EP1048025A1 - Verfahren zur instrumentellen sprachqualitätsbestimmung - Google Patents

Verfahren zur instrumentellen sprachqualitätsbestimmung

Info

Publication number
EP1048025A1
EP1048025A1 EP99942871A EP99942871A EP1048025A1 EP 1048025 A1 EP1048025 A1 EP 1048025A1 EP 99942871 A EP99942871 A EP 99942871A EP 99942871 A EP99942871 A EP 99942871A EP 1048025 A1 EP1048025 A1 EP 1048025A1
Authority
EP
European Patent Office
Prior art keywords
spectral
calculated
speech signal
evaluated
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99942871A
Other languages
English (en)
French (fr)
Other versions
EP1048025B1 (de
Inventor
Jens Berger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Telekom AG
Original Assignee
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom AG filed Critical Deutsche Telekom AG
Publication of EP1048025A1 publication Critical patent/EP1048025A1/de
Application granted granted Critical
Publication of EP1048025B1 publication Critical patent/EP1048025B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • G10L25/69Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for evaluating synthetic or decoded voice signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use

Definitions

  • the invention relates to a method for instrumental ("objective") speech quality determination, in which characteristic values for determining the speech quality (speech quality) are derived by comparing properties of a speech signal to be evaluated with properties of a reference speech signal (undisturbed signal).
  • Speech quality determinations of speech signals are generally carried out by means of auditory ("subjective") examinations with test subjects.
  • the aim of instrumental ("objective") methods for determining speech quality is to determine from the properties of the speech signal to be assessed, using suitable computing methods, characteristic values which describe the speech quality of the speech signal to be assessed, without having to resort to judgments from test subjects.
  • the calculated parameters and the underlying method for instrumental language quality determination are considered recognized if a high correlation to the results of auditory comparative examinations is achieved.
  • the language quality values obtained by means of auditory examinations thus represent the target values that are to be achieved by instrumental methods.
  • Known methods for instrumental speech quality determination are based on a comparison of a reference speech signal with the speech signal to be evaluated.
  • the reference speech signal and the speech signal to be evaluated are segmented into short time segments.
  • the spectral properties of the two signals are compared in these segments.
  • the spectral intensity map calculated in this way for each period of time under consideration can be understood as a series of numerical values in which the number of individual values corresponds to the number of frequency bands used, the numerical values themselves represent the calculated intensity values and a continuous index of the frequency bands describes the sequence of the numerical values.
  • the limits of the frequency bands used are kept constant on the frequency axis.
  • the calculated intensities of the speech signal to be evaluated and the reference speech signal in each band are compared with one another.
  • the difference between the two values, or the similarity of the two resulting spectral intensity images, is the basis for the calculation of a quality value
  • a disadvantage of the methods known today in such cases is that when comparing the speech signal to be evaluated with a reference speech signal, differences between the two signal sections in the selected display level flow into the quality characteristic to be calculated, which are not or hardly at all - also perceptible in the auditory test - lead to qualitative impairment.
  • Frequency band limitations and spectral deformations of the speech signal to be evaluated e.g. caused by filter properties of the telephone device or the transmission channel
  • the object of the invention is to reduce the influence of spectral limitations and deformations of the speech signal to be evaluated and of shifts in spectral short-term maxima before comparing the spectral properties of a signal to be tested with a reference speech signal and calculating a quality value in instrumental methods.
  • a spectral weighting function is generated in the invention described here, which is based on medium spectral envelopes, e.g. the average spectral power density, based on the speech signal to be evaluated and the reference speech signal. This also enables the method to be used for non-linear and time-variant transmission.
  • the spectral weighting function is calculated from the quotients of the base values of the mean spectral power density of the signal Phi ⁇ (f) to be evaluated and that of the input signal of the transmission system Phi ⁇ (f) in such a way that the weighting function over
  • the evaluation function a (f) can weight the weighting function W ⁇ (f) differently over the effective range, in the simplest case it is constant 1.
  • the spectral weighting function W ⁇ (f) calculated in this way approximates the mean spectral envelopes of the speech signal and the reference speech signal to be evaluated, so that differences between the two spectral envelopes are only incorporated to a reduced extent in the calculated quality value.
  • the spectral weighting function W ⁇ (f) can be applied to the reference speech signal.
  • the average spectral power density of the reference speech signal is approximated to the signal to be evaluated (FIG. 2a).
  • the spectral weighting function can be applied inverted to the signal to be evaluated. This is equalized and, with regard to its average spectral power density, approximated to the reference speech signal (FIG. 2b).
  • Another part of the invention relates to the correction of shifts in short-term spectral maxima caused by the transmission systems.
  • the intensity is integrated in frequency bands for each time period.
  • the result is a series of intensity values for each spectral representation of a signal section, each individual value representing the intensity in a frequency band.
  • the shifts in short-term spectral maxima can lead to deviating calculated intensities in the frequency bands of the reference speech signal and the speech signal to be evaluated.
  • variable band limits for calculating the spectral intensity mapping is not only limited to the signal in which the described spectral weighting function W ⁇ (f) is also used, but can also be applied to the other signal and even to both signals, ( see FIGS. 2a and 2b).
  • a special exemplary embodiment shows an implementation according to FIG. 3, which is referred to as TOSQA (Telecommunication Objective Speech Quality Assessment). This involves advanced preprocessing of the reference speech signal.
  • TOSQA Telecommunication Objective Speech Quality Assessment
  • speech pauses are recognized here by means of a speech pause recognizer and do not go into the quality measure.
  • the reference speech signal and the speech signal to be evaluated are also filtered with a bandpass 300 ... 3400 Hz and the frequency response of a telephone handset is filtered.
  • the spectral power density is integrated in frequency groups, which form the basis for the calculation of the specific loudness.
  • the calculated loudness patterns are supplemented by an error evaluation function.
  • the calculated quality value is formed from the mean value of the co-correlation coefficients of the specific loudnesses for each short time segment under consideration from the number of evaluated speech segments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Machine Translation (AREA)

Description

Verfahren zur instrumentellen Sprachqualitätsbestimmung
Beschreibung
Vorbemerkung
Die Erfindung bezieht sich auf ein Verfahren zur instrumentellen ("objektiven") Sprachqualitätsbestimmung, bei dem durch Vergleich von Eigenschaften eines zu bewertenden Sprachsignals mit Eigenschaften eines Referenzsprachsignals (ungestörtes Signal) Kennwerte zur Bestimmung der Sprachqualität (Sprachgüte) abgeleitet werden.
Sprachqualitätsbestimmungen von Sprachsignalen werden in der Regel mittels auditiver ("subjektiver") Untersuchungen mit Versuchspersonen vorgenommen.
Das Ziel von instrumentellen ("objektiven") Verfahren zur Sprachqualitätsbestimmung ist es, aus Eigenschaften des zu bewertenden Sprachsignals mittels geeigneter Rechenverfahren Kennwerte zu ermitteln, die die Sprachqualität des zu bewertenden Sprachsignals beschreiben, ohne auf Urteile von Versuchspersonen zurückgreifen zu müssen.
Die berechneten Kennwerte und das zugrunde gelegte Verfahren zur instrumentellen Sprachqualitätsbestimmung gelten als anerkannt, wenn eine hohe Korrelation zu Ergebnissen auditiver Vergleichsuntersuchungen erreicht wird. Die mittels auditiver Untersuchungen gewonnenen Sprachqualitätswerte stellen somit die Zielwerte dar, die durch instrumenteile Verfahren erreicht werden sollen.
Stand der Technik
Bekannte Verfahren zur instrumentellen Sprachqualitätsbestimmung beruhen auf einem Vergleich eines Referenzsprachsignals mit dem zu bewertenden Sprachsignal. Dabei werden das Referenzsprachsignal und das zu bewertendes Sprachsignal in kurze Zeitabschnitte segmentiert. In diesen Segmenten werden die spektralen Eigenschaften der beiden Signale verglichen.
Für die Berechnung der spektralen Kurzzeiteigenschaften kommen verschiedene Ansätze und Modelle zur Anwendung. In der Regel erfolgt die Berechnung der Signalintensität in Frequenzbändern, deren Breite mit zunehmender Mittenfrequenz größer wird. Beispiele für solche Frequenzbänder sind die bekannten Terzbänder oder Frequenzgruppen nach Zwicker (veröffentlicht in Zwicker, E.: "Psychoakustik", Berlin: Springer- Verlag, 1982).
Die derart berechnete spektrale Intensitätsabbildung für jeden betrachteten Zeitabschnitt läßt sich als Reihe von Zahlenwerten auffassen, in der die Anzahl der Einzelwerte der Anzahl der verwendeten Frequenzbänder entspricht, die Zahlenwerte selbst die berechneten Intensitätswerte darstellen und ein fortlaufender Index der Frequenzbänder die Reihenfolge der Zahlenwerte beschreibt.
Bei den derzeit bekannten Verfahren zur instrumentellen Sprachqualitätsbestimmung werden die Grenzen der benutzten Frequenzbänder auf der Frequenzachse konstant gehalten.
In jedem betrachteten Zeitsegment werden die berechneten Intensitäten von zu bewertenden Sprachsignal und Referenzsprachsignal in jedem Band miteinander verglichen. Die Differenz beider Werte, bzw. die Ähnlichkeit der beiden entstehenden spektralen Intensitätsabbildungen, stellt die Grundlage für die Berechnung eines Qualitätswertes dar
(Fig- 1).
Solche Verfahren wurden insbesondere für die qualitative Bewertung der Sprache in der
Telefonieanwendung entwickelt. Beispiele hierfür sind die Veröffentlichungen:
" A perceptual speech-quality measure based on a psychacoustic sound representation" (Beerends, J. G.; Stemerdink, J. A., J. Audio Eng. Soc. 42(1994)3, S.115-123)
"Auditory distortion measure for speech coding" (Wang, S; Sekey, A.; Gersho, A.: IEEE Proc. Int. Conf. acoust, Speech and signalprocessing (1991), S.493-496).
Der derzeit gültige ITU-T Standard P.861 beschreibt ebenfalls ein derartiges Verfahren: "Objective quality measurement of telephone-band speech codecs" (ITU-T Rec. P.861, Genf 1996). Nachteile bekannter instrumenteller Sprachquaiitäts eßverfahren
Der Einsatz von bekannten Verfahren zur instrumentellen Sprachqualitätsbestimmung scheitert an der Zuverlässigkeit der berechneten Qualitätswerte für bestimmte zu bewertende Signaleigenschaften. Insbesondere bei Beeinträchtigungen im zu bewertenden Sprachsignal, wie sie z.B. durch Sprachcodierverfahren mit niedrigen Bitraten oder Kombinationen von unterschiedlichen Störungen hervorgerufen werden, liefern derzeit bekannte Verfahren nur unsichere Qualitätswerte.
Nachteilig bei den heute bekannten Verfahren ist in solchen Fällen, daß bei einem Vergleich zwischen dem zu bewertenden Sprachsignal mit einem Referenzsprachsignal Unterschiede zwischen beiden Signalabschnitten in der gewählten Darstellungsebene in den zu berechnenden Qualitätskennwert einfließen, die nicht oder kaum zu einer - auch im auditiven Test wahrnehmbaren - qualitativen Beeinträchtigung führen.
Im Rahmen der hier betrachteten Sprachübertragung in Telefonanwendungen tragen
Frequenzbandbegrenzungen und spektrale Verformungen des zu bewertenden Sprachsignals (z.B. hervorgerufen durch Filtereigenschaften des Telefongerätes oder des Übertragungskanals) nur begrenzt zu einer empfundenen qualitativen Beeinträchtigung bei.
Um diese Mängel teilweise zu vermeiden, wird in einem anderen Ansatz versucht, die linearen Verzerrungen (Frequenzgang) durch ein Korrekturfilter bzw. eine Leistungsübertragungsfunktion zu kompensieren (veröffentlicht in: " A new approach to objective quality-measures based on attribute-matching", Halka, U.; Heute, U., Speech communication, 11(1992)1, S.15-30). Die Anwendung dieses Verfahrens ist jedoch bei nichtlinearer und zeitinvarianter Übertragung nachteilig, da die so berechnete
Kompensationsfunktion nicht mehr ausschließlich die spektralen Verformungen des zu bewertenden Signals beschreibt.
Verschiebungen spektraler Kurzzeit-Maxima ("Formantverschiebungen") im zu testenden Signal gegenüber dem Referenzsprachsignal, z.B. verursacht durch Codiersysteme mit niedriger Bitrate, führen bei bekannten Verfahren zu großen Unterschieden in den spektralen Intensitätsabbildungen und gehen damit stark in den berechneten Qualitätswert ein. Untersuchungen haben ergeben, daß in einer auditiven Sprachqualitätsuntersuchung diese Verschiebungen spektraler Kurzzeit-Maxima jedoch nur begrenzten Einfluß auf das Qualitätsurteil haben.
Aufgabe
Die Erfindung stellt sich die Aufgabe, den Einfluß von spektralen Begrenzungen und Verformungen des zu bewertenden Sprachsignals sowie von Verschiebungen spektraler Kurzzeit-Maxima vor dem Vergleich der spektralen Eigenschaften eines zu testenden Signals mit einem Referenzsprachsignal und der Berechnung eines Qualitätswertes in instrumentellen Verfahren zu reduzieren.
Lösung
Im Gegensatz zu bekannten Ansätzen wird in der hier beschriebenen Erfindung eine spektrale Wichtungsfünktion generiert, die auf mittleren spektralen Einhüllenden, z.B. der mittleren spektralen Leistungsdichte, von zu bewertendem Sprachsignal und Referenzsprachsignal beruht. Dies ermöglicht den Einsatz des Verfahrens ebenfalls bei nichtlinearer und zeitvarianter Übertragung.
Die spektrale Wichtungsf nktion wird aus den Quotienten der Stützwerte der mittleren spektralen Leistungsdichte des zu bewertenden Signals Phiγ(f) und der des Eingangssignals des Übertragungssystems Phiχ(f) derart berechnet, daß die Wichtungsfünktion über
Wτ(f) = a(f) (P iγ(f) / Phiχ(f))
zu beschreiben ist. Die Bewertungsfunktion a(f) kann die Wichtungsfünktion Wτ(f) an über den Wirkungsbereich unterschiedlich gewichten, sie ist im einfachsten Falle konstant 1.
Die derart berechnete spektrale Wichtungsfünktion Wτ(f) nähert die mittleren spektralen Einhüllenden von zu bewertenden Sprachsignal und Referenzsprachsignal einander an, so daß Unterschiede der beiden spektralen Einhüllenden nur noch vermindert in den berechneten Qualitätswert einfließen. Die spektrale Wichtungsfünktion Wτ(f) kann zum einen auf das Referenzsprachsignal angewendet werden. Dabei wird das Referenzsprachsignal in seiner mittleren spektralen Leistungsdichte dem zu bewertenden Signal angenähert (Fig. 2a).
Zum anderen kann die spektrale Wichtungsfünktion invertiert auf das zu bewertende Signal angewendet werden. Dieses wird dadurch entzerrt und, hinsichtlich seiner mittleren spektralen Leistungsdichte, an das Referenzsprachsignal angenähert (Fig. 2b).
Ein weiterer Teil der Erfindung bezieht sich auf die Korrektur von Verschiebungen spektraler Kurzzeit-Maxima, die durch die Übertragungssysteme verursacht werden.
Die Intensität wird für jeden Zeitabschnitt in Frequenzbändern integriert. Resultat ist eine Reihe von Intensitätswerten für jede spektrale Darstellung eines Signalabschnitts, wobei jeder Einzelwert die Intensität in einem Frequenzband repräsentiert. Die Verschiebungen spektraler Kurzzeit-Maxima können hierbei zu abweichenden berechneten Intensitäten in den Frequenzbändern von Referenzsprachsignal und zu bewertenden Sprachsignal führen.
Diese Abweichungen in den spektralen Intensitätsabbildungen - verursacht Verschiebungen spektraler Kurzzeit-Maxima -können durch eine variable Anordnung der Frequenzbänder auf der Frequenzachse reduziert werden. Im Gegensatz zu den konstanten Bandgrenzen bei bekannten Verfahren werden die Bandgrenzen auf der Frequenzachse verschoben. Die Zahl der Frequenzbänder und deren Index bleibt aber konstant . In einer Optimierungsschleife werden dann diejenigen Bandgrenzen akzeptiert, bei denen die beiden entstehenden spektralen Abbildungen von zu bewertenden Sprachsignal und Referenzsprachsignal maximale Ähnlichkeit aufweisen bzw. deren Abstand minimal ist . Diese Optimierung wird für alle Bänder in allen betrachteten Zeitsegmenten durchgeführt.
Der Einsatz variabler Bandgrenzen zur Berechnung der spektralen Intensitätsabbildung ist nicht nur auf das Signal, in dem auch die beschriebene spektrale Wichtungsfünktion Wχ(f) zum Einsatz kommt, beschränkt, sondern kann auch auf das jeweils andere Signal und sogar auf beide Signale angewendet werden, (vgl. Fig. 2a und 2b). Ausführungsbeispiel:
Ein spezielles Ausführungsbeispiel zeigt eine Realisierung gemäß Fig. 3, die als TOSQA (Telecommunication Objective Speech Quality Assessment) bezeichnet wird. Hierbei erfolgt eine erweiterte Vorverarbeitung des Referenzsprachsignals.
In Spezifikation der allgemeinen Realisierungen nach Fig. 2a und 2b werden hier Sprachpausen mittels eines Sprachpausenerkenners erkannt und gehen nicht in das Qualitätsmaß ein. Ebenfalls erfolgt eine Filterung von Referenzsprachsignal und zu bewertendem Sprachsignal mit einem Bandpaß 300...3400 Hz sowie eine Filterung auf den Frequenzgang eines Telefonhandapparates. Die Integration der spektralen Leistungsdichte erfolgt in Frequenzgruppen, die die Basis für die Berechnung der spezifischen Lautheit darstellen.
Die Integration in Frequenzgruppen erfolgt jedoch nicht in festen Frequenzgruppengrenzen, sondern mit den in dieser Erfindung beschriebenen variablen Frequenzgruppengrenzen. Die berechneten Signalleistungen in den so modifizierten Frequenzgruppen bilden die Basis für die Intensitätsberechnung. Hier wurde auf ein Modell zur Berechnung der spezifischen Lautheit nach Zwicker, einer gehörrichtigen Intensitätsabbildung, zurückgegriffen (veröffentlicht in Zwicker, E.: "Psychoakustik", Berlin: Springer- Verlag, 1982).
Die berechneten Lautheitsmuster werden in Ergänzung des allgemeinen Ansatzes noch durch eine Fehlerbewertungsfünktion ergänzt. Der berechnete Qualitätswert wird über einen Mittelwert der Koirelationskoeffizienten der spezifischen Lautheiten für jedes betrachtete kurze Zeitsegment über die Zahl der ausgewerteten Sprachsegmente gebildet.

Claims

Patentansprüche (6)
1. Verfahren zur instrumentellen Sprachqualitätsbestimmung, bei dem durch Vergleich von spektralen Kurzzeiteigenschaften eines zu bewertenden Sprachsignals mit einem Referenzsprachsignal Kennwerte zur Bestimmung der Sprachqualität berechnet werden, d a d u r c h g e k e n n z e i c h n e t, daß vor dem Vergleich der Eigenschaften der Sprachsignale, Unterschiede in mittleren spektralen Einhüllenden verringert werden, indem aus diesen zuerst eine spektrale
Wichtungsfünktion berechnet wird, mit der die spektralen Kurzzeit-eigenschaften der Sprachsignale in allen betrachteten Zeitsegmenten gewichtet werden, so daß die
Unterschiede in den mittleren spektralen Einhüllenden dadurch nur begrenzt in den zu berechnenden Qualitätskennwert einfließen, und daß" für die Berechnung der Signalintensität die Grenzen der benutzten Frequenzbänder variabel gestaltet werden, so daß für jeden betrachteten Signalabschnitt in jeweils allen ausgewerteten Frequenzbändern die berechneten Intensitäten von
Referenzsprachsignal und zu bewertendem Signal zueinander möglichst geringe
Unterschiede aufweisen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zuerst die mittleren spektralen Einhüllenden von zu bewertenden Sprachsignal und Referenzsprachsignal in
Form eines mittleren Leistungsdichtespektrums berechnet werden und aus dem Quotienten beider Spektren eine spektrale Wichtungsfünktion Wτ(f) berechnet wird, mit der die Kurzzeit-Leistungsdichtespektren des Referenzsprachsignals vor der Berechnung eines Qualitätskennwertes gewichtet werden.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die zu berechnende Wichtungsfünktion Wτ(f) nur aus Teilbereichen der berechneten mittleren spektralen Einhüllenden von zu bewertenden Sprachsignal und Referenzsprachsignal berechnet wird und damit die Unterschiede in mittleren spektralen Einhüllenden zwischen beiden Signalen nur in spektralen Teilbereichen verringert werden.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß vor Berechnung der Qualitätskennwerte eine Integration der Signalintensität für jeden ausgewerteten kurzen Zeitabschnitt in Frequenzgruppen erfolgt, wobei die Grenzen der Frequenzgruppen auf der Frequenzachse variabel sind, aber die Breite der Frequenzgruppen auf der Tonheitskala konstant bleibt, und daß aus den Signalintensitäten in den Frequenzgruppen eine Berechnung der spezifischen Lautheit erfolgt, wobei die Grenzen der Frequenzgruppen benutzt werden, bei denen die berechneten
Unterschiede in der spezifischen Lautheit zwischen dem zu bewertenden Signal und dem Referenzsprachsignal im jeweils betrachteten Band und Zeitsegment den geringsten Unterschied aufweisen.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß der Qualitäts-kennwert aus der Ähnlichkeit der spektralen Darstellungen in jedem betrachteten Zeitabschnitt berechnet wird, wobei die Ähnlichkeit einen über alle betrachteten Zeitabschnitte gemittelten Korrelationskoeffizienten zwischen der spektralen Darstellung des zu bewertenden Sprachsignals und der spektralen Darstellung des Referenzsprachsignals im jeweiligen Zeitsegment darstellt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Korrelations-koeffizient zwischen der spektralen Darstellung des zu bewertenden Sprachsignals und der spektralen Darstellung des Referenzsprachsignals im jeweiligen Zeitsegment nur von einem Teilbereich der spektralen Darstellung berechnet wird, d.h. für die Berechnung des Qualitätskennwertes nicht alle berechneten Spektralwerte berücksichtigt werden.
EP99942871A 1998-08-27 1999-08-14 Verfahren zur instrumentellen sprachqualitätsbestimmung Expired - Lifetime EP1048025B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19840548A DE19840548C2 (de) 1998-08-27 1998-08-27 Verfahren zur instrumentellen Sprachqualitätsbestimmung
DE19840548 1998-08-27
PCT/EP1999/005972 WO2000013173A1 (de) 1998-08-27 1999-08-14 Verfahren zur instrumentellen sprachqualitätsbestimmung

Publications (2)

Publication Number Publication Date
EP1048025A1 true EP1048025A1 (de) 2000-11-02
EP1048025B1 EP1048025B1 (de) 2003-11-05

Family

ID=7879918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99942871A Expired - Lifetime EP1048025B1 (de) 1998-08-27 1999-08-14 Verfahren zur instrumentellen sprachqualitätsbestimmung

Country Status (6)

Country Link
US (1) US7013266B1 (de)
EP (1) EP1048025B1 (de)
AT (1) ATE253765T1 (de)
CA (1) CA2305652A1 (de)
DE (2) DE19840548C2 (de)
WO (1) WO2000013173A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001236293A1 (en) * 2000-02-29 2001-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Compensation for linear filtering using frequency weighting factors
EP1241663A1 (de) * 2001-03-13 2002-09-18 Koninklijke KPN N.V. Verfahren und Vorrichtung zur Sprachqualitätsbestimmung
EP1292036B1 (de) * 2001-08-23 2012-08-01 Nippon Telegraph And Telephone Corporation Verfahren und Vorrichtung zur Decodierung von digitalen Signalen
DE10142846A1 (de) * 2001-08-29 2003-03-20 Deutsche Telekom Ag Verfahren zur Korrektur von gemessenen Sprachqualitätswerten
DE10150519B4 (de) * 2001-10-12 2014-01-09 Hewlett-Packard Development Co., L.P. Verfahren und Anordnung zur Sprachverarbeitung
US7305341B2 (en) * 2003-06-25 2007-12-04 Lucent Technologies Inc. Method of reflecting time/language distortion in objective speech quality assessment
EP1492084B1 (de) * 2003-06-25 2006-05-17 Psytechnics Ltd Vorrichtung und Verfahren zur binauralen Qualitätsbeurteilung
ES2313413T3 (es) * 2004-09-20 2009-03-01 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Compensacion en frecuencia para el analisis de precepcion de habla.
EP2249333B1 (de) * 2009-05-06 2014-08-27 Nuance Communications, Inc. Verfahren und Vorrichtung zur Schätzung einer Grundfrequenz eines Sprachsignals
EP2474975B1 (de) * 2010-05-21 2013-05-01 SwissQual License AG Verfahren zur Schätzung der Sprachqualität
EP2828853B1 (de) * 2012-03-23 2018-09-12 Dolby Laboratories Licensing Corporation Verfahren und system zur biaskorrektur von sprachpegelmessungen
CN112233693B (zh) * 2020-10-14 2023-12-01 腾讯音乐娱乐科技(深圳)有限公司 一种音质评估方法、装置和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3708002A1 (de) * 1987-03-12 1988-09-22 Telefonbau & Normalzeit Gmbh Messverfahren zum beurteilen der guete von sprachcodierern und/oder uebertragungsstrecken
US4860360A (en) * 1987-04-06 1989-08-22 Gte Laboratories Incorporated Method of evaluating speech
GB9213459D0 (en) 1992-06-24 1992-08-05 British Telecomm Characterisation of communications systems using a speech-like test stimulus
SE517836C2 (sv) * 1995-02-14 2002-07-23 Telia Ab Metod och anordning för fastställande av talkvalitet
NL9500512A (nl) * 1995-03-15 1996-10-01 Nederland Ptt Inrichting voor het bepalen van de kwaliteit van een door een signaalbewerkingscircuit te genereren uitgangssignaal, alsmede werkwijze voor het bepalen van de kwaliteit van een door een signaalbewerkingscircuit te genereren uitgangssignaal.
DE69614829T2 (de) * 1996-05-21 2002-04-04 Koninkl Kpn Nv Vorrichtung und Verfahren zur Bestimmung der Qualität eines Ausgangssignals, das von einem Signalverarbeitungsschaltkreis erzeugt werden soll

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0013173A1 *

Also Published As

Publication number Publication date
DE19840548C2 (de) 2001-02-15
EP1048025B1 (de) 2003-11-05
DE19840548A1 (de) 2000-03-02
DE59907623D1 (de) 2003-12-11
WO2000013173A1 (de) 2000-03-09
CA2305652A1 (en) 2000-03-09
US7013266B1 (en) 2006-03-14
ATE253765T1 (de) 2003-11-15

Similar Documents

Publication Publication Date Title
DE69836785T2 (de) Audiosignalkompression, Sprachsignalkompression und Spracherkennung
DE10041512B4 (de) Verfahren und Vorrichtung zur künstlichen Erweiterung der Bandbreite von Sprachsignalen
DE19952538C2 (de) Automatische Verstärkungsregelung in einem Spracherkennungssystem
DE3306730C2 (de)
DE60024501T2 (de) Verbesserung der perzeptuellen Qualität von SBR (Spektralbandreplikation) UND HFR (Hochfrequenzen-Rekonstruktion) Kodierverfahren mittels adaptivem Addieren von Grundrauschen und Begrenzung der Rauschsubstitution
DE60303214T2 (de) Verfahren zur reduzierung von aliasing-störungen, die durch die anpassung der spektralen hüllkurve in realwertfilterbanken verursacht werden
EP0938831B1 (de) Gehörangepasste qualitätsbeurteilung von audiosignalen
EP1048025B1 (de) Verfahren zur instrumentellen sprachqualitätsbestimmung
DE69730721T2 (de) Verfahren und vorrichtungen zur geräuschkonditionierung von signalen welche audioinformationen darstellen in komprimierter und digitalisierter form
DE60122751T2 (de) Verfahren und vorrichtung für die objektive bewertung der sprachqualität ohne referenzsignal
DE602004010634T2 (de) Verfahren und system zur sprachqualitätsvorhersage eines audioübertragungssystems
DE2636032B2 (de) Elektrische Schaltungsanordnung zum Extrahieren der Grundschwingungsperiode aus einem Sprachsignal
DE19505435C1 (de) Verfahren und Vorrichtung zum Bestimmen der Tonalität eines Audiosignals
DE60024403T2 (de) Verfahren zur extraktion von klangquellen-informationen
EP1382034B1 (de) Verfahren zur bestimmung von intensitätskennwerten von hintergrundgeräuschen in sprachpausen von sprachsignalen
DE10157535B4 (de) Verfahren und Vorrichtung zur Reduzierung zufälliger, kontinuierlicher, instationärer Störungen in Audiosignalen
DE60110541T2 (de) Verfahren zur Spracherkennung mit geräuschabhängiger Normalisierung der Varianz
WO2001084536A1 (de) Verfahren zur berechnung einer sprachaktivitätsentscheidung (voice activity detector)
EP0916206B1 (de) Verfahren und anordnung zum beurteilen der qualität eines übertragenen sprachsignals
DE4437287C2 (de) Verfahren zur Messung der Erhaltung stereophoner Audiosignale und Verfahren zur Erkennung gemeinsam codierter stereophoner Audiosignale
DE4124493C1 (de)
DE2506771C2 (de) Verfahren zur Verbesserung der Sprechererkennung
EP1288914B1 (de) Verfahren zur Korrektur von gemessenen Sprachqualitätswerten
DE3009204C2 (de)
DE19710953A1 (de) Verfahren und Vorrichtung zur Erkennung von Schallsignalen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20000911

RTI1 Title (correction)

Free format text: METHOD FOR OBJECTIVE VOICE QUALITY EVALUATION

RTI1 Title (correction)

Free format text: METHOD FOR OBJECTIVE VOICE QUALITY EVALUATION

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20031105

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59907623

Country of ref document: DE

Date of ref document: 20031211

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040205

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040216

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040211

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040806

BERE Be: lapsed

Owner name: DEUTSCHE *TELEKOM A.G.

Effective date: 20040831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

BERE Be: lapsed

Owner name: DEUTSCHE *TELEKOM A.G.

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040405

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180827

Year of fee payment: 20

Ref country code: FR

Payment date: 20180824

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180821

Year of fee payment: 20

Ref country code: GB

Payment date: 20180828

Year of fee payment: 20

Ref country code: CH

Payment date: 20180827

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59907623

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190813

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 253765

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190813