EP0816630B1 - Method and system for real time estimation of at least one parameter connected to the performance of a downhole tool - Google Patents

Method and system for real time estimation of at least one parameter connected to the performance of a downhole tool Download PDF

Info

Publication number
EP0816630B1
EP0816630B1 EP97401298A EP97401298A EP0816630B1 EP 0816630 B1 EP0816630 B1 EP 0816630B1 EP 97401298 A EP97401298 A EP 97401298A EP 97401298 A EP97401298 A EP 97401298A EP 0816630 B1 EP0816630 B1 EP 0816630B1
Authority
EP
European Patent Office
Prior art keywords
model
string
reduced
displacement
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97401298A
Other languages
German (de)
French (fr)
Other versions
EP0816630A1 (en
Inventor
Isabelle Fabret
Claude Mabile
Jean-Pierre Desplans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0816630A1 publication Critical patent/EP0816630A1/en
Application granted granted Critical
Publication of EP0816630B1 publication Critical patent/EP0816630B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B45/00Measuring the drilling time or rate of penetration

Definitions

  • the present invention relates to the field of measurements during drilling, in particular measures concerning the behavior of a drilling tool attached to the end of a drill string.
  • the method according to the invention provides a solution for estimate in particular the amplitude of the vertical displacements of the drilling tool or the effort applied to the tool, said estimates being obtained by means of a calculation taking into account measurements made at the top of the drill string, i.e. substantially on the ground surface, generally by means of sensors or a fitting instrumented located in the vicinity of the means for rotating the lining.
  • the information contained in the surface measurements does not alone are not enough to solve the problem posed, that is to say knowing the instantaneous movements of the tool by knowing the instantaneous movements of the surface trim.
  • the surface measurement information must be supplemented by independent information of another kind which takes into account the structure of the drill string and its behavior between the bottom and the surface: this is the role of the knowledge which establishes the theoretical relationships between the bottom and the surface.
  • the methodology of the present invention uses the conjunction of such a model, defined a priori, and surface measurements acquired in real time.
  • the model can mainly take into account displacements and efforts vertical and said reduced model can calculate in real time the movement or the effort drilling tool vertical, said parameter measured at the surface being the vertical acceleration of the filling.
  • the rotational speed measured on the surface can be a second parameter used in the scale model.
  • the reduced model can be refined by self-adaptive filtering which minimizes the difference between an actual measurement of a parameter related to the displacement of the lining in surface and the corresponding output obtained by said reduced model.
  • the filtering can take into account the tension force of the rods.
  • the invention also relates to a system for estimating effective behavior. of a drilling tool attached to the end of a drill string and rotated in a well by means of drive located on the surface, in which an installation of calculation includes means for non-linear physical modeling of the drilling process based on general mechanical equations.
  • the parameters of said means modeling are identified by taking into account the parameters of said well and said lining, and the calculation installation includes means for linearizing said model around an operating point, means for reducing said linearized model so to keep only some of the eigen modes of the state matrix of said model, means of calculating, in real time, the displacement of the drilling tool or the applied force on the tool, using the modeling means once linearized and reduced and the means measuring at least one parameter related to the displacement of the lining on the surface.
  • the modeling means may only take into account the traction-compression, and the parameter can be one of the following: the rotation speed, vertical acceleration and packing tension.
  • FIG. 1 illustrates a drilling rig on which we will operate the invention.
  • the surface installation comprises a lifting device 1 comprising a lifting tower 2, a winch 3 which allow the displacement of a drilling hook 4.
  • Under the drill hook are suspended drive means 5 for rotating the assembly of the drill string 6 placed in the well 7.
  • These drive means can be of the drive rod or kelly type coupled to a rotation table 8 and the mechanical motorizations, or of the type motorized drive head or "power swivel" suspended directly from the hook and guided longitudinally in the tower.
  • the drill string 6 is conventionally constituted by rods of drilling 10, of part 11 commonly called BHA for "Bottom Hole Assembly” mainly comprising drill rods, a drilling tool 12 in contact with the land being drilled.
  • BHA Bottom Hole Assembly
  • the well 7 is filled with a fluid, called a drilling fluid, which circulates from the surface at the bottom through the inner channel of the drill string and rises to the surface by the annular space between the walls of the well and the drill string.
  • an instrumented fitting 13 is inserted between the drive means and the top of the lining.
  • This fitting allows measure the speed of rotation, the tensile force and the longitudinal vibrations of the top of the trim, and incidentally the couple. These so-called surface measurements are transmitted by cable or radio to an electronic recording, processing, display, not shown here.
  • fitting 13 we can use other sensors such as a tachometer on the rotation table to measure the speed of rotation, a measurement of tension on the dead strand of hauling and possibly a device for measuring the torque on the motorized device, if the accuracy of the measurements obtained is sufficient.
  • Part 11 of the BHA may more specifically include, drill collars, stabilizers, and a second instrumented fitting 14 which will only be used to control experimentally the present invention by allowing the comparison between the displacement of the drilling tool 12 actually measured by the instrumented fitting 14 and the estimated displacement thanks to the implementation of the present invention. So it is clear that the application of the present invention does not use an instrument fitting placed at the bottom of Wells.
  • the driller who conducts a drilling operation with the devices described in the Figure 1 has three possible actions, which are therefore the possible control variables for driving, the weight on the tool which is adjusted by the winch which controls the hook position, rotation speed of the rotary table or equivalent, the flow of injected drilling fluid.
  • the described model will treat the drill string as a one-dimensional element vertical. Displacements in vertical translation will be considered, displacements being neglected.
  • FIG. 2 represents the block diagram of the traction-compression model. It is a classic model with finite differences which includes several meshes represented by blocks 20. Each mesh represents a part of the drill string, drill rods and drill collars. These are mass-spring-damping triples shown in the diagrams referenced 21, 22, 23. Each block is provided with two inputs and outputs represented by the pairs of arrows 24 and 25 which represent the input and output voltages and the vertical movement speeds of inputs and outputs. This representation shows the way to digitally connect several rods (or meshes) as we connect physically the packing rods.
  • Block 26 represents the drilling rig. It is a collection of masses, of springs and friction.
  • Block 27 represents the tool in its longitudinal behavior.
  • Block 28 represents the law relating the movements of the drilling tool to the shape of the working face and the compressive strength of the rock. According to a position instantaneous vertical of the tool and the shape of the working face, the weight is determined acting on the tool.
  • This model is validated using data recorded on site using the instrumented bottom and surface fittings.
  • the tensile-compression model thus obtained is generally of high order, that is to say of the order of 50 to 100 to reproduce reality with sufficient finesse.
  • the traction-compression model retains an order Student.
  • the analysis of the eigen modes of the traction-compression model allows to quantify the contribution of each mode to the outputs of interest. Onne then keeps only the relevant modes; that is to say those who have an influence notable on the dynamic behavior represented by said outputs.
  • the reduction method used is the singular disturbance method. It consists in keeping from the state matrix and from the command matrix, the lines and the columns corresponding to the modes to keep. To keep static gains, the modes Rapids are replaced by their static value, which has the consequence of introducing a direct matrix.
  • the method assumes that the fast modes take their equilibrium in a time negligible, that is to say that they are established instantaneously (quasi-static hypothesis).
  • FIG. 3 shows the block diagram of a loop-type estimation system opened.
  • Block 40 shows diagrammatically the means for measuring surface parameters, here the voltage Tms and vertical acceleration Zms, the speed of rotation of the lining Vms measured at the table or at the motorized injection head.
  • Block 41 represents the model which simulates the physical model of non-linear tension-compression by calculating the function transfer between the inputs (Vms, Zms) and the outputs Tes, Tef and Zef representing respectively the estimated tension on the lining at the surface, the estimated tension and the estimated vertical acceleration at the lower end of the packing in the well.
  • the transfer function is always an approximation of reality and any mismatch between the model and the actual drilling process can create a discrepancy between the estimated values and the real values by integrating the differences. Also in the in most cases, it is advantageous to carry out a readjustment, or readjustment, using at least minus a comparison between the value of an estimated output and its value actually measured.
  • the linear estimator is preferably readjusted from the surface tension.
  • the estimation technique is based on the filtering principles of Luenberger and Kalman ("Automatic linear systems" by P. De Larminat and Y. Thomas-Flammarion science; Paris IV, 1975).
  • the principle of a linear estimator can be illustrated by FIG. 4 where the measurement of the voltage Tms and the estimated value Tes and of the voltage are compared in the means 42, the difference between these two values being injected into an adapter 43 in real time.
  • the objective here is to reconstruct as faithfully as possible the outputs rather than having an exact model. This is why we perform a registration state.
  • state registration consists in weighting between the states predicted by the model at time t and the states reconstructed from the only measured outputs. This weighting is not a simple average, but it takes into account the degree of precision of the state estimates obtained by its two independent channels.
  • Tes is the equivalent of a value filtered on the basis of a model: this is why we generally use the term filtering (filtering of Luenberger, Kalman filtering ).
  • the state registration technique introduces a slaving of Tms measured on Tes estimated.
  • the voltage T for carrying out the readjustment: it does not seem possible to readjust a large number of states from this measured. This is why, the nonlinear traction-compression model is not suitable in despite its greater precision.
  • the reduced estimation model must, preferably meet the technological constraints of real time.
  • Block 50 represents a physical model representing a rotary drilling process, for example illustrated in Figure 2. This model takes into account account for a determined operating situation, in particular by receiving the mechanical characteristics of the drill string used, symbolization referenced 51, well and surface conditions, symbolization referenced 52, and friction laws, symbolized by reference 53.
  • Block 54 represents the main tension model once linearized and reduced as described above. All these steps gathered under the DF brace run in delayed time compared to the progress of the process rotary drilling, the other steps gathered under the TR brace are executed in time real.
  • Block 55 is directly what has been called the estimator.
  • Means of measure 56 placed on the top of the drill string give the measurements vertical acceleration, tension and speed of rotation at the top of the rods, i.e. surface. These surface measurements are taken into account in the estimator, as described above, to give an estimate of the displacement values of the tool drilling, in particular the vertical acceleration Zef from which the vertical displacement will be deducted of the drilling tool.
  • the present invention is advantageously implemented on a construction site drilling in order to have as precise an estimate as possible of the vertical acceleration of the drilling tool in real time, using only surface measurements, in particular the vertical acceleration and the speed of rotation of conventional means of setting rotation of the drill string, and of a surface installation equipped with means electronic and computer. It is very interesting to have an estimate of the parameters background so as to detect, and even prevent known malfunctions, by example the so-called "bit bouncing" behavior characterized by a separation of the tool from the size face although the head of the drill string remains substantially stationary and a force of significant compression is applied to the tool. This can result in harmful effects on the life of the tools, on the increase of the mechanical fatigue of the drill string and the frequency of connection breaks.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

La présente invention concerne le domaine des mesures en cours de forage, en particulier des mesures concernant le comportement d'un outil de forage fixé à l'extrémité d'un train de tiges de forage. La méthode selon l'invention propose une solution pour estimer notamment l'amplitude des déplacements verticaux de l'outil de forage ou l'effort appliqué à l'outil, lesdites estimations étant obtenues par le moyen d'un programme de calcul prenant en compte des mesures effectuées au sommet du train de tiges, c'est-à-dire sensiblement à la surface du sol, généralement par le moyen de capteurs ou d'un raccord instrumenté situés dans le voisinage des moyens d'entraínement en rotation de la garniture.The present invention relates to the field of measurements during drilling, in particular measures concerning the behavior of a drilling tool attached to the end of a drill string. The method according to the invention provides a solution for estimate in particular the amplitude of the vertical displacements of the drilling tool or the effort applied to the tool, said estimates being obtained by means of a calculation taking into account measurements made at the top of the drill string, i.e. substantially on the ground surface, generally by means of sensors or a fitting instrumented located in the vicinity of the means for rotating the lining.

On connaít des techniques de mesure pour l'acquisition d'informations liées au comportement dynamique de la garniture de forage, qui utilisent un ensemble de capteurs de fond reliés à la surface par un conducteur électrique. Dans le document FR-2 688 026, il est utilisé deux ensembles de capteurs de mesure reliés par un câble du type logging, l'un étant situé au fond du puits, l'autre au sommet de la garniture de forage. Cependant, la présence d'un câble le long de la garniture de forage est gênante pour les opérations de forage proprement dites.We know measurement techniques for the acquisition of information related to dynamic behavior of the drill string, which use a set of sensors bottom connected to the surface by an electrical conductor. In document FR-2 688 026, it two sets of measurement sensors are used connected by a logging type cable, one being located at the bottom of the well, the other at the top of the drill string. However, the presence of a cable along the drill string is troublesome for the operations of proper drilling.

On connaít le document EP-A-709546 qui décrit une méthode prédictive de mesures de fond de puits consécutives à des mesures de surface, à partir d'une équation prédictive obtenue à la suite de collectes de mesures de fond et de surface. Cette méthode impose une collecte de mesures de fond et donc des moyens de collecte de fond de puits.We know the document EP-A-709546 which describes a predictive method of Downhole measurements following surface measurements, from an equation predictive obtained following collections of background and surface measurements. This method requires the collection of bottom measurements and therefore means of bottomhole collection.

On connaít par les documents FR 2645205 ou FR 2666845 des dispositifs de surface placés au sommet de la garniture qui déterminent certains dysfonctionnements de forage en fonction de mesures de surface, mais sans prendre en compte, de manière physique, le comportement dynamique de la garniture et de l'outil de forage dans le puits. We know from documents FR 2645205 or FR 2666845 of the surface placed at the top of the lining which determine certain malfunctions of drilling according to surface measurements, but without taking into account, so physical, dynamic behavior of the lining and the drilling tool in the well.

Entre le fond d'un puits et la surface du sol, il existe un train de tiges le long duquel ont lieu des phénomènes dissipatifs d'énergie (frottement sur la paroi, amortissement de torsion,...), des phénomènes conservatifs de flexibilité, notamment en traction-compression. Il y a ainsi une distorsion entre les mesures des déplacements de fond et de surface qui dépend principalement des caractéristiques intrinsèques de la garniture (longueur, raideur, géométrie), des caractéristiques de frottement à l'interface tiges/paroi et de phénomènes aléatoires.Between the bottom of a well and the soil surface, there is a string of rods along from which energy dissipative phenomena take place (friction on the wall, torsional damping, ...), conservative phenomena of flexibility, especially in tension-compression. There is thus a distortion between the measurements of the displacements of bottom and surface which mainly depends on the intrinsic characteristics of the lining (length, stiffness, geometry), friction characteristics at the interface rods / wall and random phenomena.

C'est pourquoi, les informations contenues dans les mesures de surface ne suffisent pas à elles seules à résoudre le problème posé, c'est-à-dire connaítre les déplacements instantanés de l'outil en connaissant les déplacements instantanés de la garniture en surface. Il faut compléter les informations de mesures de surface par des informations indépendantes, d'une autre nature, qui prennent en compte la structure du train de tiges et son comportement entre le fond et la surface: c'est le rôle du modèle de connaissance qui établit les relations théoriques entre le fond et la surface.This is why, the information contained in the surface measurements does not alone are not enough to solve the problem posed, that is to say knowing the instantaneous movements of the tool by knowing the instantaneous movements of the surface trim. The surface measurement information must be supplemented by independent information of another kind which takes into account the structure of the drill string and its behavior between the bottom and the surface: this is the role of the knowledge which establishes the theoretical relationships between the bottom and the surface.

La méthodologie de la présente invention utilise la conjonction d'un tel modèle, défini a priori, et de mesures de surface acquises en temps réel.The methodology of the present invention uses the conjunction of such a model, defined a priori, and surface measurements acquired in real time.

Ainsi, la présente invention concerne une méthode d'estimation du comportement effectif d'un outil de forage fixé à l'extrémité d'une garniture de forage et entraíné en rotation dans un puits par des moyens d'entraínement situés en surface, dans laquelle on utilise un modèle physique non linéaire du processus de forage fondé sur des équations générales de la mécanique. Dans la méthode, on effectue les étapes suivantes:

  • on identifie les paramètres dudit modèle en prenant en compte les paramètres dudit puits et de ladite garniture,
  • on linéarise ledit modèle autour d'un point de fonctionnement,
  • on réduit ledit modèle linéarisé en ne conservant que certains des modes propres de la matrice d'état dudit modèle,
  • on calcule, en temps réel, le déplacement de l'outil de forage ou l'effort appliqué sur l'outil, à l'aide du modèle réduit et d'au moins un paramètre mesuré en surface.
Thus, the present invention relates to a method of estimating the effective behavior of a drilling tool attached to the end of a drilling rig and rotated in a well by drive means located on the surface, in which we use a nonlinear physical model of the drilling process based on general mechanical equations. In the method, the following steps are carried out:
  • the parameters of said model are identified by taking into account the parameters of said well and of said lining,
  • we linearize said model around an operating point,
  • said linearized model is reduced by retaining only some of the eigen modes of the state matrix of said model,
  • the displacement of the drilling tool or the force applied to the tool is calculated in real time, using the reduced model and at least one parameter measured at the surface.

Le modèle peut prendre en compte essentiellement les déplacements et efforts verticaux et ledit modèle réduit peut calculer en temps réel le mouvement ou l'effort vertical de l'outil de forage, ledit paramètre mesuré en surface étant l'accélération verticale de la garniture. The model can mainly take into account displacements and efforts vertical and said reduced model can calculate in real time the movement or the effort drilling tool vertical, said parameter measured at the surface being the vertical acceleration of the filling.

La vitesse de rotation mesurée à la surface peut être un deuxième paramètre utilisé dans le modèle réduit.The rotational speed measured on the surface can be a second parameter used in the scale model.

Le modèle réduit peut être affiné par un filtrage auto adaptatif qui minimise la différence entre une mesure réelle d'un paramètre lié au déplacement de la garniture en surface et la sortie correspondante obtenue par ledit modèle réduit.The reduced model can be refined by self-adaptive filtering which minimizes the difference between an actual measurement of a parameter related to the displacement of the lining in surface and the corresponding output obtained by said reduced model.

Le filtrage peut prendre en compte la force de tension des tiges.The filtering can take into account the tension force of the rods.

L'invention concerne également un système d'estimation du comportement effectif d'un outil de forage fixé à l'extrémité d'une garniture de forage et entraíné en rotation dans un puits par des moyens d'entraínement situés en surface, dans lequel une installation de calcul comporte des moyens de modélisation physique non linéaire du processus de forage fondé sur des équations générales de la mécanique. Les paramètres desdits moyens de modélisation sont identifiés en prenant en compte les paramètres dudit puits et de ladite garniture, et l'installation de calcul comporte des moyens de linéarisation dudit modèle autour d'un point de fonctionnement, des moyens de réduction dudit modèle linéarisé afin de ne conserver que certains des modes propres de la matrice d'état dudit modèle, des moyens de calcul, en temps réel, du déplacement de l'outil de forage ou de l'effort appliqué sur l'outil, à l'aide des moyens de modélisation une fois linéarisés et réduits et des moyens de mesure d'au moins un paramètre lié au déplacement de la garniture en surface.The invention also relates to a system for estimating effective behavior. of a drilling tool attached to the end of a drill string and rotated in a well by means of drive located on the surface, in which an installation of calculation includes means for non-linear physical modeling of the drilling process based on general mechanical equations. The parameters of said means modeling are identified by taking into account the parameters of said well and said lining, and the calculation installation includes means for linearizing said model around an operating point, means for reducing said linearized model so to keep only some of the eigen modes of the state matrix of said model, means of calculating, in real time, the displacement of the drilling tool or the applied force on the tool, using the modeling means once linearized and reduced and the means measuring at least one parameter related to the displacement of the lining on the surface.

Les moyens de modélisation peuvent ne prendre en compte que la traction-compression, et le paramètre peut être l'un des suivants: la vitesse de rotation, l'accélération verticale et la tension de la garniture.The modeling means may only take into account the traction-compression, and the parameter can be one of the following: the rotation speed, vertical acceleration and packing tension.

La présente invention sera mieux comprise et ses avantages apparaítront clairement à la lecture de la description d'un exemple, nullement limitatif, illustrés par les figures ci-après annexées, parmi lesquelles:

  • la figure 1 représente schématiquement les moyens mis en oeuvre pour une opération de forage,
  • la figure 2 représente un exemple de diagramme d'un modèle physique en traction-compression,
  • la figure 3 représente un diagramme d'un estimateur en boucle ouverte,
  • la figure 4 représente un diagramme d'un estimateur avec recalage,
  • la figure 5 représente schématiquement la méthodologie de la constitution de l'estimateur selon l'invention.
The present invention will be better understood and its advantages will become clear on reading the description of an example, which is in no way limitative, illustrated by the figures below appended, among which:
  • FIG. 1 schematically represents the means used for a drilling operation,
  • FIG. 2 represents an example of a diagram of a physical model in traction and compression,
  • FIG. 3 represents a diagram of an open loop estimator,
  • FIG. 4 represents a diagram of an estimator with registration,
  • FIG. 5 schematically represents the methodology of the constitution of the estimator according to the invention.

La figure 1 illustre un appareil de forage sur lequel on mettra en oeuvre l'invention. L'installation de surface comprend un appareil de levage 1 comprenant une tour de levage 2, un treuil 3 qui permettent le déplacement d'un crochet de forage 4. Sous le crochet de forage sont suspendus des moyens d'entraínement 5 en rotation de l'ensemble de la garniture de forage 6 placée dans le puits 7. Ces moyens d'entraínement peuvent être du type tige d'entraínement ou kelly accouplée à une table de rotation 8 et les motorisations mécaniques, ou du type tête d'entraínement motorisée ou "power swivel" suspendue directement au crochet et guidée longitudinalement dans la tour.Figure 1 illustrates a drilling rig on which we will operate the invention. The surface installation comprises a lifting device 1 comprising a lifting tower 2, a winch 3 which allow the displacement of a drilling hook 4. Under the drill hook are suspended drive means 5 for rotating the assembly of the drill string 6 placed in the well 7. These drive means can be of the drive rod or kelly type coupled to a rotation table 8 and the mechanical motorizations, or of the type motorized drive head or "power swivel" suspended directly from the hook and guided longitudinally in the tower.

La garniture de forage 6 est constituée conventionnellement par des tiges de forage 10, d'une partie 11 appelée couramment BHA pour "Bottom Hole Assembly" comportant principalement des masses-tiges, un outil de forage 12 en contact avec le terrain en cours de forage. Le puits 7 est rempli d'un fluide, dit de forage, qui circule de la surface au fond par le canal intérieur de la garniture de forage et remonte en surface par l'espace annulaire entre les parois du puits et la garniture de forage.The drill string 6 is conventionally constituted by rods of drilling 10, of part 11 commonly called BHA for "Bottom Hole Assembly" mainly comprising drill rods, a drilling tool 12 in contact with the land being drilled. The well 7 is filled with a fluid, called a drilling fluid, which circulates from the surface at the bottom through the inner channel of the drill string and rises to the surface by the annular space between the walls of the well and the drill string.

Pour la mise en oeuvre de l'invention, on intercale un raccord instrumenté 13 entre les moyens d'entraínement et le sommet de la garniture. Ce raccord permet de mesurer la vitesse de rotation, la force de tension et les vibrations longitudinales du sommet de la garniture, et accessoirement le couple. Ces mesures, dites de surface, sont transmises par câble ou radio vers une installation électronique d'enregistrement, de traitement, d'affichage, non représentée ici. A la place du raccord 13, on pourra utiliser d'autres capteurs tels un tachymètre sur la table de rotation pour mesurer la vitesse de rotation, une mesure de tension sur le brin mort du mouflage et éventuellement un appareil de mesure du couple sur l'appareil de motorisation, si la précision des mesures ainsi obtenues est suffisante. For the implementation of the invention, an instrumented fitting 13 is inserted between the drive means and the top of the lining. This fitting allows measure the speed of rotation, the tensile force and the longitudinal vibrations of the top of the trim, and incidentally the couple. These so-called surface measurements are transmitted by cable or radio to an electronic recording, processing, display, not shown here. Instead of fitting 13, we can use other sensors such as a tachometer on the rotation table to measure the speed of rotation, a measurement of tension on the dead strand of hauling and possibly a device for measuring the torque on the motorized device, if the accuracy of the measurements obtained is sufficient.

La partie 11 de la BHA peut plus précisément comporter, des masses-tiges, des stabilisateurs, et un second raccord instrumenté 14 qui ne sera utilisé que pour contrôler expérimentalement la présente invention en permettant la comparaison entre le déplacement de l'outil de forage 12 effectivement mesuré par le raccord instrumenté 14 et le déplacement estimé grâce à la mise en oeuvre de la présente invention. Il est donc clair que l'application de la présente invention n'utilise pas de raccord instrument placé au fond du puits.Part 11 of the BHA may more specifically include, drill collars, stabilizers, and a second instrumented fitting 14 which will only be used to control experimentally the present invention by allowing the comparison between the displacement of the drilling tool 12 actually measured by the instrumented fitting 14 and the estimated displacement thanks to the implementation of the present invention. So it is clear that the application of the present invention does not use an instrument fitting placed at the bottom of Wells.

Le foreur qui conduit une opération de forage avec les appareils décrits sur la figure 1 a trois actions possibles, qui sont donc les variables de commande possibles permettant la conduite, le poids sur l'outil qui est réglé par le treuil lequel contrôle la position du crochet, la vitesse de rotation de la table de rotation ou équivalent, le débit de fluide de forage injecté.The driller who conducts a drilling operation with the devices described in the Figure 1 has three possible actions, which are therefore the possible control variables for driving, the weight on the tool which is adjusted by the winch which controls the hook position, rotation speed of the rotary table or equivalent, the flow of injected drilling fluid.

Pour illustrer un exemple de la présente invention, on utilisera un modèle du système mécanique composé des éléments technologiques suivants:

  • un appareil de forage comprenant une installation de levage,
  • un ensemble d'entraínement: organe de régulation et motorisation,
  • un ensemble de tiges,
  • un ensemble de masses-tiges,
  • un outil,
  • un terrain représentant le contact outil/roche.
To illustrate an example of the present invention, a model of the mechanical system composed of the following technological elements will be used:
  • a drilling rig comprising a lifting installation,
  • a set of drive: regulator and motor,
  • a set of rods,
  • a set of drill sticks,
  • a tool,
  • a terrain representing the tool / rock contact.

Le modèle décrit traitera le train de tiges comme un élément monodimensionnel vertical. Les déplacements en translation verticale seront considérés, les déplacements latéraux étant négligés.The described model will treat the drill string as a one-dimensional element vertical. Displacements in vertical translation will be considered, displacements being neglected.

La figure 2 représente le schéma-bloc du modèle de traction-compression. C'est un modèle classique aux différences finies qui comporte plusieurs mailles représentées par les blocs 20. Chaque maille représente une partie du train de tiges, tiges de forage et masses-tiges. Il s'agit de triplets masse-ressort-amortissement figurés par les schémas référencés 21, 22, 23. Chaque bloc est muni de deux entrées et sorties représentées par les couples de flèches 24 et 25 qui représentent les tensions d'entrées et de sorties et les vitesses de déplacement vertical d'entrées et de sorties. Cette représentation montre la manière de connecter numériquement plusieurs tiges (ou mailles) comme on connecte physiquement les tiges de la garniture.FIG. 2 represents the block diagram of the traction-compression model. It is a classic model with finite differences which includes several meshes represented by blocks 20. Each mesh represents a part of the drill string, drill rods and drill collars. These are mass-spring-damping triples shown in the diagrams referenced 21, 22, 23. Each block is provided with two inputs and outputs represented by the pairs of arrows 24 and 25 which represent the input and output voltages and the vertical movement speeds of inputs and outputs. This representation shows the way to digitally connect several rods (or meshes) as we connect physically the packing rods.

Le bloc 26 représente l'appareil de forage. C'est un ensemble de masses, de ressorts et de frottements.Block 26 represents the drilling rig. It is a collection of masses, of springs and friction.

Le bloc 27 représente l'outil dans son comportement longitudinal.Block 27 represents the tool in its longitudinal behavior.

Le bloc 28 représente la loi reliant les déplacements de l'outil de forage à la forme du front de taille et à la résistance à la compression de la roche. En fonction d'une position verticale instantanée de l'outil et de la forme du front de taille, on détermine le poids agissant sur l'outil.Block 28 represents the law relating the movements of the drilling tool to the shape of the working face and the compressive strength of the rock. According to a position instantaneous vertical of the tool and the shape of the working face, the weight is determined acting on the tool.

Ce modèle est validé en utilisant des données enregistrées sur chantier à l'aide des raccords instrumentés de fond et de surface.This model is validated using data recorded on site using the instrumented bottom and surface fittings.

Le fluide de forage et les parois du puits n'interviennent que dans la mesure où ils génèrent un couple résistant de friction. Par expérience, et en utilisant les mesures de fond et de surface, on pourra établir une loi de friction le long des tiges linéaire en fonction de vitesse de rotation et de la vitesse longitudinale.The drilling fluid and the well walls only intervene insofar as they generate a resistant friction torque. From experience, and using background measurements and surface, we can establish a friction law along the linear rods as a function of rotational speed and longitudinal speed.

Le modèle de traction-compression ainsi obtenu est généralement d'ordre élevé, c'est-à-dire de l'ordre de 50 à 100 pour reproduire la réalité avec une finesse suffisante.The tensile-compression model thus obtained is generally of high order, that is to say of the order of 50 to 100 to reproduce reality with sufficient finesse.

Pour obtenir un modèle rapidement exécutable et robuste au changement de conditions de forage, par exemple le changement de terrains traversés, on procède aux étapes ci-après décrites.To obtain a quickly executable and robust model when changing drilling conditions, for example the change of land crossed, we proceed to steps below described.

On linéarise le modèle généralement non linéaire. Dans l'exemple ci-dessus décrit, on linéarise le modèle en choisissant un point de fonctionnement (une vitesse de rotation et un poids sur l'outil) représentatif des conditions de forage réelles. On peut vérifier que le comportement du modèle de traction-compression de connaissance, une fois linéarisé, est correct dans le voisinage du point de fonctionnement.We linearize the generally non-linear model. In the example described above, we linearize the model by choosing an operating point (a rotation speed and a weight on the tool) representative of the actual drilling conditions. We can verify that the behavior of the knowledge traction-compression model, once linearized, is correct in the vicinity of the operating point.

La linéarisation autour d'un point de fonctionnement consiste à calculer le Jacobien du système d'état non-linéaire. Le système d'état linéaire obtenu est alors de la forme: x = A.x + B.e s = C.x + D.e    avec:

x = X-X 0
X 0= valeurs des états au point de fonctionnement
e = E-E 0
E 0= valeurs des entrées au point de fonctionnement
s = S-S 0
S 0= valeurs des sorties au point de fonctionnement
Linearization around an operating point consists in calculating the Jacobian of the non-linear state system. The linear state system obtained is then of the form: x = A. x + B. e s = C. x + D. e with:
x = X - X 0
X 0 = values of the states at the operating point
e = E - E 0
E 0 = values of the inputs at the operating point
s = S - S 0
S 0 = values of the outputs at the operating point

La mise sous forme pseudo-modale se fait d'abord par un changement de base : z = P.x    z =P. x The pseudo-modal form is first done by a change of base: z = P. x z = P. x

Après résolution on obtient: z = P-1.A.P.z + P-1.B.e    z = Λ.z + BΛ.e s = C.P.z + D.e   s = CΛ.z + D.e

  • P est la matrice des vecteurs propres
  • A est la matrice diagonale des valeurs propres.
  • After resolution we get: z = P -1 .AP z + P -1 .B. e z = Λ. z + B Λ . e s = CP z + D. e s = C Λ . z + D. e
  • P is the matrix of eigenvectors
  • A is the diagonal matrix of eigenvalues.
  • Après linéarisation, le modèle de traction-compression conserve un ordre élevé. L'analyse des modes propres du modèle de traction-compression permet de quantifier la contribution de chaque mode sur les sorties dignes d'intérêt. On ne conserve alors que les modes pertinents; c'est-à-dire ceux qui ont une influence notable sur le comportement dynamique représenté par lesdites sorties.After linearization, the traction-compression model retains an order Student. The analysis of the eigen modes of the traction-compression model allows to quantify the contribution of each mode to the outputs of interest. Onne then keeps only the relevant modes; that is to say those who have an influence notable on the dynamic behavior represented by said outputs.

    Le modèle réduit doit reproduire les phénomènes dans une certaine bande de fréquences. Les critères de sélection des modes sont donc de deux ordres et reposent sur des concepts d'observabilité:

    • suppression des modes non ou peu observables sur les sorties mesurées,
    • suppression des modes hautes fréquences, n'entrant pas dans la bande de fréquence de la commande ou de l'estimateur.
    The scale model must reproduce the phenomena in a certain frequency band. The criteria for mode selection are therefore twofold and are based on concepts of observability:
    • deletion of the modes not or hardly observable on the measured outputs,
    • suppression of the high frequency modes, not entering the frequency band of the control or the estimator.

    La méthode de réduction employée est la méthode des perturbations singulières. Elle consiste à garder de la matrice d'état et de la matrice de commande, les lignes et les colonnes correspondant aux modes à garder. Pour conserver les gains statiques, les modes rapides sont remplacés par leur valeur statique, ce qui a pour conséquence d'introduire une matrice directe.The reduction method used is the singular disturbance method. It consists in keeping from the state matrix and from the command matrix, the lines and the columns corresponding to the modes to keep. To keep static gains, the modes Rapids are replaced by their static value, which has the consequence of introducing a direct matrix.

    La méthode suppose que les modes rapides prennent leur équilibre en un temps négligeable, c'est-à-dire qu'ils s'établissent instantanément (hypothèse quasi-statique).The method assumes that the fast modes take their equilibrium in a time negligible, that is to say that they are established instantaneously (quasi-static hypothesis).

    La figure 3 montre le bloc diagramme d'un système d'estimation du type boucle ouverte. Le bloc 40 schématise les moyens de mesures de paramètres de surface, ici, la tension Tms et l'accélération verticale Zms, la vitesse de rotation de la garniture Vms mesurée à la table ou à la tête d'injection motorisée. Le bloc 41 représente le modèle réduit qui simule le modèle physique de tension-compression non linéaire en calculant la fonction de transfert entre les entrées (Vms, Zms) et les sorties Tes, Tef et Zef représentant respectivement la tension estimée sur la garniture à la surface, la tension estimée et l'accélération verticale estimée à l'extrémité inférieure de la garniture dans le puits.Figure 3 shows the block diagram of a loop-type estimation system opened. Block 40 shows diagrammatically the means for measuring surface parameters, here the voltage Tms and vertical acceleration Zms, the speed of rotation of the lining Vms measured at the table or at the motorized injection head. Block 41 represents the model which simulates the physical model of non-linear tension-compression by calculating the function transfer between the inputs (Vms, Zms) and the outputs Tes, Tef and Zef representing respectively the estimated tension on the lining at the surface, the estimated tension and the estimated vertical acceleration at the lower end of the packing in the well.

    Cependant la fonction de transfert est toujours une approximation de la réalité et toute désadaptation entre le modèle et le processus réel de forage peut créer une divergence entre les valeurs estimées et les valeurs réelles par intégration des écarts. Aussi, dans la plupart des cas, il est avantageux d'effectuer un réajustement, ou recalage, à l'aide d'au moins une comparaison entre la valeur d'une sortie estimée et sa valeur réellement mesurée. Ici, l'estimateur linéaire est recalé de préférence à partir de la tension de surface.However, the transfer function is always an approximation of reality and any mismatch between the model and the actual drilling process can create a discrepancy between the estimated values and the real values by integrating the differences. Also in the in most cases, it is advantageous to carry out a readjustment, or readjustment, using at least minus a comparison between the value of an estimated output and its value actually measured. Here, the linear estimator is preferably readjusted from the surface tension.

    La technique d'estimation repose sur les principes de filtrage de Luenberger et de Kalman ("Automatique des systèmes linéaires" par P. De Larminat et Y. Thomas-Flammarion Sciences; Paris IV, 1975). Le principe d'un estimateur linéaire peut être illustré par la figure 4 où la mesure de la tension Tms et la valeur estimée Tes et de la tension sont comparées dans les moyens 42, l'écart entre ces deux valeurs étant injecté dans un adaptateur 43 en temps réel. L'objectif est ici de reconstituer le plus fidèlement possible les sorties plutôt que d'avoir un modèle exact. C'est pourquoi on effectue un recalage d'état. Comme les sorties sont reliées directement aux états, le recalage d'état consiste à effectuer une pondération entre les états prédits par le modèle à l'instant t et les états reconstitués à partir des seules sorties mesurées. Cette pondération n'est pas une simple moyenne, mais elle prend en compte le degré de précision des estimations des états obtenus par ses deux voies indépendantes.The estimation technique is based on the filtering principles of Luenberger and Kalman ("Automatic linear systems" by P. De Larminat and Y. Thomas-Flammarion science; Paris IV, 1975). The principle of a linear estimator can be illustrated by FIG. 4 where the measurement of the voltage Tms and the estimated value Tes and of the voltage are compared in the means 42, the difference between these two values being injected into an adapter 43 in real time. The objective here is to reconstruct as faithfully as possible the outputs rather than having an exact model. This is why we perform a registration state. As the outputs are directly linked to the states, state registration consists in weighting between the states predicted by the model at time t and the states reconstructed from the only measured outputs. This weighting is not a simple average, but it takes into account the degree of precision of the state estimates obtained by its two independent channels.

    Une fois recalés les états du modèle qui représentent la dynamique du processus de forage, toutes les sorties, qu'elles soient mesurées ou non peuvent être recalculées.Once readjusted the states of the model which represent the dynamics of the process drilling, all outputs, whether measured or not, can be recalculated.

    Cette estimation n'est pas seulement intéressante pour les variables non mesurées comme Tef et Zef elle s'applique également aux variables mesurées (par exemple Tms) qui ont servi au recalage. La valeur estimée Tes est l'équivalent d'une valeur filtrée sur la base d'un modèle: c'est pourquoi on utilise généralement le terme de filtrage (filtrage de Luenberger, filtrage de Kalman...).This estimate is not only interesting for unmeasured variables like Tef and Zef it also applies to the measured variables (for example Tms) which were used for registration. The estimated value Tes is the equivalent of a value filtered on the basis of a model: this is why we generally use the term filtering (filtering of Luenberger, Kalman filtering ...).

    La technique de recalage d'états, telle que décrite précédemment introduit un asservissement de Tms mesuré sur Tes estimé.The state registration technique, as described above, introduces a slaving of Tms measured on Tes estimated.

    Ce bouclage supprime le risque de divergence mentionné ci-dessus, lorsque le modèle est simulé en boucle ouverte (figure 3).This closure eliminates the risk of divergence mentioned above, when the model is simulated in open loop (figure 3).

    Il y a ainsi une désensibilisation des variables estimées vis à vis des imperfections du modèle. Dans ce contexte, on n'a plus besoin d'avoir un modèle parfait : un modèle approché est suffisant.There is thus a desensitization of the estimated variables with respect to imperfections of the model. In this context, we no longer need to have a perfect model: a model approached is sufficient.

    En outre, on ne dispose ici que d'une mesure, la tension T, pour effectuer le recalage : il ne paraít pas possible de recaler un grand nombre d'états à partir de cette mesure. C'est pourquoi, le modèle de traction-compression non linéaire ne convient pas en dépit de sa plus grande précision.Furthermore, only one measurement is available here, the voltage T, for carrying out the readjustment: it does not seem possible to readjust a large number of states from this measured. This is why, the nonlinear traction-compression model is not suitable in despite its greater precision.

    Il existe donc un compromis à effectuer entre la précision et l'ordre du système. Il faut rechercher le modèle d'ordre minimum qui respecte les tolérances de précision souhaitables, et qui soit également facile à régler et robuste.There is therefore a compromise to be made between the precision and the order of the system. he look for the minimum order model that meets precision tolerances desirable, and that is also easy to adjust and robust.

    Le choix de l'ordre du modèle réduit dépend des critères qualitatifs suivants :

    • il faut sauvegarder les modes propres de vibration en traction-compression qui sont prépondérants dans les sorties à ré estimer ;
    • pour des raisons de cohérence et de stabilité numérique, il faut rejeter les modes de fréquences élevées supérieures à fmax = fe/2 où fe est la fréquence d'échantillonnage des entrées et des sorties.
    The choice of the order of the reduced model depends on the following qualitative criteria:
    • it is necessary to save the eigen modes of vibration in traction and compression which are predominant in the outputs to be re-estimated;
    • for reasons of consistency and numerical stability, it is necessary to reject the high frequency modes greater than f max = f e / 2 where fe is the sampling frequency of the inputs and outputs.

    Il est donc superflu de choisir un modèle réduit d'ordre supérieur si on veut intégrer le modèle à la cadence d'échantillonnage.It is therefore superfluous to choose a reduced model of higher order if we want integrate the model at the sampling rate.

    De plus, il ne faut pas oublier que le modèle réduit d'estimation doit, de préférence, satisfaire les contraintes technologiques du temps réel.In addition, it should not be forgotten that the reduced estimation model must, preferably meet the technological constraints of real time.

    L'estimateur est donc construit suivant les étapes suivantes :

    • discrétisation du modèle réduit,
    • discrétisation des filtres passe-haut,
    • agrégation des filtres passe-haut et du modèle réduit, l'ensemble devient le modèle d'estimation,
    • calcul des gains de recalage,
    • construction de l'estimateur complet.
    The estimator is therefore constructed according to the following steps:
    • discretization of the reduced model,
    • discretization of high-pass filters,
    • aggregation of high-pass filters and the reduced model, the whole becomes the estimation model,
    • calculation of registration gains,
    • construction of the complete estimator.

    La méthodologie pour la construction de l'estimateur selon l'invention peut être illustrée par la figure 5. Le bloc 50 représente un modèle physique représentant un processus de forage rotary, par exemple illustré par la figure 2. Ce modèle prend en compte une situation de fonctionnement déterminée en recevant notamment les caractéristiques mécaniques de la garniture de forage utilisée, symbolisation référencée 51, les conditions de puits et de surface, symbolisation référencée 52, et des lois de friction, symbolisation référencée 53. Le bloc 54 représente le modèle de tension principal une fois linéarisé et réduit selon la description ci-dessus. Toutes ces étapes rassemblées sous l'accolade DF s'exécutent en temps différé par rapport au déroulement du processus de forage rotary, les autres étapes rassemblées sous l'accolade TR sont exécutées en temps réel.The methodology for the construction of the estimator according to the invention can be illustrated by FIG. 5. Block 50 represents a physical model representing a rotary drilling process, for example illustrated in Figure 2. This model takes into account account for a determined operating situation, in particular by receiving the mechanical characteristics of the drill string used, symbolization referenced 51, well and surface conditions, symbolization referenced 52, and friction laws, symbolized by reference 53. Block 54 represents the main tension model once linearized and reduced as described above. All these steps gathered under the DF brace run in delayed time compared to the progress of the process rotary drilling, the other steps gathered under the TR brace are executed in time real.

    Le bloc 55 est directement ce que l'on a appelé l'estimateur. Des moyens de mesure 56 placés sur le sommet de la garniture de forage donnent les mesures d'accélération verticale, de tension et de vitesse de rotation au sommet des tiges, c'est-à-dire en surface. Ces mesures de surface sont prises en compte dans l'estimateur, comme décrit plus haut, pour donner une estimation des valeurs de déplacement de l'outil de forage, en particulier l'accélération verticale Zef d'où sera déduite le déplacement vertical de l'outil de forage.Block 55 is directly what has been called the estimator. Means of measure 56 placed on the top of the drill string give the measurements vertical acceleration, tension and speed of rotation at the top of the rods, i.e. surface. These surface measurements are taken into account in the estimator, as described above, to give an estimate of the displacement values of the tool drilling, in particular the vertical acceleration Zef from which the vertical displacement will be deducted of the drilling tool.

    La présente invention est avantageusement mis en oeuvre sur un chantier de forage afin d'avoir une estimation aussi précise que possible de l'accélération verticale de l'outil de forage en temps réel, et cela à partir des seules mesures de surface, notamment l'accélération verticale et la vitesse de rotation des moyens conventionnels de mise en rotation de la garniture de forage, et d'une installation de surface équipée de moyens électroniques et informatiques. Il est très intéressant d'avoir une estimation des paramètres de fond de façon à détecter, et même à prévenir des dysfonctionnements connus, par exemple le comportement dit "bit bouncing" caractérisé par un décollement de l'outil du front de taille bien que la tête du train de tiges reste sensiblement fixe et qu'une force de compression importante soit appliquée à l'outil. Cela peut avoir pour conséquences des effets néfastes sur la durée de vie des outils, sur l'augmentation de la fatigue mécanique du train de tiges et la fréquence des ruptures des connexions.The present invention is advantageously implemented on a construction site drilling in order to have as precise an estimate as possible of the vertical acceleration of the drilling tool in real time, using only surface measurements, in particular the vertical acceleration and the speed of rotation of conventional means of setting rotation of the drill string, and of a surface installation equipped with means electronic and computer. It is very interesting to have an estimate of the parameters background so as to detect, and even prevent known malfunctions, by example the so-called "bit bouncing" behavior characterized by a separation of the tool from the size face although the head of the drill string remains substantially stationary and a force of significant compression is applied to the tool. This can result in harmful effects on the life of the tools, on the increase of the mechanical fatigue of the drill string and the frequency of connection breaks.

    Claims (5)

    1. A method designed to estimate the effective behaviour of a drill bit (12) fastened to the end of a drill string (6) and driven into rotation in a well (7) by surface driving means (8), wherein a non-linear physical model (50) of the drilling process based on general mechanics equations is used, characterized in that the following stages are carried out :
      the parameters of said model are identified by taking account of the parameters of said well and of said string (51, 52, 53),
      said model is linearized about a working point,
      said linearized model is reduced while keeping only some of the specific modes of the state matrix of said model,
      the displacement of the drill bit or the stress applied to the bit is computed in real time by means of the reduced model (54) and of at least one parameter measured at the surface, and in that said model mainly takes account of the displacements and the vertical stresses, and said reduced model computes in real time the vertical motion or stress of the drill bit, said parameter measured at the surface being the vertical acceleration of the string.
    2. A method as claimed in claim 1, wherein the displacement of the drill bit or the stress applied to the bit is computed in real time by means of the reduced model and of at least the two parameters measured at the surface : the vertical acceleration and the rotational speed of the string.
    3. A method as claimed in any one of claims 1 to 2, wherein the reduced model is fined down by means of self-adaptive filtering which minimizes the difference between a real measurement of a parameter linked with the displacement of the string at the surface and the corresponding output obtained by said reduced model.
    4. A method as claimed in claim 3, wherein said filtering takes account of the tensile stress measured at the surface on the string.
    5. A system designed to estimate the effective behaviour of a drill bit (12) fastened to the end of a drill string (6) and driven into rotation in a well (7) by surface driving means (8), wherein a computing unit (9) comprises means intended for non-linear physical modelling of the drilling process based on general mechanics equations, characterized in that parameters of said modelling means are identified by taking account of the parameters of said well and of said string, in that the computing unit comprises means designed for linearization of said model about a working point, means for reducing said linearized model so as to keep only certain specific modes of the state matrix of said model, means for real-time computation of the displacement of the drill bit or of the stress applied to the bit, by means of the modelling means once linearized and reduced and means (13) for measuring at least one parameter linked with the displacement of the string at the surface : the rotational speed, the vertical acceleration and the tension of the string, wherein the modelling means only take account of the traction and the compression.
    EP97401298A 1996-06-24 1997-06-09 Method and system for real time estimation of at least one parameter connected to the performance of a downhole tool Expired - Lifetime EP0816630B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9607913 1996-06-24
    FR9607913A FR2750159B1 (en) 1996-06-24 1996-06-24 METHOD AND SYSTEM FOR REAL-TIME ESTIMATION OF AT LEAST ONE PARAMETER RELATED TO THE BEHAVIOR OF A DOWNHOLE TOOL

    Publications (2)

    Publication Number Publication Date
    EP0816630A1 EP0816630A1 (en) 1998-01-07
    EP0816630B1 true EP0816630B1 (en) 2003-05-21

    Family

    ID=9493414

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97401298A Expired - Lifetime EP0816630B1 (en) 1996-06-24 1997-06-09 Method and system for real time estimation of at least one parameter connected to the performance of a downhole tool

    Country Status (5)

    Country Link
    US (1) US5844132A (en)
    EP (1) EP0816630B1 (en)
    CA (1) CA2209059C (en)
    FR (1) FR2750159B1 (en)
    NO (1) NO972931L (en)

    Families Citing this family (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6347292B1 (en) * 1999-02-17 2002-02-12 Den-Con Electronics, Inc. Oilfield equipment identification method and apparatus
    FR2792363B1 (en) * 1999-04-19 2001-06-01 Inst Francais Du Petrole METHOD AND SYSTEM FOR DETECTING THE LONGITUDINAL MOVEMENT OF A DRILLING TOOL
    EP1410072A4 (en) * 2000-10-10 2005-08-31 Exxonmobil Upstream Res Co Method for borehole measurement of formation properties
    US6915686B2 (en) * 2003-02-11 2005-07-12 Optoplan A.S. Downhole sub for instrumentation
    EP2108166B1 (en) 2007-02-02 2013-06-19 ExxonMobil Upstream Research Company Modeling and designing of well drilling system that accounts for vibrations
    US8589136B2 (en) * 2008-06-17 2013-11-19 Exxonmobil Upstream Research Company Methods and systems for mitigating drilling vibrations
    AU2009318062B2 (en) 2008-11-21 2015-01-29 Exxonmobil Upstream Research Company Methods and systems for modeling, designing, and conducting drilling operations that consider vibrations
    GB2466812B (en) 2009-01-08 2011-10-19 Schlumberger Holdings Drillstring dynamics
    MY157452A (en) * 2009-08-07 2016-06-15 Exxonmobil Upstream Res Co Methods to estimate downhole drilling vibration amplitude from surface measurement
    CA2770232C (en) * 2009-08-07 2016-06-07 Exxonmobil Upstream Research Company Methods to estimate downhole drilling vibration indices from surface measurement
    GB2554190B (en) 2015-04-29 2021-03-31 Halliburton Energy Services Inc Systems and methods for sensorless state estimation, disturbance estimation, and model adaption for rotary steerable drilling systems
    NL2016859B1 (en) * 2016-05-30 2017-12-11 Engie Electroproject B V A method of and a device for estimating down hole speed and down hole torque of borehole drilling equipment while drilling, borehole equipment and a computer program product.
    US10443334B2 (en) 2017-05-19 2019-10-15 Weatherford Technology Holdings Llc Correction for drill pipe compression
    WO2019119107A1 (en) 2017-12-23 2019-06-27 Noetic Technologies Inc. System and method for optimizing tubular running operations using real-time measurements and modelling
    WO2019183374A1 (en) * 2018-03-23 2019-09-26 Conocophillips Company Virtual downhole sub

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4794535A (en) * 1986-08-18 1988-12-27 Automated Decisions, Inc. Method for determining economic drill bit utilization
    US4845628A (en) * 1986-08-18 1989-07-04 Automated Decisions, Inc. Method for optimization of drilling costs
    FR2614360B1 (en) * 1987-04-27 1989-06-16 Forex Neptune METHOD FOR MEASURING THE RUNNING SPEED OF A DRILLING TOOL
    DE3715424C2 (en) * 1987-05-08 1995-01-26 Henkel Kgaa Use of a fatty oil from Helianthus annuus for the production of fatty acid monoglycerides
    FR2645295B1 (en) * 1989-03-29 1994-06-10 Renault DEVICE FOR MONITORING THE OPERATION OF A MICROPROCESSOR
    FR2645205B1 (en) * 1989-03-31 1991-06-07 Elf Aquitaine DEVICE FOR AUDITIVE AND / OR VISUAL REPRESENTATION OF MECHANICAL PHENOMENAS IN A WELL AND USE OF THE DEVICE IN A METHOD OF CONDUCTING A WELL
    FR2666845B1 (en) * 1990-09-14 1997-01-10 Elf Aquitaine METHOD FOR CONDUCTING A WELL.
    GB2264562B (en) * 1992-02-22 1995-03-22 Anadrill Int Sa Determination of drill bit rate of penetration from surface measurements
    FR2688026B1 (en) * 1992-02-27 1994-04-15 Institut Francais Petrole SYSTEM AND METHOD FOR ACQUIRING PHYSICAL DATA RELATED TO A CURRENT DRILLING.
    US5305836A (en) * 1992-04-08 1994-04-26 Baroid Technology, Inc. System and method for controlling drill bit usage and well plan
    GB9216740D0 (en) * 1992-08-06 1992-09-23 Schlumberger Services Petrol Determination of drill bit rate of penetration from surface measurements
    GB9218836D0 (en) * 1992-09-05 1992-10-21 Schlumberger Services Petrol Method for determining weight on bit
    NO315670B1 (en) * 1994-10-19 2003-10-06 Anadrill Int Sa Method and apparatus for measuring drilling conditions by combining downhole and surface measurements
    US5581024A (en) * 1994-10-20 1996-12-03 Baker Hughes Incorporated Downhole depth correlation and computation apparatus and methods for combining multiple borehole measurements

    Also Published As

    Publication number Publication date
    FR2750159A1 (en) 1997-12-26
    NO972931D0 (en) 1997-06-23
    FR2750159B1 (en) 1998-08-07
    CA2209059C (en) 2006-11-21
    EP0816630A1 (en) 1998-01-07
    NO972931L (en) 1997-12-29
    CA2209059A1 (en) 1997-12-24
    US5844132A (en) 1998-12-01

    Similar Documents

    Publication Publication Date Title
    EP0816629B1 (en) Method and system for real time estimation of at least one parameter connected to the rate of penetration of a drilling tool
    EP0816630B1 (en) Method and system for real time estimation of at least one parameter connected to the performance of a downhole tool
    EP1046781B1 (en) Method and system for detecting bit-bounce
    FR3070180A1 (en) NEURON NETWORK MODELS FOR REAL-TIME OPTIMIZATION OF DRILLING PARAMETERS DURING DRILLING OPERATIONS
    US5247830A (en) Method for determining hydraulic properties of formations surrounding a borehole
    FR2869067A1 (en) SYSTEM AND METHOD FOR FIELD SYNTHESIS FOR OPTIMIZING A DRILLING DEVICE
    FR3069930A1 (en) ESTIMATING THE SPEED OF TRAINING BY VERTICAL SEISMIC PROFILING
    US8120357B2 (en) Method and system for fluid characterization of a reservoir
    FR3039196A1 (en)
    WO2013153311A1 (en) Method for determining geomechanical parameters of a rock sample
    EP2817607B1 (en) Measuring head intended to be fitted to a dynamic penetrometer and method of measurement using such a measuring head
    US20210270120A1 (en) Drilling evaluation based on coupled torsional vibrations
    Versteijlen et al. Effective soil-stiffness validation: Shaker excitation of an in-situ monopile foundation
    FR2614360A1 (en) METHOD FOR MEASURING THE SPEED OF ADVANCE OF A DRILLING TOOL
    FR2611804A1 (en) METHOD FOR CONTROLLING WELL DRILLING OPERATIONS
    Ueda et al. Applicability of the generalized scaling law to a pile-inclined ground system subject to liquefaction-induced lateral spreading
    Guerriero et al. Clay landslide movement triggered by artificial vibrations: new insights from monitoring data
    JP3117637B2 (en) Ground survey device and ground survey method
    EP0341109A1 (en) Method for evaluating the organic material content of sediments from data acquired by borehole logging probes
    WO2019016448A1 (en) Static penetrometer and associated measurement method
    FR3035147A1 (en)
    Wiktorski et al. Comparative study of surface and downhole drillstring vibrations measurements on a laboratory-scale drilling rig
    JP6832211B2 (en) Ground survey equipment and ground survey method
    FR3034191A1 (en) DETERMINATION OF TRAINING PRESSURE
    EP0505276A1 (en) Probe for determining particularly the injectivity of an oil well and measuring process making use of this probe

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): GB IT NL

    17P Request for examination filed

    Effective date: 19980707

    AKX Designation fees paid

    Free format text: GB IT NL

    RBV Designated contracting states (corrected)

    Designated state(s): GB IT NL

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: 8566

    17Q First examination report despatched

    Effective date: 20010309

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20030521

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20030627

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20030925

    Year of fee payment: 7

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040224

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040609

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050101

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040609

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20050101

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20070622

    Year of fee payment: 11

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080609