EP1056946B1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
EP1056946B1
EP1056946B1 EP99966843A EP99966843A EP1056946B1 EP 1056946 B1 EP1056946 B1 EP 1056946B1 EP 99966843 A EP99966843 A EP 99966843A EP 99966843 A EP99966843 A EP 99966843A EP 1056946 B1 EP1056946 B1 EP 1056946B1
Authority
EP
European Patent Office
Prior art keywords
throttle hole
fuel injection
fuel
injection valve
control space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99966843A
Other languages
German (de)
French (fr)
Other versions
EP1056946A1 (en
Inventor
Michael Mennicken
Ralf Wirth
Peter Boehland
Christoph Badock
Ralf Hentschel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1056946A1 publication Critical patent/EP1056946A1/en
Application granted granted Critical
Publication of EP1056946B1 publication Critical patent/EP1056946B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/008Arrangement of fuel passages inside of injectors

Definitions

  • the present invention relates to a fuel injection valve in particular for High-pressure injection of fuel into combustion chambers of internal combustion engines.
  • To open and close the injectors is at Common Rail injection systems, among others, resorted to the servo principle.
  • the injection nozzle is part of a servo valve.
  • a switching valve which is electrically controlled, a volume flow is switched.
  • a pressure divider which is formed by two Naturalflußwideretcn causes an opened switching valve an opening movement of the servo valve.
  • a closed one Switching valve causes a closing movement of the servo valve.
  • the present invention is therefore based on the object, a fuel injection valve with a combination of switching valve and servohydraulic valve to create at a well-defined flow resistance of the switching valve in a wide range of different fuel pressures available is.
  • This flow resistance must also have the property that only a few geometry parameters affect its size. The exact one defined flow resistance of the switching valve thus sets the opening speed of the servo valve.
  • the fuel injection valve according to the invention with the features of claim 1 has the advantage that the effective flow cross section of the.
  • the Switching valve produced opening the formation of a cavitating throttle flow supported. Due to the eccentric position of the inlet throttle bore is causes a rotation of the fuel flow in the control room. This rotation, due to the momentum conservation of the fuel flow after opening the Switching valve accelerates when flowing through the outlet throttle bore leads to a lowering of the static pressure in the liquid and thus amplifies the Cavitation tendency of the fluid flowing through the outlet throttle bore. Due to the swirling flow within the outlet throttle bore is the cavitation tendency is extended to a wide pressure range.
  • the inlet throttle bore is tangential aligned with the control room. This ensures that all areas the flow in the control room are set in rotation.
  • Control room does not obstruct the rotation of the flow by edges or corners.
  • the inlet throttle bore and the outlet throttle bore are vertical aligned with each other.
  • the axis of rotation of the generated Flow parallel to the inflow direction of the fuel into the outlet throttle bore.
  • Fig. 1 is a sectional view through a switching valve 40 with a connection to a control chamber 20 shown, in which a piston 50 arranged movable is.
  • the piston 50 is fixed to the valve needle of the actual injection valve connected.
  • the fuel flows from one central high-pressure supply 1 to the control room 20.
  • an opening 22 which is to a Outflow throttle bore 30 leads. This results in a preferred rectangular Alignment of the axes of the inlet throttle bore 10 and the outlet throttle bore 30 to each other.
  • the switching valve 40 On the side remote from the control chamber 20 side of the outlet throttle bore 30 is arranged the switching valve 40, which - depending on the switching position - the output of Drain throttle bore 30 opens or closes. From the switching valve 40 flows Fuel back to the low pressure area of the fuel system.
  • control piston 50 On the front side 21 opposite side of the control chamber 20 is located the control piston 50, which is connected to the nozzle needle of the actual injection valve connected is. Movements of the control piston 50 correspond to movements of the Valve needle of the actual injector, which the combustion chamber from the high pressure area 1 of the fuel injection system separates. Movements of this control piston 50 (indicated by the double arrow in Fig. 1) lead to an opening or closing the fuel supply in the combustion chamber.
  • the switching valve 40 is electrically controlled.
  • the inlet throttle bore 10 is eccentric with respect to arranged on the control room 20.
  • the control chamber 20 preferably has one cylindrical shape, i. the cross section shown in Fig. 2 along the dot-dash line Line A-A of Fig. 1 is circular.
  • the orientation corresponds the longitudinal axis of the inlet throttle bore 10 of a tangent to the circle, which is formed by the cross section of the control chamber 20.
  • Vortex flow 60 includes in the preferred tangential arrangement of the inlet bore 10, the entire cross-sectional area of the control chamber 20th
  • the movement speed of the piston 50 directly depends on the outflowing volume flow, resulting from the Increasing the cavitation tendency of the flow in the outlet throttle bore 30 an increase in the accuracy of the movement speed of the piston 50. Since the moving speed of the piston 50 is the moving speed corresponds to the valve needle of the injector, thus increasing the Accuracy of the movement of the injector and thus the accuracy of injected fuel quantity. That means the movement speed the valve needle of the injection valve, which should be as uniform as possible, on the dimensioning or shape of the outlet throttle bore 30 targeted can be adjusted or optimized with respect to the injection conditions.

Abstract

A fuel injection valve for high pressure injection of fuel from a high-pressure central fuel tank (1) into the combustion chambers of an internal combustion engine. The high pressure fuel tank (1) interacts with a control chamber via an inlet throttle hole (10), whereby said control chamber controls the opening and closing of the injector nozzle and the control chamber (20) communicates with a switch valve via an outlet throttle hole (30). The inlet throttle hole (10) is oriented in an eccentric position with respect to the control chamber (20).

Description

Die vorliegende Erfindung betrifft eine Kraftstoffeinspritzventil insbesondere zur Hochdruckeinspritzung von Kraftstoff in Brennräume von Verbrennungskraftmaschinen.The present invention relates to a fuel injection valve in particular for High-pressure injection of fuel into combustion chambers of internal combustion engines.

Stand der TechnikState of the art

In Verbrennungskraftmaschinen mit Kraftstoffeinspritzung wird der Kraftstoff zur Gemischbildung aus einer Hochdruckkammer über eine Einspritzdüse in den Brennraum eingespritzt. Zum Öffnen und Schließen der Einspritzventile wird bei Common-Rail-Einspritzsystemen unter anderem auf das Servoprinzip zurückgegriffen. Die Einspritzdüse ist dabei Teil eines Servoventils. Durch ein Schaltventil, welches elektrisch angesteuert wird, wird ein Volumenstrom geschaltet. Über einen Druckteiler, der durch zwei Durchflußwiderstände gebildet wird, bewirkt ein geöffnetes Schaltventil eine Öffnungsbewegung des Servoventils. Ein geschlossenes Schaltventil bewirkt eine Schließbewegung des Servoventils.In internal combustion engines with fuel injection, the fuel to Mixture formation from a high-pressure chamber via an injection nozzle in the Combustion chamber injected. To open and close the injectors is at Common Rail injection systems, among others, resorted to the servo principle. The injection nozzle is part of a servo valve. Through a switching valve, which is electrically controlled, a volume flow is switched. about a pressure divider, which is formed by two Durchflußwiderständen causes an opened switching valve an opening movement of the servo valve. A closed one Switching valve causes a closing movement of the servo valve.

Ein solches Kraftstoffeinspritzssystem ist aus dem Dokument EP O 661 442 A bekannt.Such a fuel injection system is known from document EP 0 661 442 A.

Für einen optimalen Verbrennungsprozeß in der Brennkammer ist es erforderlich, den Zeitpunkt, die Dauer des Einspritzens, die gesamte eingespritzte Kraftstoffmasse und den zeitlichen Verlauf der Einspritzrate genauestens zu kontrollieren, da die Brennraumgeometrie auf diese Parameter zur Minimierung des Kraftstoffverbrauchs und der Abgasemmissionen genau abgestimmt ist. For an optimal combustion process in the combustion chamber, it is necessary the time, the duration of the injection, the total injected fuel mass and to closely monitor the timing of the injection rate, because the combustion chamber geometry on these parameters to minimize fuel consumption and the exhaust emissions is precisely matched.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Kraftstoffeinspritzventil mit einer Kombination aus Schaltventil und servohydraulischem Ventil zu schaffen, bei der ein genau definierter Durchflußwiderstand des Schaltventils in einem möglichst großen Bereich unterschiedlicher Kraftstoffdrücke vorhanden ist. Dieser Durchflußwiderstand muß darüber hinaus die Eigenschaft aufweisen, daß nur wenige Geometrieparameter seine Größe beeinflussen. Der genau definierte Durchflußwiderstand des Schaltventils legt damit die Öffnungsgeschwindigkeit des Servoventils fest.The present invention is therefore based on the object, a fuel injection valve with a combination of switching valve and servohydraulic valve to create at a well-defined flow resistance of the switching valve in a wide range of different fuel pressures available is. This flow resistance must also have the property that only a few geometry parameters affect its size. The exact one defined flow resistance of the switching valve thus sets the opening speed of the servo valve.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Kraftstoffeinspritzventil mit den Merkmalen gemäß Anspruchs 1 hat den Vorteil, daß der effektive Strömungsquerschnitt der durch das Schaltventil erzeugten Öffnung die Ausbildung einer kavitierenden Drosselströmung unterstützt. Durch die exzentrische Position der Zulaufdrosselbohrung wird im Steuerraum eine Rotation der Kraftstoffströmung verursacht. Diese Rotation, die sich aufgrund der Impulserhaltung der Kraftstoffströmung nach Öffnen des Schaltventils beim Durchströmen der Ablaufdrosselbohrung beschleunigt, führt zu einer Absenkung des statischen Drucks in der Flüssigkeit und verstärkt damit die Kavitationsneigung des Fluides beim Durchströmen der Ablaufdrosselbohrung. Aufgrund der drallbehafteten Strömung innerhalb der Ablaufdrosselbohrung wird die Kavitationsneigung auf einen weiten Druckbereich ausgedehnt. Schon bei geringen Druckdifferenzen über die Ablaufdrosselbohrung hinweg und bei hohen Drücken im Niederdruckbereich hinter der Ablaufdrosselbohrung treten Kavitationseffekte auf und bewirken, daß der effektive Öffnungsquerschnitt, der aus der Kombination von Magnetventil 40 und Ablaufdrosselbohrung 30 gebildet wird, nur noch von der Geometrie der Ablaufdrosselbohrung beeinflußt wird. Hierdurch kann mit Hilfe der Größe der Ablaufdrosselbohrung ein exakt definierter Durchflußquerschnitt eingestellt werden, ohne den Einfluß des Magnetventils 40 berücksichtigen zu müssen. The fuel injection valve according to the invention with the features of claim 1 has the advantage that the effective flow cross section of the. Through the Switching valve produced opening the formation of a cavitating throttle flow supported. Due to the eccentric position of the inlet throttle bore is causes a rotation of the fuel flow in the control room. This rotation, due to the momentum conservation of the fuel flow after opening the Switching valve accelerates when flowing through the outlet throttle bore leads to a lowering of the static pressure in the liquid and thus amplifies the Cavitation tendency of the fluid flowing through the outlet throttle bore. Due to the swirling flow within the outlet throttle bore is the cavitation tendency is extended to a wide pressure range. Already at low pressure differences across the drainage bore and at high Pressing in the low-pressure area behind the outlet throttle bore causes cavitation effects and cause the effective opening cross section, the Combination of solenoid valve 40 and drain throttle bore 30 is formed, only affected by the geometry of the outlet throttle bore. hereby can with the help of the size of the outlet throttle bore a precisely defined flow area can be adjusted without taking into account the influence of the solenoid valve 40 to have to.

In den abhängigen Ansprüchen aufgeführte Maßnahmen definieren vorteilhafte Weiterbildungen und Verbesserungen des in Anspruch 1 angegebenen Kraftstoffeinspritzventils.Measures listed in the dependent claims define advantageous ones Further developments and improvements of claim 1 fuel injection valve.

Gemäß einer bevorzugten Ausführungsform ist die Zulaufdrosselbohrung tangential gegenüber dem Steuerraum ausgerichtet. Dadurch wird erreicht, daß alle Bereiche der Strömung im Steuerraum in Rotation versetzt werden.According to a preferred embodiment, the inlet throttle bore is tangential aligned with the control room. This ensures that all areas the flow in the control room are set in rotation.

Gemäß einer weiteren Ausführungsform ist bei einem zylindrisch ausgebildeten Steuerraum das Rotieren der Strömung nicht durch Kanten oder Ecken behindert. Vorzugsweise sind die Zulaufdrosselbohrung und die Ablaufdrosselbohrung senkrecht zueinander ausgerichtet. Dadurch liegt die Rotationsachse der erzeugten Strömung parallel zur Einströmrichtung des Kraftstoffs in die Ablaufdrosselbohrung.According to a further embodiment is in a cylindrically shaped Control room does not obstruct the rotation of the flow by edges or corners. Preferably, the inlet throttle bore and the outlet throttle bore are vertical aligned with each other. As a result, the axis of rotation of the generated Flow parallel to the inflow direction of the fuel into the outlet throttle bore.

Zeichnungdrawing

Die Erfindung ist anhand einer in der Zeichnung dargestellten Ausführungsform in der folgenden detaillierten Beschreibung näher erläutert. Es zeigen:

Fig. 1:
eine Schnittansicht eines Schaltventils in Verbindung mit einer Zulaufdrosselbohrung, einem Steuerrraum und einer Ablaufdrosselbohrung; und
Fig. 2:
eine Schnittansicht entlang der Linie A-A in Fig. 1, die schematisch die Rotation der Strömung im Steuerrraum zeigt.
The invention is explained in more detail with reference to an embodiment shown in the drawing in the following detailed description. Show it:
Fig. 1:
a sectional view of a switching valve in conjunction with an inlet throttle bore, a control chamber and an outlet throttle bore; and
Fig. 2:
a sectional view taken along the line AA in Fig. 1, which shows schematically the rotation of the flow in the control chamber.

Detaillierte Beschreibung der bevorzugten AusführunssformDetailed Description of the Preferred Embodiment

In Fig. 1 ist eine Schnittansicht durch ein Schaltventil 40 mit einer Verbindung zu einem Steuerraum 20 dargestellt, in welchem ein Kolben 50 beweglich angeordnet ist. Der Kolben 50 ist fest mit der Ventilnadel des eigentlichen Einspritzventils verbunden. Über eine Zulaufdrosselbohrung 10 strömt der Kraftstoff von einer zentralen Hochdruckversorgung 1 zu dem Steuerraum 20. Vorzugsweise an der Stirnseite 21 des Steuerraumes 20 befindet sich eine Öffnung 22, die zu einer Ablaufdrosselbohrung 30 führt. Damit ergibt sich eine bevorzugte rechtwinklige Ausrichtung der Achsen der Zulaufdrosselbohrung 10 und der Ablaufdrosselbohrung 30 zueinander.In Fig. 1 is a sectional view through a switching valve 40 with a connection to a control chamber 20 shown, in which a piston 50 arranged movable is. The piston 50 is fixed to the valve needle of the actual injection valve connected. About an inlet throttle bore 10, the fuel flows from one central high-pressure supply 1 to the control room 20. Preferably at the Front side 21 of the control chamber 20 is an opening 22 which is to a Outflow throttle bore 30 leads. This results in a preferred rectangular Alignment of the axes of the inlet throttle bore 10 and the outlet throttle bore 30 to each other.

Auf der dem Steuerraum 20 abgewandten Seite der Ablaufdrosselbohrung 30 ist das Schaltventil 40 angeordnet, das - je nach Schaltposition - den Ausgang der Ablaufdrosselbohrung 30 öffnet oder verschließt. Vom Schaltventil 40 fließt der Kraftstoff zurück in den Niederdruckbereich des Kraftstoffsystems.On the side remote from the control chamber 20 side of the outlet throttle bore 30 is arranged the switching valve 40, which - depending on the switching position - the output of Drain throttle bore 30 opens or closes. From the switching valve 40 flows Fuel back to the low pressure area of the fuel system.

Auf der der Stirnseite 21 gegenüberliegenden Seite des Steuerraums 20 befindet sich der Steuerkolben 50, der mit der Düsennadel des eigentlichen Einspritzventils verbunden ist. Bewegungen des Steuerkolbens 50 entsprechen Bewegungen der Ventilnadel des eigentlichen Einspritzventils, welches den Brennraum vom Hochdruckbereich 1 des Kraftstoffeinspritzsystems trennt. Bewegungen dieses Steuerkolbens 50 (angedeutet durch den Doppelpfeil in Fig. 1) führen zu einem Öffnen beziehungsweise Schließen der Kraftstoffzufuhr in den Brennraum. Das Schaltventil 40 wird elektrisch angesteuert.On the front side 21 opposite side of the control chamber 20 is located the control piston 50, which is connected to the nozzle needle of the actual injection valve connected is. Movements of the control piston 50 correspond to movements of the Valve needle of the actual injector, which the combustion chamber from the high pressure area 1 of the fuel injection system separates. Movements of this control piston 50 (indicated by the double arrow in Fig. 1) lead to an opening or closing the fuel supply in the combustion chamber. The switching valve 40 is electrically controlled.

Unter Bezugnahme auf Fig. 2 ist die Zulaufdrosselbohrung 10 exzentrisch in bezug auf den Steuerraum 20 angeordnet. Der Steuerraum 20 hat vorzugsweise eine zylindrische Gestalt, d.h. der in Fig. 2 gezeigte Querschnitt entlang der strichpunktierten Linie A-A aus Fig. 1 ist kreisförmig. Bevorzugt entspricht die Orientierung der Längsachse der Zulaufdrosselbohrung 10 einer Tangente an den Kreis, der durch den Querschnitt des Steuerraumes 20 gebildet wird.Referring to Fig. 2, the inlet throttle bore 10 is eccentric with respect to arranged on the control room 20. The control chamber 20 preferably has one cylindrical shape, i. the cross section shown in Fig. 2 along the dot-dash line Line A-A of Fig. 1 is circular. Preferably, the orientation corresponds the longitudinal axis of the inlet throttle bore 10 of a tangent to the circle, which is formed by the cross section of the control chamber 20.

Durch die exzentrische Orientierung der Zulaufdrosselbohrung 10 bildet sich beim Einströmen des Kraftstoffs in den Steuerraum 20 eine Wirbelströmung 60 aus, deren Stromlinien in Fig. 2 schematisch durch Pfeile angedeutet sind. Die Wirbelströmung 60 umfaßt bei der bevorzugten tangentialen Anordnung der Zulaufbohrung 10 die gesamte Querschnittfläche des Steuerraums 20.Due to the eccentric orientation of the inlet throttle bore 10 is formed when the fuel flows into the control chamber 20, a swirling flow 60 from whose streamlines are indicated schematically in Fig. 2 by arrows. The Vortex flow 60 includes in the preferred tangential arrangement of the inlet bore 10, the entire cross-sectional area of the control chamber 20th

Wird das Schaltventil 40 geöffnet, tritt diese Wirbelströmung 60 in die Öffnung der Ablaufdrosselbohrung 30 ein, die eine wesentlich kleinere Querschnittfläche als der Steuerraum 20 aufweist. Durch das Abfließen des Fluides durch die Ablaufdrosselbohrung 30 erhöht sich dabei aufgrund der Impulserhaltung die Drehgeschwindigkeit der Wirbelströmung 60, so daß der statische Druck in der Strömung stark abnimmt. Dies erhöht die Neigung der Strömung zum Kavitieren im Bereich der Ablaufdrosselbohrung 30. Das Einsetzen von Kavitationseffekten führt dazu, daß der gesamte Durchflußwiderstand der Kombination aus Ablaufdrossel 30 und Schaltventil 40 nur noch von dem Durchflußwiderstand der Ablaufdrossel 30 abhängig ist. Dies erleichtert die Einstellung der Größe des abfließenden Volumenstroms. Da die Bewegungsgeschwindigkeit des Kolbens 50 direkt von dem abfließenden Volumenstrom abhängig ist, ergibt sich aufgrund der Erhöhung der Kavitationsneigung der Strömung in der Ablaufdrosselbohrung 30 eine Erhöhung der Genauigkeit der Bewegungsgeschwindigkeit des Kolbens 50. Da die Bewegungsgeschwindigkeit des Kolbens 50 der Bewegungsgeschwindigkeit der Ventilnadel des Einspritzventils entspricht, erhöht sich somit auch die Genauigkeit der Bewegung des Einspritzventils und damit die Genauigkeit der eingespritzten Kraftstoffmenge. Das bedeutet, daß die Bewegungsgeschwindigkeit der Ventilnadel des Einspritzventils, welche möglichst gleichmäßig erfolgen soll, über die Dimensionierung bzw. Gestalt der Ablaufdrosselbohrung 30 zielgerichtet einstellbar bzw. hinsichtlich der Einspritzbedingungen optimierbar ist.When the switching valve 40 is opened, this swirling flow 60 enters the opening the drain throttle bore 30 a, which has a much smaller cross-sectional area as the control room 20 has. By the flow of fluid through the outlet throttle bore 30 increases due to the momentum conservation, the rotational speed the vortex flow 60, so that the static pressure in the flow decreases sharply. This increases the tendency of the flow to cavitate in the Throttle bore area 30. The onset of cavitation effects causes the entire flow resistance of the combination of drain throttle 30 and switching valve 40 only from the flow resistance of the outlet throttle 30 is dependent. This facilitates the adjustment of the size of the effluent Volume flow. Since the movement speed of the piston 50 directly depends on the outflowing volume flow, resulting from the Increasing the cavitation tendency of the flow in the outlet throttle bore 30 an increase in the accuracy of the movement speed of the piston 50. Since the moving speed of the piston 50 is the moving speed corresponds to the valve needle of the injector, thus increasing the Accuracy of the movement of the injector and thus the accuracy of injected fuel quantity. That means the movement speed the valve needle of the injection valve, which should be as uniform as possible, on the dimensioning or shape of the outlet throttle bore 30 targeted can be adjusted or optimized with respect to the injection conditions.

Claims (5)

  1. Fuel injection valve having an inflow throttle hole (10), and outflow throttle hole (30), a control space (20) and a switching valve (40) for a high-pressure injection of fuel from a central high-pressure accumulator (1) into combustion spaces of an internal combustion engine, the high-pressure accumulator (1) being operatively connected via the inflow throttle hole (10) to the control space (20) which controls the opening and closing of the injection nozzle, the control space (20) communicating with the switching valve (40) via the outflow throttle hole (30), characterized in that the inflow throttle hole (10) is oriented eccentrically with respect to the control space (20).
  2. Fuel injection valve according to Claim 1, characterized in that the inflow throttle hole (10) is oriented tangentially with respect to the control space (20).
  3. Fuel injection valve according to Claim 2, characterized in that the inflow throttle hole (10) and the outflow throttle hole (30) are arranged perpendicularly with respect to one another.
  4. Fuel injection valve according to Claim 3, characterized in that the control space (20) has a cylindrical shape.
  5. Fuel injection valve according to Claim 4, characterized in that the outflow throttle hole (30) is dimensioned in such a way that, when the switching valve (40) is actuated, cavitation effects occur in the outflow throttle hole (30).
EP99966843A 1998-12-22 1999-12-08 Fuel injection valve Expired - Lifetime EP1056946B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19859592 1998-12-22
DE19859592A DE19859592C1 (en) 1998-12-22 1998-12-22 Fuel injection valve for high pressure injection of fuel into the combustion chambers of internal combustion engines
PCT/DE1999/003914 WO2000037794A1 (en) 1998-12-22 1999-12-08 Fuel injection valve

Publications (2)

Publication Number Publication Date
EP1056946A1 EP1056946A1 (en) 2000-12-06
EP1056946B1 true EP1056946B1 (en) 2004-03-17

Family

ID=7892335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99966843A Expired - Lifetime EP1056946B1 (en) 1998-12-22 1999-12-08 Fuel injection valve

Country Status (5)

Country Link
US (1) US6382185B1 (en)
EP (1) EP1056946B1 (en)
JP (1) JP2002533608A (en)
DE (2) DE19859592C1 (en)
WO (1) WO2000037794A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055267B4 (en) * 2000-11-08 2004-07-29 Robert Bosch Gmbh Pressure-controlled injector for high injection with slide throttles
DE10101797A1 (en) * 2001-01-17 2002-07-18 Bosch Gmbh Robert Injection valve for use in an internal combustion engine has a valve control piston, a valve control space with an inlet throttle and an outlet throttle for operating the valve control piston.
DE10131640A1 (en) * 2001-06-29 2003-01-16 Bosch Gmbh Robert Fuel injector with injection course shaping through switchable throttle elements
DE10146743A1 (en) * 2001-09-22 2003-04-17 Bosch Gmbh Robert Injection valve for an internal combustion engine
US7178975B2 (en) * 2004-04-23 2007-02-20 Five Star Technologies, Inc. Device and method for creating vortex cavitation in fluids
DE102006032779A1 (en) * 2006-07-14 2008-01-17 Siemens Ag Injector for a combustion engine comprises a flow guiding body for producing a defined flow in an outlet
DE102008042293A1 (en) * 2008-09-23 2010-03-25 Robert Bosch Gmbh Injector for injecting high-pressure fuel into the combustion chamber of an internal combustion engine
JP5051279B2 (en) * 2009-12-21 2012-10-17 株式会社デンソー Constant residual pressure valve
WO2013119197A1 (en) * 2012-02-06 2013-08-15 International Engine Intellectual Property Company, Llc Control valve
DE102014215749A1 (en) * 2014-08-08 2016-02-11 Continental Automotive Gmbh Throttle device for controlling an amount of fuel to be supplied to a fuel injector and injector
EP3218094B1 (en) * 2014-11-11 2020-01-08 Robert Bosch GmbH An injection valve having control chamber

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2636361B2 (en) * 1988-09-21 1997-07-30 トヨタ自動車株式会社 Unit injector
DE3844430A1 (en) * 1988-12-31 1990-07-05 Bosch Gmbh Robert FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
IT1257958B (en) * 1992-12-29 1996-02-19 Mario Ricco ELECTROMAGNETIC CONTROL DOSING VALVE REGISTRATION DEVICE, FOR A FUEL INJECTOR
US5467757A (en) * 1993-08-20 1995-11-21 Toyota Jidosha Kabushiki Kaisha Compression-ignition type engine and combustion method of same
IT1261149B (en) * 1993-12-30 1996-05-09 Elasis Sistema Ricerca Fiat DOSING VALVE FOR THE CONTROL OF THE SHUTTER OF A FUEL INJECTOR
GB9520243D0 (en) * 1995-10-04 1995-12-06 Lucas Ind Plc Injector
JP3687758B2 (en) * 1995-11-14 2005-08-24 株式会社デンソー Fuel injection device
FI101739B (en) * 1996-08-16 1998-08-14 Waertsilae Nsd Oy Ab An injection valve
JP3653882B2 (en) * 1996-08-31 2005-06-02 いすゞ自動車株式会社 Engine fuel injector
DE69719461T2 (en) * 1996-11-21 2004-01-15 Denso Corp Storage fuel injector for internal combustion engines

Also Published As

Publication number Publication date
DE59908888D1 (en) 2004-04-22
EP1056946A1 (en) 2000-12-06
JP2002533608A (en) 2002-10-08
US6382185B1 (en) 2002-05-07
WO2000037794A1 (en) 2000-06-29
DE19859592C1 (en) 2000-05-04

Similar Documents

Publication Publication Date Title
EP1056946B1 (en) Fuel injection valve
DE4332119A1 (en) Fuel injection device for internal combustion engines
DE4340305A1 (en) Fuel injection nozzle for an internal combustion engine
EP1135603B1 (en) Fuel-injection valve for internal combustion engines
AT503660A4 (en) DEVICE FOR INJECTING FUEL IN THE COMBUSTION ENGINE OF AN INTERNAL COMBUSTION ENGINE
WO2013174601A1 (en) Injector of a fuel injection system
DE10115401A1 (en) Fuel injection system for an internal combustion engine
EP1013919B1 (en) Fuel injection valve
EP2339164A1 (en) Pressure-equalised fuel injector with bypass and minimised valve area volumes
DE69824860T2 (en) HYDRAULICALLY ACTUATED ELECTRONIC INJECTION SYSTEM
WO2008049699A1 (en) Fuel injector
EP2058507B1 (en) Fuel injector with optimised shutoff impact
DE19921878A1 (en) Fuel injection system for IC engine uses fuel injector with magnetically-operated injection valve and independent magnetic valve controlling pressure control valve for fuel feeds to and from injector
DE69817895T2 (en) Fuel injection pump arrangement in an internal combustion engine
DE4437927A1 (en) Injector with solenoid valve control for fuel injection into the combustion chamber of a diesel engine
DE10210927A1 (en) Fuel injection valve for internal combustion engines
EP2011995A2 (en) Injector with a valve element which opens to the outside
EP1373714A1 (en) Injection valve
WO2005085624A1 (en) Fuel-injection valve
AT397129B (en) FUEL INJECTION NOZZLE
DE102017212655A1 (en) Injector for liquid and gaseous fuel
EP2807367B1 (en) Device for injecting fuel into the combustion chamber of an internal combustion engine
DE10132246A1 (en) Fuel injector with high pressure resistant inlet
DE10134529C2 (en) Injector with cascaded, inward opening valves
DE4332837C1 (en) IC engine fuel injection system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20001229

17Q First examination report despatched

Effective date: 20030326

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59908888

Country of ref document: DE

Date of ref document: 20040422

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040706

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121218

Year of fee payment: 14

Ref country code: IT

Payment date: 20121220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130123

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131208

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131208

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180223

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59908888

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702