EP1046781B1 - Method and system for detecting bit-bounce - Google Patents

Method and system for detecting bit-bounce Download PDF

Info

Publication number
EP1046781B1
EP1046781B1 EP00400557A EP00400557A EP1046781B1 EP 1046781 B1 EP1046781 B1 EP 1046781B1 EP 00400557 A EP00400557 A EP 00400557A EP 00400557 A EP00400557 A EP 00400557A EP 1046781 B1 EP1046781 B1 EP 1046781B1
Authority
EP
European Patent Office
Prior art keywords
weight
wob
bit
model
rwob
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00400557A
Other languages
German (de)
French (fr)
Other versions
EP1046781A1 (en
Inventor
Isabelle Rey-Fabret
Jean-Pierre Desplans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1046781A1 publication Critical patent/EP1046781A1/en
Application granted granted Critical
Publication of EP1046781B1 publication Critical patent/EP1046781B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions

Definitions

  • the present invention relates to the field of measurements in progress drilling, in particular measures concerning the behavior of a drilling tool attached to the end of a drill string.
  • the method according to the invention proposes a solution for detecting the amplitude of vertical movements of the drilling tool or the force applied to the tool, said detections being obtained by means of a calculation program taking into account measurements made at the top of the drill string, that is to say substantially on the surface of the soil, generally by means sensors or an instrumented connector located in the vicinity of means for rotating the packing.
  • Measurement techniques are known for the acquisition information related to the dynamic behavior of the filling of drilling, which use a set of bottom-mounted sensors connected to the surface by an electrical conductor.
  • a set of bottom-mounted sensors connected to the surface by an electrical conductor.
  • it is used two sets of measuring sensors connected by a cable of the type logging, one located at the bottom of the well, the other at the top of the drill string.
  • the presence of a cable along the drill string is annoying for clean drilling operations say.
  • Document FR 2645205 or FR 2666845 disclose surface devices placed at the top of the trim that determine some drilling malfunctions according to surface measurements, but without taking into account, in a physical way, the behavior dynamic packing and drill tool in the well.
  • Document FR-2 750 159 discloses a device for estimating the amplitude of the vertical displacements of the drilling tool by means of a calculation program.
  • the information contained in the surface alone are not enough to solve the problem, that is to say know the instantaneous movements of the tool by knowing the instantaneous displacements of the filling on the surface.
  • the methodology of the present invention uses the conjunction such a model, defined a priori, and surface measurements acquired in real time.
  • At least two values Rf and Rwob are calculated in real time, Rf being a function of the main frequency of oscillations of the hook weight WOH, for example over the interval [0, 10] Hz, divided by the average instantaneous rotation speed at the surface, Rwob being a function of the standard deviation of the weight signal on the tool WOB estimated by the longitudinal model reduced from the measurement of the hook weight signal WOH, divided by the weight on the average tool WOB 0 defined from the weight of the lining and the average hook weight, and the danger of the longitudinal behavior of said drill bit is determined from said values of Rf and Rwob.
  • Rf can be understood in the meantime, and the danger of the longitudinal behavior of the drill according to Rwob values.
  • the bounds of the interval can be 0.95 and 0.99.
  • R wob S wob WOB 0 with: s wob is the standard deviation of the weight signal on the WOB tool estimated from that of the hook weight signal WOH and the reduced longitudinal model; and WOB 0 is the average tool weight, defined from the weight of the lining and the average hook weight.
  • the invention also relates to a system for estimating the effective longitudinal behavior of a drilling tool attached to the end of a drill string driven in rotation in a well by surface-driven drive means, in which a computing installation includes means for physical modeling of the drilling process based on general equations of mechanics, parameters of the modeling means are identified taking into account the parameters of the well and the lining, the computing installation includes means for reducing the model in order to retain only some of the eigen modes of the state matrix of said model.
  • the system comprises means for calculating, in real time, at least two values Rf and Rwob, Rf being a function of the main frequency of oscillations of the hook weight WOH, for example over the interval [0, 10] Hz, divided by the average instantaneous surface rotation speed, Rwob being a function of the standard deviation of the weight signal on the tool WOB estimated by the longitudinal model reduced from the measurement of the hook weight signal WOH , divided by the weight on the average tool WOB 0 defined from the weight of the packing and the average hook weight.
  • the system comprises means for alarming the danger of the longitudinal behavior of the drilling tool from the values of Rf and Rwob.
  • the method and system can be applied to the determination of the dangerousness of the tool's jump dysfunction drilling (bit-bouncing).
  • Figure 1 illustrates a drill rig that will be the invention.
  • the surface installation includes a 1 comprising a lifting tower 2, a winch 3 which allow the moving a drill hook 4.
  • Under the drill hook are suspended means 5 drive in rotation of the whole of the drill string 6 placed in the well 7.
  • These means of training can be of the rod type of drive or kelly coupled to a table rotating 8 and mechanical drives, or head type motorized drive or power swivel suspended directly from the hook and guided longitudinally in the tower.
  • the drill string 6 is constituted conventionally by drill rods 10, a portion 11 commonly called BHA for "Bottom Hole Assembly" consisting mainly of drill collars, a drilling tool 12 in contact with the ground during drilling.
  • Well 7 is filled with a fluid, called drilling, which flows from the surface to the bottom by the inner channel of the drill string and rises to the surface by the annular space between the walls of the well and the drill string.
  • a coupling is inserted instrumented 13 between the drive means and the top of the garnish.
  • This connection makes it possible to measure the speed of rotation (RPM), the tension force (WOH) and the longitudinal vibrations of the top of the trim, and incidentally the couple.
  • RPM speed of rotation
  • WOH tension force
  • These measurements are transmitted by cable or radio to an electronic installation recording, processing, display, not shown here.
  • sensors such as a tachometer on the rotary table to measure the speed of rotation, a measure of tension on the dead strand of the hauling and possibly a apparatus for measuring the torque on the motorisation apparatus, if the accuracy of the measurements thus obtained is sufficient.
  • Part 11 of the BHA may more specifically include, drill collars, stabilizers, and a second instrumented connector 14 which will only be used to experimentally control this invention by allowing the comparison between the displacement of the tool of drilling 12 actually measured by the instrumented connector 14 and the displacement detected through the implementation of the present invention. he it is therefore clear that the application of the present invention does not use instrument connection placed at the bottom of the well.
  • the driller who conducts a drilling operation with the devices described in Figure 1 has three possible actions, which are therefore the variables possible driving controls, the weight on the tool that is set by the winch which controls the position of the hook, the speed of rotation of the rotary table or equivalent, the flow of drilling fluid injected.
  • the described model will treat the drill string as an element one-dimensional vertical. Displacements in vertical translation will be considered, lateral movements being neglected.
  • Figure 2 shows the block diagram of the traction-compression model. It's a classic model with finite differences that has several meshes represented by the blocks 20. Each mesh represents a part of the drill string, drill rods and drill collars. he are mass-spring-damping triplets represented by the diagrams referenced 21, 22, 23. Each block is provided with two inputs and outputs represented by the pairs of arrows 24 and 25 which represent the input and output voltages and vertical velocities of inputs and outputs. This representation shows how to digitally connect several stems (or meshes) as you connect physically the stems of the filling.
  • Block 26 represents the drilling rig. It's a set of masses, springs and friction.
  • Block 27 represents the tool in its longitudinal behavior.
  • the main object of the invention is to provide a system of alarms dedicated to bit-bouncing, using only the signals available on the surface: pad rotation speed (RPM) and weight hook (WOH). This alarm detects longitudinal oscillations of the tool, and gives the scale.
  • RPM pad rotation speed
  • WOH weight hook
  • the application includes the construction of a model capable of reproduce the longitudinal behavior of all the elements of drilling.
  • the classical model is obtained from the equation fundamental dynamics and the expression of the different forces, which in particular, the one reflecting the stiffness of the spring of the element.
  • the friction force is a force proportional to the speed of moving the element.
  • This model has two parts: the drilling (rig) on the one hand, the gasket and the tool on the other hand. These two parts are therefore composed of ⁇ mass-spring-friction ⁇ elements to each other by a transfer of power in the form of forces and longitudinal speeds.
  • composition of the packing is identified from the data geometrical construction: composition of the packing, type of apparatus drilling, mud density, well tilt, etc.
  • This model is able to give an approximation of WOB signal characteristics from the weight measurements to the hook (WOH).
  • the frequency criterion is expressed by: 0.95 ⁇ R f ⁇ 0.99:
  • the tricone tools generate at the bottom of well a trilobed form.
  • the longitudinal oscillation frequency of the drilling set when bit-bouncing, is about three times more high than its frequency of oscillation in rotation.
  • the ratio between these two frequencies is not strictly equal to 3, but slightly lower. This is expressed by the values of these two limits: 0.95 and 0.99.
  • FIG. 3 shows how the two ratio values R f and R w w are used to generate a set of alarms on the "bit-bouncing" malfunction.
  • the main frequency of oscillations of the hook weight, WOH is calculated from an FFT over a time window whose width depends directly on the acquisition frequency of the hook weight signal.
  • the average instantaneous rotation speed RPM 0 is also calculated, which is the average rotational speed given at a regular time interval from the measurements included in a certain time window.
  • the standard deviation WOH and the instantaneous average of the hook weight WOH 0 are jointly calculated. These two quantities are calculated on a sliding window corresponding to a certain period of time (for example 3s). This period of time is determined according to the acquisition frequency of the hook weight signal WOH.
  • Rf is between 0.95 and 0.99, there is risk bit-bouncing.
  • R wob is low (here, for example, less than 0.6), this means that oscillations of WOB around its mean are small. So there is a potential risk of "bit-bouncing", but it does not really appear, or is not observable, the fire remains green (28).
  • R wob is average (for example between 0.6 and 0.8), then the light becomes orange (reference 29), because there is probably a bit-bouncing, but still of medium force. does not bounce again, but the weight on the tool has already significant longitudinal oscillations, and at a dangerous frequency.
  • the physical model is validated using data recorded on site using instrumented bottom fittings and area.
  • the reduction method used is the method of singular disturbances. It consists of keeping the state matrix and the control matrix, the rows and columns corresponding to the modes to keep. To keep static gains, fast modes replaced by their static value, which has the consequence to introduce a direct matrix.
  • the present invention is advantageously implemented on a drilling site in order to have as precise a detection as possible the dangerousness of the vertical displacement of the drilling tool in time real, and that from the only surface measurements, including fluctuations in longitudinal acceleration and rotational speed of conventional means for rotating the drill string, and a surface installation equipped with electronic means and computer. It is very interesting to prevent malfunctions known, for example the so-called "bit bouncing" behavior characterized by a jump and a detachment of the tool from the face although the head of the drill string remains substantially fixed and that a compressive force important is applied to the tool. This dysfunction may have for consequences of the adverse effects on the tool life, on the increase in mechanical fatigue of the drill string and the frequency breaks in connections.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

La présente invention concerne le domaine des mesures en cours de forage, en particulier des mesures concernant le comportement d'un outil de forage fixé à l'extrémité d'un train de tiges de forage. La méthode selon l'invention propose une solution pour détecter l'amplitude des déplacements verticaux de l'outil de forage ou l'effort appliqué à l'outil, lesdites détections étant obtenues par le moyen d'un programme de calcul prenant en compte des mesures effectuées au sommet du train de tiges, c'est-à-dire sensiblement à la surface du sol, généralement par le moyen de capteurs ou d'un raccord instrumenté situés dans le voisinage des moyens d'entraínement en rotation de la garniture.The present invention relates to the field of measurements in progress drilling, in particular measures concerning the behavior of a drilling tool attached to the end of a drill string. The method according to the invention proposes a solution for detecting the amplitude of vertical movements of the drilling tool or the force applied to the tool, said detections being obtained by means of a calculation program taking into account measurements made at the top of the drill string, that is to say substantially on the surface of the soil, generally by means sensors or an instrumented connector located in the vicinity of means for rotating the packing.

On connaít des techniques de mesure pour l'acquisition d'informations liées au comportement dynamique de la garniture de forage, qui utilisent un ensemble de capteurs de fond reliés à la surface par un conducteur électrique. Dans le document FR/92-02273, il est utilisé deux ensembles de capteurs de mesure reliés par un câble du type logging, l'un étant situé au fond du puits, l'autre au sommet de la garniture de forage. Cependant, la présence d'un câble le long de la garniture de forage est gênante pour les opérations de forage proprement dites.Measurement techniques are known for the acquisition information related to the dynamic behavior of the filling of drilling, which use a set of bottom-mounted sensors connected to the surface by an electrical conductor. In document FR / 92-02273, it is used two sets of measuring sensors connected by a cable of the type logging, one located at the bottom of the well, the other at the top of the drill string. However, the presence of a cable along the drill string is annoying for clean drilling operations say.

On connaít par les documents FR 2645205 ou FR 2666845 des dispositifs de surface placés au sommet de la garniture qui déterminent certains dysfonctionnements de forage en fonction de mesures de surface, mais sans prendre en compte, de manière physique, le comportement dynamique de la garniture et de l'outil de forage dans le puits.Document FR 2645205 or FR 2666845 disclose surface devices placed at the top of the trim that determine some drilling malfunctions according to surface measurements, but without taking into account, in a physical way, the behavior dynamic packing and drill tool in the well.

On connaít par le document FR-2 750 159 de dispositif pour estimer l'amplitude des déplacements verticaux d'outil de forage par le moyen d'un programme de calcul.Document FR-2 750 159 discloses a device for estimating the amplitude of the vertical displacements of the drilling tool by means of a calculation program.

Entre le fond d'un puits et la surface du sol, il existe un train de tiges le long duquel ont lieu des phénomènes dissipatifs d'énergie (frottement sur la paroi, amortissement de torsion,...), des phénomènes conservatifs de flexibilité, notamment en traction-compression. Il y a ainsi une distorsion entre les mesures des déplacements de fond et de surface qui dépend principalement des caractéristiques intrinsèques de la garniture (longueur, raideur, géométrie), des caractéristiques de frottement à l'interface tiges/paroi et de phénomènes aléatoires.Between the bottom of a well and the surface of the ground, there is a train of stems along which dissipative energy phenomena take place (friction on the wall, torsion damping, ...), phenomena conservative flexibility, especially in traction-compression. There is thus a distortion between the measurements of the background and surface that depends mainly on the intrinsic characteristics of the trim (length, stiffness, geometry), characteristics of friction at the stem / wall interface and random phenomena.

C'est pourquoi, les informations contenues dans les mesures de surface ne suffisent pas à elles seules à résoudre le problème posé, c'est-à-dire connaítre les déplacements instantanés de l'outil en connaissant les déplacements instantanés de la garniture en surface. Il faut compléter les informations de mesures de surface par des informations indépendantes, d'une autre nature, qui prennent en compte la structure du train de tiges et son comportement entre le fond et la surface: c'est le rôle du modèle de connaissance qui établit les relations théoriques entre le fond et la surface.Therefore, the information contained in the surface alone are not enough to solve the problem, that is to say know the instantaneous movements of the tool by knowing the instantaneous displacements of the filling on the surface. We must complete the surface measurement information by independent information, of another nature, which take into account the structure of the drill string and its behavior between the bottom and the surface: it is the role of the model of knowledge that establishes the theoretical relationships between the background and the area.

La méthodologie de la présente invention utilise la conjonction d'un tel modèle, défini a priori, et de mesures de surface acquises en temps réel.The methodology of the present invention uses the conjunction such a model, defined a priori, and surface measurements acquired in real time.

Ainsi, la présente invention concerne une méthode d'estimation du comportement longitudinal effectif d'un outil de forage fixé à l'extrémité d'une garniture de forage et entraíné en rotation dans un puits par des moyens d'entraínement situés en surface, dans laquelle on utilise un modèle physique du processus de forage fondé sur des équations générales de la mécanique et dans laquelle on effectue les étapes suivantes:

  • on détermine les paramètres dudit modèle en prenant en compte les paramètres caractéristiques dudit puits et de ladite garniture,
  • on réduit ledit modèle en ne conservant que certains des modes propres de la matrice d'état dudit modèle.
Thus, the present invention relates to a method of estimating the effective longitudinal behavior of a drilling tool attached to the end of a drill string and rotated in a well by means of drive located on the surface, in which uses a physical model of the drilling process based on general equations of mechanics and in which the following steps are carried out:
  • the parameters of said model are determined by taking into account the characteristic parameters of said well and said lining,
  • the model is reduced by keeping only some of the eigen modes of the state matrix of said model.

Selon la méthode, on calcule en temps réel, au moins deux valeurs Rf et Rwob, Rf étant une fonction de la fréquence principale d'oscillations du poids au crochet WOH, par exemple sur l'intervalle [0, 10] Hz, divisée par la vitesse de rotation instantanée moyenne en surface, Rwob étant une fonction de l'écart-type du signal de poids sur l'outil WOB estimé par le modèle longitudinal réduit à partir de la mesure du signal de poids au crochet WOH, divisé par le poids sur l'outil moyen WOB0 défini à partir du poids de la garniture et du poids au crochet moyen, et on détermine la dangerosité du comportement longitudinal dudit outil de forage à partir desdites valeurs de Rf et Rwob.According to the method, at least two values Rf and Rwob are calculated in real time, Rf being a function of the main frequency of oscillations of the hook weight WOH, for example over the interval [0, 10] Hz, divided by the average instantaneous rotation speed at the surface, Rwob being a function of the standard deviation of the weight signal on the tool WOB estimated by the longitudinal model reduced from the measurement of the hook weight signal WOH, divided by the weight on the average tool WOB 0 defined from the weight of the lining and the average hook weight, and the danger of the longitudinal behavior of said drill bit is determined from said values of Rf and Rwob.

On peut comparer Rf avec un intervalle dont les bornes sont déterminées telles qu'il ne peut pas y avoir de comportement longitudinal dangereux de l'outil si Rf n'est pas compris dans ledit intervalle.We can compare Rf with an interval whose terminals are determined such that there can be no longitudinal behavior of the tool if Rf is not included in the interval.

Rf peut être compris dans l'intervalle, et on quantifie la dangerosité du comportement longitudinal de l'outil de forage en fonction des valeurs de Rwob.Rf can be understood in the meantime, and the danger of the longitudinal behavior of the drill according to Rwob values.

Rf peut être tel que Rf = 20*fWOH / RPM 0 où : fWOH, exprimée en Hertz, est la fréquence principale d'oscillations du WOH sur l'intervalle [0, 10] Hz et RPM0 est la vitesse de rotation instantanée moyenne en surface, exprimée en tours/min.Rf can be such that R f = 20 * f WOH / RPM 0 where: f WOH , expressed in Hertz, is the main oscillation frequency of the WOH over the interval [0, 10] Hz and RPM 0 is the speed of mean instantaneous surface rotation, expressed in revolutions / min.

Les bornes de l'intervalle peuvent être 0,95 et 0,99. The bounds of the interval can be 0.95 and 0.99.

Dans la méthode, on peut avoir: Rwob = Swob WOB 0    avec: swob est l'écart-type du signal de poids sur l'outil WOB estimé à partir de celui du signal de poids au crochet WOH et du modèle longitudinal réduit; et WOB0 est le poids sur l'outil moyen, défini à partir de la masse de la garniture et du poids au crochet moyen.In the method, we can have: R wob = S wob WOB 0 with: s wob is the standard deviation of the weight signal on the WOB tool estimated from that of the hook weight signal WOH and the reduced longitudinal model; and WOB 0 is the average tool weight, defined from the weight of the lining and the average hook weight.

On peut déterminer que, pour Rwob inférieur à 0,6, il n'y a pas de danger, et que pour Rwob compris entre 0,6 et 0,8, il y a un danger moyen, et pour Rwob supérieur à 0,8, il y a danger extrême.It can be determined that for Rwob less than 0.6, there is no danger, and for Rwob between 0.6 and 0.8, there is a danger average, and for Rwob greater than 0.8, there is extreme danger.

L'invention concerne également un système d'estimation du comportement longitudinal effectif d'un outil de forage fixé à l'extrémité d'une garniture de forage entraínée en rotation dans un puits par des moyens d'entraínement situés en surface, dans lequel une installation de calcul comporte des moyens de modélisation physique du processus de forage fondé sur des équations générales de la mécanique, des paramètres des moyens de modélisation sont identifiés en prenant en compte les paramètres du puits et de la garniture, l'installation de calcul comporte des moyens de réduction du modèle afin de ne conserver que certains des modes propres de la matrice d'état dudit modèle. Le système comprend des moyens de calcul, en temps réel, d'au moins deux valeurs Rf et Rwob, Rf étant une fonction de la fréquence principale d'oscillations du poids au crochet WOH, par exemple sur l'intervalle [0, 10] Hz, divisée par la vitesse de rotation instantanée moyenne en surface, Rwob étant une fonction de l'écart-type du signal de poids sur l'outil WOB estimé par le modèle longitudinal réduit à partir de la mesure du signal de poids au crochet WOH, divisé par le poids sur l'outil moyen WOB0 défini à partir du poids de la garniture et du poids au crochet moyen. Le système comporte des moyens d'alarme de la dangerosité du comportement longitudinal de l'outil de forage à partir des valeurs de Rf et Rwob.The invention also relates to a system for estimating the effective longitudinal behavior of a drilling tool attached to the end of a drill string driven in rotation in a well by surface-driven drive means, in which a computing installation includes means for physical modeling of the drilling process based on general equations of mechanics, parameters of the modeling means are identified taking into account the parameters of the well and the lining, the computing installation includes means for reducing the model in order to retain only some of the eigen modes of the state matrix of said model. The system comprises means for calculating, in real time, at least two values Rf and Rwob, Rf being a function of the main frequency of oscillations of the hook weight WOH, for example over the interval [0, 10] Hz, divided by the average instantaneous surface rotation speed, Rwob being a function of the standard deviation of the weight signal on the tool WOB estimated by the longitudinal model reduced from the measurement of the hook weight signal WOH , divided by the weight on the average tool WOB 0 defined from the weight of the packing and the average hook weight. The system comprises means for alarming the danger of the longitudinal behavior of the drilling tool from the values of Rf and Rwob.

La méthode et le système peuvent être appliqués à la détermination de la dangerosité du dysfonctionnement de saut de l'outil de forage (bit-bouncing).The method and system can be applied to the determination of the dangerousness of the tool's jump dysfunction drilling (bit-bouncing).

La présente invention sera mieux comprise et ses avantages apparaítront clairement à la lecture de la description d'un exemple, nullement limitatif, illustrés par les figures ci-après annexées, parmi lesquelles:

  • la figure 1 représente schématiquement les moyens mis en oeuvre pour une opération de forage,
  • la figure 2 représente un exemple de diagramme d'un modèle physique en traction-compression,
  • la figure 3 décrit le diagramme de génération des alarmes.
The present invention will be better understood and its advantages will become clear from reading the description of an example, in no way limiting, illustrated by the appended figures, among which:
  • FIG. 1 schematically represents the means implemented for a drilling operation,
  • FIG. 2 represents an exemplary diagram of a physical model in traction-compression,
  • Figure 3 describes the alarm generation diagram.

La figure 1 illustre un appareil de forage sur lequel on mettra en oeuvre l'invention. L'installation de surface comprend un appareil de levage 1 comprenant une tour de levage 2, un treuil 3 qui permettent le déplacement d'un crochet de forage 4. Sous le crochet de forage sont suspendus des moyens d'entraínement 5 en rotation de l'ensemble de la garniture de forage 6 placée dans le puits 7. Ces moyens d'entraínement peuvent être du type tige d'entraínement ou kelly accouplée à une table de rotation 8 et les motorisations mécaniques, ou du type tête d'entraínement motorisée ou "power swivel" suspendue directement au crochet et guidée longitudinalement dans la tour.Figure 1 illustrates a drill rig that will be the invention. The surface installation includes a 1 comprising a lifting tower 2, a winch 3 which allow the moving a drill hook 4. Under the drill hook are suspended means 5 drive in rotation of the whole of the drill string 6 placed in the well 7. These means of training can be of the rod type of drive or kelly coupled to a table rotating 8 and mechanical drives, or head type motorized drive or power swivel suspended directly from the hook and guided longitudinally in the tower.

La garniture de forage 6 est constituée conventionnellement par des tiges de forage 10, d'une partie 11 appelée couramment BHA pour "Bottom Hole Assembly" comportant principalement des masses-tiges, un outil de forage 12 en contact avec le terrain en cours de forage. Le puits 7 est rempli d'un fluide, dit de forage, qui circule de la surface au fond par le canal intérieur de la garniture de forage et remonte en surface par l'espace annulaire entre les parois du puits et la garniture de forage.The drill string 6 is constituted conventionally by drill rods 10, a portion 11 commonly called BHA for "Bottom Hole Assembly" consisting mainly of drill collars, a drilling tool 12 in contact with the ground during drilling. Well 7 is filled with a fluid, called drilling, which flows from the surface to the bottom by the inner channel of the drill string and rises to the surface by the annular space between the walls of the well and the drill string.

Pour la mise en oeuvre de l'invention, on intercale un raccord instrumenté 13 entre les moyens d'entraínement et le sommet de la garniture. Ce raccord permet de mesurer la vitesse de rotation (RPM), la force de tension (WOH) et les vibrations longitudinales du sommet de la garniture, et accessoirement le couple. Ces mesures, dites de surface, sont transmises par câble ou radio vers une installation électronique d'enregistrement, de traitement, d'affichage, non représentée ici. A la place du raccord 13, on pourra utiliser d'autres capteurs tels un tachymètre sur la table de rotation pour mesurer la vitesse de rotation, une mesure de tension sur le brin mort du mouflage et éventuellement un appareil de mesure du couple sur l'appareil de motorisation, si la précision des mesures ainsi obtenues est suffisante.For the implementation of the invention, a coupling is inserted instrumented 13 between the drive means and the top of the garnish. This connection makes it possible to measure the speed of rotation (RPM), the tension force (WOH) and the longitudinal vibrations of the top of the trim, and incidentally the couple. These measurements, called surface measurements, are transmitted by cable or radio to an electronic installation recording, processing, display, not shown here. To the place of the connector 13, it will be possible to use other sensors such as a tachometer on the rotary table to measure the speed of rotation, a measure of tension on the dead strand of the hauling and possibly a apparatus for measuring the torque on the motorisation apparatus, if the accuracy of the measurements thus obtained is sufficient.

La partie 11 de la BHA peut plus précisément comporter, des masses-tiges, des stabilisateurs, et un second raccord instrumenté 14 qui ne sera utilisé que pour contrôler expérimentalement la présente invention en permettant la comparaison entre le déplacement de l'outil de forage 12 effectivement mesuré par le raccord instrumenté 14 et le déplacement détecté grâce à la mise en oeuvre de la présente invention. Il est donc clair que l'application de la présente invention n'utilise pas de raccord instrument placé au fond du puits.Part 11 of the BHA may more specifically include, drill collars, stabilizers, and a second instrumented connector 14 which will only be used to experimentally control this invention by allowing the comparison between the displacement of the tool of drilling 12 actually measured by the instrumented connector 14 and the displacement detected through the implementation of the present invention. he it is therefore clear that the application of the present invention does not use instrument connection placed at the bottom of the well.

Le foreur qui conduit une opération de forage avec les appareils décrits sur la figure 1 a trois actions possibles, qui sont donc les variables de commande possibles permettant la conduite, le poids sur l'outil qui est réglé par le treuil lequel contrôle la position du crochet, la vitesse de rotation de la table de rotation ou équivalent, le débit de fluide de forage injecté.The driller who conducts a drilling operation with the devices described in Figure 1 has three possible actions, which are therefore the variables possible driving controls, the weight on the tool that is set by the winch which controls the position of the hook, the speed of rotation of the rotary table or equivalent, the flow of drilling fluid injected.

Pour illustrer un exemple de la présente invention, on utilisera un modèle du système mécanique composé des éléments technologiques suivants:

  • un appareil de forage comprenant une installation de levage,
  • un ensemble d'entraínement: organe de régulation et motorisation,
  • un ensemble de tiges,
  • un ensemble de masses-tiges,
  • un outil de forage.
To illustrate an example of the present invention, a model of the mechanical system composed of the following technological elements will be used:
  • a drilling rig comprising a hoisting installation,
  • a training set: regulating member and motorization,
  • a set of stems,
  • a set of drill collars,
  • a drilling tool.

Le modèle décrit traitera le train de tiges comme un élément monodimensionnel vertical. Les déplacements en translation verticale seront considérés, les déplacements latéraux étant négligés.The described model will treat the drill string as an element one-dimensional vertical. Displacements in vertical translation will be considered, lateral movements being neglected.

La figure 2 représente le schéma-bloc du modèle de traction-compression. C'est un modèle classique aux différences finies qui comporte plusieurs mailles représentées par les blocs 20. Chaque maille représente une partie du train de tiges, tiges de forage et masses-tiges. Il s'agit de triplets masse-ressort-amortissement figurés par les schémas référencés 21, 22, 23. Chaque bloc est muni de deux entrées et sorties représentées par les couples de flèches 24 et 25 qui représentent les tensions d'entrées et de sorties et les vitesses de déplacement vertical d'entrées et de sorties. Cette représentation montre la manière de connecter numériquement plusieurs tiges (ou mailles) comme on connecte physiquement les tiges de la garniture.Figure 2 shows the block diagram of the traction-compression model. It's a classic model with finite differences that has several meshes represented by the blocks 20. Each mesh represents a part of the drill string, drill rods and drill collars. he are mass-spring-damping triplets represented by the diagrams referenced 21, 22, 23. Each block is provided with two inputs and outputs represented by the pairs of arrows 24 and 25 which represent the input and output voltages and vertical velocities of inputs and outputs. This representation shows how to digitally connect several stems (or meshes) as you connect physically the stems of the filling.

Le bloc 26 représente l'appareil de forage. C'est un ensemble de masses, de ressorts et de frottements.Block 26 represents the drilling rig. It's a set of masses, springs and friction.

Le bloc 27 représente l'outil dans son comportement longitudinal.Block 27 represents the tool in its longitudinal behavior.

L'objet principal de l'invention est de fournir un système d'alarmes dédiée au bit-bouncing, en utilisant uniquement les signaux disponibles en surface: vitesse de rotation de la garniture (RPM) et poids au crochet (WOH). Cette alarme détecte les oscillations longitudinales de l'outil, et en donne l'ampleur.The main object of the invention is to provide a system of alarms dedicated to bit-bouncing, using only the signals available on the surface: pad rotation speed (RPM) and weight hook (WOH). This alarm detects longitudinal oscillations of the tool, and gives the scale.

L'application comprend la construction d'un modèle capable de reproduire le comportement longitudinal de l'ensemble des éléments de forage. Le modèle, classique est obtenu à partir de l'équation fondamentale de la dynamique et de l'expression des différentes forces, dont en particulier, celle traduisant la raideur du ressort de l'élément. La force de frottement est une force proportionnelle à la vitesse de déplacement de l'élément. Ce modèle comporte deux parties : l'appareil de forage (rig) d'une part, la garniture et l'outil d'autre part. Ces deux parties sont donc composées d'éléments {masse-ressort-frottement} liés les uns aux autres par un transfert de puissance sous forme de forces et de vitesses longitudinales. Ces équations, exprimées ici dans le domaine continu, sont discrétisée aux différences finies pour chaque élément.The application includes the construction of a model capable of reproduce the longitudinal behavior of all the elements of drilling. The classical model is obtained from the equation fundamental dynamics and the expression of the different forces, which in particular, the one reflecting the stiffness of the spring of the element. The friction force is a force proportional to the speed of moving the element. This model has two parts: the drilling (rig) on the one hand, the gasket and the tool on the other hand. These two parts are therefore composed of {mass-spring-friction} elements to each other by a transfer of power in the form of forces and longitudinal speeds. These equations, expressed here in the field continuous, are discretized to finite differences for each element.

Ces différents éléments sont identifiés à partir des données géométriques de chantier : composition de la garniture, type d'appareil de forage, densité de la boue, inclinaison du puits, etc.These different elements are identified from the data geometrical construction: composition of the packing, type of apparatus drilling, mud density, well tilt, etc.

Le modèle ainsi constitué est écrit sous la forme d'équations d'états :

Figure 00110001
   avec:

  • X = le vecteur d'états du modèle (déplacements et vitesses longitudinales de tous les éléments du modèle);
  • A, B, C, D = les matrices d'état, de commande, d'observation et directe du modèle;
  • U = le vecteur des entrées du modèle. Dans le cas présent, le modèle n'a qu'une seule entrée, le poids sur l'outil WOB;
  • Y = vecteur des sorties du modèle, le poids au crochet WOH pour cette application.
  • The model thus constituted is written in the form of equations of states:
    Figure 00110001
    with:
  • X = the state vector of the model (displacements and longitudinal velocities of all the elements of the model);
  • A, B, C, D = the state, control, observation and direct matrices of the model;
  • U = the vector of the inputs of the model. In this case, the model has only one input, the weight on the WOB tool;
  • Y = vector of model outputs, hook weight WOH for this application.
  • Après mise sous forme d'équations d'états , on réduit le modèle pour ne garder que les informations pertinentes qu'il contient, vis-à-vis du dysfonctionnement de saut de l'outil sur le fond, appelé "bit-bouncing". Plus précisément, on ne garde que les 5 premiers modes oscillants du système, qui sont ceux dont les fréquences associées correspondent à la gamme de fréquences de la vitesse de rotation de surface usuellement utilisée en forage avec un outil tricône (environ 50 à 200 tours/min).After formatting state equations, we reduce the model to keep only the relevant information it contains, vis-à-vis malfunction of jumping the tool on the bottom, called "bit-bouncing". More precisely, we keep only the first 5 oscillating modes of the system, which are the ones whose associated frequencies correspond to the frequency range of the surface rotation speed usually used in drilling with a tricone tool (about 50 to 200 revolutions / min).

    Ce modèle réduit est capable de donner une approximation des caractéristiques du signal de WOB à partir des mesures de poids au crochet (WOH).This model is able to give an approximation of WOB signal characteristics from the weight measurements to the hook (WOH).

    On traduit les équations d'états réduites sous forme d'une fonction de transfert H entre entrée WOB et sortie WOH du modèle. Pour toute fréquence f appartenant au domaine balayé par le modèle réduit, on a : WOH(f) = H(f)WOB(f) The reduced state equations are translated as an H transfer function between WOB input and WOH output of the model. For any frequency f belonging to the domain scanned by the reduced model, we have: WOH ( f ) = H ( f ) WOB ( f )

    Pour obtenir une estimation du comportement de l'outil à partir du modèle réduit, deux critères entrent en jeu :

    • d'une part un critère fréquentiel,
    • d'autre part un critère d'amplitude.
    • a) Critère fréquentiel: dans le cadre d'un forage avec un outil du type tricône, il n'y a possibilité d'obtenir le dysfonctionnement de "bit-bouncing" que dans le cas où un coefficient Rf exprimant le rapport entre la fréquence principale d'oscillations du poids au crochet (WOH) et la vitesse de rotation (RPM) de la garniture en surface est comprise entre deux bornes : Rf = 20*fWOH RPM 0    où :
    • fWOH, exprimée en Hertz, est la fréquence principale d'oscillations du WOH sur l'intervalle [0 , 10] Hz.
    • RPM0 est la vitesse de rotation instantanée moyenne en surface, exprimée en tours/min.
    To obtain an estimation of the behavior of the tool from the reduced model, two criteria come into play:
    • on the one hand, a frequency criterion,
    • on the other hand a criterion of amplitude.
    • a) Frequency criterion: in the case of drilling with a tool of the tricone type, it is possible to obtain the "bit-bouncing" dysfunction only in the case where a coefficient Rf expressing the ratio between the frequency principal of oscillations of the hook weight (WOH) and the speed of rotation (RPM) of the surface lining is between two terminals: R f = * 20 f WOH RPM 0 or :
    • WOH , expressed in Hertz, is the main oscillation frequency of WOH over the interval [0, 10] Hz.
    • RPM 0 is the average instantaneous surface rotation speed, expressed in revolutions / min.

    Le critère fréquentiel s'exprime par : 0.95<Rf<0.99: The frequency criterion is expressed by: 0.95 <R f <0.99:

    Les deux bornes, 0,95 et 0.99, sont fixées ici à partir de résultats expérimentaux.The two bounds, 0.95 and 0.99, are set here from results experimental.

    En effet, on a constaté que les outils tricônes génèrent en fond de puits une forme trilobée. La fréquence d'oscillation longitudinale de l'ensemble de forage, lors du bit-bouncing, est donc environ trois fois plus élevée que sa fréquence d'oscillation en rotation. Ayant constaté par ailleurs, à partir d'un modèle 2D de contact outil/roche que le terrain joue un rôle de modulateur de fréquence entre le signal de vitesse de rotation et celui de vitesse longitudinale de l'outil, le rapport entre ces deux fréquences n'est donc pas strictement égal à 3, mais légèrement inférieur. C'est ce qu'expriment les valeurs de ces deux bornes: 0,95 et 0,99.In fact, it has been found that the tricone tools generate at the bottom of well a trilobed form. The longitudinal oscillation frequency of the drilling set, when bit-bouncing, is about three times more high than its frequency of oscillation in rotation. Having noticed by elsewhere, from a 2D model of tool / rock contact that the field plays a role of frequency modulator between the rotational speed signal and that of the longitudinal velocity of the tool, the ratio between these two frequencies is not strictly equal to 3, but slightly lower. This is expressed by the values of these two limits: 0.95 and 0.99.

    Il est important de noter que leurs valeurs sont données en théorie, mais que, dans la pratique, ces deux bornes peuvent être soumises à des coefficients de pondération dépendant notamment de la qualité des capteurs utilisés pour mesurer la vitesse de rotation RPM et le poids au crochet WOH. De fait, plus ces capteurs seront imprécis, et plus l'intervalle dans lequel se situe Rf en présence de bit-bouncing sera large, car il devra inclure ce degré d'imprécision des mesures.

  • b) Critère d'amplitude : On peut caractériser l'amplitude des mouvements de l'outil en fond de puits en déterminant un rapport entre la moyenne du poids sur l'outil (WOB0) et son écart-type (SWOB0). En effet, pour un poids sur l'outil moyen donné, l'écart-type calculé sur une certaine fenêtre temporelle permet de quantifier si les oscillations du signal autour de sa moyenne sont dangereuses ou non, c'est à dire devront être signalées ou non.
  • It is important to note that their values are given in theory, but that, in practice, these two terminals may be subject to weighting coefficients depending in particular on the quality of the sensors used to measure the rotation speed RPM and the weight at WOH hook. In fact, the more imprecise these sensors will be, and the longer the interval in which R f is in the presence of bit-bouncing will be wide, since it will have to include this degree of inaccuracy of the measurements.
  • b) Amplitude criterion: One can characterize the amplitude of the movements of the tool downhole by determining a ratio between the average of the weight on the tool (WOB 0 ) and its standard deviation (S WOB0 ) . Indeed, for a weight on the given average tool, the standard deviation calculated over a certain time window makes it possible to quantify if the oscillations of the signal around its mean are dangerous or not, ie will have to be signaled or no.
  • Ainsi, on définit Rwob tel que : Rwob = swob WOB 0    où :

    • swob est l'écart-type du signal de poids sur l'outil WOB estimé à partir de celui du signal de poids au crochet WOH et du modèle longitudinal réduit;
    • WOB0 est le poids sur l'outil moyen, défini à partir de la masse de la garniture et du poids au crochet moyen.
    Thus, we define R wob such that: R wob = s wob WOB 0 or :
    • s wob is the standard deviation of the weight signal on the WOB tool estimated from that of the hook weight signal WOH and the reduced longitudinal model;
    • WOB 0 is the average tool weight, defined from the weight of the lining and the average hook weight.

    Le schéma de la figure 3 montre de quelle manière les deux valeurs de rapport Rf et Rwob sont utilisées pour générer un ensemble d'alarmes sur le dysfonctionnement de type "bit-bouncing".The diagram of FIG. 3 shows how the two ratio values R f and R w w are used to generate a set of alarms on the "bit-bouncing" malfunction.

    On calcule la fréquence principale d'oscillations du poids au crochet, fWOH, à partir d'une FFT sur une fenêtre temporelle dont la largeur dépend directement de la fréquence d'acquisition du signal de poids au crochet. On calcule également la vitesse moyenne instantanée de rotation RPM0, qui est la vitesse moyenne de rotation donnée à intervalle de temps régulier à partir des mesures comprises dans une certaine fenêtre temporelle.The main frequency of oscillations of the hook weight, WOH , is calculated from an FFT over a time window whose width depends directly on the acquisition frequency of the hook weight signal. The average instantaneous rotation speed RPM 0 is also calculated, which is the average rotational speed given at a regular time interval from the measurements included in a certain time window.

    On calcule conjointement l'écart-type sWOH et la moyenne instantanés du poids au crochet WOH0. Ces deux grandeurs sont calculées sur une fenêtre glissante correspondant à un certain laps de temps (par exemple 3s). Ce laps de temps est déterminé en fonction de la fréquence d'acquisition du signal de poids au crochet WOH.The standard deviation WOH and the instantaneous average of the hook weight WOH 0 are jointly calculated. These two quantities are calculated on a sliding window corresponding to a certain period of time (for example 3s). This period of time is determined according to the acquisition frequency of the hook weight signal WOH.

    Le calcul de l'estimation de la moyenne du poids sur l'outil WOB0 est directement issu de la différence entre le poids au crochet et le poids de la garniture de forage. L'estimation de l'écart-type sWOB du poids sur l'outil est donnée par l'expression suivante : sWOB = sWOH H(fWOH ) The calculation of the estimate of the average weight on the tool WOB 0 is directly derived from the difference between the hook weight and the weight of the drill string. The estimate of the standard deviation s WOB of the weight on the tool is given by the following expression: s WOB = s WOH H ( f WOH )

    On calcule ensuite simultanément et en temps réel les deux rapports Rf et Rwob.The two ratios R f and R W w are then calculated simultaneously in real time.

    On compare Rf aux deux bornes délimitant l'intervalle «à risques» du dysfonctionnement du type "bit-bouncing".We compare Rf with the two bounds delimiting the interval "at risk" dysfunction of the "bit-bouncing" type.

    Si Rf n'est pas dans cet intervalle, il ne peut y avoir bit-bouncing, l'alarme indique le feu vert (référence 28).If Rf is not in this range, there can not be bit-bouncing, the alarm indicates the green light (reference 28).

    Sinon, par exemple, Rf est compris entre 0,95 et 0,99, il y a risque de "bit-bouncing".Otherwise, for example, Rf is between 0.95 and 0.99, there is risk bit-bouncing.

    On considère alors le second critère Rwob.We then consider the second criterion R wob .

    Si Rwob est faible (ici, par exemple, inférieur à 0,6), cela signifie que les oscillations de WOB autour de sa moyenne sont faibles. Donc il y un risque potentiel de "bit-bouncing", mais celui-ci n'apparaít pas réellement, ou n'est pas observable, le feu reste au vert (28). If R wob is low (here, for example, less than 0.6), this means that oscillations of WOB around its mean are small. So there is a potential risk of "bit-bouncing", but it does not really appear, or is not observable, the fire remains green (28).

    Si Rwob est moyen (par exemple compris entre 0,6 et 0,8) alors, le feu devient orange (référence 29), car il y a vraisemblablement du "bit-bouncing, mais encore de force moyenne. L'outil ne rebondit pas encore mais le poids sur l'outil présente des oscillations longitudinales déjà importantes, et à une fréquence dangereuse.If R wob is average (for example between 0.6 and 0.8), then the light becomes orange (reference 29), because there is probably a bit-bouncing, but still of medium force. does not bounce again, but the weight on the tool has already significant longitudinal oscillations, and at a dangerous frequency.

    Enfin, si Rwob est fort, il y a vraisemblablement du "bit-bouncing" d'ampleur importante. L'alarme est au feu est rouge (référence 30).Finally, if R wob is strong, there is likely to be a large bit-bouncing. The fire alarm is red (reference 30).

    On pourrait, sans sortir du cadre de la présente invention, non pas limiter la graduation du dysfonctionnement sur la base de trois couleurs, mais associer une couleur à chaque degré de sévérité des oscillations (par exemple tous les 0,1 points pour Rwob, ce qui éviterait d'avoir à choisir des seuils «fatidiques», tels que 0.6 et 0.8).Without departing from the scope of the present invention, it would be possible not to limit the graduation of the malfunction on the basis of three colors, but to associate a color with each degree of severity of the oscillations (for example every 0.1 points for R wob, which would avoid having to choose "fateful" thresholds, such as 0.6 and 0.8).

    Le modèle physique est validé en utilisant des données enregistrées sur chantier à l'aide des raccords instrumentés de fond et de surface.The physical model is validated using data recorded on site using instrumented bottom fittings and area.

    Le fluide de forage et les parois du puits n'interviennent que dans la mesure où ils génèrent un couple résistant de friction. Par expérience, et en utilisant les mesures de fond et de surface, on pourra établir une loi de friction le long des tiges linéaire en fonction de vitesse de rotation et de la vitesse longitudinale. The drilling fluid and the walls of the well intervene only in to the extent that they generate a friction-resistant torque. By experiment, and using the bottom and surface measurements, we can establish a law friction along the linear rods as a function of rotational speed and longitudinal velocity.

    La méthode de réduction employée est la méthode des perturbations singulières. Elle consiste à garder de la matrice d'état et de la matrice de commande, les lignes et les colonnes correspondant aux modes à garder. Pour conserver les gains statiques, les modes rapides sont remplacés par leur valeur statique, ce qui a pour conséquence d'introduire une matrice directe.The reduction method used is the method of singular disturbances. It consists of keeping the state matrix and the control matrix, the rows and columns corresponding to the modes to keep. To keep static gains, fast modes replaced by their static value, which has the consequence to introduce a direct matrix.

    La méthode suppose que les modes rapides prennent leur équilibre en un temps négligeable, c'est-à-dire qu'ils s'établissent instantanément (hypothèse quasi-statique).The method assumes that fast modes take their equilibrium in a negligible time, that is, they establish themselves instantly (quasi-static hypothesis).

    La présente invention est avantageusement mise en oeuvre sur un chantier de forage afin d'avoir une détection aussi précise que possible de la dangerosité du déplacement vertical de l'outil de forage en temps réel, et cela à partir des seules mesures de surface, notamment les fluctuations de l'accélération longitudinale et la vitesse de rotation des moyens conventionnels de mise en rotation de la garniture de forage, et d'une installation de surface équipée de moyens électroniques et informatiques. Il est très intéressant de prévenir les dysfonctionnements connus, par exemple le comportement dit "bit bouncing" caractérisé par un saut et un décollement de l'outil du front de taille bien que la tête du train de tiges reste sensiblement fixe et qu'une force de compression importante soit appliquée à l'outil. Ce dysfonctionnement peut avoir pour conséquences des effets néfastes sur la durée de vie des outils, sur l'augmentation de la fatigue mécanique du train de tiges et la fréquence des ruptures des connexions.The present invention is advantageously implemented on a drilling site in order to have as precise a detection as possible the dangerousness of the vertical displacement of the drilling tool in time real, and that from the only surface measurements, including fluctuations in longitudinal acceleration and rotational speed of conventional means for rotating the drill string, and a surface installation equipped with electronic means and computer. It is very interesting to prevent malfunctions known, for example the so-called "bit bouncing" behavior characterized by a jump and a detachment of the tool from the face although the head of the drill string remains substantially fixed and that a compressive force important is applied to the tool. This dysfunction may have for consequences of the adverse effects on the tool life, on the increase in mechanical fatigue of the drill string and the frequency breaks in connections.

    Claims (9)

    1. Method for estimating the effective longitudinal behaviour of a drilling bit (12) fixed to the end of a drilling string and entrained in rotation in a well (7) by entrainment means situated on the surface, in which use is made of a physical model of the drilling process based on general equations of mechanics and in which the following steps are carried out:
      the parameters of said model are determined taking into account the characteristic parameters of said well and said string,
      said model is reduced retaining only some of the characteristic modes of the matrix defining the state of said model
      characterised in that at least two values Rf and Rwob are calculated in real time, Rf being a function of the main oscillation frequency of the weight on the hook WOH divided by the mean instantaneous speed of rotation on the surface, Rwob being a function of the typical deviation of the signal for the weight on the bit WOB estimated by the reduced longitudinal model from the measurement of the signal for the weight on the hook WOH, divided by the mean weight on the bit WOB0 defined from the weight of the string and the mean weight on the hook, and in that the level of danger of the longitudinal behaviour of said drilling bit is determined from said values of Rf and Rwob.
    2. Method according to claim 1, in which Rf is compared with a range the limits of which are determined such that no dangerous longitudinal behaviour of the bit can take place therein if Rf does not fall within said range.
    3. Method according to claim 2, in which Rf falls within said range, and in that the level of danger of the longitudinal behaviour of the drilling bit is quantified as a function of the values of Rwob.
    4. Method according to one of the preceding claims, in which Rf = 20*fWOH / RPM0 in which fWOH, expressed in Hertz, is the main oscillation frequency of the WOH over the interval [0, 10] Hz and RPM0 is the mean instantaneous speed of rotation on the surface, expressed in revolutions per minute.
    5. Method according to one of the preceding claims, in which said limits of said interval are 0.95 and 0.99.
    6. Method according to one of the preceding claims, in which Rwob = Swob WOB0 in which swob is the typical deviation of the signal for the weight on the bit WOB estimated from that of the signal for the weight on the hook WOH and the reduced longitudinal model, and WOB0 is the mean weight on the bit defined from the mass of the string and the mean weight on the hook.
    7. Method according to claims 3 and 6, in which it is determined that there is no danger when Rwob is less than 0.6, and that there is a moderate danger when Rwob is between 0.6 and 0.8, and that there is extreme danger when Rwob is greater than 0.8.
    8. System for estimating the effective longitudinal behaviour of a drilling bit fixed to the end of a drilling string entrained in rotation in a well by entrainment means situated on the surface, in which a calculating installation comprises means for physical modelling of the drilling process based on general equations of mechanics, in that parameters of said modelling means are identified taking account of the parameters of said well and of said string, in that the calculating installation comprises means for reducing said model so as to retain only some of the characteristic modes of the matrix defining the state of said model, characterised in that said system comprises means for calculating at least two values Rf and Rwob in real time, Rf being a function of the main oscillation frequency of the weight on the hook WOH divided by the mean instantaneous speed of rotation on the surface, Rwob being a function of the typical deviation of the signal for the weight on the bit WOB estimated by the reduced longitudinal model from the measurement of the signal for the weight on the hook WOH, divided by the mean weight on the bit WOB0 defined from the weight of the string and from the mean weight on the hook, and in that said system comprises alarm means for the level of danger of the longitudinal behaviour of said drilling bit from said values of Rf and Rwob.
    9. Application of the method and the system according to one of the preceding claims to determination of the level of danger of the malfunction of bit bouncing.
    EP00400557A 1999-04-19 2000-03-02 Method and system for detecting bit-bounce Expired - Lifetime EP1046781B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9904941A FR2792363B1 (en) 1999-04-19 1999-04-19 METHOD AND SYSTEM FOR DETECTING THE LONGITUDINAL MOVEMENT OF A DRILLING TOOL
    FR9904941 1999-04-19

    Publications (2)

    Publication Number Publication Date
    EP1046781A1 EP1046781A1 (en) 2000-10-25
    EP1046781B1 true EP1046781B1 (en) 2005-02-02

    Family

    ID=9544617

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00400557A Expired - Lifetime EP1046781B1 (en) 1999-04-19 2000-03-02 Method and system for detecting bit-bounce

    Country Status (5)

    Country Link
    US (1) US6363780B1 (en)
    EP (1) EP1046781B1 (en)
    CA (1) CA2306320A1 (en)
    FR (1) FR2792363B1 (en)
    NO (1) NO20002031L (en)

    Families Citing this family (33)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6785641B1 (en) * 2000-10-11 2004-08-31 Smith International, Inc. Simulating the dynamic response of a drilling tool assembly and its application to drilling tool assembly design optimization and drilling performance optimization
    US7020597B2 (en) 2000-10-11 2006-03-28 Smith International, Inc. Methods for evaluating and improving drilling operations
    FI115037B (en) * 2001-10-18 2005-02-28 Sandvik Tamrock Oy Method and arrangement for a rock drilling machine
    US6843120B2 (en) * 2002-06-19 2005-01-18 Bj Services Company Apparatus and method of monitoring and signaling for downhole tools
    US6635654B1 (en) 2003-01-09 2003-10-21 Allergan, Inc. Ophthalmic compositions containing loratadine
    US20050015230A1 (en) * 2003-07-15 2005-01-20 Prabhakaran Centala Axial stability in rock bits
    US8267196B2 (en) 2005-11-21 2012-09-18 Schlumberger Technology Corporation Flow guide actuation
    US7571780B2 (en) 2006-03-24 2009-08-11 Hall David R Jack element for a drill bit
    US8297375B2 (en) 2005-11-21 2012-10-30 Schlumberger Technology Corporation Downhole turbine
    US8528664B2 (en) 2005-11-21 2013-09-10 Schlumberger Technology Corporation Downhole mechanism
    US8297378B2 (en) * 2005-11-21 2012-10-30 Schlumberger Technology Corporation Turbine driven hammer that oscillates at a constant frequency
    US8522897B2 (en) 2005-11-21 2013-09-03 Schlumberger Technology Corporation Lead the bit rotary steerable tool
    US8360174B2 (en) 2006-03-23 2013-01-29 Schlumberger Technology Corporation Lead the bit rotary steerable tool
    US8225883B2 (en) 2005-11-21 2012-07-24 Schlumberger Technology Corporation Downhole percussive tool with alternating pressure differentials
    US8316964B2 (en) * 2006-03-23 2012-11-27 Schlumberger Technology Corporation Drill bit transducer device
    US8011457B2 (en) 2006-03-23 2011-09-06 Schlumberger Technology Corporation Downhole hammer assembly
    US8014987B2 (en) * 2007-04-13 2011-09-06 Schlumberger Technology Corp. Modeling the transient behavior of BHA/drill string while drilling
    US7866416B2 (en) 2007-06-04 2011-01-11 Schlumberger Technology Corporation Clutch for a jack element
    US7721826B2 (en) * 2007-09-06 2010-05-25 Schlumberger Technology Corporation Downhole jack assembly sensor
    US7967083B2 (en) * 2007-09-06 2011-06-28 Schlumberger Technology Corporation Sensor for determining a position of a jack element
    US20090076873A1 (en) * 2007-09-19 2009-03-19 General Electric Company Method and system to improve engineered system decisions and transfer risk
    AU2009260477B2 (en) * 2008-06-17 2014-07-17 Exxonmobil Upstream Research Company Methods and systems for mitigating drilling vibrations
    WO2010059295A1 (en) 2008-11-21 2010-05-27 Exxonmobil Upstream Research Company Methods and systems for modeling, designing, and conducting drilling operations that consider vibrations
    CN102687041B (en) 2009-08-07 2014-09-24 埃克森美孚上游研究公司 Methods to estimate downhole drilling vibration indices from surface measurement
    EP2462315B1 (en) 2009-08-07 2018-11-14 Exxonmobil Upstream Research Company Methods to estimate downhole drilling vibration amplitude from surface measurement
    US9593567B2 (en) 2011-12-01 2017-03-14 National Oilwell Varco, L.P. Automated drilling system
    US9482084B2 (en) * 2012-09-06 2016-11-01 Exxonmobil Upstream Research Company Drilling advisory systems and methods to filter data
    US9945979B2 (en) * 2013-08-02 2018-04-17 Halliburton Energy Services, Inc. Acoustic sensor metadata dubbing channel
    CN105258614B (en) * 2015-11-12 2017-10-13 上海船舶研究设计院 A kind of dipstick peculiar to vessel
    US11536128B2 (en) 2017-03-31 2022-12-27 Exxonmobil Upstream Research Company Method for drilling wellbores utilizing drilling parameters optimized for stick-slip vibration conditions
    US10851639B2 (en) 2017-03-31 2020-12-01 Exxonmobil Upstream Research Company Method for drilling wellbores utilizing a drill string assembly optimized for stick-slip vibration conditions
    CN109296360A (en) * 2018-08-23 2019-02-01 中石化重庆涪陵页岩气勘探开发有限公司 A kind of multistage method for early warning based on hole deviation
    US11193364B1 (en) * 2020-06-03 2021-12-07 Schlumberger Technology Corporation Performance index using frequency or frequency-time domain

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3581564A (en) * 1969-05-14 1971-06-01 Exxon Production Research Co Method for detecting roller bit bearing failure
    US3785202A (en) * 1971-06-25 1974-01-15 Cities Service Oil Co Electronic supervisory control system for drilling wells
    US4150568A (en) * 1978-03-28 1979-04-24 General Electric Company Apparatus and method for down hole vibration spectrum analysis
    GB2179736B (en) * 1985-08-30 1989-10-18 Prad Res & Dev Nv Method of analyzing vibrations from a drilling bit in a borehole
    FR2614360B1 (en) * 1987-04-27 1989-06-16 Forex Neptune METHOD FOR MEASURING THE RUNNING SPEED OF A DRILLING TOOL
    US4876886A (en) * 1988-04-04 1989-10-31 Anadrill, Inc. Method for detecting drilling events from measurement while drilling sensors
    US4852399A (en) * 1988-07-13 1989-08-01 Anadrill, Inc. Method for determining drilling conditions while drilling
    FR2645205B1 (en) 1989-03-31 1991-06-07 Elf Aquitaine DEVICE FOR AUDITIVE AND / OR VISUAL REPRESENTATION OF MECHANICAL PHENOMENAS IN A WELL AND USE OF THE DEVICE IN A METHOD OF CONDUCTING A WELL
    US4976143A (en) * 1989-10-04 1990-12-11 Anadrill, Inc. System and method for monitoring drill bit depth
    FR2666845B1 (en) 1990-09-14 1997-01-10 Elf Aquitaine METHOD FOR CONDUCTING A WELL.
    NO930044L (en) * 1992-01-09 1993-07-12 Baker Hughes Inc PROCEDURE FOR EVALUATION OF FORMS AND DRILL CONDITIONS
    GB2264562B (en) * 1992-02-22 1995-03-22 Anadrill Int Sa Determination of drill bit rate of penetration from surface measurements
    FR2720439B1 (en) * 1994-05-24 1996-07-05 Inst Francais Du Petrole Method and system for analyzing the behavior of a drill string.
    FR2750159B1 (en) * 1996-06-24 1998-08-07 Inst Francais Du Petrole METHOD AND SYSTEM FOR REAL-TIME ESTIMATION OF AT LEAST ONE PARAMETER RELATED TO THE BEHAVIOR OF A DOWNHOLE TOOL
    CA2351176C (en) * 1998-12-12 2009-02-24 Dresser Industries, Inc. Apparatus for measuring downhole drilling efficiency parameters

    Also Published As

    Publication number Publication date
    NO20002031L (en) 2000-10-20
    US6363780B1 (en) 2002-04-02
    EP1046781A1 (en) 2000-10-25
    NO20002031D0 (en) 2000-04-18
    FR2792363A1 (en) 2000-10-20
    CA2306320A1 (en) 2000-10-19
    FR2792363B1 (en) 2001-06-01

    Similar Documents

    Publication Publication Date Title
    EP1046781B1 (en) Method and system for detecting bit-bounce
    EP0816629B1 (en) Method and system for real time estimation of at least one parameter connected to the rate of penetration of a drilling tool
    EP2391776B1 (en) System and method for monitoring the state of a foundation in a soil
    US6817425B2 (en) Mean strain ratio analysis method and system for detecting drill bit failure and signaling surface operator
    US6648082B2 (en) Differential sensor measurement method and apparatus to detect a drill bit failure and signal surface operator
    FR2732403A1 (en) METHOD AND SYSTEM FOR PREDICTING THE APPEARANCE OF DYSFUNCTION DURING DRILLING
    EP0816630B1 (en) Method and system for real time estimation of at least one parameter connected to the performance of a downhole tool
    FR3036728A1 (en)
    FR2869067A1 (en) SYSTEM AND METHOD FOR FIELD SYNTHESIS FOR OPTIMIZING A DRILLING DEVICE
    FR2627649A1 (en) METHOD AND DEVICE FOR TRANSMITTING INFORMATION BY CABLE AND BY MUD WAVES
    FR2897691A1 (en) MEASUREMENT OF THE VECTOR MOVING PARTICLES IN A REMOTE MARINE FLUTE
    FR2611804A1 (en) METHOD FOR CONTROLLING WELL DRILLING OPERATIONS
    EP0695427A1 (en) Method and device for evaluating the permeability of a rock medium
    CA2810697A1 (en) Method for estimating elastic parameters by inverting 4d seismic measurements
    EP0558703B1 (en) Downhole drilling data processing and interpreting device and method for implementing same
    FR2963111A1 (en) METHOD FOR ESTIMATING ELASTIC PARAMETERS BY INVERTING SEISMIC 4D MEASUREMENTS
    EP0836670B1 (en) Method and system for logging mechanical parameters of formations crossed through by a borehole
    FR3069324B1 (en) STATIC PENETROMETER AND ASSOCIATED MEASUREMENT METHOD
    FR2549132A1 (en) METHOD AND APPARATUS FOR DETECTING THE PENETRATION OF A FLUID IN A BOREHOLE
    Baumgartner et al. Maximizing Drilling Sensor Value through Optimized Frequency Selection and Data Processing
    CA2240479C (en) Method and system for detecting the precession of a component of a drill string
    FR2666419A1 (en) METHOD FOR TRANSMITTING WELL DRILLING DATA FROM BOTTOM TO SURFACE.
    WO2015118066A1 (en) Method of monitoring an intervention in a fluid exploitation well made in the subsoil, and associated intervention device
    FR2983956A1 (en) Non stationary probe for instantaneous measurement of water pressure in conduit of turbine, has triaxial quartz accelerometer fixed at arm, where axial distance between accelerometer and head is of specific value

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): GB IT NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20010425

    AKX Designation fees paid

    Free format text: GB IT NL

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): GB IT NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050202

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050202

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20050202

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20051103

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20070615

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080302