomer, das mindestens eine Epoxidgruppe im Molekül enthält, mit mindestens einem weiteren ethylenisch ungesättigten Monomer, das keine Epoxidgruppe im Molekül enthält, herstellbar sind, wobei mindestens eines der Monomere ein Ester der Acrylsäure oder Methacrylsäure ist. Derartige epoxidgruppenhaltige Polyacrylatharze sind z.B. bekannt aus EP-A-299 420, DE-B-22 14 650, DE-B-27 49 576, US-A- 4,091 ,048 und US-A-3,781 ,379).
Als Beispiele für ethylenisch ungesättigte Monomere, die keine Epoxidgruppe im Molekül enthalten, werden Alkylester der Acryl- und Methacrylsäure, die 1 bis 20 Kohlenstoffatome im Alkylrest enthalten, insbesondere Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethyl- methacrylat, Butylacrylat, Butylmethacrylat, 2-Ethylhexylacrylat und 2- Ethylhexylmethacrylat genannt. Weitere Beispiele für ethylenisch ungesättigte Monomere, die keine Epoxidgruppen im Molekül enthalten sind, Säureamide, wie z.B. Acrylsäure- und Methacryisäureamid, vinylaromatische Verbindungen, wie Styrol, Methylstyrol und Vinyltoluol, Nitrile, wie Acrylnitril und Methacrylnitril, Vinyl- und Vinylidenhalogenide, wie Vinylchlorid und Vinylidenfluorid, Vinylester, wie z.B. Vinylacetat und hydroxylgruppenhaltige Monomere, wie z.B. Hydroxyethylacrylat und Hydroxyethylmethacrylat.
Das epoxidgruppenhaltige Polyacrylatharz weist üblicherweise ein Epoxidäquivalentgewicht von 400 bis 2500, vorzugsweise 420 bis 700, ein zahlenmittleres Molekulargewicht (gelpermeationschromatographisch unter Verwendung eines Polystyrolstandards bestimmt) von 2.000 bis 20.000, vorzugsweise von 3.000 bis 10.000, und eine Glasübergangstemperatur (TG) von 30 bis 80, vorzugsweise von 40 bis 70, besonders bevorzugt von 40 bis 60°C auf (gemessen mit Hilfe der differential scanning calometrie (DSC). Ganz besonders bevorzugt werden ca. 50°C. Zum Einsatz können auch Gemische aus zwei oder mehr Acrylatharzen kommen.
Das epoxidgruppenhaltige Polyacrylatharz kann nach allgemein gut bekannten Methoden durch Polymerisation hergestellt werden.
Als Vernetzer sind Carbonsäuren, insbesondere gesättigte, geradkettige, aliphatische Dicarbonsäuren mit 3 bis 20 C-Atomen im Molekül geeignet. Ganz besonders bevorzugt wird Dodecan-1 ,12-disäure eingesetzt. Zur Modifizierung der Eigenschaften der fertigen Pulverklarlacke können ggf. noch andere Carboxylgruppen enthaltende Vernetzer eingesetzt werden. Als Beispiele hierfür seien gesättigte verzweigte oder ungesättigte geradkettige Di- und Polycarbonsäuren sowie Polymere mit Carboxyl- gruppen genannt.
Als Vernetzer können auch Tris(Alkoxycarbonylamino)Triazine gemäß der US-PS 4 939 213, der US-PS 5 084 541 und der EP 0 624 577 eingesetzt werden.
Hierbei handelt es sich um Tris(Alkoxycarbonylamino)Triazine der Formel
wobei R=Methyl, Butyl-, Ethylhexyl-Gruppen bedeuten. Ebenso können Derivate der genannten Verbindungen zum Einsatz kommen.
Erfindungsgemäß bevorzugt sind die Methyl-, Butyl-Mischester. Diese haben gegenüber der reinen Methylestern den Vorzug der besseren Löslichkeit, in Polymerschmelzen und Butyl-Ethylhexyl-Mischester. Bevorzugt sind erfindungsgemäß auch die reinen Butylester.
Die Tris(Aikoxycarbonylamino)Triazine und deren Derivate können erfindungsgemäß auch im Gemisch mit herkömmlichen Vernetzungsmitteln eingesetzt werden (Komponente C). Hier kommen insbesondere von den Tris(Alkoxycarbonylamino)Triazinen verschiedene blockierte Polyisocyanate in Betracht.
Ebenso sind Aminoplastharze z.B. Melamine, einsetzbar. Im Prinzip kann jedes für transparente Decklacke geeignete Aminoplastharz oder eine Mischung aus solchen Aminoplastharzen eingesetzt werden.
Alle genannten Vernetzer können einzeln oder in beliebigen Kombinationen untereinander Verwendung finden.
Ferner sind auch Pulverklarlacke geeignet, die einen epoxifunktionellen Vernetzer und ein säurefunktioneiles Bindemittel enthalten. Als säurefunktionelles Bindemittel sind beispielsweise saure Polyacrylatharze geeignet, die durch Copolymerisation von mindestens einem ethylenisch ungesättigten Monomer, das mindestens eine Säuregruppe im Molekül enthält, mit mindestens einem weiteren ethylenisch ungesättigten Monomer, das keine Säuregruppe im Molekül enthält, herstellbar sind.
Das epoxidgruppenhaltige Bindemittel bzw. der epoxidgruppenhaltige Vernetzer und das Carboxyl- bzw. das Bindemittel werden üblicherweise in einer solchen Menge eingesetzt, daß pro Äquivalent Epoxidgruppen 0,5 bis 1 ,5, vorzugsweise 0,75 bis 1 ,25 Äquivalente Carboxyl gruppen vorliegen. Die Menge an vorliegenden Carboxylgruppen kann durch Titration mit einer alkoholischen KOH-Lösung ermittelt werden.
Erfindungsgemäß enthält das Bindemittel vinylaromatische Verbindungen, insbesondere Styrol . Um die Gefahr der Rißbildung zu begrenzen, liegt der Gehalt jedoch nicht über 35 Gew.-%. Bevorzugt werden 10 bis 25 Gew.-%.
Die festen Pulverlacke enthalten ggf. einen oder mehrere geeignete Katalysatoren für die Epoxidharz-Aushärtung. Geeignete Katalysatoren sind Phosphoniumsalze organischer oder anorganischer Säuren, quarternäre Ammoniumverbindungen Amine, Imidazol und Imidazolderivate. Die Katalysatoren werden im allgemeinen in Anteilen von 0,001 Gew.-% bis etwa 2 Gew.-%, bezogen auf das Gesamtgewicht des Epoxidharzes und des Vemetzungsmittels, eingesetzt.
Beispiele für geeignete Phosphonium-Katalysatoren sind Ethyltriphenylphosphoniumiodid, Ethyltriphenylphosphoniumchlorid,
Ethyltriphenylphosphoniumthiocyanat, Ethyltriphenylphosphonium-Acetat- Essigsäurekomplex, Tetrabutylphosphoniumiodid, Tetrabutylphos- phoniumbromid und Tetrabutylphosphonium-Acetat-Essigsäurekomplex. Diese sowie weitere geeignete Phosphonium Katalysatoren sind z.B. beschrieben in US-PS 3,477,990 und US-PS 3,341 ,580.
Geeignete Imidazol-Katalysatoren sind beispielsweise 2-Styrylimidazol, 1- Benzyl-2-methylimidazol, 2-Methylimidazol und 2-Butylimidazol. Diese sowie weitere Imidazol-Katalysatoren sind z.B. beschrieben in dem belgischen Patent Nr. 756,693.
Außerdem können die festen Pulverlacke ggf. noch Hilfsmittel und Additive enthalten. Beispiele hierfür sind Verlaufsmittel, Antioxidantien, UV-Absorber, Radikalfänger, Rieselhilfen und Entgasungsmittel, wie beispielsweise Benzoin.
Geeignet sind Veriaufsmittel auf der Basis von Polyacrylaten, Polysiloxanen bzw. Fluorverbindungen.
Einsetzbare Antioxidantien sind Reduktionsmittel wie Hydraziene und Phosphorverbindungen sowie Radikalfänger z.B. 2,6 Di-tert-Butylphenol- Derivate.
Verwendbare UV-Adsorber sind bevorzugt Triazine und Benztriphenol.
Als Radikalfänger sind bevorzugt 2,2,6,6-Tetramethylpiperdinderivate einsetzbar.
Außerdem können die festen Pulverlacke ggf. noch Hilfsmittel und Additive enthalten. Beispiele hierfür sind Verlaufsmittel, Antioxidantien, UV-Absorber, Radikalfänger, Rieselhiifen und Entgasungsmittel, wie beispielsweise Benzoin.
Die Komponente B enthält einen nicht-ionischen Verdicker a). Beispiele hierfür sind modifizierte Cellulosen, Polyurethanverdicker.
Strukturmerkmale solcher Assoziativ-Verdicker a) sind: aa) ein hydrophiles Gerüst, das eine ausreichende Wasserlöslichkeit sicherstellt und ab) hydrophobe Gruppen, die zu einer assoziativen Wechselwirkung im wäßrigen Medium fähig sind.
Als hydrophobe Gruppen werden beispielsweise langkettige Alkylreste, wie z.B. Dodecyl-, Hexadecyl- oder Octadecyl-Reste, oder Alkarylreste, wie z.B. Octylphenyl- oder Nonylphenyl-Reste eingesetzt. Als hydrophile Gerüste werden vorzugsweise Polyacrylate, Celluloseether oder besonders bevorzugt Polyurethane eingesetzt, die die hydrophoben Gruppen als Polymerbausteine enthalten.
Ganz besonders bevorzugt sind als hydrophile Gerüste Polyurethane, die Polyetherketten als Bausteine enthalten, vorzugsweise aus Polyethylenoxid.
Bei der Synthese solcher Polyetherpolyurethane dienen die Di- und oder Polyisocyanate, bevorzugt aliphatische Diisocyanate, besonders bevorzugt ggf. alkylsubstituierte 1 ,6-Hexamethylendiisocyanat, zur Verknüpfung der Hydroxylgruppen-terminierten Polyetherbausteine untereineinander und zur Verknüpfung der Polyetherbausteine mit den hydrophoben Endgruppenbausteinen, die beispielsweise monofunktionelle Alkohole und/oder Amine mit den schon genannten langkettigen Alkylresten oder Aralkylresten sein können.
Bekanntermaßen sind die nicht-ionischen Assoziatiwerdicker durch die Gestaltung ihrer hydrophoben Gruppen so ausgelegt, daß sie sowohl Hydrophob/hydrophob-Wechselwirkungen zu den in der Pulverlack- Dispersion enthaltenen festen Partikeln als auch untereinander ausbilden können. Dadurch wird ein dreidimensionales Netzwerk aufgebaut und steuert. Des weiteren müssen die Assoziatiwerdicker einen so hohen Gehalt an hydrophilen Gruppen aufweisen, daß sie sich homogen im Wasser verteilen und keine Phasenseparation zum Wasser hin auftritt. Beispiele geeigneter nicht-ionischer Assoziatiwerdicker und ihr Wirkungsmechanismus werden im Detail in dem Lehrbuch „Lackadditive" von Johan Bieleman, Wiley-VCH, Weinheim, New York, 1998 beschrieben.
Weiterhin kann die Komponente B Katalysatoren, Verlaufsmittel, Antioxidantien, UV-Absorber, Radikalfänger und Netzmittel enthalten. Im wesentlichen kommen hier die bereits für die Komponente A aufgezählten Stoffe in Betracht.
Ferner können der Komponente B Hilfsstoffe, Entschäumungsmittel, Biozide, Lösungs- und Neutralisationsmittel zugesetzt sein.
Als Entschäumungsmittel kommen bevorzugt modifizierte Polysiloxane in Betracht.
Verwendbare Neutralisationsmittel sind Amine, Ammoniak und Metallhydroxide.
Erfindungswesentlich ist schließlich der Zusatz der Dispergiermittel c). Hierbei handelt es sich um Verbindungen auf Basis von Polyurethanen.
Die erfindungswesentlichen nicht-ionischen Dispergiermittel c) in Form einer Polyurethandispersion unterscheiden sich von den nicht-ionischen Assoziatiwerdickern in zweierlei Hinsicht:
1. Die hydrophoben Gruppen der Dispergiermittel c) sind so ausgelegt, daß bevorzugt Hydrophob/hydrophob-Kontakte zu den in der
Pulverlack-Dispersion enthaltenen Partikeln ausgebildet werden, so daß kein dreidimensionales Netzwerk entsteht, wie es für die Assoziatiwerdicker typisch ist.
2. Die Hydrophilie ist reduziert. Es sind nur so viele hydrophile Gruppen in dem Dispergiermittel c) enthalten, daß die Partikel von den hydrophilen Strukturelementen umhüllt und abgeschirmt werden. Die hydrophilen Strukturelemente sind in ihrer Wirkung nicht so stark, daß sie die hydrophoben Struktureiemente von den Partikeln ablösen und in die wäßrige Phase einbringen können. Anschaulich äußert sich die vergleichsweise niedrige Hydrophilie durch die Ausbildung einer zweiten Phase in Wasser durch die Dispergiermittel als solche.
Die erfindungsgemäß eingesetzten Polyurethanharze c) bestehen vorzugsweise aus
1. wenigstens einer organischen Komponente mit wenigstens zwei reaktiven Wasserstoff atomen,
2. einem monofunktionalen Ether und
3. einem Polyisocyanat.
Die organische Komponente der Polyurethanzusammensetzung c) umfaßt ein Polyesterpolyol, ein niedermolekulares Diol und/oder Triol oder Gemische davon. Ggfs. kann ein trifunktionales Hydroxylgruppen enthaltendes Monomer eingesetzt werden.
In einer zweiten bevorzugten Ausführungsform umfaßt das Polyurethan c)
1. wenigstens eine organische Komponente mit wenigstens zwei reaktiven Wasserstoffatomen,
2. einen nicht-ionischen Stabilisator, d.h. ein nicht-ionisches Dispergiermittel c) der hergestellt wird durch Reaktion i. eines monofunktionalen Polyethers mit einer Polyisocyanat enthaltenden Komponente zur Erzeugung eines Isocyanatzwischenproduktes und ii. einer Komponente mit wenigstens einer aktiven Amin- und wenigstens zwei aktiven Hydroxylgruppen und
3. wenigstens einer Polyisocyanat enthaltenden Komponente.
Die organische Komponente umfaßt vorzugsweise
Polyetherpoiyesterpolyol, ein niedermolekulares Diol und/oder Triol oder Gemische davon.
Die Polyesterkomponente kann hergestellt werden durch Reaktion wenigstens einer Dicarbonsäure und wenigstens einer Alkoholkomponente, wobei der Alkohol wenigstens zwei Hydroxylgruppen enthält. Die Carbonsäurekomponente enthält zwei oder mehr
Carboxylgruppen. Beispiele geeigneter Dicarbonsäuren sind
Dimerfettsäuren und cycloaliphatische Dicarbonsäuren wie Isophthalsäure.
Zusätzlich zu den Carbonsäuren kann das Polyesterharz auch ein oder mehr niedermolekulare Diole oder Triole enthalten. Einsetzbar ist grundsätzlich jedes Polyol.
Die eingesetzten Polyesterharze oder Gemische der Polyesterharze enthalten vorzugsweise endständige Hydroxylgruppen. Dies wird bewirkt durch Zusatz eines Überschusses an Polyolen.
Zur Synthese der Polyester können sowohl Monocarbonsäuren als auch Monoalkohole eingesetzt werden. Vorzugsweise sind die Monocarbonsäuren und/oder Monoalkohole jedoch in einer sehr geringen Gewichtsmenge in dem Polyesterharz enthalten.
Die vorzugsweise eingesetzten Polyesterdiolkomponenten umfassen zwischen 20 und 80 Gew.-% des Polyurethanharzes. Vorzugsweise liegen die Mengen zwischen 50 und 70 Gew.-%. Ganz besonders bevorzugt werden 55 bis 65 Gew.-%.
Zur Herstellung des Polyurethans c) werden Polyesterpolyole mit einem Molekulargewicht zwischen 500 und 5000 eingesetzt. Bevorzugt werden Molekulargewichte zwischen 1000 und 3500.
Zusätzlich zu den Polyesterdiolen können die Polyurethanharze weitere organische Komponenten mit wenigstens zwei reaktiven Wasserstoffatomen enthalten. Hierbei handelt es sich vorzugsweise um Diole und Triole, Thiole und/oder Amine oder Gemische dieser Stoffe. Die Komponenten, die zur Synthese der Polyesterkomponente eingesetzt werden, können auch als separate Komponenten hier zum Einsatz kommen. D.h., als zusätzliche organische Komponente in dem Polyurethan kommen auch Di- oder Trialkohole, wie z.B. Neopentylglykol oder 1 ,6-Hexandiol oder Trimethylolpropan in Betracht.
Das Molekulargewicht der eingesetzten Diole und/oder Triole in dem Polyurethanharz liegt zwischen 0 und 20 Gew.-%. Bevorzugt werden 1 bis 6 Gew.-%.
Das Polyurethanharz enthält ferner Polyisocyanate, insbesondere Diisocyanate. Die Isocyanate liegen zwischen 5 und 40 Gew.-% bezogen auf die Polyurethanmasse. Besonders bevorzugt werden 10 bis 30 Gew.- % und ganz besonders 10 bis 20 Gew.-%. Zur Herstellung des Polyurethans wird schließlich ein monofunktioneller Polyether eingesetzt.
In einer zweiten Variante wird ein nicht-ionischer Stabilisator c) hergestellt, in dem vorzugsweise ein monofunktionaier Polyether mit einem Diisocyanat zur Reaktion gebracht wird. Das entstandene Reaktionsprodukt wird sodann mit einer Komponente umgesetzt, die wenigstens eine aktive Amingruppe und wenigstens zwei aktive Hydroxylgruppen enthält.
In einer besonderen Ausführungsform umfaßt das Polyurethan c) eine Reaktionsprodukt aus:
1. Einem Polyesterpolyol, welches seinerseits ein Reaktionsprodukt aus einer Carbonsäure mit wenigstens zwei Carboxylgruppen und einer Komponente mit wenigstens zwei Hydroxylgruppen,
2. wenigstens einer niedermolekularen Komponente mit wenigstens zwei Hydroxylgruppen,
3. wenigstens einer polyisocyanathaltigen Komponente,
4. einem nicht-ionischen Stabilisator, hergestellt durch Reaktion eines monofunktionalen Ethers mit einem Polyisocyanat und anschließender Umsetzung des erhaltenen Reaktionsprodukts mit einer Komponente, die wenigstens eine aktive Amin- und wenigstens zwei aktive Hydroxylgruppen enthält. In einer vierten Variante umfaßt das Polyurethan c) ein Reaktionsprodukt aus
1. einem Polyesterpolyol,
2. wenigstens einem niedermolekularen Diol oder Triol, 3. einem Polyisocyanat,
4. einem Trihydroxygruppen enthaltenden Monomer,
5. einem monofunktionalen Hydroxygruppen enthaltenden Polyether.
Die Polyester werden synthetisiert mit den oben beschriebenen Carboxylsäurekomponenten und einem Überschuß an Polyolen. Der Überschuß an Polyolen wird so gewählt, daß vorzugsweise endständige Hydroxylgruppen entstehen. Die Polyole haben vorzugsweise eine Hydroxylfunktionalität von wenigstens zwei.
Das Polyesterharz besteht vorzugsweise aus einem oder mehreren Polyolen, vorzugsweise aus einem Diol. Vorzugsweise eingesetzte Diole sind Alkylenglykole, wie Ethylenglykol, Propylenglykol, Butylenglykol und Neopentylglykol, 1 ,6-Hexandiol oder andere Glykole, wie Bisphenol-A, Cyclohexandimethanol, Caprolactondiol, hydroxyalkyliertes Bisphenol und ähnliche Verbindungen.
Die niedermolekularen vorzugsweise erfindungsgemäß eingesetzten Diole sind aus dem Stand der Technik bekannt. Hierzu zählen aliphatische Diole, vorzugsweise Alkylenpolyole mit 2 bis 18 Kohlenstoffatomen. Beispiele hierfür sind 1 ,4-Butandiol, cycloaiiphatische Diole, wie 1 ,2- Cyclohexandiol und Cyclohexandimethanol.
Als organische Polyisocyanate kommen erfindungsgemäß vorzugsweise solche in Betracht, die wenigstens zwei Isocyanatgruppen umfassen. Insbesondere werden die Isocyanate bevorzugt, z.B. p- Phenylendiisocyanate, Biphenyl 4,4'-Diisocyanate, Toluoldiisocyanate, 3,3'-Dimethyl-4,4 Biphenylendiisocyanate, 1 ,4-
Tetramethylendiisocyanate, 1 ,6-Hexamethylendiisocyanate, 2,2,4- Trimethylhexan-1 ,6-Diisocyanate, Methylen-bis-(phenylisocyanate), 1 ,5- Naphthalendiisocyanate, Bis(isocyanatoethylfumarate),
Isophorondiisocyanate und Methylen-bis-(4-Cyclohexylisocyanate).
Neben den genannten Diisocyanaten werden auch andere multifunktionale Isocyanate verwendet. Beispiele sind 1 ,2,4 Benzentriisocyanate und Polymethylenpolyphenylisocyanate.
Besonders bevorzugt ist der Einsatz von aliphatischen Diisocyanaten, z.B. 1 ,6- Hexamethylendiisocyanat, 1 ,4-Butylendiisocyanat, Methylen-bis-(4- Cyclohexylisocyanat), lsophorondiisocyanat und 2,4-Toluoldiisocyanat.
Längerkettige Polyurethanharze c) können erhalten werden durch Kettenverlängerung mit diol- und/oder triolgruppenenthaltenden Komponenten. Besonders bevorzugt werden Kettenverlängerungsmittel mit wenigstens zwei aktiven Hydrogengruppen, z.B. Diolen, Thioien, Diaminen oder Gemischen dieser Stoffe, z.B. Alkanolaminen, Aminoalkylmercaptanen, Hydroxyalkylmercaptanen und ähnlichen Verbindungen.
Beispiele für als Kettenverlängerungsmittel eingesetzte Diole sind 1 ,6- Hexandiol, Cyclohexandimethylol und 1 ,4-Butandiol. Ein besonders bevorzugtes Diol ist Neopentylglykol.
Die erfindungsgemäß eingesetzten Polyether sind vorzugsweise mono- oder difunktionelle Polyether. Zu den monofunktionellen zählen beispielsweise solche, hergestellt werden durch Polymerisation von Ethylenoxiden, Propylenoxiden oder Gemischen hiervon. Ein Beispiel für einen geeigneten Polyether ist Methoxypolyethylenglykol der unter dem Markennamen Carbowax® MPEG 2000 von der Firma Union Carbide Chemicals.
Das beschriebene Polyurethanprodukt c) kann mit herkömmlichen Vernetzern vermischt werden. Hierzu zählen vorzugsweise Aminopiastharze, z.B. Melamin. Ebenso können Kondensationsprodukte anderer Amine und Amide eingesetzt werden, z.B. Aldehydkondensate von Triazinen, Diazinen, Triazolen, Guanidinen, Guanaminen oder alkyl- und arylsubstituierte Derivate solcher Komponenten. Eine Beispiele solcher Komponenten sind N,N'-Dimethylhamstoff, Dicyandiamide, 2- Chloro-4,6-Diamino-1 ,3,5-Triazine, 6-Methyl-2,4-Diamino-,1 ,3,5-Triazine, 3,5-Diamino-Triazole, Triaminopyrimidine, 2-Mercapto-4,6-
Diaminopyrimidine, 2,4,6-Triethyltriamino-1 ,3,5-Triazine und ähnliche Stoffe.
Als Aldehyd kommen vorzugsweise Formaldehyde in Betracht. Ebenso können Acetaldehyde, Crotonaldehyde, Acrolein, Benzaldehyde, Furfural zum Einsatz kommen.
Die Amin-Aldeyhdkondensationsprodukte können Methylol oder ähnliche Alkoholgruppen enthalten. Beispiele für einsetzbare Alkohole sind Methanol, Ethanol, Propanol, Butanol, Pentanol, Hexanol, Heptanol, Benzylalkohol und aromatische Alkohole, cyclische Alkohole, wie Cyclohexanol, Monoether oder Glykole sowie substituierte Alkohole, z.B. 3-Chloropropanol.
Neben den genannten Isocyanaten können erfindungsgemäßen auch blockierte Polyisocyanate als Vernetzungsmittel eingesetzt werden. Hierzu zählen beispielsweise organische Polyisocyanate wie Trimethylen-, Tetramethylen-, Hexamethylen-, 1 ,2-Propylen-, 1 ,2-Butylen und 2,3- Butylen-Diisocyanate. Ebenso sind einsetzbare Cycloalkenkomponenten wie 1 ,3-Cyclopentan-, 1 ,4-Cyclohexan- und 1 ,2-Cyclohexandiisocyanate. Ferner sind aromatische Komponenten wie Phenylen-, p-Phenylen-, 4,4'- Diphenyl-, 1 ,5-Naphthalen und 1 ,4-Naphthalendiisocyanate verwendbar. Darüber hinaus kommen aliphatisch-aromatische Komponenten wie 4,4'- Diphenylenmethan, 2,4- oder 2,6- Tolylen oder Gemische hiervon, 4,4'- Toluidin und 1 ,4 Xylylendiisocyanate in Betracht. Weitere Beispiele sind kernsubstituierte aromatische Komponenten wie 4,4'-
Diphenyletherdiisocyanate und Chlordiphenylendiisocyanate. Einsetzbare Triisocyanate sind Triphenylmethan-4,4', 4"-Triisocyanate, 1 ,3,5- Triisocyanatbenzene und 2,4,6-Triisocyanattoluol. Verwendbare Tetraisocyanate sind schließlich 4,4'-Diphenyl-dimethylmethan, 2,2'-, 5,5'-Tetraisocyanate.
Als Blockierungsmittel können aliphatische, cycloaliphatische aromatische Alkylmonoalkohole eingesetzt werden. Hierzu zählen beispielsweise Methyl-, Ethyl-, Chlorethyl-, Propyl-, Butyl-, Cyclohexyl-, Heptyl-, Octyl-, Nonyl 3,3,5-Trimethylhexanol, Decyl- und Lau ryl -Alkohole. Als phenolische Komponenten sind z.B. Phenole oder substituierte Phenole verwendbar. Beispiele hierfür sind Kresol, Xylenol, Nitrophesol, Chlorphenol, Ethylphenol, 1-Butylphenol und 2,5-Di-t-Butyl-4- Hydroxytoluol.
Weitere geeignete Biockierungsmittel sind tertiäre Hydroxylamine, z.B. Diethylethanolamin und Oxime, wie Methylethylketonoxim, Acetonoxim und Cyclohexanonoxim.
Die beschriebenen Vernetzungsmittel sind in der Polyurethandispersion c) in Mengen von 2 bis 15 Gew.-%, vorzugsweise 4 bis 8 Gew.-% vorhanden.
Das erhaltene Polyurethandispersion c) ist in der Powderslurry mit einem Anteil von 0,5 bis 20 Gew.-%, vorzugsweise 2 bis 15 Gew.-% vorhanden.
Die Herstellung der festen Pulverlacke erfolgt nach bekannten Methoden (vgl. z,.B. Produkt-Information der Firma BASF Lacke + Farben AG, "Pulverlacke", 1990) durch Homogenisieren und Dispergieren, beispielsweise mittels eines Extruders, Schneckenkneters u.a.. Nach Herstellung der Pulverlacke werden diese durch Vermählen und ggf. durch Sichten und Sieben für die Dispergierung vorbereitet.
Aus dem Pulver kann anschließend durch Naßvermahlung oder durch Einrühren von trocken vermahlenem Pulverlack die wäßrige Pulverklarlack-Dispersion hergestellt werden. Besonders bevorzugt wird die Naßvermahlung.
Die vorliegende Erfindung betrifft demgemäß auch ein Verfahren zur Herstellung einer wäßrigen Pulverlackdispersion auf der Basis der beschriebenen Komponente A , die erfindungsgemäß in der Komponente B dispergiert wird.
Nach der Dispergierung der Komponente A in der Komponente B wird ggf. vermählen, der pH-Wert auf 4,0 bis 7,0, vorzugsweise 5,5 bis 6,5 eingestellt und filtriert.
Die mittlere Korngröße liegt zwischen 1 und 25 μm, vorzugsweise unter 20 μm. Besonders bevorzugt bei 3 bis 10μm. Der Festkörpergehalt der wäßrigen Pulverklarlack-Dispersion liegt zwischen 15 und 50 %.
Der Dispersion können vor oder nach der Naßvermahiung bzw. dem Eintragen des trockenen Pulverlackes in das Wasser 0 bis 5 Gew.% eines Entschäumergemisches, eines Ammonium und/oder Alkalisalzes, eines carboxylfunktionellen oder nichtionischen Dispergierhilfsmittels, Netzmittels und/oder Verdickergemisches sowie der anderen Additive zugesetzt werden. Vorzugsweise werden erfindungsgemäß Entschäumer, Dispergierhilfs-, Netz- und/oder Verdickungsmittel zunächst in Wasser dispergiert. Dann werden kleine Portionen des Pulverklarlackes eingerührt. Anschließend werden noch einmal Entschäumer, Dispergierhilfs-, Verdickungs- und Netzmittel eindispergiert. Abschließend werden nochmals in kleinen Portionen Pulverklarlacke eingerührt.
Die Einstellung des pH-Wertes erfolgt erfindungsgemäß vorzugsweise mit Ammoniak oder Aminen. Der pH-Wert kann hierbei zunächst ansteigen, daß eine stark basische Dispersion entsteht. Der pH-Wert fällt jedoch innerhalb mehrerer Stunden oder Tage wieder auf die oben angeführten Werte. Eine andere Variante zur Herstellung der erfindungsgemäßen Pulverklarlack-Dispersion besteht darin, daß eine flüssige Schmelze der Bindemittel und Verletzter sowie ggf. der Zusatzstoffe c) der Komponente A gemischt, in eine Emulgiervorrichtung vorzugsweise unter Zusatz von Wasser und Stabilisatoren gegeben, die erhaltene Emulsion abgekühlt und filtriert werden.
Um eine hohe Mischgüte erzielen zu können, ist es wesentlich, die Mischung lösemittelfrei in der Schmelze durchzuführen. Demgemäß werden die polymeren Komponenten als viskose Harzschmelzen in die Dispergieraggregate eingespeist.
Dazu müssen Bindemittel und Vernetzer aufgeschmolzen werden. Das Verhältnis von Vernetzern zu Bindemitteln beträgt 0,6 bis 1 :1 ,4, bevorzugt 0,8:1 bis 1 :1 ,2., Vorzugsweise werden Vernetzer und Bindmittel in getrennten Behältern erhitzt. Die Temperatur wird dabei so ausgewählt, daß beide Komponenten aufgeschmolzen sind und deren Viskosität eine weitere Verarbeitung, insbesondere Förderung erlaubt. Je höher die Temperatur der Schmelze, desto geringer die Viskosität, und desto bessere Mischgüten sind erzielbar. Allerdings muß weitgehend eine Vernetzungsreaktion ausgeschlossen werden. Die Vernetzungsreaktion läuft bei höheren Temperaturen deutlich schneller ab. Daher besteht nur ein enges Temperatur-Zeit-Fenster, in dem die zur Verfügung stehende Verweilzeit bis zum Abkühlen ausreichend lang ist, und gleichzeitig eine gute Emuigierung möglich ist. Um dieses möglichst effizient zu nutzen, werden die Bindemittel- und Vernetzerschmelze erst unmittelbar vor der Mischzone zusammengeführt.
Vor der Förderung der Komponenten durch die Anlage kann diese vorzugsweise mit Dampf auf die gewünschte Prozeßtemperatur erwärmt werden. Anschließend werden die geschmolzene Bindemittel-Additiv- Mischung und die Vernetzersschmeize in vorzugsweise getrennten, beheizten Zuleitungen mit Pumpen durch die gesamte Anlage befördert und in einen Mischer dosiert. Über den Volumenstrom der Förderpumpen läßt sich ein stöchiometrisches Verhältnis von
Bindemittein/Additivmischung und Vernetzerschmelze einstellen.
Die flüssige Mischung wird anschließend sofort in Wasser emulgiert. Hierbei wird der organischen Phase und/oder dem Wasser ein Emulgator zugesetzt. Im Falle des Einsatzes eine wäßrigen Emulgator/Stabilisator- Lösung wird unter Druck auf eine Temperatur in der Nähe der Mischungstemperatur erwärmt und darin die flüssige Bindemittel-Vernetzer-Mischung emulgiert.
Mischen und Emulgieren kann in zwei getrennten oder in einer mehrstufigen, Maschine realisiert werden. Die zweite Lösung hat aus Vernetzungsgründen deutliche Vorteile, da hier die Verweilzeit bei den hohen Temperaturen minimiert wird. Ggf. vorhandenes organisches Lösemittel kann nachfolgend direkt durch Vakuumdestillation bei niedrigen Temperaturen von der wäßrigen Phase abgetrennt werden.
Im Anschluß an die Emuigierung wird sofort eine Abkühlung durchgeführt. Dies muß so realisiert werden, daß zum einen kein Verkleben der dispersen Harzpartikeln auftritt, zum anderen die Verweilzeit bis zu dem Zeitpunkt, an dem keine Vernetzungsreaktion mehr stattfinden kann, möglichst kurz ist. Dieses Ziel kann z. B. durch Einsatz eines Wärmetauschers, Abkühlen durch Einspritzen von kaltem Wasser oder durch Verdüsen der Emulsion in kaltes Wasser erreicht werden.
Um Vernetzungsreaktionen während der Misch-, Emulgier- und Abkühlphase auszuschließen, muß die Verweilzeit vom Beginn der Misch- bis zum Ende der Abkühlphase möglichst kurz gehalten werden. Diese liegt bei weniger als 5 s, vorzugsweise weniger als 1 s. Daher werden kontinuierliche Verfahren bevorzugt. Hierfür werden Maschinen wie Rotor- Stator-Dispergierapparate ( Zahnkolloid- oder Naßrotormühlen, Zahnkranz-Dispergiermaschinen, Intensivmischer) sowie statische Mischer eingesetzt. Zum anschließenden Emuigieren in Wasser kann die Bindemittel- Vernetzer-Mischung in Wasser bzw. der Komponente B verdüst werden. Werden ausreichende Feinheiten nicht erreicht, können wiederum Rotor- Stator-Aggregate oder statische Mischer eingesetzt werden. Eine weitere Steigerung des lokalen Leistungseintrages ist durch den oben beschriebenen Einsatz eines Hochdruckhomogenisators möglich. Hierbei wird die Emulsion bei Drücken im Bereich von 100-1500 bar, vorzugsweise 100 bis 1000 bar, besonders 100 bis 200 bar, durch feine Öffnungen gepreßt, was zu einer deutlichen Verringerung der Tröpfchengröße und somit zu einer größeren Stabilität der Emulsion während der Lagerung führt.
Die vorgestellten Mikronisierungsvarianten führen zu lösemittelfreien Dispersionen mit den mittleren Partikelgrößen im Bereich von 100 - 10000, vorzugsweise 150 bis 6000, besonders bevorzugt 400 bis 4000, höchst bevorzugt 600-3500 nm und sind somit noch feinteiliger als die durch Naßmahlung von Puiverlacken nach dem Stand der Technik herstellbaren wäßrigen Dispersionen (Partikelgröße 3-20 μm).
Mit dem geschriebenen Verfahren lassen sich feinteilige Polymerdispersionen herstellen, denen Molekulargewichte im Bereich von 1000 bis 20000, bevorzugt 1000 bis 10000, besonders bevorzugt 1500 bis 6000, höchst vorzugsweise 1500 bis 4000 g/mol liegen.
Die erfindungsgemäße Pulverklarlack-Dispersion läßt sich als Überzug von Basislacken, vorzugsweise in der Automobilindustrie, verwenden. Besonders geeignet ist die Klarlackdispersion für Wasserbasislacke auf Basis eines Polyesters, Poiyurethanharzes und eines Aminoplastharzes.
Die erfindungsgemäßen Pulverklariack-Dispersionen lassen sich mit den aus der Flüssiglacktechnologie bekannten Methoden aufbringen. Insbesondere können sie mittels Spritzverfahren aufgebracht werden. Die auf die Basislackschicht aufgebrachten Pulverklariack-Dispersionen werden regelmäßig vor dem Einbrennen abgelüftet. Dies geschieht zweckmäßigerweise zunächst bei Raumtemperatur und anschließend bei leicht erhöhter Temperatur. In der Regel beträgt die erhöhte Temperatur 40 bis 70°C, vorzugsweise 50 bis 65°C. Das Ablüften wird für 2 bis 10 Minuten, vorzugsweise 4 bis 8 Minuten bei Raumtemperatur durchgeführt. Bei erhöhter Temperatur wird nochmals während derselben Zeitspanne abgelüftet.
Das Einbrennen kann bereits bei Temperaturen von 130°C durchgeführt werden. Durchführbar ist das Einbrennen bei 130 bis 180°C, vorzugsweise 135 bis 155°C.
Mit dem erfindungsgemäßen Verfahren können Schichtdicken von 30 bis 50, vorzugsweise 35 bis 45 μm erreicht werden. Klarlacke mit vergleichbarer Qualität konnten bisher nach dem Stand der Technik unter Einsatz von Pulverklarlacken nur durch Auftrag von Schichtdicken von 65 bis 80 μm erreicht werden.
Im folgenden wird die Erfindung unter Bezugnahme auf die Beispiele näher beschrieben:
A. Herstellung des pulverisierten Harzes
21 ,1 T Xylol werden vorgelegt und auf 130 ° C erwärmt. Zu der Vorlage werden bei
130 ° C binnen 4 h über zwei getrennte Zulaufbehäiter Initiator: 4,5 T TBPEH (tert.- Butylperethylhexanoat) gemischt mit 4,86 T Xylol und Monomere:
10,78 T Methylmethacrylat, 26,5 T n-Butylmethacrylat, 17,39 T Styrol und 22,95 T
Glycidylmethacrylat zudosiert. Anschließend wird auf 180 °C erwärmt und im Vakuum < 100 mbar das Lösemittel abgezogen.
B. Herstellung des Pulverklarlacks
77,5 T Acrylatharz, 18,8 T Dodecandisäure (s. Härter), 2 T Tinuvin
1130
(UV-Absorber), 0,9 T Tinuvin 144 (HALS), 0,4 T Additol XL 490 (Verlaufsmittel) und
0,4 T Benzoin (Entgasungsmittel) werden innig auf einem Henschel- Fluidmischer vermischt, auf einem BUSS PLK 46 Extruder extrudiert, auf einer
Hosohawa
ACM 2-Mühle vermählen und über ein 125 μ m Sieb abgesiebt.
C. Nicht-ionisch stabilisierte Powderslurrv
1. Herstellerbeispiel
1.1 Herstellung einer Polyester-Ausgangsstufe
40,71 Gew. Teile Pripol 1013 (handelsübliche Dimerfettsäure der Firma Unichema), 22,413 Gew. Teile Hexandiol, 12,051 Gew. Teile Isophthalsäure werden in einem Laborkessel langsam auf max. 220°C erhitzt bis die Säurezahl kleiner 4 ist. Dann wird das Produkt auf 80°C abgekühlt und mit 24,025 Gew.-Teile Methylethylketon verdünnt.
1.2 Herstellung der nicht-ionischen Polyurethandispersion c)
29,155 Gew. Teile der Polyester-Ausgangsstufe werden in einem Reaktor vorgelegt und mit 4,667 Gew. Teilen Carbowax MPEG 2000,
0,422 Gew. Teilen Trimethyloipropan und 5,195 Gew. Teilen Isophorondiisocyanat und 0,031 Gew. Teilen Dibutylzinnlaurat versetzt. Das Reaktionsgemisch wird auf 90°C erwärmt, bis der NCO-Gehalt im Bereich von 0,50 - 0,70 % liegt. Dann werden bei 90°C 0,367 Gew. Teile Neopentylglykol und 0,281 Gew. Teile Trimethylolpropan zugesetzt. Wenn der NCO-Wert kleiner 0,25 % ist, werden 13,912 Gew. Teile Butylglykol bei 90°C Reaktortemperatur zugesetzt. Anschließend werden 45,97 Gew. Teile delonsiertes Wasser binnen einer Stunde bei 70 - 90°C unter starkem Rühren dem Reaktor zugesetzt, wodurch die nicht-ionische Polyurethan-Dispersion c) resultiert.
2. Ausführungsbeispiel:
670 g Wasser, 30 g nicht-ionische Polyurethandispersion gemäß Herstellerbeispiel 1 .2, 300 g pulverisiertes Harz, 1 ,9 g Antischaummittel Troykyd D777 der Fa. Troy Chemical Co., 26,3 g Urethanverdicker Acrysol RM8 der Fa. Rohm und Haas wurden in dieser Reihenfolge unter Rühren eingewogen und anschließend 10 min. dissolviert
(20m/sec). Anschließend wurde dieser Ansatz in einer Laborsandmühle SMC ca. 3 1/2 Std. mit Mahlkörpern dispergiert. Die mittlere Teilchengröße nach der Mahlung betrug 4 μm.
Das Mahlgut wurde mit 0,5 % Byk 345 (siliconhaltiges Verlaufsmittel),
10 %-ige wäßriger DMEA-Lösung zum Einstellen eines pH-Wertes von 6,0 versetzt und mit Wasser auf Spritzviskosität eingestellt (300 Pas bei 1000 s"1).
3. Vergleichsbeispiel:
670 g Wasser, 1 ,9 g Dispergiermittel Orothan 731 K der Fa. Rohm und Haas, 0,19 g Triton 100 der Fa. Rohm und Haas, 300 g pulverisiertes Harz, 1 ,9 g Antischaummittel Troykyd D777 der Fa. Troy Chemical Co., 26,3 g Urethanverdicker Acrysol RM8 der Fa. Rohm und Haas wurden in dieser Reihenfolge unter Rühren eingewogen und anschließend 10 min. dissolviert (20 m/sec). Anschließend wurde dieser Ansatz in einer Laborsandmühle SMC ca. 3 Vz Std. mit Mahlkörpern dispergiert. Die mittlere Teilchengröße nach der Mahlung betrug 5 μm. Das Mahlgut wurde mit 0,5 Byk 345 (siliconhaltiges Verlaufsmittel), 10 %-iger wäßriger DMEA-Lösung zum Einstellen eines pH-Wertes von 6,0 versetzt und mit Wasser auf Spritzviskosität eingestellt (300 mPas bei 1000 s"1).
Applikation der Beispiele C2 und C3 (Vergleichsbeispiel)
Auf ein gefülltes Bonderblech wurde der silbermetallic WBL (Würzburger System, PAT EP 0 228 003 B2 oder DE 38 25 278 und
Folgepatente) in einer Schichtdicke von 12 μm Trockenfilm appliziert, 10 min. bei RT, 10 min. bei 80 °C getrocknet. Danach wurde naß in naß die Pulverslurry in einer Schichtdicke von 40 bis 50 μm Trockenfilm appliziert und 10 min. bei RT abgelüftet, 6 min. bei 50 °C vorgetrocknet und anschließend 30 min. bei 145 °C eingebrannt.
Der Klarlackfilm aus dem Ausführungsbeispiel C2. zeichnet sich durch eine deutlich geringere Tendenz zur Rißbildung aus. Das Halbfabrikat (Mahlgut) und der Naßlack haben eine geringere Sedimentationsneigung als die Naßlacke des Vergleichsbeispieis C3..
Desweiteren ist der Mahlgutansatz besser temperaturbelastbar und scherstabiler.

Claims

Ό
Patentansprüche
1. Wäßrige Pulverklarlack-Dispersion bestehend aus einer festen, pulverförmigen Komponente A und einer wäßrigen Komponente B, wobei
Komponente A. ein Pulverklarlack ist enthaltend a) wenigstens ein epoxidhaltiges Bindemittel mit einem Gehalt von 25 bis 45 Gew.%, vorzugsweise 30 bis 35 Gew.% an glycidylhaltigen Monomeren ggf. mit einem Gehalt an vinylaromatischen Verbindungen, vorzugsweise Styrol, b) wenigstens ein Vernetzungsmittel, vorzugsweise geradkettige, aliphatische Dicarbonsäuren und/oder carboxyfunktionelle Polyester und c) ggfs. Katalysatoren, Hilfsstoffe, pulverklarlacktypische
Additive wie EntgasungsmittelNeriaufsmittel, UV-Absorber, Radikalfänger, Antioxidantien und Komponente B. eine wäßrige Dispersion ist enthaltend a) wenigstens einen nicht-ionischen Verdicker und b) ggfs. Katalysatoren, Hilfsstoffe, Entschäumungsmittel, Netzmittel, Antioxidantien, UV-Absorber, Radikalfänger,
Biozide, geringe Mengen Lösemittel, Verlaufsmittel, Neutralisierungsmittel, vorzugsweise Amine und/oder Wasserrückhaltemittel und c) ein Dispergiermittel in Form einer nicht-ionischen Poiyurethandispersion. Wäßrige Pulverklariack-Dispersion nach Anspruch 1 , d a d u r c h g e k e n n z e i c h n e t, daß deren pH-Wert zwischen 4,0 - 7,0, vorzugsweise 5,5 und 6,5 liegt.
Wäßrige Pulverklariack-Dispersion nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß deren Gehalt an vinylaromatischen Verbindungen höchstens 35, vorzugsweise 10 - 25 Gew.% beträgt bezogen auf Komponente Aa).
4. Wäßrige Pulverklariack-Dispersion nach einem der Ansprüche 1- 3, dadurch gekennzeichnet, daß die epoxidfunktionellen Bindemittel epoxidgruppenhaltige Polyacrylatharze sind, wobei die eingesetzten epoxidfunktionellen Monomere, vorzugsweise Glycidylacrylat, Glycidylmethacrylat und Allylglycidylester sind.
5. Wäßrige Pulverklariack-Dispersion nach einem der Ansprüche 1 - 4, d a d u r c h g e k e n n z e i c h n e t, daß die Korngröße höchstens 20 μm, vorzugsweise 3 bis 10 μm ist.
6. Wäßrige Pulverklariack-Dispersion nach einem der Ansprüche 1 - 5, d a d u rc h g e k e n n z e i c h n e t, daß die nicht-ionische Poiyurethandispersion c) enthält:
1. wenigstens eine organische Komponente mit wenigstens zwei reaktiven Wasserstoffatomen,
2. einen monofunktionalen Polyether und
3. ein Polyisocyanat.
o
7. Wäßrige Pulverklariack-Dispersion nach einem der Ansprüche 1 - 5, d a d u r c h g e k e n n z e i c h n e t, daß die nicht-ionische Polyurethandispersion c) 1. wenigstens eine organische Komponente mit wenigstens zwei reaktiven Wasserstoff atomen, 2. einen nicht-ionischen Stabilisator hergestellt durch Reaktion i. eines monofunktionale Polyethers mit einer polyisocyanathaltigen Komponente zur Herstellung eines Isocyanatzwischenproduktes und ii. einer Komponente mit wenigstens zwei aktiven Aminogruppen und wenigstens zwei aktiven Hydroxylgruppen und 3. wenigstens einer polyisocyanathaltigen Komponente.
8. Verfahren zur Herstellung der wäßrige Pulverklariack-Dispersion nach einem der Ansprüche 1 -7, dadurch gekennzeichnet, daß I. aus einer festen, pulverförmigen Komponente A und einer wäßrigen Komponente B eine Dispersion hergestellt wird, wobei die
Komponente A. ein Pulverklarlack ist enthaltend a) wenigstens ein epoxidhaltiges Bindemittel mit einem Gehalt von 25 bis 45 Gew.%, vorzugsweise 30 bis 35 Gew.% an glycidylhaltigen Monomeren ggf. mit einem Gehalt an vinylaromatischen Verbindungen, vorzugsweise Styrol, b) wenigstens ein Vernetzungsmittel, vorzugsweise geradkettige, aliphatische Dicarbonsäuren und/oder carboxyfunktionelle Polyester und c) ggfs. Katalysatoren, Hilfsstoffe, pulverklarlacktypische Additive wie Entgasungsmittel, Verlaufsmittel, UV-Absorber,
Radikalfänger, Antioxidantien und Komponente B. eine wäßrige Dispersion ist enthaltend a) wenigstens einen nicht-ionischen Verdicker und b) ggfs. Katalysatoren, Hilfsstoffe, Entschäumungsmittel, Dispersionshilfsmittel, Netzmittel, vorzugsweise carboxyfunktionelle Dispergiermittel, Antioxidantien, UV- Absorber, Verlaufsmittel, Neutralisierungsmittel, vorzugsweise Amine, Radikalfänger, geringe Mengen Lösemittel, Biozide und/oder Wasserrückhaltemittel und c) ein Dispergiermittel in Form einer nicht-ionischen Polyurethandispersion,
II. die aus den Komponenten A und B hergestellte Dispersion ggfs. vermählen wird,
III. der pH-Wert der Dispersion auf 4,0 bis 7,0, vorzugsweise 5,5 bis 6,5 eingestellt und filtriert wird.
9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, daß die wäßrige Pulverklariack-Dispersion aus den Komponenten A und B durch Naßvermahlung hergestellt wird.
10. Verwendung der wäßrigen Pulverklariack-Dispersion nach einem der
Ansprüche 1 bis 7 zur Beschichtung von lackierten und nicht lackierten Automobilkarosserien aus Metallblech und/oder Kunststoff mittels elektrostatisch unterstützter Hochrotation oder pneumatischer
Applikation.
EP99917932A 1998-04-01 1999-03-31 Nicht-ionisch stabilisierte pulverklarlack-dispersion Withdrawn EP1084199A2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19814471 1998-04-01
DE19814471 1998-04-01
DE19912661 1999-03-20
DE19912661A DE19912661A1 (de) 1998-04-01 1999-03-20 Nicht-ionisch stabilisierte Pulverlack-Dispersion
PCT/EP1999/002204 WO1999050359A2 (de) 1998-04-01 1999-03-31 Nicht-ionisch stabilisierte pulverklarlack-dispersion

Publications (1)

Publication Number Publication Date
EP1084199A2 true EP1084199A2 (de) 2001-03-21

Family

ID=26045178

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99917932A Withdrawn EP1084199A2 (de) 1998-04-01 1999-03-31 Nicht-ionisch stabilisierte pulverklarlack-dispersion

Country Status (4)

Country Link
US (1) US6344501B1 (de)
EP (1) EP1084199A2 (de)
JP (1) JP2003527449A (de)
WO (1) WO1999050359A2 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537472A (ja) 1999-02-25 2002-11-05 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト 重ね塗り塗膜を製造するためのトリシクロデカンジメタノールの使用
DE19909894A1 (de) 1999-03-06 2000-09-07 Basf Coatings Ag Sol-Gel-Überzug für einschichtige oder mehrschichtige Lackierungen
DE19920799A1 (de) 1999-05-06 2000-11-16 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und seine Verwendung
DE19921457B4 (de) 1999-05-08 2006-05-04 Basf Coatings Ag Modulsystem zur Herstellung wäßriger Beschichtungsstoffe, Verfahren zu deren Herstellung und Verwendung sowie damit hergestellte Lackierungen
DE19924674C2 (de) 1999-05-29 2001-06-28 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und seine Verwendung
DE19932497A1 (de) 1999-07-12 2001-01-18 Basf Coatings Ag Wäßriger Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung
DE19938759A1 (de) 1999-08-16 2001-02-22 Basf Coatings Ag Beschichtungsstoff und seine Verwendung zur Herstellung hochkratzfester mehrschichtiger Klarlackierungen
DE10004494A1 (de) * 2000-02-02 2001-08-16 Basf Coatings Ag Physikalisch, thermisch oder thermisch und mit aktinischer Strahlung härtbarer wässriger Beschichtungsstoff und seine Verwendung
DE10027290C2 (de) * 2000-06-02 2002-07-11 Basf Coatings Ag Pulverklarlackdispersionen (Pulverslurry-Klarlacke) und ihre Verwendung
DE10027292C2 (de) * 2000-06-02 2003-11-13 Basf Coatings Ag Pulverklarlackdispersionen (Pulverslurry-Klarlacke) und ihre Verwendung
DE10041634C2 (de) * 2000-08-24 2002-10-17 Basf Coatings Ag Wäßrige Dispersion und ihre Verwendung zur Herstellung von thermisch und mit aktinischer Strahlung härtbaren Beschichtungsstoffen, Klebstoffen und Dichtungsmassen
DE10058870A1 (de) * 2000-11-27 2002-06-06 Basf Coatings Ag Wässriger Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung
DE10060765A1 (de) * 2000-12-07 2002-06-20 Basf Coatings Ag Farb- und/oder effektgebende Pulverslurry, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10113884B4 (de) * 2001-03-21 2005-06-02 Basf Coatings Ag Verfahren zum Beschichten mikroporöser Oberflächen und Verwendung des Verfahrens
DE10126651A1 (de) * 2001-06-01 2002-12-12 Basf Coatings Ag Pulverlacksuspensionen (Pulverslurries) und Pulverlacke, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10129899A1 (de) * 2001-06-21 2003-01-09 Basf Coatings Ag Physikalisch, thermisch oder thermisch und mit aktinischer Strahlung härtbarer wäßriger Beschichtungsstoff und seine Verwendung
DE10130972C1 (de) * 2001-06-27 2002-11-07 Basf Coatings Ag Verfahren zur Herstellung von Beschichtungen aus thermisch und mit aktinischer Strahlung härtbaren Beschichtungsstoffen und mit dem Verfahren herstellbare Lackierungen
US6852771B2 (en) * 2001-08-28 2005-02-08 Basf Corporation Dual radiation/thermal cured coating composition
US20030077394A1 (en) * 2001-08-28 2003-04-24 Bradford Christophen J. Dual cure coating composition and process for using the same
US20030083397A1 (en) * 2001-08-28 2003-05-01 Bradford Christopher J. Dual cure coating composition and process for using the same
US6835759B2 (en) * 2001-08-28 2004-12-28 Basf Corporation Dual cure coating composition and processes for using the same
US6699942B2 (en) * 2001-09-14 2004-03-02 Ppg Industries Ohio, Inc. Powder coating compositions demonstrating improved mar resistance
DE10206225C1 (de) * 2002-02-15 2003-09-18 Basf Coatings Ag Verfahren zur Herstellung farb- und/oder effektgebender Mehrschichtlackierungen
DE10248324A1 (de) * 2002-10-17 2004-05-06 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und Verfahren zum Beschichten miktoporöser Oberflächen
DE102004023071A1 (de) * 2004-05-11 2005-12-08 Basf Ag Pumpbare Tricyclodecandimethylol enthaltende Zusammensetzung
DE102005062379A1 (de) * 2005-12-23 2007-06-28 Basf Ag Carbamatgruppenhaltiger Co-Vernetzer
CN102690593A (zh) * 2012-06-01 2012-09-26 安徽省金盾涂料有限责任公司 一种纳米水性涂料组合物
US20180133955A1 (en) * 2016-11-14 2018-05-17 Desktop Metal, Inc. Controlling light penetration for stereolithographic manufacturing of dense objects

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3341580A (en) 1965-06-21 1967-09-12 Carlisle Chemical Works Tetrahydrocarbyl phosphonium acid carboxylates
US3477990A (en) 1967-12-07 1969-11-11 Shell Oil Co Process for reacting a phenol with an epoxy compound and resulting products
BE756693A (fr) 1969-09-26 1971-03-25 Ciba Geigy Composition de resine epoxyde
JPS5312531B1 (de) 1971-03-26 1978-05-01
US3781379A (en) 1971-08-16 1973-12-25 Ford Motor Co Powdered coating compositions containing glycidyl methacrylate copolymers with anhydride crosslinking agents and flow control agent
JPS534048A (en) 1975-12-26 1978-01-14 Dainippon Toryo Co Ltd Method of forming multi-layer coating film
DE2749576C3 (de) 1977-11-05 1980-04-24 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Verfahren zur Herstellung eines Glycidylgruppen aufweisenden Acrylharzes und dessen Verwendung
DE3545618A1 (de) 1985-12-21 1987-06-25 Basf Lacke & Farben Wasserverduennbares ueberzugsmittel zur herstellung der basisschicht eines mehrschichtueberzuges
US5055524A (en) 1987-07-16 1991-10-08 Ppg Industries, Inc. Polyol-modified polyanhydride curing agent for polyepoxide powder coatings
DE3825278A1 (de) 1988-07-26 1990-02-01 Basf Lacke & Farben Verfahren zur herstellung von mehrschichtigen, schuetzenden und/oder dekorativen ueberzuegen auf substratoberflaechen
US4939213A (en) 1988-12-19 1990-07-03 American Cyanamid Company Triazine crosslinking agents and curable compositions containing the same
US5084541A (en) 1988-12-19 1992-01-28 American Cyanamid Company Triazine crosslinking agents and curable compositions
TW328955B (en) 1993-05-14 1998-04-01 Cytec Tech Corp Process for preparing bis- or tris-carbamate functional 1,3,5-triazines, substantially halogen contamination free crosslinker compositions and new bis-or tris-carbamate functional 1,3,5-triazines
ZA962618B (en) 1995-04-10 1996-10-11 Basf Lacke & Farben Aqueous dispersion of transparent powder lacquers
JPH11509563A (ja) * 1995-05-19 1999-08-24 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト 水性粉末塗料分散液
DE19540977A1 (de) 1995-11-03 1997-05-07 Basf Lacke & Farben Wäßrige Pulverlack-Dispersionen
US5965213A (en) * 1996-04-04 1999-10-12 Basf Coatings Ag Aqueous dispersions of a transparent powder coating
DE19652813A1 (de) 1996-12-18 1998-06-25 Basf Coatings Ag Wäßrige Pulverlack-Dispersion
DE19727892A1 (de) 1997-07-01 1999-01-07 Basf Coatings Ag Wäßrige Pulverlack-Dispersion, Verfahren zu ihrer Herstellung sowie Verwendung der erhaltenen Pulverlack-Dispersion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9950359A2 *

Also Published As

Publication number Publication date
JP2003527449A (ja) 2003-09-16
US6344501B1 (en) 2002-02-05
WO1999050359A2 (de) 1999-10-07
WO1999050359A3 (de) 1999-11-18

Similar Documents

Publication Publication Date Title
WO1999050359A2 (de) Nicht-ionisch stabilisierte pulverklarlack-dispersion
EP1109869B1 (de) Wässrige pulverklarlack-dispersion
EP0946655B1 (de) Wässrige pulverlack-dispersion
EP1115504B1 (de) Kratzfester sol-gel-überzug für pulverslurry-klarlacke
EP1165702B1 (de) Thermisch und mit aktinischer strahlung härtbare pulverslurry, verfahren zu ihrer herstellung und ihre verwendung
WO1996037561A2 (de) Wässrige pulverlack-dispersion
EP3402852B1 (de) Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
WO1996032452A1 (de) Wässrige pulverklarlack-dispersion
EP0993485B1 (de) Wässrige pulverlack-dispersion, verfahren zu ihrer herstellung sowie verwendung der erhaltenen pulverlack-dispersion
WO1997017390A1 (de) Wässrige pulverlackdispersionen
WO2000071596A1 (de) Beschichtungsstoff mit einer mischung aus kieselsäuren und harnstoff und/oder harnstoffderivaten
EP0581211A1 (de) Wässriges Überzugsmittel, Verfahren zu dessen Herstellung und dessen Verwendung bei Verfahren zur Mehrschichtlackierung
EP1490448B1 (de) Wässrige 2k-pur-systeme
DE19908013A1 (de) Mit aktinischer Strahlung und gegebenenfalls themisch härtbare Pulverslurrys, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2001064770A1 (de) Wässrige überzugsmittel für festkörperreiche einbrennlackierungen
EP1121387A1 (de) Folie und deren verwendung zur beschichtung von formteilen
US6943210B2 (en) Pseudoplastic powdered lacquer slurry free of organic solvents method for production and the use thereof
DE19621836A1 (de) Pulverlack, enthaltend mindestens ein hydroxylgruppenhaltiges Bindemittel und mindestens ein Vernetzungsmittel mit freien Isocyanatgruppen, sowie seine Verwendung zur Herstellung einer Mehrschichtlackierung
DE19912661A1 (de) Nicht-ionisch stabilisierte Pulverlack-Dispersion
DE19744561A1 (de) Pulverklarlack und wäßrige Pulverklarlack-Dispersion
EP1015519B1 (de) Pulverklarlackdispersion
EP1412442A1 (de) Strukturviskose klarlack-slurry, verfahren zu ihrer herstellung und ihre verwendung
EP1117732A1 (de) Folie und deren verwendung zur beschichtung von formteilen
DE19832107A1 (de) Pulverklarlack-Dispersion
DE10009414A1 (de) Wässrige Überzugsmittel für festkörperreiche Einbrennlackierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000817

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040513