EP1051365B1 - Method for making a marking in a glass body - Google Patents

Method for making a marking in a glass body Download PDF

Info

Publication number
EP1051365B1
EP1051365B1 EP99964365A EP99964365A EP1051365B1 EP 1051365 B1 EP1051365 B1 EP 1051365B1 EP 99964365 A EP99964365 A EP 99964365A EP 99964365 A EP99964365 A EP 99964365A EP 1051365 B1 EP1051365 B1 EP 1051365B1
Authority
EP
European Patent Office
Prior art keywords
glass
marking
laser
wavelength
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99964365A
Other languages
German (de)
French (fr)
Other versions
EP1051365A1 (en
Inventor
Jörg Kickelhain
Gennadij Kusnezow
Dieter Biere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LPKF Laser and Electronics AG
Original Assignee
LPKF Laser and Electronics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LPKF Laser and Electronics AG filed Critical LPKF Laser and Electronics AG
Publication of EP1051365A1 publication Critical patent/EP1051365A1/en
Application granted granted Critical
Publication of EP1051365B1 publication Critical patent/EP1051365B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used

Definitions

  • This invention relates to a method of producing an under-surface Marking in a body made of glass that shows a transmission curve with a Has a plateau region at wavelengths greater than that of X-rays, whereby a laser beam is directed onto a surface of the body, which strikes the body up to the predetermined depth of the mark can penetrate and further on the predetermined location of the marking is focused within the glass and such Power density has that a mark in the form of a by a reduced permeability to electromagnetic radiation Material change occurs, essentially without being on the surface of the body there is a change that is somehow noticeable.
  • EP 0 543 899 B1 describes a method for generating a marking in one Glass body known according to the preamble of claim 1.
  • Laser radiation with such an energy density is used that at the focus, ie where the marking is to be made, the energy density is sufficient to be permanent Changes within the body made of glass or another material can exist. It is described as advantageous if the Energy density at the focus of the laser beams is at least 10 J / cm2, since this is about Threshold for the occurrence of localized ionization of the glass molecules.
  • the Known methods for this purpose use laser radiation with a wavelength of 1.06 ⁇ m used.
  • the disadvantage here is that at this wavelength in the infrared range, the associated one The degree of transmission for glass lies in the plateau region of the transmission curve of the glass. This means that at this wavelength the transmission of the laser beams through the Vitreous body with linear absorption behavior is approximately maximum. So that desired change of the glass in the focus area of the laser beam - that is Desired nonlinear absorption behavior - must occur, as stated above certain energy density threshold are exceeded. This energy density threshold is however, if the laser radiation is in the infrared range, very sharp, causing an abrupt Transition from linear absorption to the nonlinear marking effect Absorption takes place.
  • the invention is therefore based on the object of a generic method for To make available with which the individual, together making up the marking Marker points with a very small minimum diameter can be created.
  • inventive method for glass interior structuring compared to the prior art the advantage that the laser radiation due to lower used wavelengths is better focusable and thus also more economical Conditions are created to keep the focus as small as possible.
  • a wavelength is preferably selected for the laser radiation at which the Transmittance is 60 to 95% of the plateau level.
  • the laser radiation is generated by means of an Nd-YAG laser, for example the third harmonic or the fourth harmonic is also used.
  • the wavelength will be in the UV range. It is of course important that the The wavelength is chosen so large that the glass body is partially transparent, at which there is sufficient radiation intensity at the desired marking location.
  • the single figure shows schematically a typical transmission curve of a conventional one Type of glass.
  • the plateau region of the transmission curve is approximately formed by the transmission values which are given at the wavelengths greater than ⁇ 3 .
  • laser radiation which, depending on the glass chosen in each case, has a wavelength which is less than ⁇ 3 , but at which the transmission is not negligibly low, which is the case in the figure for wavelengths greater than ⁇ 0 is.
  • a preferred wavelength range is, for example, the range ⁇ 1 ⁇ ⁇ 2 .
  • the invention can be carried out, for example, as follows:
  • Ordinary glass BK 7 in the form of a plate with a thickness of 1 mm is irradiated with laser beams with a wavelength of 355 nm using an Nd-YAG laser. This is done in such a way that the laser beam is focused within the glass plate with the usual means, the focus being 0.5 mm below the surface of the glass plate.
  • the laser is operated at a repetition rate of 5 kHz.
  • the pulse duration is 100 ns, the power density in focus is approximately 500 MW / cm 2 .
  • marking points that have a diameter of only 20 ⁇ m.
  • the marking points are lined up with a distance of 5 ⁇ m to pass through Overlap to give an almost continuous line.
  • the one used here The power density in focus is significantly lower than that of the known methods required power density.
  • the repetition rate may also be up to 10 kHz be.
  • Suprasil 1 quartz glass was used under the same external process conditions processed.
  • this quartz glass is the one to Wavelength 355 nm transmittance in the plateau range.
  • the quartz glass does not achieve such a fine structuring as that of the BK 7 glass become. Rather, the extent of the marking points on the quartz glass was clear larger than the BK7 glass.
  • the markings produced by the method according to the invention can e.g. to Labeling or for decorative purposes.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

A method for making a marking which is located beneath the surface of a glass body, in which the glass has a transmission curve with a plateau area at wavelengths which are longer than those of X-rays. A laser beam is directed onto a surface of the body. The laser beam can penetrate the body to a predetermined depth of the marking and is focused at the predetermined place of the marking inside the glass. The laser beam has a power density high enough to mark this location, essentially without changing the surface of the glass body in any perceptible way. The method is characterized in that a wavelength of the laser is used which makes the glass partially translucent and which is shorter than all the wavelengths of the laser light corresponding to the plateau area of the respective transmission curve. Using this method, very fine markings can be produced spaced a small distance underneath the surface of the glass body.

Description

Diese Erfindung betrifft ein Verfahren zur Erzeugung einer unter der Oberfläche liegenden Markierung in einem Körper aus Glas, das eine Transmissionskurve mit einem Plateaubereich bei Wellenlängen, die größer als die von Röntgenstrahlen sind, aufweist, wobei auf eine Oberfläche des Körpers ein Laserstrahl gerichtet wird, der den Körper bis zu der vorbestimmten Tiefe der Markierung zu durchdringen vermag und ferner an dem vorbestimmten Ort der Markierung innerhalb des Glases fokussiert wird und eine solche Leistungsdichte aufweist, daß an dem Ort eine Markierung in Form einer sich durch eine verringerte Durchlässigkeit für elektromagnetische Strahlung auszeichnenden Materialveränderung entsteht, im wesentlichen ohne daß an der Oberfläche des Körpers eine irgendwie feststellbare Veränderung eintritt.This invention relates to a method of producing an under-surface Marking in a body made of glass that shows a transmission curve with a Has a plateau region at wavelengths greater than that of X-rays, whereby a laser beam is directed onto a surface of the body, which strikes the body up to the predetermined depth of the mark can penetrate and further on the predetermined location of the marking is focused within the glass and such Power density has that a mark in the form of a by a reduced permeability to electromagnetic radiation Material change occurs, essentially without being on the surface of the body there is a change that is somehow noticeable.

Aus der EP 0 543 899 B1 ist ein Verfahren zur Erzeugung einer Markierung in einem Glaskörper gemäß dem Oberbegriff des Anspruchs 1 bekannt. Bei diesem Verfahren wird Laserstrahlung mit einer solchen Energiedichte verwendet, daß an dem Fokus, also dort, wo die Markierung vorgenommen werden soll, die Energiedichte ausreicht, um bleibende Veränderungen innerhalb des Körpers, der aus Glas oder auch aus einem anderen Material bestehen kann, bewirkt werden. Dabei wird es als vorteilhaft beschrieben, wenn die Energiedichte am Fokus der Laserstrahlen wenigstens 10 J/cm2 beträgt, da dies etwa die Schwelle für das Auftreten lokalisierter lonisierung der Glasmoleküle ist. Gemäß dem bekannten Verfahren wird dazu Laserstrahlung mit einer Wellenlänge von 1,06 µm verwendet.EP 0 543 899 B1 describes a method for generating a marking in one Glass body known according to the preamble of claim 1. With this procedure Laser radiation with such an energy density is used that at the focus, ie where the marking is to be made, the energy density is sufficient to be permanent Changes within the body made of glass or another material can exist. It is described as advantageous if the Energy density at the focus of the laser beams is at least 10 J / cm2, since this is about Threshold for the occurrence of localized ionization of the glass molecules. According to the Known methods for this purpose use laser radiation with a wavelength of 1.06 µm used.

Nachteilig dabei ist, daß bei dieser im Infrarotbereich liegenden Wellenlänge der zugehörige Transmissionsgrad für Glas in dem Plateaubereich der Transmissionskurve des Glases liegt. Das bedeutet, daß bei dieser Wellenlänge die Transmission der Laserstrahlen durch den Glaskörper hindurch bei linearem Absorptionsverhalten annähernd maximal ist. Damit die gewünschte Veränderung des Glases im Fokusbereich des Laserstrahls - also das gewünschte nichtlineare Absorptionsverhalten - auftritt, muß wie oben dargelegt eine bestimmte Energiedichteschwelle überschritten werden. Diese Energiedichteschwelle ist jedoch, wenn die Laserstrahlung im Infrarotbereich liegt, sehr scharf, so daß ein abrupter Übergang von linearer Absorption hin zu der die Markierung bewirkenden nichtlinearen Absorption stattfindet. Hierin könnte die Tatsache begründet sein, daß bei dem bekannten Verfahren eine Veränderung des Glases über den eigentlichen Fokusbereich der Laserstrahlung hinaus stattfindet, was damit zusammenhängt, daß diese durch eine lokale Aufschmelzung des Glases erklärbare, bläschenartige Veränderung schlagartig, quasi explosionsartig, eintritt. Daraus resultiert die Notwendigkeit, daß die Markierung, die durch eine Aneinanderreihung dieser Markierungspunkte erzeugt wird, einen gewissen Mindestabstand von der Oberfläche des Glaskörpers aufweisen muß, da sich die Markierungspunkte sonst von ihrem unterhalb der Oberfläche des Glaskörpers liegenden Zentrum bis zur Oberfläche erstrecken und dadurch ein Zerspringen des Glases an der Oberfläche hervorrufen. Bei dem bekannten Verfahren beträgt der Mindestabstand einer Markierung in einem Glaskörper von der Oberfläche etwa 1 mm, so daß der Glaskörper zur Vermeidung von Bruchgefahr insgesamt eine Dicke von mindestens 3 mm besitzen muß.The disadvantage here is that at this wavelength in the infrared range, the associated one The degree of transmission for glass lies in the plateau region of the transmission curve of the glass. This means that at this wavelength the transmission of the laser beams through the Vitreous body with linear absorption behavior is approximately maximum. So that desired change of the glass in the focus area of the laser beam - that is Desired nonlinear absorption behavior - must occur, as stated above certain energy density threshold are exceeded. This energy density threshold is however, if the laser radiation is in the infrared range, very sharp, causing an abrupt Transition from linear absorption to the nonlinear marking effect Absorption takes place. This could be due to the fact that in the known method a Change of the glass beyond the actual focus area of the laser radiation takes place, which is connected with the fact that this is caused by a local melting of the Glases explainable, bubble-like change suddenly, almost explosively, occurs. This results in the need for the marking to be created by a string of these marking points is generated, a certain minimum distance from the surface of the vitreous must have, since the marking points are otherwise from below the surface of the vitreous center to the surface and causing the glass to crack on the surface. With the well-known Procedure is the minimum distance of a marking in a vitreous from that Surface about 1 mm, so that the glass body to avoid breakage overall must have a thickness of at least 3 mm.

Weiterhin ist ein gattungsgemäßes Verfahren im Laser Magazin 1/95, Seiten 16 ff beschrieben worden. Dieses Verfahren, bei dem ebenfalls Laserstrahlen mit im Plateaubereich der Transmissionskurve des bearbeiteten Glases liegendem Transmissionsgrad verwendet wurden, zeigte bei Quarzglas in bezug auf die Ausdehnung des Aufschmelzungsbereiches die besten Ergebnisse, wobei ca. 100 µm erreicht wurden. Bei Verwendung anderer Prozeßparameter betrug die Ausdehnung des Aufschmelzungsbereiches auch mehrere Hundert Mikrometer. Dieses Verfahren weist somit grundsätzlich dieselben Nachteile wie das oben beschriebene bekannte Verfahren auf.There is also a generic method in Laser Magazin 1/95, pages 16 ff have been described. This process, which also uses laser beams with Plateau area of the transmission curve of the processed glass lying Transmittance used was shown in quartz glass in terms of expansion the best results in the melting area, whereby approx. 100 µm was achieved. When using other process parameters, the extent of the Melting area also several hundred micrometers. This procedure thus points out basically the same disadvantages as the known method described above.

Daher liegt der Erfindung die Aufgabe zugrunde, ein gattungsgemäßes Verfahren zur Verfügung zu stellen, mit dem die einzelnen, zusammen die Markierung ausmachenden Markierungspunkte mit einem sehr kleinen minimalen Durchmesser erzeugt werden können.The invention is therefore based on the object of a generic method for To make available with which the individual, together making up the marking Marker points with a very small minimum diameter can be created.

Diese Aufgabe wird durch das Verfahren gemäß Anspruch 1 gelöst. Dadurch, daß eine Wellenlänge des Laserlichtes verwendet wird, bei der das Glas teildurchlässig ist und die kleiner als alle dem Plateaubereich entsprechenden Wellenlängen des Laserlichtes ist, ist erreicht, daß die Ausdehnung der Markierungspunkte im Glaskörper sehr gering gehalten werden kann. Dieser Effekt wurde überraschenderweise festgestellt. Eine mögliche Erklärung könnte darin liegen, daß bei Wellenlängen, die einem Transmissionsgrad unterhalb des Plateauniveaus entsprechen, der Übergang von im wesentlichen linearer Absorption hin zu Absorption mit einem beträchtlichen Anteil nichtlinearer Absorption "weicher" ist, d. h. ein Energiedichtenbereich besteht, in dem der Anteil nichtlinearer Absorption allmählich zunimmt. Denn es wurde experimentell gefunden, daß erfindungsgemäß die Ausdehnung des Markierungspunktes durch entsprechende Einstellung der Energiedichte im Fokusbereich sehr gut kontrolliert werden kann und damit verbunden somit auch Glaskörper einer Dicke von nur 1 mm mit einer im Inneren liegenden Markierung versehen werden können.This object is achieved by the method according to claim 1. The fact that a Wavelength of the laser light is used at which the glass is partially transparent and the is smaller than all the wavelengths of the laser light corresponding to the plateau region achieved that the extent of the marking points in the vitreous body was kept very low can be. This effect was surprisingly found. A possible Explanation could be that at wavelengths that have a transmittance below the plateau level, the transition from essentially linear Absorption to absorption with a significant amount of nonlinear absorption "softer" is d. H. there is an energy density range in which the proportion of nonlinear Absorption gradually increases. Because it was found experimentally that according to the invention the extension of the marking point by appropriate Setting the energy density in the focus area can be controlled very well and therefore thus also connected glass bodies with a thickness of only 1 mm with an inside Marking can be provided.

Darüber hinaus weist das erfindungsgemäße Verfahren zur Glasinnenstrukturierung gegenüber dem Stand der Technik den Vorteil auf, daß die Laserstrahlung aufgrund der geringeren verwendeten Wellenlängen besser fokussierbar ist und damit zusätzlich günstige Bedingungen geschaffen sind, die Ausdehnung des Fokus möglichst gering zu halten.In addition, the inventive method for glass interior structuring compared to the prior art the advantage that the laser radiation due to lower used wavelengths is better focusable and thus also more economical Conditions are created to keep the focus as small as possible.

Vorzugsweise wird eine Wellenlänge für die Laserstrahlung gewählt, bei der der Transmissionsgrad 60 bis 95 % des Plateauniveaus beträgt.A wavelength is preferably selected for the laser radiation at which the Transmittance is 60 to 95% of the plateau level.

Ferner ist im Rahmen der Erfindung vorzugsweise vorgesehen, daß die Laserstrahlung mittels eines Nd-YAG-Lasers erzeugt wird, wobei beispielsweise die dritte Harmonische oder auch die vierte Harmonische verwendet wird.Furthermore, it is preferably provided in the context of the invention that the laser radiation is generated by means of an Nd-YAG laser, for example the third harmonic or the fourth harmonic is also used.

In der Regel wird die Wellenlänge im UV-Bereich liegen. Wichtig ist natürlich, daß die Wellenlänge so groß gewählt ist, daß eine Teildurchlässigkeit des Glaskörpers gegeben ist, bei der genügend Strahlungsintensität am gewünschten Markierungsort vorhanden ist.As a rule, the wavelength will be in the UV range. It is of course important that the The wavelength is chosen so large that the glass body is partially transparent, at which there is sufficient radiation intensity at the desired marking location.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert, wobei auf die Figur Bezug genommen wird.The invention is explained in more detail below using an exemplary embodiment, wherein reference is made to the figure.

Die einzige Figur zeigt schematisch eine typische Transmissionskurve einer üblichen Glasart.The single figure shows schematically a typical transmission curve of a conventional one Type of glass.

Der Plateaubereich der Transmissionskurve ist ungefähr durch die Transmissionswerte gebildet, die bei den Wellenlängen größer λ3 gegeben sind. Erfindungsgemäß ist vorgesehen, daß Laserstrahlung verwendet wird, die in Abhängigkeit von dem jeweils gewählten Glas eine Wellenlänge aufweist, die kleiner als λ3 ist, bei der jedoch die Transmission nicht vernachlässigbar gering ist, was in der Figur für die Wellenlängen größer λ0 der Fall ist. Ein bevorzugter Wellenlängenbereich ist beispielsweise der Bereich λ1 ≤ λ ≤ λ2.The plateau region of the transmission curve is approximately formed by the transmission values which are given at the wavelengths greater than λ 3 . According to the invention, it is provided that laser radiation is used which, depending on the glass chosen in each case, has a wavelength which is less than λ 3 , but at which the transmission is not negligibly low, which is the case in the figure for wavelengths greater than λ 0 is. A preferred wavelength range is, for example, the range λ 1 λ λ 2 .

Die Erfindung kann beispielsweise folgendermaßen ausgeführt werden: The invention can be carried out, for example, as follows:

Gewöhnliches Glas BK 7 in Form eines Plättchens einer Dicke von 1 mm wird mit Laserstrahlen mit einer Wellenlänge von 355 nm unter Verwendung eines Nd-YAG-Lasers bestrahlt. Dies geschieht derart, daß der Laserstrahl mit den üblichen Mitteln innerhalb des Glasplättchens fokussiert wird, wobei der Fokus 0,5 mm unterhalb der Oberfläche des Glasplättchens liegt. Der Laser wird mit einer Repetitionsrate von 5 kHz betrieben. Die Pulsdauer beträgt 100 ns, die Leistungsdichte im Fokus ca. 500 MW/cm2.Ordinary glass BK 7 in the form of a plate with a thickness of 1 mm is irradiated with laser beams with a wavelength of 355 nm using an Nd-YAG laser. This is done in such a way that the laser beam is focused within the glass plate with the usual means, the focus being 0.5 mm below the surface of the glass plate. The laser is operated at a repetition rate of 5 kHz. The pulse duration is 100 ns, the power density in focus is approximately 500 MW / cm 2 .

Dabei entstehen Markierungspunkte, die etwa einen Durchmesser von nur 20 µm aufweisen. Die Markierungspunkte werden mit einem Abstand von 5 µm aneinandergereiht, um durch Überlappung eine fast kontinuierliche Linie zu ergeben. Die hierbei verwendete Leistungsdichte im Fokus ist deutlich geringer als die bei den bekannten Verfahren erforderliche Leistungsdichte.This creates marking points that have a diameter of only 20 µm. The marking points are lined up with a distance of 5 µm to pass through Overlap to give an almost continuous line. The one used here The power density in focus is significantly lower than that of the known methods required power density.

Im obigen Ausführungsbeispiel kann gegebenenfalls die Repetitionsrate auch bis zu 10 kHz betragen.In the above exemplary embodiment, the repetition rate may also be up to 10 kHz be.

Zum Vergleich wurde unter denselben äußeren Prozeßbedingungen Quarzglas Suprasil 1 bearbeitet. Im Gegensatz zu dem Glas BK 7 liegt jedoch bei diesem Quarzglas der zu der Wellenlänge 355 nm gehörige Transmissionsgrad im Plateaubereich. Infolgedessen konnte bei dem Quarzglas nicht eine solch feine Strukturierung wie bei dem Glas BK 7 erreicht werden. Vielmehr war die Ausdehnung der Markierungspunkte bei dem Quarzglas deutlich größer als bei dem Glas BK7.For comparison, Suprasil 1 quartz glass was used under the same external process conditions processed. In contrast to the glass BK 7, this quartz glass is the one to Wavelength 355 nm transmittance in the plateau range. As a result, could the quartz glass does not achieve such a fine structuring as that of the BK 7 glass become. Rather, the extent of the marking points on the quartz glass was clear larger than the BK7 glass.

Die mit dem erfindungsgemäßen Verfahren hergestellten Markierungen können z.B. zu Kennzeichnungs- oder auch zu Verzierungszwecken vorgesehen sein.The markings produced by the method according to the invention can e.g. to Labeling or for decorative purposes.

Claims (4)

  1. A method for the generation of a marking lying under the surface in a body of glass, which has a transmission curve with a plateau region at wavelengths which are greater than x-rays, whereby a laser beam is directed onto the surface of the body, which is able to penetrate the body up to the determined depth of the marking and further is focussed at the predetermined place of the marking and has such a power density that at the place of the marking a material change occurs in the form of a reduced conductivity for electromagnetic radiation, essentially without any perceptible change occurring on the surface of the body, characterised in that a wavelength of the laser light is used, at which the glass is partially conductive and which is smaller than all the wavelengths corresponding to the plateau region.
  2. A method according to Claim 1, characterised in that the wavelength lies within a wavelength region, at which a transmission coefficient of 60 to 95% of the level of the plateau is obtained.
  3. A method according to Claim 1 or Claim 2, characterised in that the laser beam is created by an Nd-YAG laser.
  4. A method according to Claim 3, characterised in that the third harmonic is used.
EP99964365A 1998-12-02 1999-11-23 Method for making a marking in a glass body Expired - Lifetime EP1051365B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19855623A DE19855623C1 (en) 1998-12-02 1998-12-02 Method of generating marking in glass body involves focusing laser light of wavelength for which glass is partly transmissive and smaller than all transmission plateau region wavelengths
DE19855623 1998-12-02
PCT/DE1999/003719 WO2000032531A1 (en) 1998-12-02 1999-11-23 Method for making a marking in a glass body

Publications (2)

Publication Number Publication Date
EP1051365A1 EP1051365A1 (en) 2000-11-15
EP1051365B1 true EP1051365B1 (en) 2002-06-05

Family

ID=7889753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99964365A Expired - Lifetime EP1051365B1 (en) 1998-12-02 1999-11-23 Method for making a marking in a glass body

Country Status (7)

Country Link
US (1) US6596966B1 (en)
EP (1) EP1051365B1 (en)
JP (1) JP2002531361A (en)
AT (1) ATE218519T1 (en)
DE (2) DE19855623C1 (en)
ES (1) ES2177339T3 (en)
WO (1) WO2000032531A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007019991A1 (en) * 2005-08-18 2007-02-22 Oc Oerlikon Balzers Ag Laser mark formed inside transparent bodies near the surface
EP2896458A1 (en) * 2014-01-16 2015-07-22 Euroimmun Medizinische Labordiagnostika AG Transparent object holder with labelling

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10122335C1 (en) * 2001-05-08 2002-07-25 Schott Glas Process for marking glass comprises selecting the marking position along a drawing process having a glass transition temperature above the transformation temperature
DE10137864B4 (en) * 2001-08-02 2005-05-19 Picorapid Technologie Gmbh Substance carrier with marking
WO2004069760A1 (en) * 2003-02-04 2004-08-19 Asahi Glass Company, Limited Method for removing foreign matter on surface of glass substrate
DE102005026038A1 (en) 2005-06-03 2006-12-07 Boraglas Gmbh Method for marking object surfaces
DE102005025982B4 (en) * 2005-06-03 2008-04-17 Martin-Luther-Universität Halle-Wittenberg Color-structured low-E layer systems and methods for producing the color-structured low-E layer systems and their use
US8541105B2 (en) 2005-08-18 2013-09-24 Oerlikon Trading Ag, Trubbach Transparent substrates with dielectric layer having a marking below the surface of the transparent substrate
DE102005043516A1 (en) * 2005-09-12 2007-03-15 Boraglas Gmbh Process for producing colored structures in glass and glass produced thereby
DE102007028042B3 (en) * 2007-06-14 2008-08-07 Universität Zu Lübeck Using laser to make bubbles or cavities in transparent materials by focused, non-linear pulse absorption, operates at specified wavelength and pulse duration with controlled, uniform intensity
DE102008004995B3 (en) * 2008-01-17 2008-12-04 Schott Ag Inspection panel for oven door has sub-surface laser markings consisting of identifying numbers, letters or symbols
US20100119808A1 (en) * 2008-11-10 2010-05-13 Xinghua Li Method of making subsurface marks in glass
US9393382B2 (en) * 2009-05-05 2016-07-19 Robert W. Heck High-flow tapered peripheral IV catheter with side outlets
US10085886B2 (en) 2010-01-08 2018-10-02 Optimedica Corporation Method and system for modifying eye tissue and intraocular lenses
EP2521520B1 (en) 2010-01-08 2017-08-16 Optimedica Corporation System for modifying eye tissue and intraocular lenses
DE102010037273A1 (en) 2010-09-02 2012-03-08 Schott Ag Method and device for marking glass
US20130001237A1 (en) * 2011-06-29 2013-01-03 Marsh Dennis R Glass Container Having Sub-Surface Wall Decoration and Method of Manufacture
GB201200890D0 (en) * 2012-01-19 2012-02-29 Univ Dundee An ion exchange substrate and metalized product and apparatus and method for production thereof
DE102014205066A1 (en) 2014-03-19 2015-10-08 Schott Ag Prestressed glass article with laser engraving and manufacturing process
WO2017210315A1 (en) 2016-05-31 2017-12-07 Corning Incorporated Anti-counterfeiting measures for glass articles

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175425A (en) * 1987-06-15 1992-12-29 Leuze Electronic Gmbh & Co. Process for marking semiconductor surfaces
DE4126626C2 (en) * 1990-08-15 1994-08-04 United Distillers Plc Marked material body and method for its production
US5248638A (en) * 1992-04-06 1993-09-28 Corning Incorporated Yellow high silica glass
DE4321301A1 (en) * 1992-07-06 1994-01-13 Zeiss Carl Fa Coating method for glass substrates - comprises coating with gallium oxide by reactive vaporisation of gallium in oxygen@ to form anti-reflection layer
DE4430710C1 (en) * 1994-08-30 1996-05-02 Jenaer Glaswerk Gmbh Low boric acid borosilicate glass and its use
DE69625642T2 (en) * 1995-05-23 2003-05-28 Kyocera Corp., Kyoto Method of making an optical polarizer
US5557171A (en) * 1995-06-15 1996-09-17 Osram Sylvania Inc. High intensity discharge lamp with ultra violet absorbing envelope
JP3395140B2 (en) * 1995-11-08 2003-04-07 住友重機械工業株式会社 Laser marking method
JP3412416B2 (en) * 1996-10-03 2003-06-03 ウシオ電機株式会社 Glass marking method
JPH10123357A (en) * 1996-10-24 1998-05-15 Nippon Sheet Glass Co Ltd Laser machining method for optical waveguide
JP3957010B2 (en) * 1997-06-04 2007-08-08 日本板硝子株式会社 Glass substrate with micropores
DE19728766C1 (en) * 1997-07-07 1998-12-17 Schott Rohrglas Gmbh Use of a method for producing a predetermined breaking point in a vitreous body
US6392683B1 (en) * 1997-09-26 2002-05-21 Sumitomo Heavy Industries, Ltd. Method for making marks in a transparent material by using a laser
JPH11119439A (en) * 1997-10-17 1999-04-30 Hitachi Ltd Liquid crystal mask type exposure marking device
US6211526B1 (en) * 1998-09-30 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Marking of materials using luminescent and optically stimulable glasses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007019991A1 (en) * 2005-08-18 2007-02-22 Oc Oerlikon Balzers Ag Laser mark formed inside transparent bodies near the surface
EP2896458A1 (en) * 2014-01-16 2015-07-22 Euroimmun Medizinische Labordiagnostika AG Transparent object holder with labelling
WO2015106774A1 (en) * 2014-01-16 2015-07-23 Euroimmun Medizinische Labordiagnostika Ag Transparent object carrier having a marking
US10082660B2 (en) 2014-01-16 2018-09-25 Euroimmun Medizinische Labordiagnostika Ag Transparent microscope slide having a marking

Also Published As

Publication number Publication date
EP1051365A1 (en) 2000-11-15
ES2177339T3 (en) 2002-12-01
DE59901616D1 (en) 2002-07-11
US6596966B1 (en) 2003-07-22
JP2002531361A (en) 2002-09-24
ATE218519T1 (en) 2002-06-15
WO2000032531A1 (en) 2000-06-08
DE19855623C1 (en) 2000-02-24

Similar Documents

Publication Publication Date Title
EP1051365B1 (en) Method for making a marking in a glass body
DE602004003688T2 (en) GLAZING WITH SPECIAL BREAKING LINES
DE69607977T2 (en) SECURITY DOCUMENT WITH SECURITY MARKING
EP3031785B1 (en) Method for producing a glass ceramic element having a structured coating
DE112004000581B4 (en) Process for cutting glass
WO2008125273A1 (en) Method for incorporating a structure into a surface of a transparent workpiece
EP3334697A1 (en) Method for cutting a thin glass layer
EP1500316A1 (en) Method for creating a trench structure in a polymer substrate
EP0743128B1 (en) Process and device for marking products of transparent (solid) material with a laser
DE102014118497B4 (en) Process for producing a glass ceramic element with a structured coating, plate-shaped glass ceramic element and glass ceramic hob
WO2022233711A1 (en) Method for writing polarization-influencing nanostructures into a transparent material
EP1260838B1 (en) Process for direct microstructuring of materials
DE102006023940B4 (en) Process for nanostructuring of a substrate
DE102019218995A1 (en) Method and optical system for laser beam modification of a material that is at least largely transparent to the laser beam
DE69906599T2 (en) Method and device for laser processing
DE102007004524B4 (en) Process for producing a visible structure with a plurality of engraving points arranged next to one another in a transparent object and transparent object
EP1379477A1 (en) Method for the production of colored structures of a glass
WO2021197929A1 (en) Method for producing a light deflection structure, use of a substrate with a light deflection structure of this type, and light deflection unit comprising a light deflection structure of this type
DE10206082A1 (en) Glass with a hardened surface layer and process for its production
DE202021106275U1 (en) Apparatus for producing filaments
EP3872041A1 (en) Method of separating a glass element and partial glass element
DE60202058T2 (en) Method for regulating the switching path of the contact tongues in a reed switch
DE102004047498A1 (en) Optical fiber having a structured surface and method of making the same
EP0557587A1 (en) Component for the transmission of high-energy light and use of the same
EP4079443A1 (en) Method for controlling an energy distribution and substrate introduced within a substrate by means of a line focus of a laser beam

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010330

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020605

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020605

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020605

REF Corresponds to:

Ref document number: 218519

Country of ref document: AT

Date of ref document: 20020615

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59901616

Country of ref document: DE

Date of ref document: 20020711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020905

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020905

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020911

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021123

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2177339

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1051365E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030306

BERE Be: lapsed

Owner name: *LPKF LASER & ELECTRONICS A.G.

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031030

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031117

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031118

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031121

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031128

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041124