EP1052465A1 - Verfahren und Vorrichung zur Tieftemperaturzerlegung von Luft - Google Patents

Verfahren und Vorrichung zur Tieftemperaturzerlegung von Luft Download PDF

Info

Publication number
EP1052465A1
EP1052465A1 EP99112289A EP99112289A EP1052465A1 EP 1052465 A1 EP1052465 A1 EP 1052465A1 EP 99112289 A EP99112289 A EP 99112289A EP 99112289 A EP99112289 A EP 99112289A EP 1052465 A1 EP1052465 A1 EP 1052465A1
Authority
EP
European Patent Office
Prior art keywords
liquid
level
fraction
transfer fraction
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99112289A
Other languages
English (en)
French (fr)
Other versions
EP1052465B1 (de
Inventor
Thomas Dipl.-Ing. Nohlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1052465A1 publication Critical patent/EP1052465A1/de
Application granted granted Critical
Publication of EP1052465B1 publication Critical patent/EP1052465B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04703Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser being arranged in more than one vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/06Lifting of liquids by gas lift, e.g. "Mammutpumpe"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon

Definitions

  • the invention relates to a method for the low-temperature separation of air according to the Preamble of claim 1.
  • the invention particularly relates to two- or multi-column systems a pressure column and with a low pressure column arranged above the pressure column and / or an arranged or around a multi-column system with further separation columns for nitrogen-oxygen separation.
  • the pressure column represents the "first Rectification column "in the sense of the invention; rectification in the low pressure column and / or the evaporation in the top condenser of the crude argon column is the "further one Process step ".
  • The” transfer fraction is here by the bottom liquid or an intermediate liquid of the pressure column formed in the low pressure column or in the evaporation space of the top condenser of the crude argon column is introduced.
  • the invention relates in particular to double-column processes as shown in Figs. 4.21, 4.23, 4.26, 4.28 and 4.34 in Chapter 4.5 by Hausen / Linde.
  • the invention Mass transfer preferably in at least one separation column (e.g. low pressure and / or crude argon column) at least partially by packing or ordered Pack causes.
  • the transfer fraction collects in one within the first rectification column Reservoir through the sump of this column or a cup inside the column is formed.
  • the liquid level in this reservoir sets the "first level” h1 firmly in the sense of the invention.
  • the transfer fraction in passed a container in which a further process step is carried out, for example the low pressure column or the evaporation space of a condenser-evaporator (e.g. top condenser of the raw argon column).
  • a further process step for example the low pressure column or the evaporation space of a condenser-evaporator (e.g. top condenser of the raw argon column).
  • the place of feeding too this further process step defines the "second, higher level" in the sense of Invention.
  • Air separation plants in which packings in the low pressure part of a double column are used, for example, in EP 321163 A, WO 9319335, WO 9319336 or EP 628777 A.
  • a disadvantage of using packs is that the overall height noticeably increased compared to the bottom columns.
  • the claim cited inequality apply, that is, the pressure difference between pressure and Low pressure column or between the pressure column and the evaporation chamber of the Top condenser of the crude argon column is no longer sufficient to match the corresponding one to overcome hydrostatic pressure of a liquid column of the conduction fraction. While this situation also applies to normal operation under full load in some systems can occur, it often appears especially in special operating cases, especially when operating under underload, i.e. with a lower product and Amount used than in full load operation.
  • the invention has for its object the aforementioned method and appropriate device to further improve.
  • the expansion valve is at a suitable intermediate level between the first and the second level.
  • the specific definition of this intermediate level is different for each special embodiment of the invention, but can be easily determined with the aid of the calculation tools that are available to the person skilled in the art if the height of the intermediate level is specified as a degree of freedom.
  • the transfer fraction is subcooled before relaxing by indirect heat exchange. This will the formation of a two-phase mixture upstream of the relaxation entirely or partially avoided, so that the invention only when relaxing targeted vapor bubble formation occurs.
  • the hypothermia usually takes place nearby of the first level.
  • the transfer fraction is immediate upstream of relaxing completely or substantially completely in is in liquid form, but is no longer hypothermic.
  • the degree of supercooling of the conduction fraction becomes usually determined regardless of the liquid transport process and is of other criteria determines, for example the effort, relatively little flash gas to generate when feeding into the second container.
  • the relaxation process in particular the arrangement of the expansion valve, then becomes determines that the transition fraction immediately at the specified supercooling before relaxing just in the single-phase liquid state and neither a noticeable hypothermia still steam bubbles to a significant extent available.
  • the invention also relates to a device for the low-temperature separation of air according to claims 4 to 6.
  • cleaned air 1 is under a Pressure from 4 to 20 bar, preferably 5 to 12 bar in a heat exchanger 2 against Product flows cooled to about dew point and into the pressure column 3 a two-stage Rectifier fed.
  • the pressure column 3 stands over a common one Condenser-evaporator 4 in heat exchange relationship with a low pressure column 5.
  • the method of transferring a liquid according to the invention can also be applied the liquid nitrogen 7 from the top of the pressure column as a (further) "transfer fraction" be applied.
  • the "first level” is due to the liquid level formed inside the cup 16 in which the coming from the main capacitor 4 Liquid is collected.
  • the countercurrent 8 is supercooled supercooled nitrogen 17 flows to an expansion valve 18 which is on a Intermediate level hz 'is arranged and finally further to the feed point 19th ("second level" h2 ') at the head of the low pressure column.
  • the Invention also for the transport of a liquid transfer fraction in the Evaporation space of the top condenser of a crude argon column can be used.
  • the crude argon column is formed in the example by two sections 20a, 20b, their function in European patent EP 628777 B1 and in the corresponding U.S. Patent US 5,426,946 is described in detail.
  • the invention can be used by anyone known type of raw argon extraction are used, in which an argon-containing Oxygen fraction 21 introduced from the low pressure column 5 into a crude argon column is, with an oxygen-depleted in the upper area of the crude argon column Argon product 22a, 22b is obtained in the gaseous and / or liquid state.
  • the further transition fraction is in the example shown in the drawing through part 13a of the supercooled sump liquid 6 from the pressure column 5 educated. It is relaxed in an expansion valve 14a, which is on a Intermediate level is arranged. This intermediate level is in the example the same or approximately the same height as the intermediate level hz.
  • the in 14a relaxed transfer fraction 15a of sump 12 of the pressure column 3 is on a "second level" h2 "in the evaporation chamber 23 of the top condenser Raw argon column introduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur Tieftemperaturzerlegung von Luft. Einsatzluft (1) wird in eine erste Rektifiziersäule (3) eingeleitet. Eine Überleitungsfraktion (6, 7) der Dichte p wird in flüssigem Zustand aus einem Reservoir (24, 16) innerhalb der ersten Rektifiziersäule (3) entnommen, entspannt (14, 14a, 18) und einem weiteren Verfahrensschritt (5, 23) zugeleitet. Der Flüssigkeitsspiegel in dem Reservoir (24, 16) steht dabei auf einem ersten Niveau h1 befindet und unter einem ersten Druck p1. Die entspannte Überleitungsfraktion wird dem weiteren Verfahrensschritt (5, 23) auf einem zweiten, höheren Niveau h2 (h2 > h1) und unter einem zweiten, niedrigeren Druck (p2 < p1) zugeführt. Die Differenz der beiden Drücke Δp = p1 - p2 ist kleiner als der durch eine Flüssigkeitssäule der Überleitungsfraktion zwischen dem ersten und dem zweiten Niveau erzeugten hydrostatischen Druck (phydr = ρ · g · [h2-h1]): Δp = p1 - p2 < p · g · [h2 - h1](g: Erdbeschleunigung). Die Entspannung (14, 14a, 18) wird so durchgeführt, daß die beim Entspannen entstehenden Gasblasen die Dichte der Überleitungsfraktion soweit verringern, daß die Druckdifferenz Δp ausreicht, um die Überleitungsfraktion dem weiteren Verfahrensschritt (5, 23) zuzuführen. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Tieftemperaturzerlegung von Luft gemäß dem Oberbegriff von Patentanspruch 1.
Einschlägige Luftzerlegungsverfahren und -vorrichtungen sind zum Beispiel in Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) beschreiben. Die Erfindung betrifft insbesondere Zwei- oder Mehrsäulensysteme mit einer Drucksäule und mit einer über der Drucksäule angeordneten Niederdrucksäule und/oder einer angeordneten oder um ein Mehrsäulensystem mit weiteren Trennsäulen zur Stickstoff-Sauerstoff-Trennung. Die Drucksäule stellt in diesem Fall die "erste Rektifiziersäule" im Sinne der Erfindung dar; die Rektifikation in der Niederdrucksäule und/oder die Verdampfung im Kopfkondensator der Rohargonsäule ist der "weitere Verfahrensschritt". Die "Überleitungsfraktion" wird hier durch die Sumpfflüssigkeit oder eine Zwischenflüssigkeit der Drucksäule gebildet, die in die Niederdrucksäule oder in den Verdampfungsraum des Kopfkondensators der Rohargonsäule eingeleitet wird.
Die Erfindung betrifft insbesondere Doppelsäulenverfahren, wie sie in den Bildern 4.21, 4.23, 4.26, 4.28 und 4.34 im Kapitel 4.5 von Hausen/Linde dargestellt sind. Abweichend von den Beispielen in Hausen/Linde wird bei der Erfindung der Stoffaustausch vorzugsweise in mindestens einer Trennsäule (z.B. Niederdruck und/oder Rohargonsäule) mindestens teilweise durch Füllkörper oder geordnete Packung bewirkt.
Die Überleitungsfraktion sammelt sich innerhalb der ersten Rektifiziersäule in einem Reservoir, das durch den Sumpf dieser Säule oder eine in der Säule befindliche Tasse gebildet wird. Der Flüssigkeitsspiegel in diesem Reservoir legt das "erste Niveau" h1 im Sinne der Erfindung fest. Aus diesem Reservoir wird die Überleitungsfraktion in einen Behälter geleitet, in dem ein weiterer Verfahrensschritt durchgeführt wird, beispielsweise die Niederdrucksäule oder der Verdampfungsraum eines Kondensator-Verdampfers (z.B. Kopfkondensator der Rohargonsäule). Die Stelle der Zuspeisung zu diesem weiteren Verfahrensschritt definiert das "zweite, höhere Niveau" im Sinne der Erfindung.
Seit einigen Jahre setzt sich der Einsatz von druckverlustarmen Einbauten in Luftzerlegersäulen immer mehr durch, da sie eine Reihe von Vorteilen aufweisen. Luftzerlegungsanlagen, bei denen Packungen im Niederdruckteil einer Doppelsäule eingesetzt werden, sind beispielsweise in EP 321163 A, WO 9319335, WO 9319336 oder EP 628777 A beschrieben.
Ein Nachteil der Verwendung von Packungen besteht darin, daß sich die Bauhöhe gegenüber Bodenkolonnen spürbar erhöht. In diesem Fall kann die im Patentanspruch angeführte Ungleichung gelten, das heißt, der Druckunterschied zwischen Druck- und Niederdrucksäule beziehungsweise zwischen Drucksäule und Verdampfungsraum des Kopfkondensators der Rohargonsäule reicht nicht mehr aus, um den entsprechenden hydrostatischen Druck einer Flüssigkeitssäule der Überleitungsfraktion zu überwinden. Während diese Situation bei einigen Anlagen auch im Normalbetrieb unter Vollast auftreten kann, erscheint es häufig insbesondere bei speziellen Betriebsfällen, insbesondere bei einem Betrieb unter Unterlast, also mit einer geringeren Produkt- und Einsatzmenge als beim Vollastbetrieb.
Das Problem wurde bereits in EP 567360 A grundsätzlich erwähnt und durch die Einspeisung eines "Erleicherterungsgases" stromabwärts des Ventils gelöst.
Der Erfindung liegt die Aufgabe zugrunde, das vorgenannte Verfahren und die entsprechende Vorrichtung weiter zu verbessern.
Diese Aufgabe wird durch das kennzeichnende Merkmal des Patentanspruchs 1 gelöst.
Im Rahmen der Erfindung hat es sich herausgestellt, daß es möglich ist das "Erleichterungsgas" im Sinne der EP 567360 A unmittelbar aus der Überleitungsfraktion selbst zu gewinnen. Die Nachteile der in EP 567360 A beschriebenen Methode werden dabei vermieden, insbesondere sind bei der Überleitung von sauerstoffangereicherter Flüssigkeit aus der Drucksäule weder ein Verbrauch von Druckluft als "Erleichterungsgas" noch aufwendige zusätzliche Schritte zur Erzeugung von "Erleichterungsgas" aus der Überleitungsfraktion notwendig; auch eine zusätzliche Regelung entfällt.
Hierfür bedarf es einer Anordnung des Entspannungsventils auf einem geeigneten Zwischenniveau zwischen dem ersten und dem zweiten Niveau. Die konkrete Festlegung dieses Zwischenniveaus ist für jede spezielle Ausführung der Erfindung verschieden, kann aber mit Hilfe der Berechnungswerkzeuge, die dem Fachmann zur Verfügung stehen, ohne weiteres ermittelt werden, wenn man die Höhe des Zwischenniveaus als Freiheitsgrad vorgibt. In typischen Fällen wird das Entspannungsventil auf einem Zwischenniveau von hz = h1 + x · (h2 - h1), wobei x 30 bis 80 %, vorzugsweise 40 bis 70 %, beträgt.
Diese Auslegung muß für einen bestimmten Betriebsfall vorgenommen werden, zum Beispiel für das Anfahren der Anlage. In einem anderen Beispiel wird die Anordnung des Entspannungsventils für den Unterlastfall im stationären Betrieb der Anlage ausgelegt; dann müssen unter Umständen zusätzliche Mittel zum Transport der Überleitungsflüssigkeit zum "weiteren Verfahrensschritt" während des Anfahrens der Anlage vorgesehen sein; dabei können übliche Methoden zum Transport von Flüssigkeit (mechanische Pumpe, Eindüsen von externem Gas usw.) eingesetzt werden, alternativ oder zusätzlich kann das Druckniveau in der ersten Rektifiziersäule beim Anfahren erhöhte werden.
Bei dem erfindungsgemäßen Verfahren ist es günstig, wenn die Überleitungsfraktion vor dem Entspannen durch indirekten Wärmeaustausch unterkühlt wird. Dadurch wird die Bildung eines Zweiphasengemischs stromaufwärts des Entspannens ganz oder teilweise vermieden werden, so daß erst beim Entspannen die erfindungsgemäße gezielte Dampfblasenbildung erfolgt. Die Unterkühlung erfolgt in der Regel in der Nähe des ersten Niveaus.
Vorzugsweise wird gerade so stark unterkühlt, daß die Überleitungsfraktion unmittelbar stromaufwärts des Entspannens vollständig oder im wesentlichen vollständig in flüssiger Form vorliegt, aber nicht mehr unterkühlt ist.
Bei der Auslegung einer Anlage wird dies praktisch so durchgeführt, daß zunächst die Unterkühlung festgelegt wird. Das Maß der Unterkühlung der Überleitungsfraktion wird in der Regel unabhängig vom Flüssigkeitstransportvorgang bestimmt und ist von anderen Kriterien bestimmt, beispielsweise dem Bestreben, relativ wenig Flashgas beim Einspeisen in den zweiten Behälter zu erzeugen. Der Entspannungsvorgang, insbesondere die Anordnung des Entspannungsventils, wird anschließend so bestimmt, daß bei der vorgegebenen Unterkühlung die Überleitungsfraktion unmittelbar vor dem Entspannen gerade noch im einphasigen flüssigen Zustand vorliegt und weder eine nennenswerte Unterkühlung noch Dampfblasen in nennenswertem Umfang vorliegen.
Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß den Patentansprüchen 4 bis 6.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiel näher erläutert. In dem Ausführungsbeispiel ist sowohl die Überleitung von Drucksäulen-Sumpfflüssigkeit und Drucksäulen-Stickstoff in die Niederdrucksäule als auch die Argongewinnung mit Überführung der Drucksäulen-Sumpfflüssigkeit in den Kopfkondensator einer Rohargonsäule gezeigt.
Bei dem in dem Schema dargestellten Verfahren wird gereinigte Luft 1 unter einem Druck von 4 bis 20 bar, vorzugsweise 5 bis 12 bar in einem Wärmetauscher 2 gegen Produktströme auf etwa Taupunkt abgekühlt und in die Drucksäule 3 einer zweistufigen Rektifiziereinrichtung eingespeist. Die Drucksäule 3 steht über einen gemeinsamen Kondensator-Verdampfer 4 in Wärmeaustauschbeziehung mit einer Niederdrucksäule 5.
Sumpfflüssigkeit 6 und Stickstoff 7 werden aus der Drucksäule 3 abgezogen, in einem Gegenströmer 8 unterkühlt und mindestens teilweise in die Niederdrucksäule 5 eingedrosselt. Aus der Niederdrucksäule werden Sauerstoff 9, Stickstoff 10 und unreiner Stickstoff 11 gasförmig entnommen. Die Produkte können auch mindestens teilweise flüssig entnommen werden (Sauerstoff 9a, Stickstoff 10a).
In der Drucksäule bildet der Sumpf ein Reservoir 24 für die vom untersten Stoffaustauschabschnitt ablaufende Kolonnenflüssigkeit. Die Sumpfflüssigkeit, die sich in diesem Reservoir sammelt bildet die Überleitungsfraktion im Sinne der Erfindung. Das "erste Niveau" h1 ist durch den Flüssigkeitsspiegel im Sumpf der Drucksäule bestimmt. Die Überleitungsfraktion 6 wird in dem Gegenströmer 8 unterkühlt. Die unterkühlte Überleitungsfraktion strömt zu einem ersten Teil 13 einem Entspannungsventil 14 zu, das auf dem Niveau hz angeordnet ist. Beim Entspannen 14 wird soviel Dampf erzeugt, daß der verbleibende Druckunterschied ausreicht, um die Überleitungsfraktion als Zweiphasengemisch 15 in die Niederdrucksäule zu drücken, und zwar auf dem "zweiten Niveau" h2. In einem konkreten Zahlenbeispiel gilt:
  • h1 = 3100 mm
  • h2 = 22100 mm
  • hz = 46100 mm
  • Die erfindungsgemäß Methode der Überführung einer Flüssigkeit kann genauso auf den flüssigen Stickstoff 7 vom Kopf der Drucksäule als (weitere) "Überleitungsfraktion" angewandt werden. Das "erste Niveau" wird dabei durch den Flüssigkeitsspiegel innerhalb der Tasse 16 gebildet, in der die von Hauptkondensator 4 kommende Flüssigkeit aufgefangen wird. Unterkühlt wird wiederum im Gegenströmer 8. Der unterkühlte Stickstoff 17 fließt zu einem Entspannungsventil 18, das auf einem Zwischenniveau hz' angeordnet ist und schließlich weiter zu der Einspeisestelle 19 ("zweites Niveau" h2') am Kopf der Niederdrucksäule.
    Wird zusätzlich Argon gewonnen, wie es in der Zeichnung dargestellt ist, kann die Erfindung auch auf den Transport einer flüssigen Überleitungsfraktion in den Verdampfungsraum des Kopfkondensators einer Rohargonsäule angewandt werden. Die Rohargonsäule wird in dem Beispiel durch zwei Abschnitte 20a, 20b gebildet, deren Funktion im europäischen Patent EP 628777 B1 und in dem korrespondierenden US-Patent US 5426946 ausführlich beschrieben ist. Die Erfindung kann bei jeder bekannten Art der Rohargongewinnung eingesetzt werden, bei der eine argonhaltige Sauerstofffraktion 21 aus der Niederdrucksäule 5 in eine Rohargonsäule eingeleitet wird, wobei im oberen Bereich der Rohargonsäule ein an Sauerstoff abgereichertes Argonprodukt 22a, 22b in gasförmigem und/oder flüssigem Zustand anfällt.
    Die weitere Überleitungsfraktion wird in dem in der Zeichnung dargestellten Beispiel durch einen Teil 13a der unterkühlten Sumpfflüssigkeit 6 aus der Drucksäule 5 gebildet. Sie wird in einem Entspannungsventil 14a entspannt, das auf einem Zwischenniveau angeordnet ist. Dieses Zwischenniveau liegt in dem Beispiel auf derselben oder etwa derselben Höhe wie das Zwischenniveau hz. Die in 14a entspannte Überleitungsfraktion 15a von Sumpf 12 der Drucksäule 3 wird auf einem "zweiten Niveau" h2" in den Verdampfungsraum 23 des Kopfkondensators der Rohargonsäule eingeführt.

    Claims (6)

    1. Verfahren zur Tieftemperaturzerlegung von Luft, bei dem Einsatzluft (1) in eine erste Rektifiziersäule (3) eingeleitet wird und eine Überleitungsfraktion (6, 7) der Dichte ρ in flüssigem Zustand aus einem Reservoir (24, 16) innerhalb der ersten Rektifiziersäule (3) entnommen, entspannt (14, 14a, 18) und einem weiteren Verfahrensschritt (5, 23) zugeleitet wird, wobei
      sich der Flüssigkeitsspiegel in dem Reservoir (24, 16) auf einem ersten Niveau h1 befindet und unter einem ersten Druck p1 steht,
      die entspannte Überleitungsfraktion dem weiteren Verfahrensschritt (5, 23) auf einem zweiten, höheren Niveau h2 (h2 > h1) und unter einem zweiten, niedrigeren Druck (p2 < p1) zugeführt wird,
      die Differenz der beiden Drücke Δp = p1 - p2 kleiner ist als der durch eine Flüssigkeitssäule der Überleitungsfraktion zwischen dem ersten und dem zweiten Niveau erzeugten hydrostatischen Druck (phydr = ρ · g · [h2-h1]) Δp = p1 - p2 < ρ · g · [h2 - h1]   (g: Erdbeschleunigung), dadurch gekennzeichnet, daß die Entspannung (14, 14a, 18) so durchgeführt wird, daß die beim Entspannen entstehenden Gasblasen die Dichte der Überleitungsfraktion soweit verringern, daß die Druckdifferenz Δp ausreicht, um die Überleitungsfraktion dem weiteren Verfahrensschritt (5, 23) zuzuführen.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Überleitungsfraktion (6, 7) vor dem Entspannen (14, 14a, 18) durch indirekten Wärmeaustausch (8) unterkühlt wird.
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Unterkühlung (8) so durchgeführt wird, daß die Überleitungsfraktion (13, 13a, 17) unmittelbar stromaufwärts des Entspannens (14, 14a, 18) vollständig oder im wesentlichen vollständig in flüssiger Form vorliegt.
    4. Vorrichtung zur Tieftemperaturzerlegung von Luft, die für mindestens einen Betriebsfall ausgelegt ist und eine erste Rektifiziersäule (3) mit einem Reservoir (24, 16) für eine flüssige Überleitungsfraktion und eine Flüssigkeitsleitung (6 - 13 - 15, 6 - 13a - 15a, 7 - 17 - 19) aufweist, die auf mit dem Reservoir (24, 16) in der ersten Rektifiziersäule (3) und mit einem weiteren Behälter (5, 23) verbunden ist und zwischen diesen Verbindungen ein Entspannungsventil (14, 14a, 18) aufweist, wobei
      in dem Betriebsfall sich der Flüssigkeitsspiegel in dem Reservoir (24, 16) auf einem ersten Niveau h1 befindet und unter einem ersten Druck p1 steht,
      in dem weiteren Behälter (5, 23) an der die Stelle der Verbindung zwischen Flüssigkeitsleitung (15, 15a, 19) und weiterem Behälter (5, 23) in dem Betriebsfall ein zweiter Druck (p2) herrscht,
      die Stelle der Verbindung zwischen Flüssigkeitsleitung (15, 15a, 19) und weiterem Behälter (5, 23) auf einem zweiten, höheren Niveau h2 (h2 > h1) angeordnet ist,
      die Differenz der beiden Drücke Δp = p1 - p2 in dem Betriebsfall kleiner ist als der durch eine Flüssigkeitssäule der Überleitungsfraktion zwischen dem ersten und dem zweiten Niveau erzeugten hydrostatischen Druck (phydr = ρ·g·[h2-h1]) ist: Δp = p1 - p2 < ρ·g·[h2-h1]   g: Erdbeschleunigung. dadurch gekennzeichnet, daß das Entspannungsventil (14, 14a, 18) so angeordnet ist, daß in dem Betriebsfall die beim Entspannen entstehenden Gasblasen den beim Entspannen die Dichte der Überleitungsfraktion soweit verringern, daß die Druckdifferenz Δp ausreicht, um die Überleitungsfraktion in dem weiteren Behälter (5, 23) zuzuführen.
    5. Vorrichtung nach Anspruch 4, gekennzeichnet durch einen Wärmetauscher (8) zur Abkühlung der Überleitungsfraktion durch indirekten Wärmeaustausch, der in der Flüssigkeitsleitung (6 - 13 - 15, 6 - 13a - 15a, 7 - 17 - 19) stromaufwärts des Entspannungsventils (14, 14a, 18) angeordnet ist.
    6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der Wärmetauscher (8) so angeordnet ist, daß in dem Betriebsfall die Überleitungsfraktion unmittelbar stromaufwärts des Entspannungsventils (14, 14a, 18) vollständig oder im wesentlichen vollständig in flüssiger Form vorliegt.
    EP99112289A 1999-05-12 1999-06-25 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft Expired - Lifetime EP1052465B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19921949A DE19921949A1 (de) 1999-05-12 1999-05-12 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
    DE19921949 1999-05-12

    Publications (2)

    Publication Number Publication Date
    EP1052465A1 true EP1052465A1 (de) 2000-11-15
    EP1052465B1 EP1052465B1 (de) 2005-05-11

    Family

    ID=7907865

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99112289A Expired - Lifetime EP1052465B1 (de) 1999-05-12 1999-06-25 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

    Country Status (6)

    Country Link
    US (1) US6308533B1 (de)
    EP (1) EP1052465B1 (de)
    JP (1) JP2000356463A (de)
    KR (1) KR20010049347A (de)
    DE (2) DE19921949A1 (de)
    ES (1) ES2242331T3 (de)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2853406A1 (fr) * 2003-04-01 2004-10-08 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
    FR2853405A1 (fr) * 2003-04-01 2004-10-08 Air Liquide Procede et installation de separation d'air par distillation cryogenique

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1300640A1 (de) * 2001-10-04 2003-04-09 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von hoch reinem Stickstoff durch Tieftemperaturzerlegung von Luft

    Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0567360A1 (de) * 1992-03-24 1993-10-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Apparat zum Überführen einer Flüssigkeit
    EP0798523A2 (de) * 1994-05-27 1997-10-01 Praxair Technology, Inc. Kapazitätsregelverfahren für ein kryogenisches Rektifikationssystem

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2650379B1 (fr) * 1989-07-28 1991-10-18 Air Liquide Appareil de vaporisation-condensation pour double colonne de distillation d'air, et installation de distillation d'air comportant un tel appareil
    DE4224068A1 (de) * 1992-03-20 1993-09-23 Linde Ag Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
    DE4317916A1 (de) * 1993-05-28 1994-12-01 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Argon
    US5669237A (en) * 1995-03-10 1997-09-23 Linde Aktiengesellschaft Method and apparatus for the low-temperature fractionation of air
    GB9711258D0 (en) * 1997-05-30 1997-07-30 Boc Group Plc Air separation

    Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0567360A1 (de) * 1992-03-24 1993-10-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Apparat zum Überführen einer Flüssigkeit
    EP0798523A2 (de) * 1994-05-27 1997-10-01 Praxair Technology, Inc. Kapazitätsregelverfahren für ein kryogenisches Rektifikationssystem

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2853406A1 (fr) * 2003-04-01 2004-10-08 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
    FR2853405A1 (fr) * 2003-04-01 2004-10-08 Air Liquide Procede et installation de separation d'air par distillation cryogenique

    Also Published As

    Publication number Publication date
    JP2000356463A (ja) 2000-12-26
    KR20010049347A (ko) 2001-06-15
    ES2242331T3 (es) 2005-11-01
    US6308533B1 (en) 2001-10-30
    DE59912043D1 (de) 2005-06-16
    DE19921949A1 (de) 2000-11-16
    EP1052465B1 (de) 2005-05-11

    Similar Documents

    Publication Publication Date Title
    EP2235460B1 (de) Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
    EP1243882B1 (de) Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
    DE3913880A1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
    EP1666824A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
    EP0669509A1 (de) Verfahren und Vorrichtung zur Gewinnung von reinem Argon
    EP1357342A1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung
    DE4443190A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
    EP1482266A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
    EP2603754B1 (de) Verfahren und vorrichtung zur gewinnung von drucksauerstoff und druckstickstoff durch tieftemperaturzerlegung von luft
    WO2014146779A2 (de) Verfahren und vorrichtung zur erzeugung von gasförmigem druckstickstoff
    DE10302389A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
    EP2986924B1 (de) Nachrüstbare vorrichtung zur tieftemperaturzerlegung von luft, nachrüstanlage und verfahren zum nachrüsten einer tieftemperatur-luftzerlegungsanlage
    DE10161584A1 (de) Vorrichtung und Verfahren zur Erzeugung gasförmigen Sauerstoffs unter erhöhtem Druck
    EP0768503A2 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
    EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
    EP1052465B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
    WO2014102014A2 (de) Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
    DE19933558B4 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
    EP3557166A1 (de) Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
    DE102016015446A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
    DE10332862A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung
    EP3067650A1 (de) Anlage und verfahren zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
    DE10249383A1 (de) Verfahren und Vorrichtung zur variablen Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
    DE10130754A1 (de) Regelung einer Luftzerlegungsanlage mit Argongewinnung
    EP2503270A1 (de) Verfahren und Vorrichtung zur Erzeugung eines Sauerstoffprodukts durch Tieftemperaturzerlegung von Luft

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20010423

    AKX Designation fees paid

    Free format text: DE ES FR GB IT

    17Q First examination report despatched

    Effective date: 20020829

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59912043

    Country of ref document: DE

    Date of ref document: 20050616

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050908

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2242331

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20060214

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CA

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110621

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20110715

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120702

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20131030

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120626

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20180612

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20180403

    Year of fee payment: 20

    Ref country code: IT

    Payment date: 20180625

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59912043

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20190624

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20190624