EP1082876B1 - Device for heating media - Google Patents

Device for heating media Download PDF

Info

Publication number
EP1082876B1
EP1082876B1 EP99926417A EP99926417A EP1082876B1 EP 1082876 B1 EP1082876 B1 EP 1082876B1 EP 99926417 A EP99926417 A EP 99926417A EP 99926417 A EP99926417 A EP 99926417A EP 1082876 B1 EP1082876 B1 EP 1082876B1
Authority
EP
European Patent Office
Prior art keywords
resistance
heating element
container
resistance heating
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99926417A
Other languages
German (de)
French (fr)
Other versions
EP1082876A1 (en
Inventor
Hans Oppitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Latec AG
Original Assignee
Latec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Latec AG filed Critical Latec AG
Publication of EP1082876A1 publication Critical patent/EP1082876A1/en
Application granted granted Critical
Publication of EP1082876B1 publication Critical patent/EP1082876B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • the present invention relates to a device for heating media, in particular liquids.
  • the heating of the medium in a container is accomplished by placing heating elements in the container, e.g. in the form of heating rods, are introduced.
  • the entry and exit points of the heating elements must be sealed in order to prevent the escape of the medium. This brings an increased design effort with it.
  • the heating element is in direct contact with the medium to be heated. If the heating element is damaged, it can thus be used with some media such as e.g. Water in addition to a security risk.
  • US-A-4571481 discloses a device for heating media comprising at least one container for receiving the medium and at least one sheet resistance element, wherein the resistance heating element is arranged in containers, and whose resistance mass comprises an intrinsically electrically conductive polymer.
  • US-A-5305419 discloses an apparatus in which the resistance heating element comprises an outer metal layer.
  • a socket of intrinsically electrically conductive polymer is provided. This socket connects the layer to the conductive inner wall of the container.
  • Object of the present invention is to provide a device with which media can be heated quickly and reliably and in which there are no problems regarding the tightness of the container and an impact of the medium on the heating element.
  • the invention is based on the finding that this object can be achieved by a device in which a suitable heating element for heating the medium outside the container is arranged and allows a targeted penetration of the heat generated in the container.
  • a device for heating _ media comprising at least one container for receiving the medium, and at least one planar resistance heating element, wherein the resistance heating element is arranged on at least part of the outside of the container and its resistance mass is an electrically conductive polymer includes.
  • the heating element is outside the container, whereby the container next to an opening for filling and emptying needs no further openings and the tightness of the container can thus be ensured without design effort. Furthermore, there are no security risks in the device according to the invention.
  • the electrical resistance heating element does not come into contact with the medium to be heated. Penetration of the medium into the heating element and thereby caused short circuits or damage to the resistance heating element can thus be avoided.
  • the resistance heating element serves as a black body, which can emit radiation of all wavelengths. With decreasing temperature, the wavelength of the radiated radiation shifts more and more to the infrared. This infrared radiation can thus penetrate into the container in container materials that allow the passage of infrared radiation, such as glass or radiation-permeable plastic. As a result, in addition to the heat conduction and radiant heat enter the medium and heat it. Due to the depth effect no particularly high temperatures are required in the heating element itself. In particular, in the heating of e.g. Water is thereby avoided precipitation of lime and other mineral salts.
  • the resistance heating element can withstand mechanical stresses.
  • the polymers have such flexibility that they do not tend to break in the resistance mass even under load, whereby a local overheating would occur.
  • a resistance heating element whose resistance mass comprises an electrically conductive polymer, has the further advantage that this generates sufficient heat even at low voltages.
  • Mains voltage can be applied with the resistance heating element used according to the invention, thus producing power in the kW / m 2 range of, for example, 20 to 60 kW / m 2 .
  • the performance should be set to 30 to 60 W / m 2 , preferably 30 to 40 W / m 2 due to the lower heat output to the container.
  • the resistance heating element may have a shape in which it comprises at least two electrodes extending longitudinally through the surface of the resistive mass, the current applied to the electrodes passing through the resistive mass perpendicular to the thickness of the resistive mass.
  • the parts of the resistance heating element which serve to supply or discharge current to and from the resistance mass are referred to as electrodes.
  • the area formed by the resistance mass is also referred to below as the resistance layer.
  • the electrodes may also extend in the width direction through the surface of the resistive mass.
  • electrodes for example, Lahn tapes can be used in this embodiment.
  • the use of such a resistance heating element has the advantage that the resistance mass, which lies between the electrodes and heats up when a voltage is applied to the electrodes, is in direct contact with the outer surface of the container. Heat losses can be minimized.
  • the surface of the resistive mass may comprise a grid, wherein the filaments of the grid are formed from a plastic of the electrically conductive polymer or the filaments of the grid consists of a different material and are coated with this plastic.
  • This grid can be easily arranged on the outer wall of the container due to its flexibility. In this way, a good contact between the container and the resistance heating element can be produced and the heat transfer between the container and the resistance heating element can be improved.
  • the grid has a certain flexibility. If the container bulges due to the filling with the medium or due to the heating of the medium, so the grid can absorb this mechanical stress, without it would come to an uneven heat transfer over the surface.
  • the crossing points defined in a lattice do not allow a relative change in the distance between the individual threads of the lattice and, on the other hand, there is no danger of tearing off the threads and thus of the electrical line due to the selected material which comprises an electrically conductive polymer. Even with mechanical stress so a local temperature increase can not occur and there is still a uniform heat transfer over the surface of the grid.
  • the resistance heating element may comprise two planar electrodes, between which the resistance mass is arranged in the form of a layer, wherein the electrodes at least partially cover these and at least one of the electrodes faces the outer wall of the container.
  • the current applied to the electrodes flows through the sheet resistance substantially in thickness.
  • the electrodes are preferably made of a highly conductive material. Local overheating can be derived by the good thermal conductivity of the electrodes. Overheating can thus only in the direction of the layer thickness occur and affect but not negative due to the small thickness of the sheet-like resistance heating element.
  • Another advantage of such a construction of the resistance heating element in the device according to the invention is that it can also be ideally compensated by a local temperature increase caused by the resistance heating element from the outside, eg from the container.
  • the electrically conductive polymer of the resistance mass of the resistance heating element has a positive temperature coefficient of electrical resistance.
  • this comprises two containers, between which a resistance heating element is arranged so that one surface of the resistance heating element on the outside of the one container and the opposite surface of the resistance heating element is arranged on the outside of the other container.
  • Advantage of this embodiment is that the heat losses can be minimized.
  • the resistance heating element releases heat in all directions.
  • the device according to the invention comprises at least two containers, which are connected to each other so that the medium can flow through the containers in succession.
  • the medium can be preheated in a first container and heated in a second or further container to the desired temperature.
  • the device according to the invention can also comprise at least two containers, which have devices which allow a separate filling and emptying of a respective container.
  • Advantage of this embodiment is the rapid availability of the entire heated amount of the medium.
  • a preferred embodiment of the device according to the invention is a water heater.
  • the advantages of the invention can be particularly utilized. This way, the water can be heated very quickly without risk and calcification can be avoided.
  • the device according to the invention also allows a flat construction, i. a construction in which the depth of the device to the width and height is low. This design brings both space savings and a uniform heating of the water with it. In a flat configuration, preferably one of the surfaces of the container is completely covered by a resistance heating element.
  • the device 1 of the invention consists of two containers 21, 22. Between these containers 21. 22, the resistance heating element 3 is arranged.
  • the embodiment shown has a flat construction, in which the resistance heating element 3 rests against a flat side of the containers 21, 22 and covers them as far as possible.
  • FIG. 2 shows a device according to the invention, in which the resistance mass 33 of the resistance heating element 3 has a lattice-like structure.
  • the resistance heating element 3 is arranged on one side of the container 2 and covers there the outer wall as far as possible.
  • the electrodes 31, 32 extend longitudinally through the resistance mass 33, whereby the current applied to them flows through the resistance mass 33 perpendicular to the thickness of the resistance mass 33. This direction is indicated in Figure 2 by an arrow.
  • the container 2 further comprises a Befulüll Hughes 23 for supplying the medium to be heated and an emptying device 24 for discharging the heated medium.
  • the electrodes 31. 32 extend beyond the resistance heating element 3 and the container 2, whereby the Connection of the electrodes 31, 32 to the power source (not shown) is made possible.
  • FIG. 3 shows a further embodiment of the device according to the invention, in which a planar resistance heating element 3 with planar electrodes 34 is used.
  • the electrode 34 bears against the outer wall of the container 2 and covers this side of the container as far as possible.
  • the sheet resistor 35 is arranged on the electrode 34. This comprises an electrically conductive polymer.
  • the second electrode 34 is arranged, which covers this.
  • an electrically conductive layer 37 is disposed on the container 2, which is covered by a sheet resistor 33.
  • a sheet resistor 33 On this sheet resistor 33, two outer flat electrodes 38, 39 are arranged spaced from each other.
  • the resistance mass 33 which comprises electrically conductive polymer, and heats the latter.
  • the heat thus generated penetrates via the outer wall of the container 2 into the interior and heats the medium therein. Due to the planar design of the resistance heating element 3, the heat generated over a large area to the container and thus the medium are discharged.
  • the resistance heating element 3 Due to the flexibility of the resistance heating element 3, in particular in the embodiment in which the resistance mass 33 is lattice-like, this can also create surfaces that are not flat.
  • the container may thus also have other shapes than those shown.
  • FIGS. 6, 7 and 8 show further embodiments of the device according to the invention, which have two containers 21, 22.
  • the resistance heating element 3 is disposed between the containers and preferably covers the complete side of the container against which the resistance heating element abuts.
  • the containers 21, 22 may be fixedly connected to each other by edge-mounted sleeves or clips (not shown).
  • connection between the containers is preferably formed on the container bottom through a channel or through a pipe.
  • the channel or the tube to the individual containers 21, 22 screwed and sealed O-rings.
  • the embodiment shown in Figure 6 is preferably used for the flat construction of the device according to the invention.
  • the containers 21, 22 each have a triangular cross section, wherein the resistance heating element 3 rests against the respective hypotenuse of the triangular cross section.
  • the largest outer side of the container 21, 22 is covered by the Widertandsheizelement.
  • the ratio between the volume to be heated and the contact surface of the resistance heating element with the outside of the container is thus optimally adjusted.
  • the filling device 23 and emptying device 24 are arranged in the embodiment shown in Figure 6 at the top of the container 21, 22.
  • the resistance heating element does not extend on a straight line between the two containers. Rather, the containers each have a wide 221 and a tapered portion 212, which are interconnected by an oblique transition 231. Due to this configuration of the container can on the one hand a smallylondikke allows the device to be made possible and on the other hand, the provision of filling and emptying at the top. '
  • FIG. 8 shows a device in which the containers 21, 22 each have a semicircular cross-section. Between these semicircular containers, a flat resistance heating element 3 is arranged.
  • this embodiment has the advantage that due to the large area a low temperature must be present at the resistance heating, whereby a circulation of the medium can be avoided.
  • Such circulation in conventional heating elements, causes the medium discharged from the container to be removed from a portion of the apparatus in which cold and warm medium are mixed due to circulation. In the device according to the invention, however, the warm medium rises in the container upwards and can be removed from there.
  • heating elements with a resistance mass which extends in a planar manner between the electrodes and in which the current passes through the resistance mass perpendicular to the thickness or resistive heating elements with flat electrodes can be used where the current passes through the thickness of the resistive layer can be used.
  • the latter type of resistance heating element is preferred here.
  • the diameter of the filaments of the grid running parallel to the electrodes may be smaller than the diameter of the filaments perpendicular to them be lost.
  • This uniform passage of current can also be achieved by a suitable choice of the material of the threads.
  • a difference in conductivity between the parallel and the perpendicular threads of 15 to 25%, preferably 20%, sufficient to thus regulate the flow of current through the threads or their coating and to distribute ideally over the entire surface.
  • a support fabric for example made of plastic, which has been coated with the electrically conductive polymer on both sides and thus continuous layers were obtained on the supporting fabric serve.
  • knitted or fiber mats of, for example, polyamide, for example nylon, glass fibers, polyester or polypropylene may be used.
  • the current flows through the resistance mass in the thickness direction of the resistance heating element when the electrodes are connected to a power source (not shown).
  • the generated heat is released to the container and thus the medium.
  • the resistive layer may comprise a glass fiber mat that has been soaked with electrically conductive polymer by immersion.
  • resistive layers containing ceramic particles, e.g. Barium titanate include. Despite this ceramic, the temperature coefficient of the resistance mass of the resistor used in the present invention may be negative.
  • a negative temperature coefficient of electrical resistance requires a very low inrush current.
  • the resistance mass used in the invention may be adjusted so that at elevated temperature the temperature coefficient of electrical resistance becomes positive.
  • the inrush currents here can be 50% of the operating current.
  • two flat electrodes are arranged on the side facing away from the container and separated from each other by an insulation. This isolation can be done by providing an insulating piece of insulating material or by air.
  • a layer of electrically conductive material is applied, for example in the form of a metal foil or metal sheet. This electrically conductive layer is not connected to the power source.
  • the current flows from the one contacted electrode through the thickness of the resistive mass to the electrically conductive layer, is forwarded therethrough, and flows through the resistive mass back to the second contacted electrode.
  • Such a structure of the resistance heating element has the advantage that it can be operated by a very low voltage.
  • the voltage can be reduced by up to half the voltage required in the construction with two flat electrodes sandwiching the resistance mass between them.
  • the reduction of the supply voltage is due, inter alia, to the resistance formed by the insulation between the adjacent electrodes. If air is selected as insulation, the resistance is determined by the distance of the electrodes from each other and thus by the surface resistance.
  • the device according to the invention for heating media as a hot water boiler operation with very low voltage is of particular advantage, as this can minimize the security risk.
  • the arrangement of the two contacted with the power source electrodes on one side of the sheet resistor has the further advantage that the Contact between the container and the electrically conductive foil or sheet is not disturbed by means of power supply.
  • FIG. 5 shows a resistance heating element in which a thin resistance layer 33 is present.
  • a planar electrode 38, 39 On both sides of the resistive layer 33 are each a planar electrode 38, 39 and a plurality of conductive layers 37 are arranged.
  • the electrodes 38, 39 are respectively provided at the opposite end of the resistance layer 33.
  • the electrode 38 and the conductive layers 37 are spaced from each other and offset from the electrode 39 and the conductive layers 37 disposed on the opposite side of the resistor layer 33.
  • the current applied to the electrodes 38, 39 flows through the resistive layer 33 and the conductive layers 37 in the direction indicated by arrows in the drawing.
  • the resistance layer 33 serves as a series circuit of a plurality of electrical resistances, whereby a high performance can be achieved.
  • both the resistance in the thickness of the resistance layer 33 and the surface resistance in the spaces between the electrically conductive layers 37 and the electrically conductive layer 37 and the electrodes 38 and 39 are utilized.
  • the large spatial distance between the electrodes offers the advantage that direct contact between them can be avoided.
  • electrodes and electrically conductive layers can serve metal foils or sheets.
  • the resistance layer may be very thin and have a thickness of eg 1 mm. It is also within the scope of the invention to modify the resistance heating element shown in Figure 5 so that both electrodes are arranged on one side of the resistive layer.
  • the conductive layers are spaced apart between the electrodes disposed at the ends of the resistor layer.
  • the conductive layers offset and arranged spaced from each other. Even with this arrangement, even with a small layer thickness of the resistive layer, high powers can be achieved by using the resistive layer as a series connection of a plurality of resistors and the simultaneous use of the surface resistance.
  • the resistance mass may be provided in the region of the electrodes with a sprayed-on layer of metal.
  • the surface of the layer is sprayed with metal and then the planar electrode is applied. If the mass is constructed in the manner of a grid, then the area of the grid through which the electrodes should extend can be sprayed with metal prior to the introduction of the electrodes.
  • the contacting of the electrodes with the current source which preferably applies the resistance heating element with a mains voltage of 220 V, can be effected by conventional contacting methods. Since, even in embodiments with two containers, the heating element preferably covers an entire side of the respective container outer wall and thus extends to the edge, in both embodiments of the resistance heating element, i. in the case of sheet-like electrodes and in the case of electrodes extending longitudinally through the resistance mass, they can be accessed from the outside and can be connected there.
  • the resistance heating element is arranged between the containers such that the largest possible area of the outer walls of the containers is covered by the resistance heating element. When a voltage is applied, the resistance heating element releases heat in all directions and thus simultaneously heats the medium of the two containers. By this arrangement, the heating of a large amount of the medium is ensured with low power consumption.
  • the device according to the invention may also comprise more than two containers, wherein preferably resistance heating elements are arranged so that they can give off heat to two containers.
  • the flow of the medium to be heated can be performed so that it flows through only one or more containers.
  • the resistance mass also acts as a "black spotlight".
  • the radiation in the infrared range results in containers made of a material that transmits this radiation. e.g. Glass, to heat the medium inside the container. In this case, no high temperatures occur at the contact surface of the resistance heating element on the outer wall of the container. Unwanted decomposition processes in the medium are thus avoided.
  • the depth effect of the resistance heating element also has the advantage that the medium is heated evenly.
  • the means for filling and emptying can be arranged as required at different locations of the container. Preferably, they are arranged so that they have the greatest possible distance from the terminals of the electrodes. As a result, it is possible to rule out contact of the medium with the electrodes and resulting disadvantages even in the case of possible leaks in the device.
  • an electrically insulating layer between the resistance heating element and the outer wall of the container, in particular be provided in metal containers, an electrically insulating layer. Polyester, polyimide or polytetrafluoroethylene is preferably used for this layer.
  • the container has the shape of a cuboid, in which the height and length of the container is large in relation to its width.
  • This shape of the container allows a large contact surface with the container and a favorable ratio between this contact surface and the volume of the container in a flat resistance heating element.
  • the heating surface is large in relation to the volume of the medium to be heated, whereby a rapid and uniform heating can take place.
  • the container may also have, for example, a round cross-section.
  • another container which has an annular cross-section, be arranged, and the resistance heating element may be provided in a gap formed thereby between the containers.
  • the side walls of the container are completely covered with the resistance heating element.
  • the heat is released from all sides into the container and the medium is heated quickly.
  • a plurality of containers which are to be successively flowed through by the medium, they can be arranged one above the other, wherein the means for emptying the upper container is connected at its bottom with the means for filling a container disposed thereunder at the top thereof. If the containers are arranged next to one another, the media flow can be effected by means of pumps which can be arranged outside the containers.
  • the containers can be made of metal. Glass or plastic. Preferably, polycarbonate is used. Due to the low temperature at the resistance heating element, which is sufficient due to the depth effect of the resistance heating elements to heat the medium, there is no risk of melting the container even with the use of plastic containers.
  • the walls of the containers are preferably thin.
  • the heat from the heating element can be released well to the medium in the container.
  • the container can expand, in particular bulge during filling and heating.
  • the contact with the heating element located on the container is reinforced, especially in embodiments with two containers, between which a heating element is arranged.
  • ribs may additionally be provided in the container on the wall of the container which is not provided with the resistance heating element. Such ribs create a reinforcement on these walls.
  • the test pressure of 8 bar which is normally prescribed for example for water regulators, can also be maintained with plastic containers.
  • the thickness of the walls of the containers is between 1 and 8 mm, preferably 3 to 5 mm.
  • the thickness of the walls should be chosen according to the size of the container and the capacity.
  • Temperatures of water which have been heated in the device can be adjusted from 20 to 90 ° C.
  • the device according to the invention can have very low overall thicknesses. It can be produced total thicknesses of 6 to 10 cm, preferably 8 cm, wherein the surface heating element has a thickness of 0.1 to 5 mm, preferably 1 to 2 mm. For example, a hot water boiler with a thickness of only 8 cm can be produced with the device according to the invention. This small thickness allows attachment of the device eg behind veneers in kitchens or bathroom equipment.
  • the electrically conductive polymer used according to the invention is preferably produced by doping a polymer.
  • the doping may be a metal or semimetal doping.
  • the interfering conductor is chemically bound to the polymer chain and generates an impurity.
  • the doping atoms and the matrix molecule form a so-called charge-transfer complex.
  • electrons are transferred from filled bands of the polymer to the dopant.
  • the resulting electron holes give the polymer semiconductor-like electrical properties.
  • a metal or semimetal atom is incorporated into or attached to the polymer structure so as to generate free charges which allow the flow of current along the polymer structure.
  • the free charges are in the form of free electrons or holes. It thus creates an electron conductor.
  • the polymer has been doped with a doping material in an amount such that the ratio of atoms of the dopant to the number of polymer molecules is at least 1: 1, preferably between 2: 1 and 10: 1. By this ratio it is achieved that substantially all polymer molecules are doped with at least one atom of the doping material. By selecting the ratio, the conductance of the polymers and thereby the resistance layer, as well as the temperature coefficient of the resistance of the resistive layer can be adjusted.
  • the resistance layer may additionally comprise graphite particles. These particles can contribute to the conductivity of the
  • the entire resistive layer preferably does not contribute and preferably does not touch each other and in particular does not form lattice or skeletal structures.
  • the graphite particles are not firmly bound in the polymer structure, but are freely movable before. If a graphite particle is in contact with two polymer molecules, the current can jump from one chain through the graphite to the next chain. The conductivity of the resistance layer can thus be increased even further. At the same time, due to their free mobility in the resistance layer, the graphite particles can reach the electrodes and cause an improvement in the contact there.
  • the graphite particles are preferably present in an amount of at most 20% by volume, more preferably at most 5% by volume, based on the total volume of the resistance layer, and have a mean diameter of not more than 0.1 ⁇ m. Due to this small amount of graphite and the small diameter, the formation of a graphite lattice that would lead to a conduction of the current through these lattices can be avoided. It is thus ensured that the flow of current continues to take place essentially via the polymer molecules by electron lines and thus the advantages mentioned above can be achieved. In particular, the conduit does not have to pass through a graphite lattice where the graphite particles must touch and which is easily destroyed by mechanical and thermal stress, but along the stretchable and age-resistant polymer.
  • electrically conductive polymers it is possible to use both electrically conductive polymers such as polystyrene, polyvinyl resins, polyacrylic acid derivatives and copolymers thereof, as well as electrically conductive polyamides and their derivatives, polyfluorohydrocarbons, epoxy resins and polyurethanes.
  • electrically conductive polymers such as polystyrene, polyvinyl resins, polyacrylic acid derivatives and copolymers thereof, as well as electrically conductive polyamides and their derivatives, polyfluorohydrocarbons, epoxy resins and polyurethanes.
  • polyamides polymethyl methacrylates. Epoxies, polyurethanes and polystyrene or mixtures thereof used.
  • polyamides additionally have good adhesive properties, which are advantageous for the production of the device according to the invention for heating media, since this facilitates the attachment to the device.
  • the length of the polymer molecules used varies widely depending on the type and structure of the polymer, but is preferably at least 500, more preferably at least 4000 ⁇ .
  • the electrically conductive polymer used in the resistance surface of the device can be, in particular, those polymers which are conductive by metal or semimetal atoms which are attached to the polymers. These polymers preferably have a volume resistivity in the range of values achieved by semiconductors. It can be up to 10 2 ⁇ ⁇ cm, preferably it is higher, but at most 10 5 ⁇ ⁇ cm.
  • Such polymers can be obtained by a process in which polymer dispersions. Polymer solutions or polymers with metal or metalloid compounds or their solution are added in an amount such that a polymer molecule comes close to a metal or semimetal atom. This mixture is added a reducing agent in slight excess or formed by known thermal decomposition of metal or semimetal atoms. Subsequently, the formed or remaining ions are washed out and the dispersion solution or the granules can optionally be treated with graphite or carbon black.
  • the electrically conductive polymers used according to the invention are preferably free of ions.
  • the maximum content of free ions is 1% by weight, based on the total weight of the resistance layer.
  • the ions are either washed out as described above or a suitable reducing agent is added.
  • the reducing agent is added in such a ratio that the ions can be completely reduced.
  • the low proportion of ions, preferably the freedom from ions, of the electrically conductive polymers used according to the invention results in a long resistance of the resistance layer under the action of electrical currents. It has been found that polymers containing ions at a higher percentage have little resistance to aging upon exposure to electrical currents, as electro-lyse reactions cause self-destruction of the resistive layer.
  • the electrically conductive polymer used according to the invention is resistant to aging due to the low ion concentration even with prolonged application of electricity.
  • the reducing agent for the above-described process for producing an electroconductive polymer used in the present invention there are used those reducing agents which either do not form ions because they are thermally decomposed during processing, such as hydrazine, or chemically react with the polymer itself, such as formaldehyde or those whose excess or reaction products are easily washed out, such as hypophosphites.
  • metal or semimetals are preferably silver, arsenic, nickel. Graphite or molybdenum used.
  • the electrically conductive polymers used according to the invention can be prepared, for example, by reacting the polymer with 1-10% by weight (based on the polymer) a masterbatch prepared according to one of the following recipes.
  • Dispersion of fluorocarbon polymer (55% solids in water), 1 part by weight of wetting agent, 28 parts by weight of silver nitrate solution 10%, 6 parts by weight of chalk, 8 parts by weight of ammonia, 20 parts by weight Carbon black, 214 parts by weight of graphite, 11 parts by weight of hydrazine hydrate.
  • Example 2 1380 parts by weight of acrylic resin dispersion 60 wt .-% in water, 1 part by weight of wetting agent. 32 parts by weight of silver nitrate solution 10%, 10 parts by weight of chalk, 12 parts by weight of ammonia. 6 parts by weight of carbon black, 310 parts by weight of graphite, 14 parts by weight of hydrazine hydrate.
  • Example 3 2200 parts by weight of dist.

Abstract

The invention relates to a device for heating media which comprises at least one container for receiving the medium and at least one flat resistance heating element. The resistance heating element is positioned on at least part of the external side of the container and its resistance mass comprises an intrinsically electroconductive polymer.

Description

Die vorliegende Erfindung betrifft eine Vorrichtung zum Erwärmen von Medien, insbesondere von Flüssigkeiten.The present invention relates to a device for heating media, in particular liquids.

Bei herkömmlichen Vorrichtungen zur Erwärmung von Medien, z.B. bei Warmwasserboilern erfolgt die Erwärmung des Mediums in einem Behälter dadurch, daß Heizelemente in den Behälter, z.B. in Form von Heizstäben, eingebracht werden. Dabei müssen die Ein- und Austrittsstellen der Heizelemente abgedichtet werden, um ein Entweichen des Mediums zu verhindern. Dies bringt einen erhöhten Konstruktionsaufwand mit sich. Zudem steht das Heizelement bei herkömmlichen Vorrichtungen unmittelbar mit dem zu erwärmenden Medium in Kontakt. Bei einer Beschädigung des Heizelementes kann es somit bei einigen Medien wie z.B. Wasser zusätzlich zu einem Sicherheitsrisiko kommen.In conventional devices for heating media, e.g. in hot water boilers, the heating of the medium in a container is accomplished by placing heating elements in the container, e.g. in the form of heating rods, are introduced. The entry and exit points of the heating elements must be sealed in order to prevent the escape of the medium. This brings an increased design effort with it. In addition, in conventional devices, the heating element is in direct contact with the medium to be heated. If the heating element is damaged, it can thus be used with some media such as e.g. Water in addition to a security risk.

US-A-4571481 offenbart eine Vorrichtung zum Erwärmen von Medien, die mindestens einen Behälter zur Aufnahme des Mediums und mindestens ein flächiges Widerstandselement umfasst, wobei das Widerstandsheizelement in Behälter angeordnet ist, und dessen Widerstandsmasse ein intrinsisch elektrisch leitendes Polymer umfasst.US-A-4571481 discloses a device for heating media comprising at least one container for receiving the medium and at least one sheet resistance element, wherein the resistance heating element is arranged in containers, and whose resistance mass comprises an intrinsically electrically conductive polymer.

US-A-5305419 offenbar eine Vorrichtung, bei welcher das Widerstandsheizelement eine äußere Metallschicht aufweist. Eine Fassung aus intrinsisch elektrisch leitendem Polymer ist vorgesehen. Diese Fassung verbindet die Schicht mit der leitenden Innenwand des Behälters.US-A-5305419 discloses an apparatus in which the resistance heating element comprises an outer metal layer. A socket of intrinsically electrically conductive polymer is provided. This socket connects the layer to the conductive inner wall of the container.

Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung zu schaffen, mit der Medien schnell und zuverlässig erwärmt werden können und bei der keine Probleme bezüglich der Dichtigkeit des Behälters und einer Einwirkung des Mediums auf das Heizelement bestehen.Object of the present invention is to provide a device with which media can be heated quickly and reliably and in which there are no problems regarding the tightness of the container and an impact of the medium on the heating element.

Der Erfindung liegt die Erkenntnis zugrunde, daß diese Aufgabe durch eine Vorrichtung gelöst werden kann, bei der ein geeignetes Heizelement zum Erwärmen des Mediums außerhalb des Behälters angeordnet ist und ein gezieltes Eindringen der erzeugten Wärme in den Behälter erlaubt.The invention is based on the finding that this object can be achieved by a device in which a suitable heating element for heating the medium outside the container is arranged and allows a targeted penetration of the heat generated in the container.

Die Aufgabe wird erfindungsgemäß durch eine Vorrichtung zum Erwärmen von _ Medien gelöst, die mindestens einen Behälter zur Aufnahme des Mediums, und mindestens ein flächiges Widerstandsheizelement umfaßt, wobei das Widerstandsheizelement an zumindest einem Teil der Außenseite des Behälters angeordnet ist und dessen Widerstandsmasse ein elektrisch leitendes Polymer umfaßt.The object is achieved by a device for heating _ media comprising at least one container for receiving the medium, and at least one planar resistance heating element, wherein the resistance heating element is arranged on at least part of the outside of the container and its resistance mass is an electrically conductive polymer includes.

Bei der erfindungsgemäßen Anordnung befindet sich das Heizelement außerhalb des Behälters, wodurch der Behälter neben einer Öffnung zum Befüllen und Entleeren keine weiteren Öffnungen aufzuweisen braucht und die Dichtigkeit des Behälters somit ohne konstruktiven Aufwand gewährleistet werden kann. Weiterhin bestehen bei der erfindungsgemäßen Vorrichtung keine Sicherheitsrisiken. Das elektrische Widerstandsheizelement tritt mit dem zu erwärmenden Medium nicht in Kontakt. Ein Eindringen des Mediums in das Heizelement und dadurch verursachte Kurzschlüße oder Beschädigungen des Widerstandsheizelementes können somit vermieden werden.In the arrangement according to the invention, the heating element is outside the container, whereby the container next to an opening for filling and emptying needs no further openings and the tightness of the container can thus be ensured without design effort. Furthermore, there are no security risks in the device according to the invention. The electrical resistance heating element does not come into contact with the medium to be heated. Penetration of the medium into the heating element and thereby caused short circuits or damage to the resistance heating element can thus be avoided.

Zudem dient bei Verwendung eines elektrisch leitenden Polymers das Widerstandsheizelement als schwarzer Körper, der Strahlungen aller Wellenlängen abgeben kann. Mit abnehmender Temperatur verschiebt sich die Wellenlänge der abgestrahlten Strahlung immer mehr zum Infrarot. Diese Infrarot-Strahlung kann bei Behältermaterialien, die den Durchtritt von Infrarot-Strahlung erlauben, beispielsweise Glas oder strahlungsdurchlässiger Kunststoff, somit in den Behälter eindringen. Dadurch kann außer der Wärmeleitung auch Strahlungswärme in das Medium eintreten und dieses erwärmen. Durch die Tiefenwirkung sind in dem Heizelement selber keine besonders hohen Temperaturen erforderlich. Insbesondere bei der Erwärmung von z.B. Wasser wird das Ausfallen von Kalk und anderen Mineralsalzen dadurch vermieden.In addition, when using an electrically conductive polymer, the resistance heating element serves as a black body, which can emit radiation of all wavelengths. With decreasing temperature, the wavelength of the radiated radiation shifts more and more to the infrared. This infrared radiation can thus penetrate into the container in container materials that allow the passage of infrared radiation, such as glass or radiation-permeable plastic. As a result, in addition to the heat conduction and radiant heat enter the medium and heat it. Due to the depth effect no particularly high temperatures are required in the heating element itself. In particular, in the heating of e.g. Water is thereby avoided precipitation of lime and other mineral salts.

Durch die Wahl einer Widerstandsmasse, die ein elektrisch leitendes Polymer umfaßt, kann das Widerstandsheizelement auch mechanischen Belastungen standhalten. Die Polymere weisen eine solche Flexibilität auf, daß sie auch unter Belastung nicht zu Abrissen in der Widerstandsmasse neigen, wodurch eine lokale Überhitzung auftreten würde.By choosing a resistance mass comprising an electrically conductive polymer, the resistance heating element can withstand mechanical stresses. The polymers have such flexibility that they do not tend to break in the resistance mass even under load, whereby a local overheating would occur.

Mit dieser Widerstandsmasse kann somit ein flächiges Widerstandsheizelement realisiert werden, das über große Bereiche der Fläche zuverlässig Wärme abgeben kann. Diese gleichmäßige Wärmeabgabe über eine große Fläche ist insbesondere bei der erfindungsgemäßen Vorrichtung von Vorteil, da das Medium im Behälter gleichmäßig erwärmt wird und bei großen Heizflächen die Temperatur des Heizelementes geringer gehalten werden kann. Dadurch sind lokale hohe Temperaturen vermeidbar und eine Zersetzung des zu erwärmenden Mediums ist nicht zu befürchten.With this resistance mass thus a planar resistance heating element can be realized, which can reliably dissipate heat over large areas of the area. This uniform heat transfer over a large area is particular in the device according to the invention advantageous because the medium is heated evenly in the container and with large heating surfaces, the temperature of the heating element can be kept lower. As a result, local high temperatures are avoidable and decomposition of the medium to be heated is not to be feared.

Die Verwendung eines Widerstandsheizelementes, dessen Widerstandsmasse ein elektrisch leitendes Polymer umfaßt, hat weiterhin den Vorteil, daß dieses auch bei niedrigen Spannungen ausreichend Wärme erzeugt. Mit dem erfindungsgemäß verwendeten Widerstandsheizelement kann Netzspannung angelegt werden und so Leistungen im kW/m2 Bereich von beispielsweise 20 bis 60 kW/m2 erzeugt werden. Es ist aber auch möglich, geringere Leistungen zu erzeugen. Insbesondere bei der Verwendung von Kunststoffbehältern sollte die Leistung aufgrund der geringeren Wärmeabgabe an den Behälter auf 30 bis 60 W/m2, vorzugsweise 30 bis 40 W/m2 eingestellt werden..The use of a resistance heating element, whose resistance mass comprises an electrically conductive polymer, has the further advantage that this generates sufficient heat even at low voltages. Mains voltage can be applied with the resistance heating element used according to the invention, thus producing power in the kW / m 2 range of, for example, 20 to 60 kW / m 2 . But it is also possible to generate lower power. In particular, when using plastic containers, the performance should be set to 30 to 60 W / m 2 , preferably 30 to 40 W / m 2 due to the lower heat output to the container.

Das Widerstandsheizelement kann eine Form aufweisen, in der es mindestens zwei Elektroden umfaßt, die sich in Längsrichtung durch die Fläche der Widerstandsmasse erstrecken, wobei der an den Elektroden angelegte Strom die Widerstandsmasse senkrecht zu der Dicke der Widerstandsmasse durchfließt. Als Elektroden werden im Folgenden die Teile des Widerstandsheizelementes bezeichnet, die der Stromzu- oder -abführung zu bzw. von der Widerstandsmasse dienen. Die durch die Widerstandsmasse gebildete Fläche wird im Folgenden auch als Widerstandsschicht bezeichnet. Die Elektroden können sich auch in Breitenrichtung durch die Fläche der Widerstandsmasse erstrecken. Als Elektroden können bei dieser Ausführungsform z.B. Lahnbänder verwendet werden. Die Verwendung eines solchen Widerstandsheizelementes bringt den Vorteil mit sich, daß die Widerstandsmasse, die zwischen den Elektroden liegt und sich beim Anlegen einer Spannung an die Elektroden erwärmt, unmittelbar mit der Außenfläche des Behälters in Kontakt steht. Wärmeverluste können so minimiert werden.The resistance heating element may have a shape in which it comprises at least two electrodes extending longitudinally through the surface of the resistive mass, the current applied to the electrodes passing through the resistive mass perpendicular to the thickness of the resistive mass. In the following, the parts of the resistance heating element which serve to supply or discharge current to and from the resistance mass are referred to as electrodes. The area formed by the resistance mass is also referred to below as the resistance layer. The electrodes may also extend in the width direction through the surface of the resistive mass. As electrodes, for example, Lahn tapes can be used in this embodiment. The use of such a resistance heating element has the advantage that the resistance mass, which lies between the electrodes and heats up when a voltage is applied to the electrodes, is in direct contact with the outer surface of the container. Heat losses can be minimized.

In der erfindungsgemäßen Vorrichtung kann die Fläche der Widerstandsmasse ein Gitter umfassen, wobei die Fäden des Gitters aus einem Kunststoff aus dem elektrisch leitenden Polymer gebildet sind oder die Fäden des Gitters aus einem anderen Material besteht und mit diesem Kunststoff beschichtet sind. Dieses Gitter läßt sich aufgrund seiner Flexibilität leicht an der Außenwand des Behälters anordnen. Hierdurch kann ein guter Kontakt zwischen dem Behälter und dem Widerstandsheizelement hergestellt und der Wärmeübergang zwischen Behälter und Widerstandsheizelement noch verbessert werden. Zudem weist das Gitter eine gewisse Flexibilität auf. Baucht sich der Behälter aufgrund der Befüllung mit dem Medium oder aufgrund der Erwärmung des Mediums aus, so kann das Gitter diese mechanische Belastung aufnehmen, ohne daß es zu einer ungleichmäßigen Wärmeabgabe über die Fläche kommen würde. Zum einen lassen die in einem Gitter definierten Kreuzungspunkte keine Relativänderung im Abstand zwischen den einzelnen Fäden des Gitters zu und zum anderen besteht durch das gewählte Material, das ein elektrisch leitendes Polymer umfaßt, nicht die Gefahr des Abrisses der Fäden und damit der elektrischen Leitung. Auch bei mechanischer Belastung kann also eine lokale Temperaturerhöhung nicht auftreten und es erfolgt weiterhin eine gleichmäßige Wärmeabgabe über die Fläche des Gitters.In the device according to the invention, the surface of the resistive mass may comprise a grid, wherein the filaments of the grid are formed from a plastic of the electrically conductive polymer or the filaments of the grid consists of a different material and are coated with this plastic. This grid can be easily arranged on the outer wall of the container due to its flexibility. In this way, a good contact between the container and the resistance heating element can be produced and the heat transfer between the container and the resistance heating element can be improved. In addition, the grid has a certain flexibility. If the container bulges due to the filling with the medium or due to the heating of the medium, so the grid can absorb this mechanical stress, without it would come to an uneven heat transfer over the surface. On the one hand, the crossing points defined in a lattice do not allow a relative change in the distance between the individual threads of the lattice and, on the other hand, there is no danger of tearing off the threads and thus of the electrical line due to the selected material which comprises an electrically conductive polymer. Even with mechanical stress so a local temperature increase can not occur and there is still a uniform heat transfer over the surface of the grid.

Gemäß einer weiteren Ausführungsform kann das Widerstandsheizelement zwei flächige Elektroden umfassen, zwischen denen die Widerstandsmasse in Form einer Schicht angeordnet ist, wobei die Elektroden diese zumindest teilweise bedecken und zumindest eine der Elektroden der Außenwand des Behälters zugewandt ist. Bei dieser Ausführunosforrn durchfließt der Strom, der an die Elektroden angelegt wird, den Schichtwiderstand im wesentlichen in der Dicke. Die Elektroden bestehen vorzugsweise aus einem gut leitenden Material. Örtliche Überhitzungen können durch die gute Wärmeleitfähigkeit der Elektroden abgeleitet werden. Überhitzungen können somit nur in Richtung der Schichtdicke auftreten und wirken sich aber aufgrund der geringen Schichtdicke bei dem flächigen Widerstandsheizelement nicht negativ aus. Ein weiterer Vorteil eines solchen Aufbaus des Widerstandsheizelementes in der erfindungsgemäßen Vorrichtung liegt darin, daß dadurch auch eine von außen, z.B. vom Behälter hervorgerufene lokale Temperaturerhöhung durch das Widerstandsheizelement ideal ausgeglichen werden kann.According to a further embodiment, the resistance heating element may comprise two planar electrodes, between which the resistance mass is arranged in the form of a layer, wherein the electrodes at least partially cover these and at least one of the electrodes faces the outer wall of the container. In this embodiment, the current applied to the electrodes flows through the sheet resistance substantially in thickness. The electrodes are preferably made of a highly conductive material. Local overheating can be derived by the good thermal conductivity of the electrodes. Overheating can thus only in the direction of the layer thickness occur and affect but not negative due to the small thickness of the sheet-like resistance heating element. Another advantage of such a construction of the resistance heating element in the device according to the invention is that it can also be ideally compensated by a local temperature increase caused by the resistance heating element from the outside, eg from the container.

Gemäß einer Ausführungsform weist das elektrisch leitende Polymer der Widerstandsmasse des Widerstandsheizelementes einen positiven Temperaturkoeffizienten des elektrischen Widerstandes auf. Hierdurch wird ein Selbstregeleffekt bezüglich der maximal erreichbaren Temperatur erzielt.According to one embodiment, the electrically conductive polymer of the resistance mass of the resistance heating element has a positive temperature coefficient of electrical resistance. As a result, a self-regulating effect with respect to the maximum achievable temperature is achieved.

Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung umfaßt diese zwei Behälter, zwischen denen ein Widerstandsheizelement so angeordnet ist, daß die eine Oberfläche des Widerstandsheizelementes an der Au-ßenseite des einen Behälters und die gegenüberliegende Oberfläche des Widerstandsheizelementes an der Außenseite des anderen Behälters angeordnet ist. Vorteil dieser Ausführungsform ist es, daß die Wärmeverluste minimiert werden können. Das Widerstandsheizelement gibt Wärme in alle Richtungen ab. Durch das Anordnen der beiden Behälter an jeweils einer Oberfläche des flächigen Widerstandsheizelementes wird somit der größte Teil der erzeugten Wärme an die Behälter und damit an das zu erwärmende Medium abgegeben. Die Anordnung des Widerstandsheizelementes zwischen den beiden Behältern hat zusätzlich den Vorteil, daß das Widerstandsheizelement an die Behälter angepresst wird, wenn sich diese durch das Befüllen oder durch die Erwärmung ausdehnen. Ein Ablösen des Widerstandsheizelementes von der Behälteraußenseite wird damit vermieden und der Kontakt zwischen dem Widerstandsheizelement und den Behältern noch verbessert, wodurch auch der Wärmeübergang optimiert wird.According to a preferred embodiment of the device according to the invention, this comprises two containers, between which a resistance heating element is arranged so that one surface of the resistance heating element on the outside of the one container and the opposite surface of the resistance heating element is arranged on the outside of the other container. Advantage of this embodiment is that the heat losses can be minimized. The resistance heating element releases heat in all directions. By arranging the two containers on each surface of the planar resistance heating element thus most of the heat generated is delivered to the container and thus to the medium to be heated. The arrangement of the resistance heating element between the two containers has the additional advantage that the resistance heating element is pressed against the container when they expand by the filling or by the heating. A detachment of the resistance heating element from the outside of the container is thus avoided and the contact between the resistance heating element and the containers is further improved, as a result of which the heat transfer is also optimized.

Gemäß einer weiteren Ausführungsform umfaßt die erfindungsgemäße Vorrichtung mindestens zwei Behälter, die so miteinander verbunden sind, daß das Medium die Behälter nacheinander durchfließen kann. Bei dieser Ausführungsform kann das Medium in einem ersten Behälter vorgewärmt und in einem zweiten oder weiteren Behälter auf die Solltemperatur aufgeheizt werden.According to a further embodiment, the device according to the invention comprises at least two containers, which are connected to each other so that the medium can flow through the containers in succession. In this embodiment, the medium can be preheated in a first container and heated in a second or further container to the desired temperature.

Die erfindungsgemäße Vorrichtung kann auch mindestens zwei Behälter umfassen, die Einrichtungen aufweisen, die ein separates Befüllen und Entleeren jeweils eines Behälters erlauben. Vorteil dieser Ausführungsform ist die rasche Verfügbarkeit der gesamten erwärmten Menge des Mediums.The device according to the invention can also comprise at least two containers, which have devices which allow a separate filling and emptying of a respective container. Advantage of this embodiment is the rapid availability of the entire heated amount of the medium.

Eine bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung stellt einen Wassererwärmer dar. Bei dieser Verwendung der Vorrichtung können die Vorteile der Erfindung besonders ausgenutzt werden. So kann das Wasser ohne Risiken besonders rasch erhitzt und ein Verkalken vermieden werden. Zudem erlaubt die erfindungsgemäße Vorrichtung auch eine flache Bauweise, d.h. eine Bauweise, bei der die Tiefe der Vorrichtung zu der Breite und Höhe gering ist. diese Bauweise bringt sowohl Platzersparnis als auch eine gleichmäßige Erwärmung des Wassers mit sich. Bei einer flachen Ausgestaltung wird vorzugsweise eine der Oberflächen des Behälters vollständig von einem Widerstandsheizelement bedeckt.A preferred embodiment of the device according to the invention is a water heater. In this use of the device, the advantages of the invention can be particularly utilized. This way, the water can be heated very quickly without risk and calcification can be avoided. In addition, the device according to the invention also allows a flat construction, i. a construction in which the depth of the device to the width and height is low. This design brings both space savings and a uniform heating of the water with it. In a flat configuration, preferably one of the surfaces of the container is completely covered by a resistance heating element.

Die Erfindung wird im folgenden anhand der beiliegenden Figuren, die die Ausführungsformen der Erfindung schematisch darstellen, beschrieben.The invention will be described below with reference to the accompanying figures, which schematically illustrate the embodiments of the invention.

Es zeigen:

Figur 1:
Perspektivische Ansicht einer Ausführungsform der erfindungsgemäßen Vorrichtung mit zwei Behältern und dazwischen angeordnetem Widerstandsheizelement;
Figur 2:
Perspektivische Ansicht einer erfindungsgemäßen Vorrichtung mit gitterartigem Widerstandsheizelement;
Figur 3:
Perspektivische Teilschnittansicht einer Ausführungsform der erfindungsgemäßen Vorrichtung mit einem Widerstandsheizelement mit flächigen Elektroden.
Figur 4:
Seitenansicht einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung mit flächigen Elektroden;
Figur 5 :
Seitenansicht eines erfindungsgemäß verwendeten Widerstandsheizelementes mit zwei Elektroden und mehreren leitenden Schichten;
Figur 6,7,8:
Draufsicht auf Vorrichtungen mit jeweils zwei Behältern.
Show it:
FIG. 1:
Perspective view of an embodiment of the device according to the invention with two containers and resistance heating element arranged between them;
FIG. 2:
Perspective view of a device according to the invention with grid-like resistance heating element;
FIG. 3:
Perspective partial sectional view of an embodiment of the device according to the invention with a resistance heating element with flat electrodes.
FIG. 4:
Side view of a further embodiment of the device according to the invention with planar electrodes;
FIG. 5:
Side view of a resistance heating element according to the invention with two electrodes and a plurality of conductive layers;
Figure 6,7,8:
Top view of devices with two containers.

In Figur 1 besteht die erfindungsgemäße Vorrichtung 1 aus zwei Behältern 21, 22. Zwischen diesen Behältern 21. 22 ist das Widerstandsheizelement 3 angeordnet. Die gezeigte Ausführungsform weist eine flache Konstruktion auf, bei der das Widerstandsheizelement 3 an einer flachen Seite der Behälter 21, 22 anliegt und diese weitestgehend bedeckt.In Figure 1, the device 1 of the invention consists of two containers 21, 22. Between these containers 21. 22, the resistance heating element 3 is arranged. The embodiment shown has a flat construction, in which the resistance heating element 3 rests against a flat side of the containers 21, 22 and covers them as far as possible.

In Figur 2 ist eine erfindungsgemäße Vorrichtung dargestellt, bei der die Widerstandsmasse 33 des Widerstandsheizelementes 3 einen gitterartigen Aufbau besitzt. Das Widerstandsheizelement 3 ist an einer Seite des Behälters 2 angeordnet und bedeckt dort die Außenwand weitestgehend. Die Elektroden 31, 32 erstrekken sich in Längsrichtung durch die Widerstandsmasse 33, wodurch der an ihnen angelegte Strom die Widerstandsmasse 33 senkrecht zur Dicke der Widerstandsmasse 33 durchfließt. Diese Richtung ist in Figur 2 durch einen Pfeil angedeutet. Der Behälter 2 weist weiterhin eine Befiülleinrichtung 23 für das Zuführen des zu erwärmenden Mediums und eine Entleereinrichtung 24 zum Abführen des erwärmten Mediums auf. Wie in Figur 2 gezeigt erstrecken sich die Elektroden 31. 32 über das Widerstandsheizelement 3 und den Behälter 2 hinaus, wodurch der Anschluß der Elektroden 31, 32 an die Stromversorgungsquelle (nicht dargestellt) ermöglicht wird.FIG. 2 shows a device according to the invention, in which the resistance mass 33 of the resistance heating element 3 has a lattice-like structure. The resistance heating element 3 is arranged on one side of the container 2 and covers there the outer wall as far as possible. The electrodes 31, 32 extend longitudinally through the resistance mass 33, whereby the current applied to them flows through the resistance mass 33 perpendicular to the thickness of the resistance mass 33. This direction is indicated in Figure 2 by an arrow. The container 2 further comprises a Befulülleinrichtung 23 for supplying the medium to be heated and an emptying device 24 for discharging the heated medium. As shown in Figure 2, the electrodes 31. 32 extend beyond the resistance heating element 3 and the container 2, whereby the Connection of the electrodes 31, 32 to the power source (not shown) is made possible.

In Figur 3 ist eine weitere Ausführungsform der erfindungsgemäßen Vorrichtung gezeigt, bei der ein flächiges Widerstandsheizelement 3 mit flächigen Elektroden 34 verwendet wird. In der gezeigten Ausführungsform liegt die Elektrode 34 an der Außenwand des Behälters 2 an und bedeckt diese Seite des Behälters weitestgehend. Auf der Elektrode 34 ist der Schichtwiderstand 35 angeordnet. Dieser umfaßt ein elektrisch leitendes Polymer. Auf dem Schichtwiderstand 35 ist die zweite Elektrode 34 angeordnet, die diesen bedeckt.FIG. 3 shows a further embodiment of the device according to the invention, in which a planar resistance heating element 3 with planar electrodes 34 is used. In the embodiment shown, the electrode 34 bears against the outer wall of the container 2 and covers this side of the container as far as possible. On the electrode 34, the sheet resistor 35 is arranged. This comprises an electrically conductive polymer. On the sheet resistor 35, the second electrode 34 is arranged, which covers this.

In Figur 4 ist auf dem Behälter 2 eine elektrisch leitende Schicht 37 angeordnet, die von einem Schichtwiderstand 33 bedeckt ist. Auf diesem Schichtwiderstand 33 sind zwei äußere flächige Elektroden 38, 39 von einander beabstandet angeordnet.In Figure 4, an electrically conductive layer 37 is disposed on the container 2, which is covered by a sheet resistor 33. On this sheet resistor 33, two outer flat electrodes 38, 39 are arranged spaced from each other.

Wird bei der in Figur 2 gezeigten Ausführungsform Strom an die Elektroden 31, 32 angelegt, so fließt dieser durch die Widerstandsmasse 33, die elektrisch leitendes Polymer umfaßt, und erwärmt diese. Die so erzeugte Wärme dringt über die Außenwand des Behälters 2 in das Innere ein und erwärmt das darin befindliche Medium. Durch die flächige Ausgestaltung des Widerstandsheizelementes 3 kann die erzeugte Wärme über eine große Fläche an den Behälter und damit das Medium abgegeben werden.If current is applied to the electrodes 31, 32 in the embodiment shown in FIG. 2, it flows through the resistance mass 33, which comprises electrically conductive polymer, and heats the latter. The heat thus generated penetrates via the outer wall of the container 2 into the interior and heats the medium therein. Due to the planar design of the resistance heating element 3, the heat generated over a large area to the container and thus the medium are discharged.

Aufgrund der Flexibilität des Widerstandsheizelementes 3, insbesondere bei der Ausführungsform, in der die Widerstandsmasse 33 gitterartig ist, kann sich dieses auch an Oberflächen anlegen, die nicht eben sind. Der Behälter kann somit auch andere Formen als die gezeigte aufweisen.Due to the flexibility of the resistance heating element 3, in particular in the embodiment in which the resistance mass 33 is lattice-like, this can also create surfaces that are not flat. The container may thus also have other shapes than those shown.

In den Figuren 6, 7 und 8 sind weitere Ausfiihrungsformen der erfindungsgemä-Ben Vorrichtung gezeigt, die zwei Behälter 21, 22 aufweisen. Das Widerstandsheizelement 3 ist zwischen den Behältern angeordnet und bedeckt vorzugsweise die komplette Seite des Behälters, an der das Widerstandsheizelement anliegt.FIGS. 6, 7 and 8 show further embodiments of the device according to the invention, which have two containers 21, 22. The resistance heating element 3 is disposed between the containers and preferably covers the complete side of the container against which the resistance heating element abuts.

Die Behälter 21, 22 können durch am Rand angebrachte Manschetten oder Schellen (nicht gezeigt) miteinander fest verbunden werden.The containers 21, 22 may be fixedly connected to each other by edge-mounted sleeves or clips (not shown).

Die Verbindung zwischen den Behältern wird vorzugsweise am Behälterboden durch einen Kanal oder durch ein Rohr gebildet. Hierbei kann der Kanal bzw. das Rohr an die einzelnen Behälter 21, 22 angeschraubt und O-Ringen abgedichtet werden. Es liegt aber auch im Sinne der Erfindung, die beiden Behälter mit dem diese verbindenden Kanal einstückig herzustellen, d.h. in einem Teil z.B. zu verspritzen.The connection between the containers is preferably formed on the container bottom through a channel or through a pipe. Here, the channel or the tube to the individual containers 21, 22 screwed and sealed O-rings. However, it is also within the meaning of the invention to make the two containers in one piece with the channel connecting them, i. in one part e.g. to squirt.

Die in Figur 6 dargestellte Ausführungsform wird vorzugsweise für die Flachbauweise der erfindungsgemäßen Vorrichtung verwendet. Die Behälter 21, 22 weisen jeweils einen dreieckigen Querschnitt auf, wobei das Widerstandsheizelement 3 an der jeweiligen Hypotenuse des dreieckigen Querschnitts anliegt. Hierdurch wird die größte Außenseite der Behälter 21, 22 von dem Widertandsheizelement bedeckt. Das Verhältnis zwischen dem zu beheizenden Volumen und der Kontaktfläche des Widerstandsheizelementes mit der Außenseite der Behälter ist somit optimal eingestellt. Die Befülleinrichtung 23 und Entleereinrichtung 24 sind bei der in Figur 6 dargestellten Ausführungsform an der Oberseite der Behälter 21, 22 angeordnet.The embodiment shown in Figure 6 is preferably used for the flat construction of the device according to the invention. The containers 21, 22 each have a triangular cross section, wherein the resistance heating element 3 rests against the respective hypotenuse of the triangular cross section. As a result, the largest outer side of the container 21, 22 is covered by the Widertandsheizelement. The ratio between the volume to be heated and the contact surface of the resistance heating element with the outside of the container is thus optimally adjusted. The filling device 23 and emptying device 24 are arranged in the embodiment shown in Figure 6 at the top of the container 21, 22.

Bei der in Figur 7 dargestellten Ausführungsform erstreckt sich das Widerstandsheizelement zwischen den beiden Behältern nicht auf einer geraden Linie. Vielmehr weisen die Behälter jeweils einen breiten 221 und einen verjüngten Teil 212 auf, die durch einen schrägen Übergang 231 miteinander verbunden sind. Durch diese Ausgestaltung der Behälter kann zum einen eine geringe Gesamtdikke der Vorrichtung ermöglicht werden und zum anderen das Vorsehen von Befüll- und Entleereinrichtung an der Oberseite ermöglicht werden. 'In the embodiment illustrated in FIG. 7, the resistance heating element does not extend on a straight line between the two containers. Rather, the containers each have a wide 221 and a tapered portion 212, which are interconnected by an oblique transition 231. Due to this configuration of the container can on the one hand a small Gesamtdikke allows the device to be made possible and on the other hand, the provision of filling and emptying at the top. '

In Figur 8 ist eine Vorrichtung dargestellt, bei der die Behälter 21, 22 jeweils einen halbkreisförmigen Querschnitt aufweisen. Zwischen diesen halbkreisförmigen Behältern ist eine ebenes Widerstandsheizelement 3 angeordnet. Gegenüber herkömmlichen Beheizungsvorrichtungen mit Heizstäben weist diese Ausführungsform den Vorteil auf, daß aufgrund der großen Fläche eine geringer Temperatur an dem Widerstandsheizelement vorliegen muß, wodurch eine Zirkulation des Mediums vermieden werden kann. Eine solche Zirkulation führt bei herkömmlichen Heizelementen dazu, daß das aus dem Behälter abgeführte Medium aus einem Bereich der Vorrichtung entnommen wird, in dem kaltes und warmes Medium aufgrund der Zirkulation vermischt werden. Bei der erfindungsgemäßen Vorrichtung hingegen steigt das warme Medium in dem Behälter nach oben und kann von dort entnommen werden.FIG. 8 shows a device in which the containers 21, 22 each have a semicircular cross-section. Between these semicircular containers, a flat resistance heating element 3 is arranged. Compared to conventional heating devices with heating rods, this embodiment has the advantage that due to the large area a low temperature must be present at the resistance heating, whereby a circulation of the medium can be avoided. Such circulation, in conventional heating elements, causes the medium discharged from the container to be removed from a portion of the apparatus in which cold and warm medium are mixed due to circulation. In the device according to the invention, however, the warm medium rises in the container upwards and can be removed from there.

In den in den Figuren 1, 6, 7, und 8 dargestellten Ausführungsformen mit zwei Behältern können entweder Heizelemente mit einer Widerstandsmasse, die sich flächenförmig zwischen den Elektroden erstreckt und bei denen der Strom die Widerstandsmasse senkrecht zur Dicke durchläuft oder Widerstandsheizelemente mit flächigen Elektroden, bei denen der Strom durch die Dicke der Widerstandsschicht läuft, verwendet werden. Die letztere Art des Widerstandsheizelementes ist hierbei bevorzugt.In the embodiments with two containers shown in FIGS. 1, 6, 7 and 8, either heating elements with a resistance mass which extends in a planar manner between the electrodes and in which the current passes through the resistance mass perpendicular to the thickness or resistive heating elements with flat electrodes can be used where the current passes through the thickness of the resistive layer can be used. The latter type of resistance heating element is preferred here.

Bei der Ausführungsform, bei der die Widerstandsmasse gitterartig aufgebaut ist und die Fäden des Gitters aus dem elektrisch leitenden Polymer gebildet sind, kann der Durchmesser der Fäden des Gitters, die parallel zu den Elektroden verlaufen, kleiner als der Durchmesser der Fäden, die senkrecht zu diesen verlaufen sein. Durch diese Querschnittsverteilung kann ein gleichmäßiger Stromdurchgang über die gesamte Fläche der Widerstandsmasse erzielt werden. Dieser gleichmäßige Stromdurchgang kann auch durch geeignete Wahl des Materials der Fäden erzielt werden. Hierbei wird das Material für die Fäden, die senkrecht zu den Elektroden verlaufen, so gewählt, daß dieses einen höheren Leitwert aufweist, als das der parallel zu diesen verlaufenden Fäden. Hierbei kann eine Differenz in der Leitfähigkeit zwischen den parallel und den senkrecht verlaufenden Fäden von 15 bis 25 %, vorzugsweise 20 % , ausreichen, um den Stromfluß durch die Fäden oder deren Beschichtung somit zu regeln und sich ideal über die gesamte Fläche zu verteilen. Als Widerstandsmasse kann auch ein Stützgewebe, z.B. aus Kunststoff, das mit dem elektrisch leitenden Polymer auf beiden Seiten bestrichen wurde und so durchgehende Schichten auf dem Stützgewebe erhalten wurden, dienen. Als Stützgewebe können Vließ, Gewirke oder Fasermatten aus beispielsweise Polyamid, z.B. Nylon, Glasfasern, Polyester oder Polypropylen verwendet werden.In the embodiment in which the resistive mass is latticed and the filaments of the grid are formed of the electrically conductive polymer, the diameter of the filaments of the grid running parallel to the electrodes may be smaller than the diameter of the filaments perpendicular to them be lost. Through this cross-sectional distribution, a uniform passage of current over the entire surface of the resistance mass can be achieved. This uniform passage of current can also be achieved by a suitable choice of the material of the threads. Here, the material for the threads, which extend perpendicular to the electrodes, chosen so that it has a higher conductance than that of the parallel to these extending threads. Here, a difference in conductivity between the parallel and the perpendicular threads of 15 to 25%, preferably 20%, sufficient to thus regulate the flow of current through the threads or their coating and to distribute ideally over the entire surface. As a resistance mass, a support fabric, for example made of plastic, which has been coated with the electrically conductive polymer on both sides and thus continuous layers were obtained on the supporting fabric serve. As a support fabric Vließ, knitted or fiber mats of, for example, polyamide, for example nylon, glass fibers, polyester or polypropylene may be used.

Bei der Ausführungsform der vorliegenden Erfindung, wie diese schematisch in Figur 3 dargestellt ist, durchfließt der Strom die Widerstandsmasse in Dickenrichtung des Widerstandsheizelementes, wenn die Elektroden an eine Stromquelle (nicht gezeigt) angeschlossen werden. Die erzeugte Wärme wird an den Behälter und damit das Medium abgegeben. Es liegt auch im Sinne der Erfindung, die Widerstandsschicht des Heizelements durch mit elektrisch leitendem Polymer versehenen Glasfasern zu bilden. So kann die Widerstandsschicht beispielsweise eine Glasfasermatte umfassen, die mit elektrisch leitendem Polymer durch Eintauchen getränkt wurde. Weiterhin können Widerstandschichten verwendet werden, die Keramikpartikel wie z.B. Barium-Titanat umfassen. Trotz dieser Keramik kann der Temperaturkoeffizient der erfindungsgemäß verwendeten Widerstandsmasse des elektrischen Widerstandes negativ sein.In the embodiment of the present invention, as schematically illustrated in Fig. 3, the current flows through the resistance mass in the thickness direction of the resistance heating element when the electrodes are connected to a power source (not shown). The generated heat is released to the container and thus the medium. It is also within the meaning of the invention to form the resistance layer of the heating element by glass fibers provided with electrically conductive polymer. For example, the resistive layer may comprise a glass fiber mat that has been soaked with electrically conductive polymer by immersion. Furthermore, resistive layers containing ceramic particles, e.g. Barium titanate include. Despite this ceramic, the temperature coefficient of the resistance mass of the resistor used in the present invention may be negative.

Bei einem negativen Temperaturkoeffizienten des elektrischen Widerstandes wird ein sehr geringer Einschaltstrom benötigt. Zudem kann die erfindungsgemäß verwendete Widerstandsmasse so eingestellt sein, daß bei erhöhter Temperatur der Temperaturkoeffizient des elektrischen Widerstandes positiv wird. Die Einschaltströme können hierbei 50 % des Betriebsstromes betragen.A negative temperature coefficient of electrical resistance requires a very low inrush current. In addition, the resistance mass used in the invention may be adjusted so that at elevated temperature the temperature coefficient of electrical resistance becomes positive. The inrush currents here can be 50% of the operating current.

Bei der in Figur 4 gezeigten Ausführungsform sind auf der dem Behälter abgewandten Seite zwei flächige Elektroden angeordnet und durch eine Isolation voneinander getrennt. Diese Isolation kann durch Vorsehen eines Isolationsstückes aus Isoliermaterial oder durch Luft erfolgen. Auf der gegenüberliegenden Seite der Widerstandsmasse, die dem Behälter zugewandt ist, wird eine Schicht aus elektrisch leitendem Material z.B. in Form einer Metallfolie oder Metallblech aufgebracht. Diese elektrisch leitende Schicht wird nicht an die Stromquelle angeschlossen. Werden bei dieser Ausführungsform die beiden flächigen Elektroden an eine Stromquelle angeschlossen, so fließt der Strom von der einen kontaktierten Elektrode durch die Dicke der Widerstandsmasse zu der elektrisch leitenden Schicht, wird in dieser weitergeleitet und fließt durch die Widerstandsmasse zurück zu der zweiten kontaktierten Elektrode. Ein solcher Aufbau des Widerstandsheizelementes bringt den Vorteil, daß dieses durch eine sehr geringe Spannung betrieben werden kann. Die Spannung kann bis zu der Hälfte der Spannung, die beim Aufbau mit zwei flächigen Elektroden, die die Widerstandsmasse zwischen sich einschließen, benötigt wird, reduziert werden. Die Verringerung der Versorgungsspannung ist unter anderem auf den durch die Isolierung zwischen den benachbarten Elektroden gebildeten Widerstand zurückzuführen. Wird als Isolierung Luft gewählt, so wird der Widerstand durch den Abstand der Elektroden zueinander und damit durch den Obertlächenwiderstand bestimmt. Insbesondere bei der Verwendung der erfindungsgemäßen Vorrichtung zum Heizen von Medien als Warmwasserboiler ist ein Betreiben mit sehr geringer Spannung von besonderem Vorteil, da hierdurch das Sicherheitsrisiko minimiert werden kann. Die Anordnung der beiden mit der Stromquelle kontaktierten Elektroden auf einer Seite des Schichtwiderstandes hat weiterhin zum Vorteil, daß der Kontakt zwischen dem Behälter und der elektrisch leitenden Folie oder Blech nicht durch Einrichtungen zur Stromversorgung gestört wird.In the embodiment shown in Figure 4, two flat electrodes are arranged on the side facing away from the container and separated from each other by an insulation. This isolation can be done by providing an insulating piece of insulating material or by air. On the opposite side of the resistance mass, which faces the container, a layer of electrically conductive material is applied, for example in the form of a metal foil or metal sheet. This electrically conductive layer is not connected to the power source. In this embodiment, when the two planar electrodes are connected to a power source, the current flows from the one contacted electrode through the thickness of the resistive mass to the electrically conductive layer, is forwarded therethrough, and flows through the resistive mass back to the second contacted electrode. Such a structure of the resistance heating element has the advantage that it can be operated by a very low voltage. The voltage can be reduced by up to half the voltage required in the construction with two flat electrodes sandwiching the resistance mass between them. The reduction of the supply voltage is due, inter alia, to the resistance formed by the insulation between the adjacent electrodes. If air is selected as insulation, the resistance is determined by the distance of the electrodes from each other and thus by the surface resistance. In particular, when using the device according to the invention for heating media as a hot water boiler operation with very low voltage is of particular advantage, as this can minimize the security risk. The arrangement of the two contacted with the power source electrodes on one side of the sheet resistor has the further advantage that the Contact between the container and the electrically conductive foil or sheet is not disturbed by means of power supply.

In Figur 5 ist ein Widerstandsheizelement gezeigt, bei dem eine dünne Widerstandsschicht 33 vorliegt. Auf beiden Seiten der Widerstandsschicht 33 sind jeweils eine flächige Elektrode 38, 39 und mehrere leitende Schichten 37 angeordnet. Die Elektroden 38, 39 sind jeweils am gegenüberliegenden Ende der Widerstandsschicht 33 vorgesehen. Die Elektrode 38 und die leitenden Schichten 37 sind voneinander beabstandet und zu der an der gegenüberliegenden Seite der Widerstandsschicht 33 angeordneten Elektrode 39 und den leitenden Schichten 37 versetzt. Der an die Elektroden 38, 39 angelegte Strom durchfließt bei diesem Aufbau die Widerstandsschicht 33 und die leitenden Schichten 37 in der Richtung, die in der Zeichnung durch Pfeile angedeutet ist. Bei diesem Stromfluß dient die Widerstandsschicht 33 als eine Serienschaltung mehrerer elektrischer Widerstände, wodurch eine hohe Leistung erzielt werden kann. Hierbei wird sowohl der Widerstand in der Dicke der Widerstandsschicht 33, als auch der Oberflächenwiderstand in den Abständen zwischen den elektrisch leitenden Schichten 37 bzw. der elektrisch leitenden Schicht 37 und der Elektrode 38 bzw. 39 genutzt.FIG. 5 shows a resistance heating element in which a thin resistance layer 33 is present. On both sides of the resistive layer 33 are each a planar electrode 38, 39 and a plurality of conductive layers 37 are arranged. The electrodes 38, 39 are respectively provided at the opposite end of the resistance layer 33. The electrode 38 and the conductive layers 37 are spaced from each other and offset from the electrode 39 and the conductive layers 37 disposed on the opposite side of the resistor layer 33. In this structure, the current applied to the electrodes 38, 39 flows through the resistive layer 33 and the conductive layers 37 in the direction indicated by arrows in the drawing. In this current flow, the resistance layer 33 serves as a series circuit of a plurality of electrical resistances, whereby a high performance can be achieved. Here, both the resistance in the thickness of the resistance layer 33 and the surface resistance in the spaces between the electrically conductive layers 37 and the electrically conductive layer 37 and the electrodes 38 and 39 are utilized.

Zudem bietet der große räumliche Abstand zwischen den Elektroden den Vorteil, daß ein unmittelbarer Kontakt zwischen diesen vermieden werden kann. Als Elektroden und elektrisch leitende Schichten können Metallfolien oder -bleche dienen. Insbesondere bei der in Figur 5 dargestellten Ausführungsform des Widerstandsheizelementes kann die Widerstandsschicht sehr dünn sein und eine Dicke von z.B. 1 mm aufweisen. Es liegt auch im Rahmen der Erfindung das in Figur 5 gezeigte Widerstandsheizelement so abzuwandeln, daß beide Elektroden auf einer Seite der Widerstandsschicht angeordnet sind. Bei dieser Ausführungsform befinden sich die leitenden Schichten voneinander beabstandet zwischen den an den Enden der Widerstandsschicht angeordneten Elektroden. Auf der gegenüberliegenden Seite der Widerstandsschicht sind die leitenden Schichten dazu versetzt und voneinander beabstandet angeordnet. Auch bei dieser Anordnung sind somit selbst bei geringer Schichtdicke der Widerstandsschicht hohe Leistungen durch die Nutzung der Widerstandsschicht als Serienschaltung mehrerer Widerstände und der gleichzeitigen Nutzung des Oberflächenwiderstandes erzielbar.In addition, the large spatial distance between the electrodes offers the advantage that direct contact between them can be avoided. As electrodes and electrically conductive layers can serve metal foils or sheets. In particular, in the embodiment of the resistance heating element shown in Figure 5, the resistance layer may be very thin and have a thickness of eg 1 mm. It is also within the scope of the invention to modify the resistance heating element shown in Figure 5 so that both electrodes are arranged on one side of the resistive layer. In this embodiment, the conductive layers are spaced apart between the electrodes disposed at the ends of the resistor layer. On the opposite side of the resistive layer are the conductive layers offset and arranged spaced from each other. Even with this arrangement, even with a small layer thickness of the resistive layer, high powers can be achieved by using the resistive layer as a series connection of a plurality of resistors and the simultaneous use of the surface resistance.

Auch bei Widerstandsheizelementen, wie in Figuren 3 und 4, dargestellt sind dünne Widerstandsschichten möglich. Diese müssen aber einen hochohmigen elektrischen Widerstand aufweisen.Even with resistance heating elements, as shown in Figures 3 and 4, thin resistive layers are possible. However, these must have a high-resistance electrical resistance.

Zur Verbesserung des elektrischen Kontaktes zwischen der Widerstandsmasse und den Elektroden kann die Widerstandsmasse im Bereich der Elektroden mit einer aufgespritzten Schicht aus Metall versehen sein. Bei der Ausführungsform, bei der die Widerstandsmasse in Form einer Schicht vorliegt, wird die Oberfläche der Schicht mit Metall bespritzt und anschließend die flächige Elektrode aufgebracht. Ist die Masse gitterartig aufgebaut, so kann der Bereich des Gitters, durch den sich die Elektroden erstrecken sollen, vor dem Einbringen der Elektroden mit Metall bespritzt werden.To improve the electrical contact between the resistance mass and the electrodes, the resistance mass may be provided in the region of the electrodes with a sprayed-on layer of metal. In the embodiment in which the resistance mass is in the form of a layer, the surface of the layer is sprayed with metal and then the planar electrode is applied. If the mass is constructed in the manner of a grid, then the area of the grid through which the electrodes should extend can be sprayed with metal prior to the introduction of the electrodes.

Die Kontaktierung der Elektroden mit der Stromquelle, die das Widerstandsheizelement vorzugsweise mit Netzspannung von 220 V beaufschlagt, kann durch herkömmliche Kontaktierungsarten erfolgen. Da auch bei Ausführungsformen mit zwei Behältern das Heizelement vorzugsweise eine ganze Seite der jeweiligen Behälteraußenwand bedeckt und sich somit bis zum Rand erstreckt, sind die Elektroden bei beiden Ausführungsformen des Widerstandsheizelementes, d.h. bei flächenförmigen Elektroden und bei sich längs durch die Widerstandsmasse erstreckenden Elektroden, von außen zugänglich und können dort angeschlossen werden.The contacting of the electrodes with the current source, which preferably applies the resistance heating element with a mains voltage of 220 V, can be effected by conventional contacting methods. Since, even in embodiments with two containers, the heating element preferably covers an entire side of the respective container outer wall and thus extends to the edge, in both embodiments of the resistance heating element, i. in the case of sheet-like electrodes and in the case of electrodes extending longitudinally through the resistance mass, they can be accessed from the outside and can be connected there.

In der in Figur 1 gezeigten Ausführungsform können sowohl ein flächiges Widerstandsheizelement, bei dem der Stromfluß über die Fläche der Widerstandsmasse erfolgt, als auch ein flächiges Widerstandsheizelement, das in der Dickenrichtung vom Strom durchflossen wird, eingesetzt werden. Das Widerstandsheizelement ist so zwischen den Behältern angeordnet, daß eine möglichst große Fläche der Außenwände der Behälter von dem Widerstandsheizelement bedeckt wird. Beim Anlegen einer Spannung gibt das Widerstandsheizelement Wärme in alle Richtungen ab und erwärmt somit gleichzeitig das Medium der beiden Behälter. Durch diese Anordnung wird die Erwärmung einer großen Menge des Mediums mit geringem Stromverbrauch gewährleistet.In the embodiment shown in FIG. 1, both a planar resistance heating element, in which the flow of current takes place over the surface of the resistance mass, and a planar resistance heating element, that in the thickness direction The current flows through it. The resistance heating element is arranged between the containers such that the largest possible area of the outer walls of the containers is covered by the resistance heating element. When a voltage is applied, the resistance heating element releases heat in all directions and thus simultaneously heats the medium of the two containers. By this arrangement, the heating of a large amount of the medium is ensured with low power consumption.

Die erfindungsgemäße Vorrichtung kann auch mehr als zwei Behälter umfassen, wobei vorzugsweise Widerstandsheizelemente so angeordnet sind, daß diese an zwei Behälter Wärme abgeben können. Der Fluß des zu erwärmenden Mediums kann so geführt werden, daß dieser jeweils nur einen oder mehrere Behälter durchströmt.The device according to the invention may also comprise more than two containers, wherein preferably resistance heating elements are arranged so that they can give off heat to two containers. The flow of the medium to be heated can be performed so that it flows through only one or more containers.

Die Widerstandsmasse wirkt zudem als "schwarzer Strahler". Die Strahlung im Infrarot-Bereich führt bei Behältern, die aus einem Material bestehen, das diese Strahlung transmittiert. z.B. Glas, zu einer Erwärmung des Mediums im Inneren des Behälters. Hierbei treten keine hohen Temperaturen an der Kontaktfläche des Widerstandsheizelementes an der Außenwand des Behälters auf. Unerwünschte Zersetzungsprozesse im Medium werden somit vermieden. Die Tiefenwirkung des Widerstandsheizelementes hat zudem den Vorteil, daß das Medium gleichmäßig erwärmt wird.The resistance mass also acts as a "black spotlight". The radiation in the infrared range results in containers made of a material that transmits this radiation. e.g. Glass, to heat the medium inside the container. In this case, no high temperatures occur at the contact surface of the resistance heating element on the outer wall of the container. Unwanted decomposition processes in the medium are thus avoided. The depth effect of the resistance heating element also has the advantage that the medium is heated evenly.

Die Einrichtungen zum Befüllen und Entleeren können je nach Bedarf an verschiedenen Stellen des Behälters angeordnet sein. Vorzugsweise sind sie so angeordnet sein, daß sie einen größtmöglichen Abstand zu den Anschlüssen der Elektroden aufweisen. Dadurch kann auch bei eventuellen Undichtigkeiten des Einrichtungen ein Kontakt des Mediums mit den Elektroden und daraus resultierende Nachteile ausgeschlossen werden. Als weitere Sicherheitsmaßnahme kann zwischen dem Widerstandsheizelement und der Außenwand des Behälters, insbesondere bei Metallbehältern, eine elektrisch isolierende Schicht vorgesehen sein. Für diese Schicht wird vorzugsweise Polyester, Polyimid oder Polytetrafluorethylen verwendet.The means for filling and emptying can be arranged as required at different locations of the container. Preferably, they are arranged so that they have the greatest possible distance from the terminals of the electrodes. As a result, it is possible to rule out contact of the medium with the electrodes and resulting disadvantages even in the case of possible leaks in the device. As a further safety measure, between the resistance heating element and the outer wall of the container, in particular be provided in metal containers, an electrically insulating layer. Polyester, polyimide or polytetrafluoroethylene is preferably used for this layer.

Bevorzugt hat der Behälter die Form eines Quaders, bei dem die Höhe und Länge des Behälters groß im Verhältnis zu dessen Breite ist. Diese Form des Behälters erlaubt bei einem flächigen Widerstandsheizelement eine große Kontaktfläche mit dem Behälter und ein günstiges Verhältnis zwischen dieser Kontaktfläche und dem Volumen des Behälters. Die Heizfläche ist im Verhältnis zu dem Volumen des zu erwärmenden Mediums groß, wodurch eine schnelle und gleichmäßige Erwärmung erfolgen kann. Der Behälter kann aber auch z.B einen runden Querschnitt aufweisen. Um diesen zylinderfiörmigen Behälter kann ein weiterer Behälter, der einen ringförmigen Querschnitt hat, angeordnet sein und das Widerstandsheizelement in einem dadurch gebildeten Spalt zwischen den Behältern vorgesehen sein.Preferably, the container has the shape of a cuboid, in which the height and length of the container is large in relation to its width. This shape of the container allows a large contact surface with the container and a favorable ratio between this contact surface and the volume of the container in a flat resistance heating element. The heating surface is large in relation to the volume of the medium to be heated, whereby a rapid and uniform heating can take place. The container may also have, for example, a round cross-section. To this cylinder-shaped container, another container, which has an annular cross-section, be arranged, and the resistance heating element may be provided in a gap formed thereby between the containers.

Es liegt weiterhin im Sinne der Erfindung, daß die Seitenwände des Behälters vollständig mit dem Widerstandsheizelement bedeckt sind. Hierbei wird die Wärme von allen Seiten in den Behälter abgegeben und das Medium schnell aufgeheizt.It is also within the meaning of the invention that the side walls of the container are completely covered with the resistance heating element. Here, the heat is released from all sides into the container and the medium is heated quickly.

Sind mehrere Behälter vorgesehen, die nacheinander von dem Medium durchflossen werden sollen, so können diese übereinander angeordnet sein, wobei die Einrichtung zum Entleeren des oberen Behälters an dessen Unterseite mit der Einrichtung zum Befüllen eines darunter angeordneten Behälters an dessen Oberseite verbunden ist. Sind die Behälter nebeneinander angeordnet, so kann der Medienfluß über Pumpen, die außerhalb der Behälter angeordnet sein können, bewirkt werden.If a plurality of containers are provided, which are to be successively flowed through by the medium, they can be arranged one above the other, wherein the means for emptying the upper container is connected at its bottom with the means for filling a container disposed thereunder at the top thereof. If the containers are arranged next to one another, the media flow can be effected by means of pumps which can be arranged outside the containers.

Die Behälter können aus Metall. Glas oder Kunststoff bestehen. Bevorzugt wird Polycarbonat verwendet. Durch die geringe Temperatur am Widerstandsheizelement, die aufgrund der Tiefenwirkung der Widerstandsheizelemente ausreicht um das Medium zu erwärmen, besteht selbst bei der Verwendung von Kunststoffbehältern keine Gefahr des Aufschmelzens des Behälters.The containers can be made of metal. Glass or plastic. Preferably, polycarbonate is used. Due to the low temperature at the resistance heating element, which is sufficient due to the depth effect of the resistance heating elements to heat the medium, there is no risk of melting the container even with the use of plastic containers.

Die Wandungen der Behälter sind vorzugsweise dünn. Dadurch kann zum einen die Wärme vom Heizelement gut an das im Behälter befindliche Medium abgegeben werden. Zum anderen kann sich der Behälter bei Befüllen und Erwärmung ausdehnen, insbesondere ausbauchen. Durch diese Ausbauchen wird der Kontakt zu dem an dem Behälter befindlichen Heizelement noch verstärkt, insbesondere bei Ausführungsformen mit zwei Behältern, zwischen denen ein Heizelement angeordnet ist. Bei dieser Ausführungsform können an der Wand des Behälters, die nicht mit dem Widerstandsheizelement versehen ist, zusätzlich Rippen in dem Behälter vorgesehen sein. Durch solche Rippen wird eine Verstärkung an diesen Wänden erzeugt. Durch diese Wandverstärkungen kann der normalerweise für beispielsweise Wasserecl.värmer vorgeschriebene Prüfdruck von 8 bar auch mit Kunststoffbehältern eingehalten werden.The walls of the containers are preferably thin. As a result, on the one hand, the heat from the heating element can be released well to the medium in the container. On the other hand, the container can expand, in particular bulge during filling and heating. By this bulging the contact with the heating element located on the container is reinforced, especially in embodiments with two containers, between which a heating element is arranged. In this embodiment, ribs may additionally be provided in the container on the wall of the container which is not provided with the resistance heating element. Such ribs create a reinforcement on these walls. Through these wall reinforcements, the test pressure of 8 bar, which is normally prescribed for example for water regulators, can also be maintained with plastic containers.

Die Dicke der Wände der Behälter beträgt zwischen 1 und 8 mm, vorzugsweise 3 bis 5 mm. Die Dicke der Wände ist je nach der Größe des Behälters und dem Fassungsvermögen zu wählen.The thickness of the walls of the containers is between 1 and 8 mm, preferably 3 to 5 mm. The thickness of the walls should be chosen according to the size of the container and the capacity.

Mit der erfindungsgemäßen Vorrichtung können z.B. Temperaturen von Wasser, die in der Vorrichtung erwärmt wurden, von 20 bis 90 °C eingestellt werden.With the device according to the invention, e.g. Temperatures of water which have been heated in the device can be adjusted from 20 to 90 ° C.

Die erfindungsgemäße Vorrichtung kann sehr geringe Gesamtdicken aufweisen. Es können Gesamtdicken von 6 bis 10 cm, vorzugsweise 8 cm erzeugt werden, wobei das Flächenheizelement eine Dicke von 0,1 bis 5 mm, vorzugsweise 1 bis 2 mm aufweist. So ist z.B. ein Warmwasserboiler mit einer Dicke von nur 8 cm mit der erfindungsgemäßen Vorrichtung herstellbar. Diese geringe Dicke erlaubt ein Anbringen der Vorrichtung z.B. hinter Verblendungen in Küchen oder Badeausstattung.The device according to the invention can have very low overall thicknesses. It can be produced total thicknesses of 6 to 10 cm, preferably 8 cm, wherein the surface heating element has a thickness of 0.1 to 5 mm, preferably 1 to 2 mm. For example, a hot water boiler with a thickness of only 8 cm can be produced with the device according to the invention. This small thickness allows attachment of the device eg behind veneers in kitchens or bathroom equipment.

Das erfindungsgemäß verwendete elektrisch leitende Polymer ist vorzugsweise durch Dotierung eines Polymers erzeugt. Die Dotierung kann eine Metall- oder Halbmetall-Dotierung sein. Bei diesen Polymeren ist der Störleiter chemisch an die Polymerkette gebunden und erzeugt eine Störstelle. Die Dotierungsatome und das Matrixmolekül bilden einen sogenannten Charge-Transfer Komplex. Bei der Dotierung werden Elektronen werden aus gefüllten Bändern des Polymers auf das Dotierungsmaterial übertragen. Durch die so entstandenen Elektronenlöcher erhält das Polymer halbleiterähnliche elektrische Eigenschaften. Durch chemische Reaktion wird bei dieser Ausführungsform ein Metall- oder Halbmetallatom so in die Polymerstruktur einbezogen bzw. an diese angelagert, daß hierdurch freie Ladungen erzeugt werden, die den Stromfluß entlang der Polymerstruktur ermöglichen. Die freien Ladungen liegen in Form von freien Elektronen oder Löchern vor. Es entsteht somit ein Elektronenleiter.The electrically conductive polymer used according to the invention is preferably produced by doping a polymer. The doping may be a metal or semimetal doping. In these polymers, the interfering conductor is chemically bound to the polymer chain and generates an impurity. The doping atoms and the matrix molecule form a so-called charge-transfer complex. In doping, electrons are transferred from filled bands of the polymer to the dopant. The resulting electron holes give the polymer semiconductor-like electrical properties. By chemical reaction, in this embodiment, a metal or semimetal atom is incorporated into or attached to the polymer structure so as to generate free charges which allow the flow of current along the polymer structure. The free charges are in the form of free electrons or holes. It thus creates an electron conductor.

Vorzugsweise wurde das Polymer zum Dotieren mit einem Dotierungsmaterial in einer solchen Menge versetzt, daß das Verhältnis von Atomen des Dotierungsmaterials zu der Anzahl der Polymermoleküle mindestens 1:1, vorzugsweise zwischen 2:1 und 10:1, beträgt. Durch dieses Verhältnis wird erzielt, daß im wesentlichen alle Polymermoleküle zumindest mit einem Atom des Dotierungsmaterials dotiert sind. Durch Wahl des Verhältnisses kann der Leitwert der Polymere und dadurch der Widerstandsschicht, sowie der Temperaturkoeffizient des Widerstandes der Widerstandsschicht eingestellt werden.Preferably, the polymer has been doped with a doping material in an amount such that the ratio of atoms of the dopant to the number of polymer molecules is at least 1: 1, preferably between 2: 1 and 10: 1. By this ratio it is achieved that substantially all polymer molecules are doped with at least one atom of the doping material. By selecting the ratio, the conductance of the polymers and thereby the resistance layer, as well as the temperature coefficient of the resistance of the resistive layer can be adjusted.

Obwohl das erfindungsgemäß verwendete elektrisch leitende Polymer auch ohne Zusatz von Graphit in der erfindungsgemäßen Vorrichtung als Material für die Widerstandsschicht eingesetzt werden kann, kann gemäß einer weiteren Ausführungsform die Widerstandschicht zusätzlich Graphitpartikel aufweisen. Diese Partikel können zu der Leitfähigkeit der gesamten Widerstandsschicht beitragen und berühren sich vorzugsweise nicht und bilden insbesondere keine Gitter- oder Skelettstrukturen aus. Die Graphitpartikel sind nicht fest in die Polymerstruktur eingebunden, sondern liegen frei beweglich vor. Befindet sich ein Graphitpartikel im Kontakt mit zwei Polymermolekülen, so kann der Strom von der einen Kette über das Graphit auf die nächste Kette überspringen.Die Leitfähigkeit der Widerstandsschicht kann so noch erhöht werden. Zugleich können die Graphitpartikel aufgrund ihrer freien Beweglichkeit in der Widerstandsschicht an die Elektroden gelangen und dort einen Verbesserung des Kontaktes bewirken.Although the electrically conductive polymer used according to the invention can also be used without the addition of graphite in the device according to the invention as a material for the resistance layer, according to a further embodiment, the resistance layer may additionally comprise graphite particles. These particles can contribute to the conductivity of the The entire resistive layer preferably does not contribute and preferably does not touch each other and in particular does not form lattice or skeletal structures. The graphite particles are not firmly bound in the polymer structure, but are freely movable before. If a graphite particle is in contact with two polymer molecules, the current can jump from one chain through the graphite to the next chain. The conductivity of the resistance layer can thus be increased even further. At the same time, due to their free mobility in the resistance layer, the graphite particles can reach the electrodes and cause an improvement in the contact there.

Die Graphitpartikel liegen vorzugsweise in einer Menge von maximal 20 vol-%, besonders bevorzugt maximal 5 vol%, bezogen auf das Gesamtvolumen der Widerstandsschicht vor und weisen einen mittleren Durchmesser von maximal 0,1 µm auf. Durch diese geringe Menge an Graphit und den geringen Durchmesser kann das Ausbilden eines Graphitgitters, das zu einer Leitung des Stromes über diese Gitter führen würde vermieden werden. Es wird somit sicher gestellt, daß der Stromfluß weiterhin im wesentlichen über die Polymermoleküle durch Elektronen-Leitungen erfolgt und so die oben genannten Vorteile erzielt werden können. Insbesondere muß die Leitung nicht über ein Graphitgitter bzw. Skelett erfolgen, bei dem sich die Graphitpartikel berühren müssen und das bei mechanischer und thermischer Belastung leicht zerstört wird, sondern sie erfolgt entlang dem dehnbaren und alterungsbeständigen Polymer.The graphite particles are preferably present in an amount of at most 20% by volume, more preferably at most 5% by volume, based on the total volume of the resistance layer, and have a mean diameter of not more than 0.1 μm. Due to this small amount of graphite and the small diameter, the formation of a graphite lattice that would lead to a conduction of the current through these lattices can be avoided. It is thus ensured that the flow of current continues to take place essentially via the polymer molecules by electron lines and thus the advantages mentioned above can be achieved. In particular, the conduit does not have to pass through a graphite lattice where the graphite particles must touch and which is easily destroyed by mechanical and thermal stress, but along the stretchable and age-resistant polymer.

Als elektrisch leitende Polymere können sowohl elektrisch leitende Polymerisate wie Polystyrol, Polyvinylharze, Polyacrylsäure-Derivate- und Mischpolymerisate derselben, als auch elektrisch leitende Polyamide und deren Derivate, Polyfluorkohlenwasserstoffe, Epoxyharze und Polyurethane verwendet werden. Bevorzugt können Polyamide, Polymethylmethacrylate. Epoxide, Polyurethane sowie Polystyrol oder Mischungen davon verwendet. Hierbei weisen Polyamide zusätzlich gute Klebeigenschaften auf, die für die Herstellung der erfindungsgemäßen Vorrichtung zum Erwärmen von Medien von Vorteil sind, da hierdurch das Anbringen an der Vorrichtung erleichtert wird. Einige Polymere, wie z.B. Polyacetylene scheiden aufgrund ihrer geringen Alterungsbeständigkeit durch Reaktionsfreudigkeit mit Sauerstoff für den erfindungsgemäßen Einsatz aus.As electrically conductive polymers it is possible to use both electrically conductive polymers such as polystyrene, polyvinyl resins, polyacrylic acid derivatives and copolymers thereof, as well as electrically conductive polyamides and their derivatives, polyfluorohydrocarbons, epoxy resins and polyurethanes. Preference is given to polyamides, polymethyl methacrylates. Epoxies, polyurethanes and polystyrene or mixtures thereof used. In this case, polyamides additionally have good adhesive properties, which are advantageous for the production of the device according to the invention for heating media, since this facilitates the attachment to the device. Some polymers, such as polyacetylenes excreted due to their low resistance to aging by reactivity with oxygen for the inventive use.

Die Länge der verwendeten Polymermoleküle variiert in großen Bereichen abhängig von der Art und der Struktur des Polymers liegt aber vorzugsweise mindestens bei 500 , besonders bevorzugt bei mindestens 4000 Å.The length of the polymer molecules used varies widely depending on the type and structure of the polymer, but is preferably at least 500, more preferably at least 4000 Å.

Als elektrisch leitendes Polymer können erfindungsgemäß in der Widerstandsfläche der Vorrichtung insbesondere solche Polymere verwendet werden, die durch Metall- oder Halbmetallatome, die an die Polymere angelagert sind, leitfähig sind. Diese Polymere besitzen vorzugsweise einen spezifischen Durchgangswiderstand im Bereich der Werte, die von Halbleitern erzielt werden. Er kann bis zu 102 Ω·cm betragen, vorzugsweise liegt er höher, höchstens aber bei 105 Ω·cm. Solche Polymere können durch ein Verfahren erhalten werden, bei dem Polymer-Dispersionen. Polymer-Lösungen oder Polymere mit Metall- oder Halbmetallverbindungen oder deren Lösung in einer Menge versetzt werden, so daß auf ein Polymer-Molekül annähernd ein Metall- oder Halbmetallatom kommt. Dieser Mischung wird ein Reduktionsmittel in geringem Überschuß zugegeben oder durch bekannte thermische Zersetzung Metall- oder Halbmetallatome gebildet. Anschließend werden die gebildeten oder noch vorhandenen Ionen ausgewaschen und die Dispersionslösung oder das Granulat kann gegebenenfalls mit Graphit oder Ruß versetzt werden.According to the invention, the electrically conductive polymer used in the resistance surface of the device can be, in particular, those polymers which are conductive by metal or semimetal atoms which are attached to the polymers. These polymers preferably have a volume resistivity in the range of values achieved by semiconductors. It can be up to 10 2 Ω · cm, preferably it is higher, but at most 10 5 Ω · cm. Such polymers can be obtained by a process in which polymer dispersions. Polymer solutions or polymers with metal or metalloid compounds or their solution are added in an amount such that a polymer molecule comes close to a metal or semimetal atom. This mixture is added a reducing agent in slight excess or formed by known thermal decomposition of metal or semimetal atoms. Subsequently, the formed or remaining ions are washed out and the dispersion solution or the granules can optionally be treated with graphite or carbon black.

Die erfindungsgemäß eingesetzten elektrisch leitenden Polymere sind vorzugsweise frei von Ionen. Maximal beträgt der Gehalt an freien Ionen 1 Gew.% bezogen auf das Gesamtgewicht der Widerstandsschicht. Die Ionen werden entweder wie oben beschrieben ausgewaschen oder es wird ein geeignetes Reduktionsmittel zugegeben. Das Reduktionsmittel wird in einem solchen Verhältnis zugegeben, daß die Ionen vollständig reduziert werden können. Der geringe Anteil an Ionen, vorzugsweise die lonenfreiheit der erfindungsgemäß verwendeten elektrisch leitenden Polymere bewirkt eine lange Beständigkeit der Widerstandsschicht unter Einwirkung von elektrischen Strömen. Wie sich gezeigt hat, besitzen Polymere, die Ionen zu einem höheren Prozentsatz enthalten, eine nur geringe Alterungsbeständigkeit bei Einwirkung von elektrischen Strömen, da es durch Elektroylse-Reaktionen zur Selbstzerstörung der Widerstandsschicht kommt. Das erfindungsgemäß verwendete elektrisch leitende Polymer hingegen ist aufgrund der geringen Ionenkonzentration auch bei längerer Beaufschlagung mit Strom alterungsbeständig. Als Reduktionsmittel für das oben beschriebene Verfahren zur Herstellung eines erfindungsgemäß eingesetzten elektrisch leitenden Polymers werden solche Reduktionsmittel verwendet, die entweder keine Ionen bilden, weil sie thermisch bei der Verarbeitung zersetzt werden, wie z.B. Hydrazin, oder mit dem Polymer selbst chemisch reagieren, wie z.B. Formaldehyd oder solche, deren Überschuß oder Reaktionsprodukte sich leicht auswaschen lassen, wie z.B. Hypophosphite. Als Metall oder Halbmetalle werden vorzugsweise Silber, Arsen, Nickel. Graphit oder Molybdän verwendet. Besonders bevorzugt sind solche Metall oder Halbmetallverbindungen, die durch reine thermische Zersetzung das Metall oder Halbmetall ohne störende Reaktionsprodukte bilden. Insbesondere Arsenwasserstofr oder Nickelcarbonyl haben sich als besonders vorteilhaft erwiesen. Die erfindungsgemäß verwendeten elektrisch leitenden Polymere können z.B. hergestellt werden, indem das Polymer mit 1-10 Gew-% (bezogen auf das Polymer) einer Vormischung, die nach einer der folgenden Rezepturen hergestellt wurde, versetzt wird. Beispiel 1: 1470 Gew.Teile Dispersion von Fluorkohlenwasserpolymers (55 % Feststoff in Wasser), 1 Gew.-Teil Netzmittel, 28 Gew.-Teile Silbernitratlösung 10 %, 6 Gew.-Teile Kreide, 8 Gew.-Teile Ammoniak, 20 Gew.-Teile Ruß, 214 Gew.-Teiie Graphit, 11 Gew.-Teile Hydrazinhydrat. Beispiel 2: 1380 Gew.-Teile Acrylharzdispersion 60 Gew.-% in Wasser, 1 Gew.-Teil Netzmittel. 32 Gew.-Teile Silbernitratlösung 10 %ig, 10 Gew.-Teile Kreide, 12 Gew.-Teile Ammoniak. 6 Gew.-Teile Ruß, 310 Gew.-Teile Graphit, 14 Gew.-Teile Hydrazinhydrat. Beispiel 3: 2200 Gew.-Teile dest. Wasser. 1000 Gew.-Teile Styrol (monomer), 600 Gew.-Teile Ampholytseife (15 %ig), 2 Gew.-Teile Natriumpyrophosphat, 2 Gew.-Teile Kaliumpersulfat, 60 Gew.-Teile Nickelsuflat, 60 Gew.-Teile Natriumhypophospit, 30 Gew.-Teile Adipinsäure. 240 Gew.-Teile Graphit. The electrically conductive polymers used according to the invention are preferably free of ions. The maximum content of free ions is 1% by weight, based on the total weight of the resistance layer. The ions are either washed out as described above or a suitable reducing agent is added. The reducing agent is added in such a ratio that the ions can be completely reduced. The low proportion of ions, preferably the freedom from ions, of the electrically conductive polymers used according to the invention results in a long resistance of the resistance layer under the action of electrical currents. It has been found that polymers containing ions at a higher percentage have little resistance to aging upon exposure to electrical currents, as electro-lyse reactions cause self-destruction of the resistive layer. The electrically conductive polymer used according to the invention, however, is resistant to aging due to the low ion concentration even with prolonged application of electricity. As the reducing agent for the above-described process for producing an electroconductive polymer used in the present invention, there are used those reducing agents which either do not form ions because they are thermally decomposed during processing, such as hydrazine, or chemically react with the polymer itself, such as formaldehyde or those whose excess or reaction products are easily washed out, such as hypophosphites. As metal or semimetals are preferably silver, arsenic, nickel. Graphite or molybdenum used. Particular preference is given to those metal or semimetal compounds which, by pure thermal decomposition, form the metal or semimetal without interfering reaction products. In particular arsenic or nickel carbonyl have proven to be particularly advantageous. The electrically conductive polymers used according to the invention can be prepared, for example, by reacting the polymer with 1-10% by weight (based on the polymer) a masterbatch prepared according to one of the following recipes. Example 1: 1470 parts by wt. Dispersion of fluorocarbon polymer (55% solids in water), 1 part by weight of wetting agent, 28 parts by weight of silver nitrate solution 10%, 6 parts by weight of chalk, 8 parts by weight of ammonia, 20 parts by weight Carbon black, 214 parts by weight of graphite, 11 parts by weight of hydrazine hydrate. Example 2: 1380 parts by weight of acrylic resin dispersion 60 wt .-% in water, 1 part by weight of wetting agent. 32 parts by weight of silver nitrate solution 10%, 10 parts by weight of chalk, 12 parts by weight of ammonia. 6 parts by weight of carbon black, 310 parts by weight of graphite, 14 parts by weight of hydrazine hydrate. Example 3: 2200 parts by weight of dist. Water. 1000 parts by weight of styrene (monomer), 600 parts by weight of ampholyte soap (15%), 2 parts by weight of sodium pyrophosphate, 2 parts by weight of potassium persulfate, 60 parts by weight of nickel sulfate, 60 parts by weight of sodium hypophosphite, 30 parts by weight of adipic acid. 240 parts by weight graphite.

Claims (9)

  1. An apparatus (1) for heating media, comprising at least one container (2) for receiving the medium, and at least one planar resistance heating element (3), the resistance heating element (3) being disposed on at least part of the outer side of the container (2) and its resistance mass (33) comprising an electroconductive polymer.
  2. The apparatus according to claim 1, characterized in that the resistance heating element (3) comprises at least two electrodes (31, 32) which extend in the longitudinal direction through the surface of the resistance mass (33), the current applied to the electrodes (31, 32) flowing through the resistance mass (33) perpendicular to the thickness of the resistance mass (33).
  3. The apparatus according to claim 2, characterized in that the resistance mass (33) comprises a grid, the filaments of the grid being formed from a synthetic material comprising the electroconductive polymer, or the filaments of the grid being made of another material and coated with said synthetic material.
  4. The apparatus according to claim 1, characterized in that the resistance heating element (3) comprises at least two planar electrodes (34) between which the resistance mass (35) is disposed in the form of a layer, the electrodes (34) covering it at least partly, and at least one of the electrodes (34) facing the outer wall of the container (2).
  5. The apparatus according to any of the above claims, characterized in that the electroconductive polymer has a positive temperature coefficient of electric resistance.
  6. The apparatus according to any of the above claims, characterized in that it comprises two containers (21, 22), and a resistance heating element (3) is so disposed between the containers (21, 22) that one surface of the resistance heating element (3) is disposed on the outer side of one container (21) and the opposite surface of the resistance heating element (3) on the outer side of the other container (22).
  7. The apparatus according to any of the above claims, characterized in that it comprises at least two containers (21, 22) that are so interconnected that the medium flows through the containers (21, 22) one after the other.
  8. The apparatus according to any of claims 1 to 6, characterized in that it comprises at least two containers (21, 22) having devices (23, 24) that permit separate filling and emptying of one container (21, 22) in each case.
  9. The apparatus according to any of the above claims, characterized in that it is a water heater.
EP99926417A 1998-05-26 1999-05-26 Device for heating media Expired - Lifetime EP1082876B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19823505 1998-05-26
DE19823505A DE19823505A1 (en) 1998-05-26 1998-05-26 Device for heating media
PCT/EP1999/003617 WO1999062297A1 (en) 1998-05-26 1999-05-26 Device for heating media

Publications (2)

Publication Number Publication Date
EP1082876A1 EP1082876A1 (en) 2001-03-14
EP1082876B1 true EP1082876B1 (en) 2007-03-14

Family

ID=7868967

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99926417A Expired - Lifetime EP1082876B1 (en) 1998-05-26 1999-05-26 Device for heating media

Country Status (5)

Country Link
EP (1) EP1082876B1 (en)
AT (1) ATE357122T1 (en)
DE (2) DE19823505A1 (en)
ES (1) ES2284255T3 (en)
WO (1) WO1999062297A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046033B4 (en) * 2004-09-21 2014-10-30 Wolfgang Rothengass Energy-saving heating device
DE202005014678U1 (en) * 2005-05-19 2006-09-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanotube laminar system, useful in actuator, sensor and tissue engineering, comprises nanotubes and fibers, where the nanotubes are absorbed in the fibers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT274965B (en) * 1965-05-06 1969-10-10 Jahann Oppitz Method for producing an electrical resistance mass
DE2159945A1 (en) * 1970-12-22 1972-07-13 Gustavsbergs Fabriker Ab Electric heater
AT325176B (en) * 1972-05-05 1975-10-10 Oppitz Hans FLAT-SHAPED HEATING ELEMENT
ES454025A1 (en) * 1975-12-08 1977-11-16 Raychem Corp Expansible heater
DE2804818C2 (en) * 1978-02-04 1986-12-11 Fritz Eichenauer GmbH & Co KG, 6744 Kandel Electric heater
US4571481A (en) * 1983-03-11 1986-02-18 Raychem Corporation Method and apparatus for electrically heating diesel fuel
US4616125A (en) * 1984-02-03 1986-10-07 Eltac Nogler & Daum Kg Heating element
IT213900Z2 (en) * 1988-03-18 1990-03-01 Bravo Spa PERFECTED TANK HEATING APPARATUS.
US5109474A (en) * 1991-02-26 1992-04-28 Robertshaw Controls Company Immersion heating element with conductive polymeric fitting

Also Published As

Publication number Publication date
DE59914253D1 (en) 2007-04-26
DE19823505A1 (en) 1999-12-09
ES2284255T3 (en) 2007-11-01
WO1999062297A1 (en) 1999-12-02
ATE357122T1 (en) 2007-04-15
EP1082876A1 (en) 2001-03-14

Similar Documents

Publication Publication Date Title
EP1053658B1 (en) Flat heating element and use of flat heating elements
DE2543314C2 (en) Self-regulating electrical device
DE2513362B2 (en) Method of manufacturing a flat heating element
EP0109019A2 (en) Surface heating element, especially for bandages or electric blankets
DE10236998A1 (en) Electrochemical cell especially a proton exchange membrane fuel cell or electrolysis cell has element to automatically alter the cross section of a flow channel
EP1839920B1 (en) Electrical Heater for a vehicle air conditioning system
EP1933598B1 (en) Electrical heater or supplementary heater, in particular for a heating or air conditioning assembly of a vehicle
EP1082879B1 (en) Electric blanket
EP1082876B1 (en) Device for heating media
DE19823531C2 (en) Heated transport device for media
DE102016107043B4 (en) Heating rod with nickel-plated contact plate
EP1082878B1 (en) Heating sleeve for pipes
EP1082877B1 (en) Flexible flat heating element
EP1445553B1 (en) Heat exchanger
DE102004001884A1 (en) Evaporator for sublimating materials
DE3033431C2 (en) Heat exchanger for flowing media with a porous body inserted into a jacket tube
DE112006002270B4 (en) fuel cell
DE102018109517A1 (en) heat exchanger unit
DE102018107443A1 (en) Heating element with PTC effect and additional electric heater with such a heating element
EP1511102A2 (en) Bipolar plate and fuel cell stack
EP1457743B1 (en) Electric heater,esp. for a vehicle
DE2735006A1 (en) LOW VOLTAGE WATER HEATER CURRENTLY DELIVERING
DE60008305T2 (en) Electric heating element for the evaporation of insecticides or perfumes
DE1665309A1 (en) Electrical resistance
EP1431086B1 (en) Device for changing the temperature of a medium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20041109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070314

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59914253

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070614

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070814

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2284255

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

26N No opposition filed

Effective date: 20071217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111129

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111130

Year of fee payment: 13

BERE Be: lapsed

Owner name: LATEC A.G.

Effective date: 20120531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121130

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121231

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120526

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131128

Year of fee payment: 15

Ref country code: AT

Payment date: 20131129

Year of fee payment: 15

Ref country code: CH

Payment date: 20131127

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130526

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59914253

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 357122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59914253

Country of ref document: DE

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202