EP1072689A1 - Process of manufacturing thin "TRIP" type steel strips and strips obtained thereby - Google Patents

Process of manufacturing thin "TRIP" type steel strips and strips obtained thereby Download PDF

Info

Publication number
EP1072689A1
EP1072689A1 EP00402035A EP00402035A EP1072689A1 EP 1072689 A1 EP1072689 A1 EP 1072689A1 EP 00402035 A EP00402035 A EP 00402035A EP 00402035 A EP00402035 A EP 00402035A EP 1072689 A1 EP1072689 A1 EP 1072689A1
Authority
EP
European Patent Office
Prior art keywords
strip
steel
cooling
less
trip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00402035A
Other languages
German (de)
French (fr)
Other versions
EP1072689B1 (en
Inventor
Thierry Iung
Odile Faral
Michel Faral
Michel Babbit
Christophe Issartel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USINOR SA
Original Assignee
USINOR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USINOR SA filed Critical USINOR SA
Publication of EP1072689A1 publication Critical patent/EP1072689A1/en
Application granted granted Critical
Publication of EP1072689B1 publication Critical patent/EP1072689B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • C21D8/0215Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the invention relates to the continuous casting of thin steel strips. More in particular, it relates to the manufacture of thin steel strips of the “TRIP” type directly from liquid metal.
  • TRIP Transformation Induced Plasticity
  • steels which simultaneously have a very high strength and high ductility, which makes them particularly suitable for laying form. These properties are obtained thanks to their particular microscopic structure. They have, in fact, within a ferritic matrix, a hard phase of bainite and / or martensite, as well as residual austenite representing 5 to 20% of the structure.
  • the TRIP steel sheets are usually obtained by either continuous casting from slabs - hot rolling (the shortest route, therefore the most economical, but which provides relatively thick products), either by continuous casting slabs - hot rolling - cold rolling - annealing (used for products of low thickness).
  • the bainite stabilizes the austenite.
  • the object of the invention is to make possible the reliable production of steel strips High quality TRIP through a short manufacturing chain, i.e. not including cold rolling and annealing step.
  • the subject of the invention is also a thin steel strip of the “TRIP” type, likely to be obtained by the above process.
  • a first essential aspect of the invention is the use of a continuous casting process of steel in thin strips directly to from liquid metal, instead of a conventional slab casting process intended to be hot rolled on a strip train.
  • the strip thus produced is subjected to hot rolling online and then cooling which brings it into the temperature range where the bainitic transformation occurs. It’s only after this transformation occurred and the desired microstructure, typical of TRIP steels, was obtained that a second cooling takes place which interrupts the transformation, and brings the strip its winding temperature. This is located at a lower value than that of hot rolled strips produced by the conventional process, since the transformation bainitique has already taken place, and that an extended stay of the wound strip in the range of temperatures where this transformation took place could lead to an evolution undesirable microstructure.
  • the continuous casting of thin strips directly from liquid metal is a technique which has been tested for several years for the casting of carbon steels, stainless steels and other ferrous alloys, but has never been used before for the production of TRIP type steels.
  • the most commonly used technique in casting thin strips of ferrous alloys which is reaching the stage industrial, is the technique called "casting between cylinders", according to which we introduce liquid metal between two close cylinders with horizontal axes, rotated in direction reverse and internally cooled. The pouring space is closed laterally by refractory plates applied against the flat side faces of the cylinders.
  • “Skins” of solidified metal are formed on each of the cylinders, and meet at the level the neck (the area where the gap between the cylindrical side surfaces of the cylinders is greatest low and corresponds substantially to the desired thickness for the strip) to form a solidified strip.
  • the strip Before being wound, the strip can then undergo various treatments thermal and / or thermomechanical such as one or more hot rolling, cooling, reheating ... It is a particular set of such treatments which constitutes one of the essential elements of the invention.
  • a steel is cast, the composition of which is defined as follows (all percentages are weight percentages).
  • Its carbon content is between 0.05 and 0.25%.
  • the lower limit is required by the stabilization of the residual austenite, which takes place during cooling of the strip by rejection of carbon from the ferritic phase in the phase austenitic. Above 0.25%, it is considered that the strip will no longer have a weldability sufficient for the usual applications of TRIP steels.
  • Manganese content is between 0.5 and 3%.
  • Manganese has for functions to stabilize austenite (it is a gamma element) and to harden steel. In below 0.5%, these effects are not sufficiently marked. Above 3%, the effect gammagen becomes too important to guarantee the formation of a ferritic matrix, and more manganese segregates exaggeratedly, which degrades the properties tape mechanics.
  • Manganese can be partially substituted by copper and / or nickel which also have gamma effects.
  • the copper added specifically allows hardening by precipitation.
  • the copper being insoluble in cementite, it allows like silicon and aluminum to obtain a beneficial effect for the residual austenite.
  • the conditions of rapid cooling imposed by the casting of thin strips makes it possible to avoid problems of degradation of the surface condition of the product which dissuade from making this addition of copper in TRIP steels produced by conventional processes.
  • the total of its silicon and aluminum contents is between 0.1 and 4%. These elements prevent precipitation of cementite in austenite and promote formation high temperature ferrite. Compared to the silicon contents usually encountered on TRIP steels (from 0.2 to 1.5%), it will be noted that the process according to the invention may authorize higher contents, for reasons and under conditions which will be seen later.
  • the cumulative content of phosphorus, tin, arsenic, antimony must not exceed 0.3%, to limit the fragility of the products, and preferably the phosphorus content does not not exceed 0.05%.
  • titanium, niobium, vanadium, zirconium or rare earths in contents the sum of which does not exceed 0.3%.
  • These elements form carbides, nitrides or carbonitrides that block the growth of grains at high temperature and increase the resistance by the precipitation effect.
  • the other elements present in the steel are those which one expects usually to be found as impurities resulting from processing, in proportions which do not have a significant influence on the properties sought for steels TRIP.
  • Liquid metal whose composition meets the criteria set out above is cast on a casting installation between cylinders, so as to continuously form a solidified strip whose thickness can range from 0.5 to 10 mm and more conventionally range from 1 at 5 mm.
  • the strip preferably crosses an inerting zone, such as that a sealed enclosure, inside which is maintained in the vicinity of the strip a non-oxidizing atmosphere for the metal, thanks to an insufflation of a neutral gas (nitrogen or argon) lowering the oxygen content to a very low level.
  • a neutral gas nitrogen or argon
  • the purpose of this blanketing is to avoid, or at least significantly limit, the scale formation on the surface of the strip, the presence of which during the step of hot rolling which will follow, would lead to the appearance of defects such as scale inlays on the surface of the strip.
  • the inerting device can be replaced or supplemented by a device ensuring the removal of the scale formed, by example a set of rotating brushes.
  • the strip After it has been poured, and after having passed through any inerting zone, the strip is then hot-rolled in line, in known manner, to give it a thickness generally between 1 and 3 mm.
  • This rolling must be carried out in the austenitic domain, therefore at a temperature higher than the temperature Ar 3 of the cast grade. It is carried out with a total reduction rate of between 25 and 70%.
  • the role of this inline hot rolling is twofold. It must first close the porosities which may have formed at the heart of the strip during its solidification. Above all, it must "break" the microstructure resulting from solidification, so as to refine it and make it possible to obtain the desired final microstructure.
  • This hot rolling can take place in one or more passes, that is to say by passing the strip through a single rolling stand, or by passing the strip through several successive stands, the first ensuring a slight reduction aimed at closing the porosities, and the one or the following ensuring the obtaining of the final thickness.
  • the following triplets can be proposed (casting thickness / reduction ratio in hot rolling / final thickness): examples of triplets (casting thickness / reduction rate in hot rolling / final thickness) Initial strip thickness (mm) Hot rolling rate (%) Final strip thickness (mm) 4 25 3 4 50 2 2 40 1.2 1.5 40 0.9 1 60 0.6
  • a first forced cooling of the tape for example by means of a sprinkling of water.
  • This cooling aims to form the within the band a ferritic structure, while avoiding the appearance of perlite. To this end, it must be carried out at a speed between 5 and 100 ° C / s, preferably between 25 and 80 ° C / s, which is perfectly compatible with conventional technologies of cooling of strips having the thicknesses considered. Cooling speed too low would cause perlite to appear, making transformation impossible bainitique which constitutes one of the essential characteristics of the invention. A speed too high cooling risk of not allowing the ferritic structure to be obtained as sought for the matrix, because one would pass directly in the field bainitic, even in the martensitic domain. The range of cooling speeds preferential allows to better ensure the obtaining of an optimal result.
  • This first cooling must be such, in speed and duration, that it brings about the strip in a thermal state which allows the strip to remain in the air in the area of temperatures 550-400 ° C, preferably 530-470 ° C (in order to obtain the austenite rate sought for reasonable retention times, while ensuring that no training will be no perlite) for the time necessary for a transformation to occur bainitique stabilizing the proportion of austenite remaining at more than 5%, while avoiding the perlite formation.
  • the band undergoes a second forced cooling, for example by spraying water, so as to bring the strip out from the previous temperature range (therefore less than 400 ° C), preferably until its winding temperature, which must be less than 350 ° C.
  • This temperature range of winding is chosen to avoid any major change in the structure of the wound strip, such as a precipitation of carbides which would destabilize the austenite.
  • the length of stay of the strip in air without forced cooling necessary for obtaining the bainitic transformation as desired varies according to the casting parameters precise, i.e. the composition of the tape and its speed of movement in the the corresponding installation. This duration must be determined experimentally, in using the classic transformation curves of the steel grades considered, and function of the precise residual austenite level that one wishes to obtain. Austenite level high improves ductility, but conversely, an austenite level of less than 5% at the end of bainitic transformation will provide insufficient martensite formation to obtain the TRIP effect.
  • an austenite content of 6% is obtained for maintaining the strip of 10 s at 470 ° C or 20s at 530 ° C.
  • the duration of this stay may be generally between 5 and 30 s.
  • the running speed of the strip hot rolled in the bainitic transformation zone varies according to the hot rolling rate applied to it.
  • Table 2 shows examples of strip running speeds in the bainitic transformation zone as a function of the hot rolling rate, taking into account the previous hypotheses.
  • strip running speeds in the bainitic transformation zone as a function of the hot rolling rate (casting thickness 3 mm, casting speed 60 m / min) Hot rolling rate (%)
  • Belt speed (m / s) 25 1.3 40 1.7 60 2.5 70 3.3
  • the cooling zones are consist of a succession of water spray bars, you can choose to use a variable number of ramps to flexibly adjust the lengths of these zones.
  • the essential step of the method according to the invention is the stay of the strip in the bainitic transformation field after its hot rolling, to which the second cooling imposes a short duration, as well as the realization of the winding of the strip in a range of temperatures where the bainitic transformation has already happened.
  • the fact of making the strip by casting between cylinders (or, so general, by direct casting of thin strips from 1.5 to 10 mm and in particular from 1 to 5 mm thick) and hot rolling in line is almost a prerequisite for the economic viability of carrying out the bainitic transformation in these conditions.
  • the strips obtained by the process according to the invention are ready to be used in the same way as TRIP steel strips as well composition obtained by the conventional continuous casting slab die - rolling to hot.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

To make the TRIP (TRansformation Induced Plasticity) band, the band is continuously cast, 1.5-10 mm thick, preferably 1-5 mm thick. Composition is C 0.5-0.25, (Mn+Cu+Ni) is 0.5-3%, (Si+Al) is 0.1-4%, (P+Sn+As+Sb) is up to 0.1%, (Ti+Nb+V+Zr+rare earths) is up to 0.3%, Cr is below 1%, as are Mo, V; the balance being iron and impurities. The band is hot-laminated above the steel Ar3 temperature, with a reduction of 25-70% in one or more passes. The first forced cooling takes place at 5-100 degrees C/s. The band is held at 550-400 degrees C sufficiently long for the bainitic transformation with a proportion of residual austenite exceeding 5%, whilst avoiding perlite formation. The transformation is interrupted by a second forced cooling to 400 degrees C. The band is finally wound up, below 350 degrees C. An Independent claim is included for the band of steel so produced.

Description

L'invention concerne la coulée continue de bandes minces en acier. Plus particulièrement, elle concerne la fabrication de bandes minces en acier de type « TRIP » directement à partir de métal liquide.The invention relates to the continuous casting of thin steel strips. More in particular, it relates to the manufacture of thin steel strips of the “TRIP” type directly from liquid metal.

Les aciers désignés habituellement par le terme TRIP (ce terme signifiant « TRansformation Induced Plasticity ») sont des aciers présentant simultanément une très haute résistance et une haute ductilité, ce qui les rend particulièrement aptes à une mise en forme. Ces propriétés sont obtenues grâce à leur structure microscopique particulière. Ils présentent, en effet, au sein d'une matrice ferritique, une phase dure de bainite et/ou de martensite, ainsi que de l'austénite résiduelle représentant de 5 à 20% de la structure. Les tôles en acier TRIP sont habituellement obtenues soit par la voie coulée continue de brames - laminage à chaud (la voie la plus courte, donc la plus économique, mais qui procure des produits de relativement forte épaisseur), soit par la voie coulée continue de brames - laminage à chaud - laminage à froid - recuit (utilisée pour les produits de faible épaisseur). La bainite permet de stabiliser l'austénite.Steels usually designated by the term TRIP (this term meaning "Transformation Induced Plasticity") are steels which simultaneously have a very high strength and high ductility, which makes them particularly suitable for laying form. These properties are obtained thanks to their particular microscopic structure. They have, in fact, within a ferritic matrix, a hard phase of bainite and / or martensite, as well as residual austenite representing 5 to 20% of the structure. The TRIP steel sheets are usually obtained by either continuous casting from slabs - hot rolling (the shortest route, therefore the most economical, but which provides relatively thick products), either by continuous casting slabs - hot rolling - cold rolling - annealing (used for products of low thickness). The bainite stabilizes the austenite.

La réalisation de tôles d'acier TRIP de haute qualité à partir de bandes obtenues par la filière coulée continue classique - laminage à chaud est cependant rendue difficile par le problème suivant. Après le laminage à chaud de la brame initiale, on recherche une stabilisation de l'austénite lors de la transformation bainitique qui se produit pendant le bobinage de la bande, celui-ci ayant lieu à une température de 400°C (± 50°C). Pour amener la bande laminée à chaud à sa température de bobinage, un refroidissement par aspersion d'eau est nécessaire. Or ce refroidissement se produit dans un domaine de températures où un phénomène dit de « remouillage » est susceptible de se produire. Ce remouillage est dû à une instabilité de la vapeur d'eau formée par caléfaction au contact de la bande, la vapeur retournant pour partie à l'état liquide. Il y a donc localement des contacts eau (liquide) - bande au lieu d'un contact eau (vapeur) - bande, et cela conduit à des hétérogénéités dans le phénomène de trempe de la bande. Ces hétérogénéités dans le refroidissement se traduisent par des hétérogénéités notables dans la microstructure de la bande, dont elles altèrent les propriétés mécaniques.Production of high-quality TRIP steel sheets from strips obtained by the conventional continuous casting die - hot rolling is however made difficult by the following problem. After the hot rolling of the initial slab, we look for a stabilization of the austenite during the bainitic transformation which occurs during the winding of the strip, this taking place at a temperature of 400 ° C (± 50 ° C). For bring the hot rolled strip to its winding temperature, cooling by water sprinkling is necessary. Now this cooling occurs in a domain of temperatures where a phenomenon known as "rewetting" is likely to occur. This rewetting is due to instability of the water vapor formed by heat-forming on contact with the strip, the vapor partly returning to the liquid state. So there are locally water (liquid) - strip contacts instead of water (vapor) - strip contact, and this leads to heterogeneities in the strip quenching phenomenon. These heterogeneities in the cooling results in notable heterogeneities in the microstructure of the strip, whose mechanical properties they impair.

Le but de l'invention est de rendre possible la production fiable de bandes d'acier TRIP de haute qualité par une filière de fabrication courte, c'est à dire ne comprenant pas d'étape de laminage à froid et recuit.The object of the invention is to make possible the reliable production of steel strips High quality TRIP through a short manufacturing chain, i.e. not including cold rolling and annealing step.

A cet effet, l'invention a pour objet un procédé de fabrication de bandes minces en acier de type « TRIP », selon lequel :

  • on coule directement à partir d'acier liquide une bande d'épaisseur comprise entre 1,5 et 10 mm, preférentiellement 1 à 5 mm, ledit acier ayant la composition (en pourcentages pondéraux) C% compris entre 0,05 et 0,25, (Mn + Cu + Ni)% compris entre 0,5 et 3, (Si + Al)% compris entre 0,1 et 4, (P + Sn + As + Sb)% inférieur ou égal à 0,1 , (Ti + Nb + V + Zr + terres rares)% inférieur à 0,3, Cr% inférieur à 1, Mo% inférieur à 1, V% inférieur à 1, le reste étant du fer et des impuretés résultant de l'élaboration ;
  • on effectue un laminage à chaud en ligne de ladite bande à une température supérieure à la température Ar3 dudit acier avec un taux de réduction compris entre 25 et 70%, en une ou plusieurs passes ;
  • on effectue un premier refroidissement forcé de ladite bande à une vitesse comprise entre 5 et 100°C/s ;
  • on laisse séjourner la bande à des températures comprises entre 550 et 400°C pendant le temps nécessaire pour que s'y produise une transformation bainitique avec une proportion d'austénite résiduelle supérieure à 5%, tout en évitant la formation de perlite, puis on interrompt cette transformation par un second refroidissement forcé de ladite bande qui l'amène à une température inférieure à 400°C ;
  • on effectue un bobinage de ladite bande à une température inférieure à 350°C.
To this end, the subject of the invention is a process for manufacturing thin steel strips of the "TRIP" type, according to which:
  • a strip of thickness between 1.5 and 10 mm, preferably 1 to 5 mm, is poured directly from liquid steel, said steel having the composition (in weight percentages) C% between 0.05 and 0.25 , (Mn + Cu + Ni)% between 0.5 and 3, (Si + Al)% between 0.1 and 4, (P + Sn + As + Sb)% less than or equal to 0.1, ( Ti + Nb + V + Zr + rare earths)% less than 0.3, Cr% less than 1, Mo% less than 1, V% less than 1, the rest being iron and impurities resulting from the production;
  • hot rolling is carried out in line of said strip at a temperature higher than the temperature Ar 3 of said steel with a reduction rate of between 25 and 70%, in one or more passes;
  • a first forced cooling of said strip is carried out at a speed of between 5 and 100 ° C / s;
  • the strip is left to stay at temperatures between 550 and 400 ° C. for the time necessary for a bainitic transformation to occur there with a proportion of residual austenite greater than 5%, while avoiding the formation of perlite, then interrupts this transformation by a second forced cooling of said strip which brings it to a temperature below 400 ° C;
  • said strip is wound at a temperature below 350 ° C.

L'invention a également pour objet une bande mince en acier de type « TRIP », susceptible d'être obtenue par le procédé précédent.The subject of the invention is also a thin steel strip of the “TRIP” type, likely to be obtained by the above process.

Comme on l'aura compris, un premier aspect essentiel de l'invention est l'utilisation d'un procédé de coulée continue de l'acier en bandes minces directement à partir de métal liquide, au lieu d'un procédé classique de coulée de brames destinées à être laminées à chaud sur un train à bandes. La bande ainsi produite subit un laminage à chaud en ligne, puis un refroidissement qui l'amène dans le domaine de températures où la transformation bainitique se produit. C'est seulement une fois que cette transformation s'est produite et que la microstructure recherchée, typique des aciers TRIP, a été obtenue qu'a lieu un deuxième refroidissement qui interrompt la transformation, et rapproche la bande de sa température de bobinage. Celle-ci se situe à une valeur plus basse que celle des bandes laminées à chaud produites par le procédé classique, puisque la transformation bainitique a déjà eu lieu, et qu'un séjour prolongé de la bande bobinée dans la gamme de températures où a eu lieu cette transformation risquerait de conduire à une évolution indésirable de la microstructure.As will be understood, a first essential aspect of the invention is the use of a continuous casting process of steel in thin strips directly to from liquid metal, instead of a conventional slab casting process intended to be hot rolled on a strip train. The strip thus produced is subjected to hot rolling online and then cooling which brings it into the temperature range where the bainitic transformation occurs. It’s only after this transformation occurred and the desired microstructure, typical of TRIP steels, was obtained that a second cooling takes place which interrupts the transformation, and brings the strip its winding temperature. This is located at a lower value than that of hot rolled strips produced by the conventional process, since the transformation bainitique has already taken place, and that an extended stay of the wound strip in the range of temperatures where this transformation took place could lead to an evolution undesirable microstructure.

L'invention sera mieux comprise à la lecture de la description qui suit.The invention will be better understood on reading the description which follows.

La coulée continue de bandes minces directement à partir de métal liquide est une technique qui est expérimentée depuis plusieurs années pour la coulée d'aciers au carbone, d'aciers inoxydables et d'autres alliages ferreux, mais elle n'a encore jamais été employée pour la fabrication d'aciers de type TRIP. La technique la plus couramment utilisée en coulée de bandes minces d'alliages ferreux, et qui est en train de parvenir au stade industriel, est la technique dite de « coulée entre cylindres », selon laquelle on introduit du métal liquide entre deux cylindres rapprochés à axes horizontaux, mis en rotation en sens inverses et refroidis intérieurement. L'espace de coulée est obturé latéralement par des plaques en réfractaire appliquées contre les faces latérales planes des cylindres. Des « peaux » de métal solidifié se forment sur chacun des cylindres, et se rejoignent au niveau du col (la zone où l'écart entre les surfaces latérales cylindriques des cylindres est le plus faible et correspond sensiblement à l'épaisseur désirée pour la bande) pour former une bande solidifiée. Avant d'être bobinée, la bande peut ensuite subir divers traitements thermiques et/ou thermomécaniques tels qu'un ou plusieurs laminages à chaud, des refroidissements, des réchauffages... C'est un ensemble particulier de tels traitements qui constitue l'un des éléments essentiels de l'invention.The continuous casting of thin strips directly from liquid metal is a technique which has been tested for several years for the casting of carbon steels, stainless steels and other ferrous alloys, but has never been used before for the production of TRIP type steels. The most commonly used technique in casting thin strips of ferrous alloys, which is reaching the stage industrial, is the technique called "casting between cylinders", according to which we introduce liquid metal between two close cylinders with horizontal axes, rotated in direction reverse and internally cooled. The pouring space is closed laterally by refractory plates applied against the flat side faces of the cylinders. Of “Skins” of solidified metal are formed on each of the cylinders, and meet at the level the neck (the area where the gap between the cylindrical side surfaces of the cylinders is greatest low and corresponds substantially to the desired thickness for the strip) to form a solidified strip. Before being wound, the strip can then undergo various treatments thermal and / or thermomechanical such as one or more hot rolling, cooling, reheating ... It is a particular set of such treatments which constitutes one of the essential elements of the invention.

Selon l'invention, on coule un acier dont la composition est définie comme suit (tous les pourcentages sont des pourcentages pondéraux).According to the invention, a steel is cast, the composition of which is defined as follows (all percentages are weight percentages).

Sa teneur en carbone est comprise entre 0,05 et 0,25%. La limite inférieure est nécessitée par la stabilisation de l'austénite résiduelle, qui s'effectue lors du refroidissement de la bande par rejet de carbone depuis la phase ferritique dans la phase austénitique. Au-delà de 0,25%, on considère que la bande n'aura plus une soudabilité suffisante pour les applications habituelles des aciers TRIP.Its carbon content is between 0.05 and 0.25%. The lower limit is required by the stabilization of the residual austenite, which takes place during cooling of the strip by rejection of carbon from the ferritic phase in the phase austenitic. Above 0.25%, it is considered that the strip will no longer have a weldability sufficient for the usual applications of TRIP steels.

Sa teneur en manganèse est comprise entre 0,5 et 3%. Le manganèse a pour fonctions de stabiliser l'austénite (c'est un élément gammagène) et de durcir l'acier. En dessous de 0,5%, ces effets ne sont pas suffisamment marqués. Au dessus de 3%, l'effet gammagène devient trop important pour garantir la formation d'une matrice ferritique, et de plus le manganèse ségrège de manière exagérée, ce qui dégrade les propriétés mécaniques de la bande. Le manganèse peut être partiellement substitué par du cuivre et/ou du nickel qui ont également des effets gammagènes.Its manganese content is between 0.5 and 3%. Manganese has for functions to stabilize austenite (it is a gamma element) and to harden steel. In below 0.5%, these effects are not sufficiently marked. Above 3%, the effect gammagen becomes too important to guarantee the formation of a ferritic matrix, and more manganese segregates exaggeratedly, which degrades the properties tape mechanics. Manganese can be partially substituted by copper and / or nickel which also have gamma effects.

D'autre part, on peut optionnellement imposer une teneur en cuivre comprise entre 0.5 et 2 % (en restant dans le cadre Mn + Cu + Ni compris entre 0.5 et 3 %). Le cuivre ajouté permet spécifiquement d'obtenir un durcissement par précipitation. De plus, le cuivre étant insoluble dans la cémentite, il permet comme le silicium et l'aluminium d'obtenir un effet bénéfique pour l'austénite résiduelle. D'autre part, les conditions de refroidissement rapide imposées par la coulée de bandes minces permettent d'éviter les problèmes de dégradation de l'état de surface du produit qui dissuadent de réaliser cet ajout de cuivre dans les aciers TRIP produits par les procédés classiques.On the other hand, one can optionally impose a copper content between 0.5 and 2% (remaining within the framework Mn + Cu + Ni between 0.5 and 3%). The copper added specifically allows hardening by precipitation. In addition, the copper being insoluble in cementite, it allows like silicon and aluminum to obtain a beneficial effect for the residual austenite. On the other hand, the conditions of rapid cooling imposed by the casting of thin strips makes it possible to avoid problems of degradation of the surface condition of the product which dissuade from making this addition of copper in TRIP steels produced by conventional processes.

Le total de ses teneurs en silicium et aluminium est compris entre 0,1 et 4%. Ces éléments empêchent la précipitation de cémentite dans l'austénite et favorisent la formation de la ferrite à haute température. Par rapport aux teneurs en silicium habituellement rencontrées sur les aciers TRIP (de 0,2 à 1,5%), on notera que le procédé selon l'invention peut autoriser des teneurs plus élevées, pour des raisons et dans des conditions qui seront vues plus loin.The total of its silicon and aluminum contents is between 0.1 and 4%. These elements prevent precipitation of cementite in austenite and promote formation high temperature ferrite. Compared to the silicon contents usually encountered on TRIP steels (from 0.2 to 1.5%), it will be noted that the process according to the invention may authorize higher contents, for reasons and under conditions which will be seen later.

La teneur cumulée en phosphore, étain, arsenic,antimoine ne doit pas excéder 0,3%, pour limiter la fragilité des produits, et de préférence la teneur en phosphore ne dépasse pas 0,05%. The cumulative content of phosphorus, tin, arsenic, antimony must not exceed 0.3%, to limit the fragility of the products, and preferably the phosphorus content does not not exceed 0.05%.

On peut également ajouter du titane, du niobium, du vanadium, du zirconium ou des terres rares, à des teneurs dont la somme ne dépasse pas 0,3%. Ces éléments forment des carbures, nitrures ou carbonitrures qui bloquent la croissance des grains à haute température et augmentent la résistance par l'effet de précipitation.It is also possible to add titanium, niobium, vanadium, zirconium or rare earths, in contents the sum of which does not exceed 0.3%. These elements form carbides, nitrides or carbonitrides that block the growth of grains at high temperature and increase the resistance by the precipitation effect.

Enfin, il faut éviter une présence trop importante d'éléments qui ralentiraient la transformation bainitique. C'est le cas du chrome, du molybdène et du vanadium. En tout état de cause, les teneurs de chacun de ces éléments ne doivent pas dépasser 1%. Optimalement, le total de leurs teneurs ne doit pas dépasser 0,3%, et encore plus préférentiellement 0,05%.Finally, it is necessary to avoid an excessive presence of elements which would slow down the bainitic transformation. This is the case for chromium, molybdenum and vanadium. In all However, the contents of each of these elements must not exceed 1%. Optimally, the total of their contents should not exceed 0.3%, and even more preferably 0.05%.

Les autres éléments présents dans l'acier sont ceux que l'on s'attend habituellement à trouver en tant qu'impuretés résultant de l'élaboration, dans des proportions qui n'influent pas notablement sur les propriétés recherchées pour les aciers TRIP.The other elements present in the steel are those which one expects usually to be found as impurities resulting from processing, in proportions which do not have a significant influence on the properties sought for steels TRIP.

Le métal liquide dont la composition répond aux critères précédemment énoncés est coulé sur une installation de coulée entre cylindres, de manière à former en continu une bande solidifiée dont l'épaisseur peut aller de 0,5 à 10 mm et plus classiquement aller de 1 à 5 mm. A sa sortie des cylindres, la bande traverse de préférence une zone d'inertage, telle qu'une enceinte étanche, à l'intérieur de laquelle on maintient au voisinage de la bande une atmosphère non oxydante pour le métal, grâce à une insufflation d'un gaz neutre (azote ou argon) abaissant la teneur en oxygène à un très bas niveau. On peut aussi envisager de conférer à cette atmosphère des propriétés réductrices en y introduisant de l'hydrogène.Liquid metal whose composition meets the criteria set out above is cast on a casting installation between cylinders, so as to continuously form a solidified strip whose thickness can range from 0.5 to 10 mm and more conventionally range from 1 at 5 mm. At its exit from the cylinders, the strip preferably crosses an inerting zone, such as that a sealed enclosure, inside which is maintained in the vicinity of the strip a non-oxidizing atmosphere for the metal, thanks to an insufflation of a neutral gas (nitrogen or argon) lowering the oxygen content to a very low level. We can also consider give this atmosphere reducing properties by introducing hydrogen into it.

Le but de cet inertage est d'éviter, ou au moins de limiter sensiblement, la formation de calamine à la surface de la bande, dont la présence, lors de l'étape de laminage à chaud qui va suivre, conduirait à l'apparition de défauts tels que des incrustations de calamine à la surface de la bande. Le dispositif d'inertage peut être remplacé ou complété par un dispositif assurant l'enlèvement de la calamine formée, par exemple un ensemble de brosses rotatives. Un intérêt de l'utilisation d'un tel dispositif d'inertage et/ou décalaminage avant le laminage à chaud est qu'il permet d'augmenter la teneur tolérable du métal en silicium. En effet, dans le procédé classique de fabrication des aciers TRIP par coulée de brames - laminage à chaud, on préfère éviter, le plus souvent, d'imposer une teneur en silicium supérieure à 0,25%, car sinon les conditions de formation de calamine sont généralement telles que l'on assiste à une apparition importante de fayalite (oxyde de fer et de silicium), très difficile à enlever avant le laminage à chaud. Dans les installations classiques où la coulée des brames et leur refroidissement s'effectuent à l'air libre, les brames coulées, déjà fortement calaminées, séjournent à la température ambiante, et doivent être réchauffées dans un four de grande taille (donc difficile à inerter) situé hors de la ligne de coulée avant d'être envoyées au train à bandes. Pour limiter la formation de calamine fortement chargée en fayalite et obtenir ainsi un état de surface correct de la bande, il est doncpréférable, dans la filière habituelle de fabrication des aciers TRIP laminés à chaud, de limiter la teneur en silicium du métal à la valeur précédemment citée, alors que, comme on l'a dit, des teneurs plus élevées présenteraient des avantages métallurgiques sensibles. L'utilisation d'une coulée entre cylindres pourvue d'un laminoir à chaud en ligne a, de ce point de vue, l'avantage qu'il est beaucoup plus facile d'empêcher ou de limiter la formation de fayalite sur la faible distance séparant la coulée et le laminage (ou d'enlever la fayalite qui a pu se former) que dans une installation classique.The purpose of this blanketing is to avoid, or at least significantly limit, the scale formation on the surface of the strip, the presence of which during the step of hot rolling which will follow, would lead to the appearance of defects such as scale inlays on the surface of the strip. The inerting device can be replaced or supplemented by a device ensuring the removal of the scale formed, by example a set of rotating brushes. An advantage of using such a device of inerting and / or descaling before hot rolling is that it increases the tolerable silicon metal content. Indeed, in the conventional process of manufacturing TRIP steels by slab casting - hot rolling, we prefer to avoid, most often, to impose a silicon content greater than 0.25%, because otherwise the conditions of formation calamine are generally such that there is a significant appearance of fayalite (iron and silicon oxide), very difficult to remove before hot rolling. In conventional installations where the casting of slabs and their cooling are carried out in the open air, the slabs which have already been heavily calcined remain at the room temperature, and should be reheated in a large oven (so difficult to inert) located off the casting line before being sent to the band train. To limit the formation of scale heavily loaded with fayalite and thus obtain a state correct surface area of the strip, it is therefore preferable in the usual manufacturing process hot-rolled TRIP steels, to limit the silicon content of the metal to the value previously cited, whereas, as we said, higher contents would present significant metallurgical advantages. The use of a casting between cylinders provided from an online hot rolling mill has, from this point of view, the advantage that it is much more easy to prevent or limit the formation of fayalite over the short distance between casting and rolling (or removing the fayalite that may have formed) only in a facility classic.

Après sa coulée, et après avoir traversé l'éventuelle zone d'inertage, la bande est ensuite laminée à chaud en ligne, de manière connue, pour lui conférer une épaisseur comprise généralement entre 1 et 3 mm. Ce laminage doit s'effectuer dans le domaine austénitique, donc à une température supérieure à la température Ar3 de la nuance coulée. Il est effectué avec un taux de réduction total compris entre 25 et 70%. Le rôle de ce laminage à chaud en ligne est double. Il doit d'abord refermer les porosités qui ont pu se former au coeur de la bande lors de sa solidification. Il doit surtout « casser » la microstructure résultant de la solidification, de manière à l'affiner et à rendre possible l'obtention de la microstructure finale désirée. Ce laminage à chaud peut avoir lieu en une ou plusieurs passes, c'est à dire par passage de la bande dans une cage de laminoir unique, ou par passage de la bande dans plusieurs cages successives, la première assurant une réduction faible visant à refermer les porosités, et la ou les suivantes assurant l'obtention de l'épaisseur définitive. A titre d'exemple, on peut proposer les triplets (épaisseur coulée/taux de réduction au laminage à chaud/épaisseur finale) suivants : exemples de triplets (épaisseur coulée/taux de réduction au laminage à chaud/épaisseur finale) Epaisseur de bande initiale (mm) Taux de laminage à chaud (%) Epaisseur de bande finale (mm) 4 25 3 4 50 2 2 40 1,2 1.5 40 0.9 1 60 0,6 After it has been poured, and after having passed through any inerting zone, the strip is then hot-rolled in line, in known manner, to give it a thickness generally between 1 and 3 mm. This rolling must be carried out in the austenitic domain, therefore at a temperature higher than the temperature Ar 3 of the cast grade. It is carried out with a total reduction rate of between 25 and 70%. The role of this inline hot rolling is twofold. It must first close the porosities which may have formed at the heart of the strip during its solidification. Above all, it must "break" the microstructure resulting from solidification, so as to refine it and make it possible to obtain the desired final microstructure. This hot rolling can take place in one or more passes, that is to say by passing the strip through a single rolling stand, or by passing the strip through several successive stands, the first ensuring a slight reduction aimed at closing the porosities, and the one or the following ensuring the obtaining of the final thickness. As an example, the following triplets can be proposed (casting thickness / reduction ratio in hot rolling / final thickness): examples of triplets (casting thickness / reduction rate in hot rolling / final thickness) Initial strip thickness (mm) Hot rolling rate (%) Final strip thickness (mm) 4 25 3 4 50 2 2 40 1.2 1.5 40 0.9 1 60 0.6

Après ce laminage à chaud, on réalise un premier refroidissement forcé de la bande, par exemple au moyen d'une aspersion d'eau. Ce refroidissement vise à former au sein de la bande une structure ferritique, tout en évitant l'apparition de perlite. A cet effet, il faut le réaliser à une vitesse comprise entre 5 et 100°C/s, préférentiellement entre 25 et 80°C/s, ce qui est parfaitement compatible avec les technologies classiques de refroidissement de bandes ayant les épaisseurs considérées. Une vitesse de refroidissement trop faible provoquerait l'apparition de perlite, ce qui rendrait impossible la transformation bainitique qui constitue l'une des caractéristiques essentielles de l'invention. Une vitesse de refroidissement trop élevée risque de ne pas permettre d'obtenir la structure ferritique telle que recherchée pour la matrice, car on passerait directement dans le domaine bainitique, voire dans le domaine martensitique. La gamme de vitesses de refroidissement préférentielle permet de mieux assurer l'obtention d'un résultat optimal.After this hot rolling, a first forced cooling of the tape, for example by means of a sprinkling of water. This cooling aims to form the within the band a ferritic structure, while avoiding the appearance of perlite. To this end, it must be carried out at a speed between 5 and 100 ° C / s, preferably between 25 and 80 ° C / s, which is perfectly compatible with conventional technologies of cooling of strips having the thicknesses considered. Cooling speed too low would cause perlite to appear, making transformation impossible bainitique which constitutes one of the essential characteristics of the invention. A speed too high cooling risk of not allowing the ferritic structure to be obtained as sought for the matrix, because one would pass directly in the field bainitic, even in the martensitic domain. The range of cooling speeds preferential allows to better ensure the obtaining of an optimal result.

Ce premier refroidissement doit être tel, en vitesse et en durée, qu'il amène la bande dans un état thermique qui autorise un séjour de la bande à l'air dans le domaine de températures 550-400°C, préférentiellement 530-470°C (afin d'obtenir le taux d'austénite recherché pour des temps de maintien raisonnables, tout en garantissant qu'on ne formera pas de perlite) pendant le temps nécessaire pour que se produise une transformation bainitique stabilisant la proportion d'austénite restante à plus de 5%, tout en évitant la formation de perlite. Une fois ce résultat obtenu, la bande subit un deuxième refroidissement forcé, par exemple par aspersion d'eau, de manière à amener la bande hors du domaine de température précédent (donc à moins de 400°C), de préférence jusqu'à sa température de bobinage, qui doit être inférieure à 350°C. Ce domaine de températures de bobinage est choisi pour éviter toute évolution majeure de la structure de la bande bobinée, telle qu'une précipitation de carbures qui déstabiliserait l'austénite.This first cooling must be such, in speed and duration, that it brings about the strip in a thermal state which allows the strip to remain in the air in the area of temperatures 550-400 ° C, preferably 530-470 ° C (in order to obtain the austenite rate sought for reasonable retention times, while ensuring that no training will be no perlite) for the time necessary for a transformation to occur bainitique stabilizing the proportion of austenite remaining at more than 5%, while avoiding the perlite formation. Once this result is obtained, the band undergoes a second forced cooling, for example by spraying water, so as to bring the strip out from the previous temperature range (therefore less than 400 ° C), preferably until its winding temperature, which must be less than 350 ° C. This temperature range of winding is chosen to avoid any major change in the structure of the wound strip, such as a precipitation of carbides which would destabilize the austenite.

La durée du séjour de la bande à l'air sans refroidissement forcé nécessaire pour obtenir la transformation bainitique telle que souhaitée varie selon les paramètres de coulée précis, à savoir la composition de la bande et sa vitesse de défilement dans la zone de l'installation correspondante. Cette durée doit être déterminée expérimentalement, en s'aidant des courbes de transformation classiques des nuances d'acier considérées, et en fonction du taux d'austénite résiduelle précis que l'on désire obtenir. Un taux d'austénite élevé améliore la ductilité, mais inversement, un taux d'austénite inférieur à 5% en fin de transformation bainitique procurera une formation de martensite insuffisante pour obtenir l'effet TRIP. A titre d'exemple, sur une nuance à 0,2% de carbone, 1,5% de manganèse et 1,5% de silicium, on obtient une teneur en austénite de 6% pour un maintien de la bande de 10 s à 470°C ou de 20s à 530°C. Dans la pratique, la durée de ce séjour peut se situer généralement entre 5 et 30 s.The length of stay of the strip in air without forced cooling necessary for obtaining the bainitic transformation as desired varies according to the casting parameters precise, i.e. the composition of the tape and its speed of movement in the the corresponding installation. This duration must be determined experimentally, in using the classic transformation curves of the steel grades considered, and function of the precise residual austenite level that one wishes to obtain. Austenite level high improves ductility, but conversely, an austenite level of less than 5% at the end of bainitic transformation will provide insufficient martensite formation to obtain the TRIP effect. For example, on a grade of 0.2% carbon, 1.5% manganese and 1.5% of silicon, an austenite content of 6% is obtained for maintaining the strip of 10 s at 470 ° C or 20s at 530 ° C. In practice, the duration of this stay may be generally between 5 and 30 s.

Si on prend pour hypothèse que la bande coulée a une épaisseur initiale de 3 mm et une vitesse de 60 m/min à sa sortie des cylindres (ce qui est courant sur une installation de coulée entre cylindres), la vitesse de défilement de la bande laminée à chaud dans la zone de transformation bainitique varie selon le taux de laminage à chaud qui lui a été appliqué. Le tableau 2 montre des exemples de vitesses de défilement de la bande dans la zone de transformation bainitique en fonction du taux de laminage à chaud, compte tenu des hypothèses précédentes. vitesses de défilement de la bande dans la zone de transformation bainitique en fonction du taux de laminage à chaud (épaisseur coulée 3 mm, vitesse de coulée 60 m/min) Taux de laminage à chaud (%) Vitesse de la bande (m/s) 25 1,3 40 1,7 60 2,5 70 3,3 If we assume that the casting strip has an initial thickness of 3 mm and a speed of 60 m / min at its exit from the rolls (which is common in a casting installation between rolls), the running speed of the strip hot rolled in the bainitic transformation zone varies according to the hot rolling rate applied to it. Table 2 shows examples of strip running speeds in the bainitic transformation zone as a function of the hot rolling rate, taking into account the previous hypotheses. strip running speeds in the bainitic transformation zone as a function of the hot rolling rate (casting thickness 3 mm, casting speed 60 m / min) Hot rolling rate (%) Belt speed (m / s) 25 1.3 40 1.7 60 2.5 70 3.3

Dans ces conditions, si on décide d'imposer à la bande une température de fin de laminage de 900°C, une vitesse de refroidissement dans la première zone d'aspersion de 50°C/s, un séjour de 10 s à 500°C dans la zone de transformation bainitique et une vitesse de refroidissement dans la deuxième zone d'aspersion de 50°C/s pour porter la bande à moins de 250°C, la bande mettra 20 à 25 s pour parvenir de la cage de laminage jusqu'à la bobineuse. Si ces deux organes sont distants d'environ 40 m, ce qui est raisonnable sur une installation de coulée entre cylindres habituelle, la vitesse de défilement de la bande après son laminage doit donc être d'environ 2 m/s, ce qui est parfaitement compatible avec les conclusions que l'on tire du tableau 2. Technologiquement, la mise en pratique du procédé selon l'invention ne pose donc pas de problème majeur. Pour obtenir le résultat recherché, on peut agir aussi sur la longueur des zones de refroidissement et sur le débit du liquide de refroidissement dans chacune de ces zones. A cet effet, si les zones de refroidissement se composent d'une succession de rampes d'aspersion d'eau, on peut choisir d'utiliser un nombre variable de rampes pour régler avec souplesse les longueurs de ces zones.Under these conditions, if it is decided to impose an end temperature on the strip rolling of 900 ° C, a cooling rate in the first spray zone of 50 ° C / s, a stay of 10 s at 500 ° C in the bainitic transformation zone and a speed cooling in the second spray zone of 50 ° C / s to bring the strip to less than 250 ° C, the strip will take 20 to 25 s to reach the rolling stand up to the winder. If these two organs are about 40 m apart, which is reasonable on a usual installation between rolls, the speed of the web after its rolling must therefore be approximately 2 m / s, which is perfectly compatible with conclusions drawn from Table 2. Technologically, the implementation of the process according to the invention therefore does not pose any major problem. To get the desired result, one can also act on the length of the cooling zones and on the flow of the liquid of cooling in each of these areas. For this purpose, if the cooling zones are consist of a succession of water spray bars, you can choose to use a variable number of ramps to flexibly adjust the lengths of these zones.

On aura compris que l'étape essentielle du procédé selon l'invention est le séjour de la bande dans le domaine de transformation bainitique après son laminage à chaud, auquel le second refroidissement impose une brève durée, ainsi que la réalisation du bobinage de la bande dans une gamme de températures où la transformation bainitique a déjà eu lieu. Cela évite que le déroulement de la transformation bainitique ne soit affecté par le phénomène de remouillage, et fiabilise l'obtention d'une microstructure homogène au sein de la bande. Le fait de réaliser la bande par coulée entre cylindres (ou, de manière générale, par coulée directe de bandes minces de 1,5 à 10 mm et notamment de 1 à 5 mm d'épaisseur) et de la laminer à chaud en ligne est une condition quasiment indispensable à la viabilité économique de la réalisation de la transformation bainitique dans ces conditions. En effet, il serait envisageable de réaliser cette transformation bainitique par séjour à 550-400°C pendant une à quelques secondes d'une bande sortant d'un train à bandes classique. Toutefois, compte tenu des vitesses de défilement de la bande habituelles à la sortie d'un train à bandes qui sont nettement plus élevées que les vitesses de défilement en sortie d'un laminoir en ligne de coulée entre cylindres, cela nécessiterait une distance démesurée (de l'ordre de 500 m) entre la sortie du train à bande et la bobineuse. Cela enlèverait tout intérêt économique à cette solution. De plus, en réalisant le laminage à chaud et la transformation bainitique en ligne avec la coulée, on n'a pas besoin d'un réchauffage intermédiaire, coûteux en énergie. Enfin, les transformations métallurgiques mises en jeu par le procédé selon l'invention, où la température de la bande ne fait que décroítre entre sa coulée et son bobinage, ne sont pas susceptibles d'être gênées par des structures qui auraient été obtenues à la suite d'un premier refroidissement du produit jusqu'à la température ambiante et demeureraient au moins à l'état résiduel après le réchauffage précédant le laminage à chaud. Cela pourrait être le cas si la filière de fabrication entre la coulée du demi-produit initial et le bobinage de la bande définitive devait être discontinue.It will be understood that the essential step of the method according to the invention is the stay of the strip in the bainitic transformation field after its hot rolling, to which the second cooling imposes a short duration, as well as the realization of the winding of the strip in a range of temperatures where the bainitic transformation has already happened. This prevents the course of the bainitic transformation from being affected by the rewetting phenomenon, and improves the reliability of obtaining a homogeneous microstructure within the band. The fact of making the strip by casting between cylinders (or, so general, by direct casting of thin strips from 1.5 to 10 mm and in particular from 1 to 5 mm thick) and hot rolling in line is almost a prerequisite for the economic viability of carrying out the bainitic transformation in these conditions. Indeed, it would be possible to carry out this bainitic transformation by stay at 550-400 ° C for one to a few seconds of a strip leaving a train at classic bands. However, taking into account the usual tape running speeds at the exit of a band train which are significantly higher than the running speeds at the outlet of a rolling mill in line between rolls, this would require a distance oversized (of the order of 500 m) between the output of the strip train and the winder. That would remove any economic interest in this solution. In addition, by carrying out rolling with hot and bainitic transformation in line with casting, we don't need a intermediate heating, costly in energy. Finally, metallurgical transformations brought into play by the method according to the invention, where the temperature of the strip only decrease between its casting and its winding, are not likely to be hindered by structures which would have been obtained after a first cooling of the product to room temperature and would remain at least residual after the reheating before hot rolling. This could be the case if the supply chain manufacturing between the casting of the initial semi-finished product and the winding of the final strip had to be discontinuous.

Après leur bobinage, les bandes obtenues par le procédé selon l'invention sont prêtes à être utilisées de la même manière que les bandes d'acier TRIP de même composition obtenues par la filière classique coulée continue de brames - laminage à chaud.After their winding, the strips obtained by the process according to the invention are ready to be used in the same way as TRIP steel strips as well composition obtained by the conventional continuous casting slab die - rolling to hot.

Claims (13)

Procédé de fabrication de bandes minces en acier de type «TRIP », selon lequel : on coule directement à partir d'acier liquide une bande d'épaisseur comprise entre 1,5 et 10 mm préférentiellement 1 à 5 mm, ledit acier ayant la composition (en pourcentages pondéraux) C% compris entre 0,05 et 0,25, (Mn + Cu + Ni)% compris entre 0,5 et 3, (Si + Al)% compris entre 0,1 et 4, (P + Sn + As + Sb)% inférieur ou égal à 0,1, (Ti + Nb + V + Zr + terres rares)% inférieur à 0,3, Cr% inférieur à 1, Mo% inférieur à 1, V% inférieur à 1, le reste étant du fer et des impuretés résultant de l'élaboration ; on effectue un laminage à chaud en ligne de ladite bande à une température supérieure à la température Ar3 dudit acier avec un taux de réduction compris entre 25 et 70%, en une ou plusieurs passes ; on effectue un premier refroidissement forcé de ladite bande à une vitesse comprise entre 5 et 100°C/s ; on laisse séjourner la bande à des températures comprises entre 550 et 400°C pendant le temps nécessaire pour que s'y produise une transformation bainitique avec une proportion d'austénite résiduelle supérieure à 5%, tout en évitant la formation de perlite, puis on interrompt cette transformation par un second refroidissement forcé de ladite bande qui l'amène à une température inférieure à 400°C ; on effectue un bobinage de ladite bande à une température inférieure à 350°C. Process for manufacturing thin steel strips of the “TRIP” type, according to which: a strip having a thickness of between 1.5 and 10 mm, preferably 1 to 5 mm, is poured directly from liquid steel, said steel having the composition (in weight percentages) C% of between 0.05 and 0.25, (Mn + Cu + Ni)% between 0.5 and 3, (Si + Al)% between 0.1 and 4, (P + Sn + As + Sb)% less than or equal to 0.1, (Ti + Nb + V + Zr + rare earths)% less than 0.3, Cr% less than 1, Mo% less than 1, V% less than 1, the rest being iron and impurities resulting from production; hot rolling is carried out in line of said strip at a temperature higher than the temperature Ar 3 of said steel with a reduction rate of between 25 and 70%, in one or more passes; a first forced cooling of said strip is carried out at a speed of between 5 and 100 ° C / s; the strip is left to stay at temperatures between 550 and 400 ° C. for the time necessary for a bainitic transformation to occur there with a proportion of residual austenite greater than 5%, while avoiding the formation of perlite, then interrupts this transformation by a second forced cooling of said strip which brings it to a temperature below 400 ° C; said strip is wound at a temperature below 350 ° C. Procédé selon la revendication 1, caractérisé en ce que la teneur en phosphore de l'acier est inférieure ou égale à 0,05%Process according to claim 1, characterized in that the phosphorus content steel is less than or equal to 0.05% Procédé selon la revendication 1 ou 2, caractérisé en ce que le total des teneurs en chrome, molybdène et vanadium ne dépasse pas 0,3%.Method according to claim 1 or 2, characterized in that the total of the contents in chromium, molybdenum and vanadium does not exceed 0.3%. Procédé selon la revendication 3, caractérisé en ce que le total des teneurs en chrome, molybdène et vanadium ne dépasse pas 0,05%.Process according to claim 3, characterized in that the total of the contents of chromium, molybdenum and vanadium does not exceed 0.05%. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la teneur en cuivre est comprise entre 0.5 et 2 %.Method according to one of claims 1 to 4, characterized in that the content of copper is between 0.5 and 2%. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la vitesse du premier refroidissement est comprise entre 25 et 80°C/s.Method according to one of claims 1 to 5, characterized in that the speed of the first cooling is between 25 and 80 ° C / s. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'après le premier refroidissement on laisse séjourner la bande entre 530 et 470°C pendant le temps nécessaire pour que s'y produise une transformation bainitique avec une proportion d'austénite résiduelle supérieure à 5%, tout en évitant la formation de perlite.Method according to one of claims 1 to 6, characterized in that after the first cooling, the strip is left to stay between 530 and 470 ° C. for the time necessary for a bainitic transformation to occur with a proportion residual austenite greater than 5%, while avoiding the formation of perlite. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la durée du séjour de ladite bande dans le domaine où se produit la transformation bainitique est comprise entre 5 et 30 s. Method according to one of claims 1 to 7, characterized in that the duration of the stay of said strip in the area where the bainitic transformation occurs is between 5 and 30 s. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que ledit second refroidissement amène ladite bande à sa température de bobinage.Method according to one of claims 1 to 8, characterized in that said second cooling brings said strip to its winding temperature. Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'entre sa coulée et son laminage à chaud, ladite bande traverse une zone où on maintient au voisinage de sa surface une atmosphère non oxydante pour le métal.Method according to one of claims 1 to 9, characterized in that between its casting and its hot rolling, said strip passes through an area where it is maintained at near its surface a non-oxidizing atmosphere for the metal. Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'avant le laminage à chaud, on effectue une opération de décalaminage de la surface de ladite bande.Method according to one of claims 1 to 10, characterized in that before the hot rolling, a descaling operation is carried out on the surface of said strip. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que ladite bande est coulée entre deux cylindres rapprochés à axes horizontaux mis en rotation en sens inverses et refroidis intérieurement.Method according to one of claims 1 to 11, characterized in that said strip is cast between two close cylinders with horizontal axes rotated in reverse and internally cooled. Bande mince en acier de type « TRIP », susceptible d'être obtenue par un procédé selon l'une des revendications 1 à 12.“TRIP” type thin steel strip, capable of being obtained by method according to one of claims 1 to 12.
EP00402035A 1999-07-30 2000-07-17 Process of manufacturing thin "TRIP" type steel strips and strips obtained thereby Expired - Lifetime EP1072689B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9910060 1999-07-30
FR9910060A FR2796966B1 (en) 1999-07-30 1999-07-30 PROCESS FOR THE MANUFACTURE OF THIN STRIP OF TRIP-TYPE STEEL AND THIN STRIP THUS OBTAINED

Publications (2)

Publication Number Publication Date
EP1072689A1 true EP1072689A1 (en) 2001-01-31
EP1072689B1 EP1072689B1 (en) 2004-04-07

Family

ID=9548832

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00402035A Expired - Lifetime EP1072689B1 (en) 1999-07-30 2000-07-17 Process of manufacturing thin "TRIP" type steel strips and strips obtained thereby

Country Status (9)

Country Link
US (1) US6328826B1 (en)
EP (1) EP1072689B1 (en)
JP (2) JP4684397B2 (en)
KR (1) KR100656974B1 (en)
AT (1) ATE263846T1 (en)
BR (1) BR0003612A (en)
CA (1) CA2314830C (en)
DE (1) DE60009611T2 (en)
FR (1) FR2796966B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326723A1 (en) * 2000-09-29 2003-07-16 Nucor Corporation A method of producing steel
WO2003057928A1 (en) * 2002-01-14 2003-07-17 Usinor Method for the production of a siderurgical product made of carbon steel with a high copper content, and siderurgical product obtained according to said method
EP1365037A1 (en) * 2001-01-31 2003-11-26 Kabushiki Kaisha Kobe Seiko Sho High strength steel sheet having excellent formability and method for production thereof
FR2847271A1 (en) * 2002-11-19 2004-05-21 Usinor Fabrication of an abrasion resistant steel sheet having a good flatness with a martensite or bainite or martensite-bainite structure and some retained austenite
FR2847908A1 (en) * 2002-12-03 2004-06-04 Ascometal Sa A BAINITIQUE STEEL COOLED, COOLED AND REINVENTED, AND METHOD OF MANUFACTURING THE SAME.
JP2006506528A (en) * 2002-11-19 2006-02-23 アンドユストウエル・クルゾ Method for producing wear-resistant steel plate and obtained plate
US7090731B2 (en) 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
EP1909994A1 (en) * 2005-08-04 2008-04-16 Nucor Corporation Production of thin steel strip
EP1918406A1 (en) * 2006-10-30 2008-05-07 ThyssenKrupp Steel AG Process for manufacturing steel flat products from boron microalloyed multi phase steel
EP1918402A1 (en) * 2006-10-30 2008-05-07 ThyssenKrupp Steel AG Process for manufacturing steel flat products from a steel forming a complex phase structure
EP1918405A1 (en) * 2006-10-30 2008-05-07 ThyssenKrupp Steel AG Process for manufacturing steel flat products from silicon alloyed multi phase steel
EP1918404A1 (en) * 2006-10-30 2008-05-07 ThyssenKrupp Steel AG Process for manufacturing steel flat products from aluminium alloyed multi phase steel
US9475103B2 (en) 2012-07-20 2016-10-25 Hammelmann Maschinenfabrik Gmbh Device for cleaning container interior walls
WO2016174020A1 (en) * 2015-04-30 2016-11-03 Salzgitter Flachstahl Gmbh Method of producing a hot or cold strip from a steel having increased copper content
CN106521337A (en) * 2016-11-17 2017-03-22 攀钢集团攀枝花钢铁研究院有限公司 Method for producing transformation induced plasticity steel in slab process
US11225697B2 (en) 2014-12-19 2022-01-18 Nucor Corporation Hot rolled light-gauge martensitic steel sheet and method for making the same

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2801061B1 (en) 1999-11-12 2001-12-14 Lorraine Laminage PROCESS FOR PRODUCING A VERY HIGH STRENGTH HOT LAMINATED SHEET METAL FOR USE IN FORMING AND IN PARTICULAR FOR STAMPING
RU2275273C2 (en) * 2000-09-29 2006-04-27 Ньюкор Корпорейшн Thin steel strip making method
KR100613252B1 (en) * 2000-12-26 2006-08-18 주식회사 포스코 Method For Manufacturing Steel of Transformation Induced Plasticity
KR100770950B1 (en) * 2001-12-18 2007-10-26 주식회사 포스코 cooling method after coiling to stabilize retained austenite level along transverse direction
KR100782758B1 (en) * 2001-12-24 2007-12-05 주식회사 포스코 Method for determination of coiling temperature to stabilize retained austenite level along transverse direction
FR2836930B1 (en) * 2002-03-11 2005-02-25 Usinor HOT ROLLED STEEL WITH HIGH RESISTANCE AND LOW DENSITY
ATE343649T1 (en) * 2002-08-28 2006-11-15 Thyssenkrupp Steel Ag METHOD FOR PRODUCING A PEARLITE-FREE HOT ROLLED STEEL STRIP AND HOT STRIP PRODUCED BY THIS METHOD
FR2849864B1 (en) * 2003-01-15 2005-02-18 Usinor VERY HIGH STRENGTH HOT-ROLLED STEEL AND METHOD OF MANUFACTURING STRIPS
EP1680245B1 (en) * 2003-10-10 2018-12-05 Nucor Corporation Casting steel strip
US7484551B2 (en) * 2003-10-10 2009-02-03 Nucor Corporation Casting steel strip
DE102005051052A1 (en) * 2005-10-25 2007-04-26 Sms Demag Ag Process for the production of hot strip with multiphase structure
DE502006003831D1 (en) * 2006-10-30 2009-07-09 Thyssenkrupp Steel Ag Process for producing steel flat products from a steel forming a martensitic structure
DE102006051545A1 (en) * 2006-11-02 2008-05-08 Schaeffler Kg Thermoformed machine component with at least one hardened running or guide surface, in particular motor element
KR100985298B1 (en) * 2008-05-27 2010-10-04 주식회사 포스코 Low Density Gravity and High Strength Hot Rolled Steel, Cold Rolled Steel and Galvanized Steel with Excellent Ridging Resistibility and Manufacturing Method Thereof
US8258432B2 (en) * 2009-03-04 2012-09-04 Lincoln Global, Inc. Welding trip steels
DE102009018683A1 (en) * 2009-04-23 2010-10-28 Sms Siemag Ag Method and device for continuous casting of a slab
CZ2011612A3 (en) * 2011-09-30 2013-07-10 Západoceská Univerzita V Plzni Method of achieving TRIP microstructure in steels by deformation heat
CN103302255B (en) * 2012-03-14 2015-10-28 宝山钢铁股份有限公司 A kind of thin strap continuous casting 700MPa level high-strength air corrosion-resistant steel manufacture method
CN103305759B (en) * 2012-03-14 2014-10-29 宝山钢铁股份有限公司 Thin strip continuous casting 700MPa grade high-strength weather-resistant steel manufacturing method
CN103305770B (en) * 2012-03-14 2015-12-09 宝山钢铁股份有限公司 A kind of manufacture method of thin strap continuous casting 550MPa level high-strength air corrosion-resistant steel band
EP2690183B1 (en) * 2012-07-27 2017-06-28 ThyssenKrupp Steel Europe AG Hot-rolled steel flat product and method for its production
CN103215423B (en) * 2013-04-18 2015-07-15 首钢总公司 Production method of hot rolled and phase-change induced plastic steel coil
EP2840159B8 (en) 2013-08-22 2017-07-19 ThyssenKrupp Steel Europe AG Method for producing a steel component
MX2019005636A (en) 2016-11-16 2019-07-04 Jfe Steel Corp High-strength steel sheet and method for producing same.
CN106636925B (en) * 2016-12-30 2018-05-18 北京科技大学 A kind of high strength and ductility Cold-Rolled TRIP Steel and preparation method thereof
CN106636931B (en) * 2016-12-30 2018-05-18 北京科技大学 A kind of preparation method containing δ-ferritic TRIP steel
RU2679786C1 (en) * 2017-11-13 2019-02-12 Сергей Александрович Ненашев METHOD OF HEAT TREATMENT OF COLD-ROLLED STEEL TAPE OF 0,30-1,5 mm FROM STRUCTURE STEEL WITH A TENSILE STRENGTH OF 800-1,200 MPa
RU2687620C2 (en) * 2017-11-13 2019-05-15 Сергей Александрович Ненашев Steel packing tape processing method
CN109865806A (en) * 2018-06-08 2019-06-11 江苏沙钢集团有限公司 Thin strip continuous casting 345 MPa-grade weathering steel and production method thereof
WO2020080552A1 (en) * 2018-10-19 2020-04-23 日本製鉄株式会社 Hot-rolled steel sheet and method for manufacturing same
CN109852892B (en) * 2019-03-11 2021-04-13 河北工程大学 Hot-rolled medium manganese TRIP steel containing trace zirconium and preparation method thereof
CN118639118A (en) * 2024-08-16 2024-09-13 鞍钢股份有限公司 High-formability 485 MPa-level cold stamping steel for automobile axle housing and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0666332A1 (en) * 1993-08-04 1995-08-09 Nippon Steel Corporation High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
WO1998020180A1 (en) * 1996-11-05 1998-05-14 Pohang Iron & Steel Co., Ltd. Method for manufacturing high strength and high formability hot-rolled transformation induced plasticity steel containing copper
EP0881306A1 (en) * 1997-05-12 1998-12-02 RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SAMBRE, en abrégé: RD-CS Ductile steel with high yield strength and process for manufacturing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842246B2 (en) * 1979-04-28 1983-09-19 日新製鋼株式会社 Method for manufacturing high-strength steel strip with composite structure
JPS6043425A (en) * 1983-08-15 1985-03-08 Nippon Kokan Kk <Nkk> Production of hot rolled composite structure steel sheet having high strength and high workability
JP2752708B2 (en) * 1989-07-27 1998-05-18 川崎製鉄株式会社 Good workability high-strength hot-rolled thin steel sheet and method for producing the same
JPH0432512A (en) * 1990-05-30 1992-02-04 Sumitomo Metal Ind Ltd Production of hot rolled high strength dual-phase steel plate for working
JPH04363303A (en) 1991-02-05 1992-12-16 Nippon Paint Co Ltd Continuous polymerization and apparatus therefor
CN1040343C (en) * 1993-04-26 1998-10-21 新日本制铁株式会社 Sheet steel excellent in flanging capability and process for producing the same
WO1995001459A1 (en) * 1993-06-29 1995-01-12 The Broken Hill Proprietary Company Limited Strain-induced transformation to ultrafine microstructure in steel
KR100273948B1 (en) * 1996-12-26 2000-12-15 이구택 The manufacturing method of hot rolling transformation organicplasticity steel with excellent tensile strength
JP3320014B2 (en) * 1997-06-16 2002-09-03 川崎製鉄株式会社 High strength, high workability cold rolled steel sheet with excellent impact resistance
JPH11172372A (en) * 1997-12-12 1999-06-29 Nkk Corp High tensile strength hot rolled steel plate excellent in ductility and stretch-flanging property and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0666332A1 (en) * 1993-08-04 1995-08-09 Nippon Steel Corporation High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
WO1998020180A1 (en) * 1996-11-05 1998-05-14 Pohang Iron & Steel Co., Ltd. Method for manufacturing high strength and high formability hot-rolled transformation induced plasticity steel containing copper
EP0881306A1 (en) * 1997-05-12 1998-12-02 RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SAMBRE, en abrégé: RD-CS Ductile steel with high yield strength and process for manufacturing same

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326723A4 (en) * 2000-09-29 2004-09-08 Nucor Corp A method of producing steel
EP1326723A1 (en) * 2000-09-29 2003-07-16 Nucor Corporation A method of producing steel
EP1365037A1 (en) * 2001-01-31 2003-11-26 Kabushiki Kaisha Kobe Seiko Sho High strength steel sheet having excellent formability and method for production thereof
US7090731B2 (en) 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
EP1365037A4 (en) * 2001-01-31 2005-02-02 Kobe Steel Ltd High strength steel sheet having excellent formability and method for production thereof
WO2003057928A1 (en) * 2002-01-14 2003-07-17 Usinor Method for the production of a siderurgical product made of carbon steel with a high copper content, and siderurgical product obtained according to said method
FR2834722A1 (en) * 2002-01-14 2003-07-18 Usinor MANUFACTURING PROCESS OF A COPPER-RICH CARBON STEEL STEEL PRODUCT, AND THUS OBTAINED STEEL PRODUCT
US7425240B2 (en) 2002-01-14 2008-09-16 Usinor Method for the production of a siderurgical product made of carbon steel with a high copper content
KR101010593B1 (en) * 2002-11-19 2011-01-25 인더스틸 크뢰쏘 Method For Making an Abrasion Resistant Steel Plate and Steel Plate Obtained
AU2009201117B2 (en) * 2002-11-19 2011-09-29 Industeel France An abrasion resistant steel workpiece
JP2006506528A (en) * 2002-11-19 2006-02-23 アンドユストウエル・クルゾ Method for producing wear-resistant steel plate and obtained plate
JP2006506526A (en) * 2002-11-19 2006-02-23 アンドユストウエル・クルゾ Method for producing wear-resistant steel plate and obtained steel plate
US7462251B2 (en) 2002-11-19 2008-12-09 Usinor Method for making an abrasion-resistant steel plate
CN100348739C (en) * 2002-11-19 2007-11-14 工业钢克鲁梭公司 Method for making an abrasion resistant steel plate and plate obtained
FR2847271A1 (en) * 2002-11-19 2004-05-21 Usinor Fabrication of an abrasion resistant steel sheet having a good flatness with a martensite or bainite or martensite-bainite structure and some retained austenite
US7998285B2 (en) 2002-11-19 2011-08-16 Industeel Creusot Abrasion-resistant steel plate
WO2004048618A1 (en) * 2002-11-19 2004-06-10 Industeel Creusot Method for making an abrasion resistant steel plate and steel plate obtained
AU2009201117B8 (en) * 2002-11-19 2011-11-10 Industeel France An abrasion resistant steel workpiece
EP1426452A1 (en) * 2002-12-03 2004-06-09 Ascometal Cooled and annealed article in bainitic steel, and production process thereof
US7354487B2 (en) 2002-12-03 2008-04-08 Ascometal Cooled and annealed bainite steel part, and a method of manufacturing it
FR2847908A1 (en) * 2002-12-03 2004-06-04 Ascometal Sa A BAINITIQUE STEEL COOLED, COOLED AND REINVENTED, AND METHOD OF MANUFACTURING THE SAME.
EP1909994A1 (en) * 2005-08-04 2008-04-16 Nucor Corporation Production of thin steel strip
EP1909994A4 (en) * 2005-08-04 2009-08-19 Nucor Corp Production of thin steel strip
EP1918406A1 (en) * 2006-10-30 2008-05-07 ThyssenKrupp Steel AG Process for manufacturing steel flat products from boron microalloyed multi phase steel
EP1918405A1 (en) * 2006-10-30 2008-05-07 ThyssenKrupp Steel AG Process for manufacturing steel flat products from silicon alloyed multi phase steel
WO2008052920A1 (en) * 2006-10-30 2008-05-08 Thyssenkrupp Steel Ag Method for manufacturing flat steel products from a multiphase steel alloyed with aluminum
WO2008052919A1 (en) * 2006-10-30 2008-05-08 Thyssenkrupp Steel Ag Method for manufacturing flat steel products from a multiphase steel microalloyed with boron
WO2008052921A1 (en) * 2006-10-30 2008-05-08 Thyssenkrupp Steel Ag Method for manufacturing flat steel products from a multiphase steel alloyed with silicon
CN101528966B (en) * 2006-10-30 2011-06-15 蒂森克虏伯钢铁股份公司 Method for manufacturing flat steel products from a multiphase steel alloyed with aluminum
EP1918404A1 (en) * 2006-10-30 2008-05-07 ThyssenKrupp Steel AG Process for manufacturing steel flat products from aluminium alloyed multi phase steel
WO2008052917A1 (en) * 2006-10-30 2008-05-08 Thyssenkrupp Steel Ag Method for manufacturing flat steel products from a steel forming a complex phase structure
EP1918402A1 (en) * 2006-10-30 2008-05-07 ThyssenKrupp Steel AG Process for manufacturing steel flat products from a steel forming a complex phase structure
CN101528970B (en) * 2006-10-30 2012-10-03 蒂森克虏伯钢铁股份公司 Method for manufacturing flat steel products from a multiphase steel microalloyed with boron
CN101528968B (en) * 2006-10-30 2013-03-06 蒂森克虏伯钢铁股份公司 Method for manufacturing flat steel products from a multiphase steel alloyed with silicon
US9475103B2 (en) 2012-07-20 2016-10-25 Hammelmann Maschinenfabrik Gmbh Device for cleaning container interior walls
US11225697B2 (en) 2014-12-19 2022-01-18 Nucor Corporation Hot rolled light-gauge martensitic steel sheet and method for making the same
WO2016174020A1 (en) * 2015-04-30 2016-11-03 Salzgitter Flachstahl Gmbh Method of producing a hot or cold strip from a steel having increased copper content
CN106521337A (en) * 2016-11-17 2017-03-22 攀钢集团攀枝花钢铁研究院有限公司 Method for producing transformation induced plasticity steel in slab process
CN106521337B (en) * 2016-11-17 2018-09-04 成都先进金属材料产业技术研究院有限公司 The method that slab flow produces transformation induced plasticity steel

Also Published As

Publication number Publication date
KR20010021143A (en) 2001-03-15
JP2011047054A (en) 2011-03-10
ATE263846T1 (en) 2004-04-15
BR0003612A (en) 2001-03-13
CA2314830C (en) 2009-03-17
FR2796966B1 (en) 2001-09-21
KR100656974B1 (en) 2006-12-15
JP2001073040A (en) 2001-03-21
DE60009611D1 (en) 2004-05-13
FR2796966A1 (en) 2001-02-02
US6328826B1 (en) 2001-12-11
CA2314830A1 (en) 2001-01-30
JP4684397B2 (en) 2011-05-18
EP1072689B1 (en) 2004-04-07
DE60009611T2 (en) 2005-03-31

Similar Documents

Publication Publication Date Title
EP1072689B1 (en) Process of manufacturing thin &#34;TRIP&#34; type steel strips and strips obtained thereby
EP1067203B1 (en) Process of manufacturing iron-carbon-manganese alloy strips and strips obtained thereby
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP1466024B1 (en) Method for the production of a siderurgical product made of carbon steel with a high copper content, and siderurgical product obtained according to said method
EP1228254B1 (en) Method for making carbon steel bands, in particular packaging steel bands
EP1163376B1 (en) Method for continuous casting of highly ductile ferritic stainless steel strips between rolls, and resulting thin strips
JP6484716B2 (en) Lean duplex stainless steel and manufacturing method thereof
US9731345B2 (en) Martensitic stainless steel highly resistant to corrosion, and method for manufacturing same
KR20100057039A (en) Thin cast steel strip with reduced microcracking
EP1427866A1 (en) Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube
CN111545720A (en) Forming process for reducing carburized gear steel band-shaped structure
CA2415244C (en) Carbon steel ferrous product, namely for galvanization, and its methods of production
EP0896069B1 (en) Method of making thin ultra-low-carbon steel strip for manufacturing deep-drawn products for packages and thin strips obtained thereby
EP1061139B1 (en) Method of manufacturing deep drawing steel sheets by direct casting of thin strips
EP1099769B1 (en) Process for manufacturing high tensile strength hot rolled steel sheet for forming and especially for deep drawing
TW202024356A (en) Thin steel sheet manufacturing apparatus and thin steel sheet manufacturing method
JP2018536089A (en) Austenitic stainless steel with excellent orange peel resistance and method for producing the same
CA2337260A1 (en) Flat product, such as sheet metal, made of steel with high yield strength having good ductility and method for making same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010119

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040407

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040407

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040407

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040407

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60009611

Country of ref document: DE

Date of ref document: 20040513

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040707

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040707

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040407

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: *USINOR

Effective date: 20040731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20050110

BERE Be: lapsed

Owner name: *USINOR

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110727

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110713

Year of fee payment: 12

Ref country code: AT

Payment date: 20110628

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110719

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 263846

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120717

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60009611

Country of ref document: DE

Effective date: 20130201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120717