EP0816630B1 - Method and system for real time estimation of at least one parameter connected to the performance of a downhole tool - Google Patents
Method and system for real time estimation of at least one parameter connected to the performance of a downhole tool Download PDFInfo
- Publication number
- EP0816630B1 EP0816630B1 EP97401298A EP97401298A EP0816630B1 EP 0816630 B1 EP0816630 B1 EP 0816630B1 EP 97401298 A EP97401298 A EP 97401298A EP 97401298 A EP97401298 A EP 97401298A EP 0816630 B1 EP0816630 B1 EP 0816630B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- model
- string
- reduced
- displacement
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 26
- 238000005553 drilling Methods 0.000 claims description 39
- 238000006073 displacement reaction Methods 0.000 claims description 20
- 238000007906 compression Methods 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 14
- 230000001133 acceleration Effects 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 4
- 238000004441 surface measurement Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000004459 forage Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 235000021183 entrée Nutrition 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000586 desensitisation Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001869 rapid Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B44/00—Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B45/00—Measuring the drilling time or rate of penetration
Definitions
- the present invention relates to the field of measurements during drilling, in particular measures concerning the behavior of a drilling tool attached to the end of a drill string.
- the method according to the invention provides a solution for estimate in particular the amplitude of the vertical displacements of the drilling tool or the effort applied to the tool, said estimates being obtained by means of a calculation taking into account measurements made at the top of the drill string, i.e. substantially on the ground surface, generally by means of sensors or a fitting instrumented located in the vicinity of the means for rotating the lining.
- the information contained in the surface measurements does not alone are not enough to solve the problem posed, that is to say knowing the instantaneous movements of the tool by knowing the instantaneous movements of the surface trim.
- the surface measurement information must be supplemented by independent information of another kind which takes into account the structure of the drill string and its behavior between the bottom and the surface: this is the role of the knowledge which establishes the theoretical relationships between the bottom and the surface.
- the methodology of the present invention uses the conjunction of such a model, defined a priori, and surface measurements acquired in real time.
- the model can mainly take into account displacements and efforts vertical and said reduced model can calculate in real time the movement or the effort drilling tool vertical, said parameter measured at the surface being the vertical acceleration of the filling.
- the rotational speed measured on the surface can be a second parameter used in the scale model.
- the reduced model can be refined by self-adaptive filtering which minimizes the difference between an actual measurement of a parameter related to the displacement of the lining in surface and the corresponding output obtained by said reduced model.
- the filtering can take into account the tension force of the rods.
- the invention also relates to a system for estimating effective behavior. of a drilling tool attached to the end of a drill string and rotated in a well by means of drive located on the surface, in which an installation of calculation includes means for non-linear physical modeling of the drilling process based on general mechanical equations.
- the parameters of said means modeling are identified by taking into account the parameters of said well and said lining, and the calculation installation includes means for linearizing said model around an operating point, means for reducing said linearized model so to keep only some of the eigen modes of the state matrix of said model, means of calculating, in real time, the displacement of the drilling tool or the applied force on the tool, using the modeling means once linearized and reduced and the means measuring at least one parameter related to the displacement of the lining on the surface.
- the modeling means may only take into account the traction-compression, and the parameter can be one of the following: the rotation speed, vertical acceleration and packing tension.
- FIG. 1 illustrates a drilling rig on which we will operate the invention.
- the surface installation comprises a lifting device 1 comprising a lifting tower 2, a winch 3 which allow the displacement of a drilling hook 4.
- Under the drill hook are suspended drive means 5 for rotating the assembly of the drill string 6 placed in the well 7.
- These drive means can be of the drive rod or kelly type coupled to a rotation table 8 and the mechanical motorizations, or of the type motorized drive head or "power swivel" suspended directly from the hook and guided longitudinally in the tower.
- the drill string 6 is conventionally constituted by rods of drilling 10, of part 11 commonly called BHA for "Bottom Hole Assembly” mainly comprising drill rods, a drilling tool 12 in contact with the land being drilled.
- BHA Bottom Hole Assembly
- the well 7 is filled with a fluid, called a drilling fluid, which circulates from the surface at the bottom through the inner channel of the drill string and rises to the surface by the annular space between the walls of the well and the drill string.
- an instrumented fitting 13 is inserted between the drive means and the top of the lining.
- This fitting allows measure the speed of rotation, the tensile force and the longitudinal vibrations of the top of the trim, and incidentally the couple. These so-called surface measurements are transmitted by cable or radio to an electronic recording, processing, display, not shown here.
- fitting 13 we can use other sensors such as a tachometer on the rotation table to measure the speed of rotation, a measurement of tension on the dead strand of hauling and possibly a device for measuring the torque on the motorized device, if the accuracy of the measurements obtained is sufficient.
- Part 11 of the BHA may more specifically include, drill collars, stabilizers, and a second instrumented fitting 14 which will only be used to control experimentally the present invention by allowing the comparison between the displacement of the drilling tool 12 actually measured by the instrumented fitting 14 and the estimated displacement thanks to the implementation of the present invention. So it is clear that the application of the present invention does not use an instrument fitting placed at the bottom of Wells.
- the driller who conducts a drilling operation with the devices described in the Figure 1 has three possible actions, which are therefore the possible control variables for driving, the weight on the tool which is adjusted by the winch which controls the hook position, rotation speed of the rotary table or equivalent, the flow of injected drilling fluid.
- the described model will treat the drill string as a one-dimensional element vertical. Displacements in vertical translation will be considered, displacements being neglected.
- FIG. 2 represents the block diagram of the traction-compression model. It is a classic model with finite differences which includes several meshes represented by blocks 20. Each mesh represents a part of the drill string, drill rods and drill collars. These are mass-spring-damping triples shown in the diagrams referenced 21, 22, 23. Each block is provided with two inputs and outputs represented by the pairs of arrows 24 and 25 which represent the input and output voltages and the vertical movement speeds of inputs and outputs. This representation shows the way to digitally connect several rods (or meshes) as we connect physically the packing rods.
- Block 26 represents the drilling rig. It is a collection of masses, of springs and friction.
- Block 27 represents the tool in its longitudinal behavior.
- Block 28 represents the law relating the movements of the drilling tool to the shape of the working face and the compressive strength of the rock. According to a position instantaneous vertical of the tool and the shape of the working face, the weight is determined acting on the tool.
- This model is validated using data recorded on site using the instrumented bottom and surface fittings.
- the tensile-compression model thus obtained is generally of high order, that is to say of the order of 50 to 100 to reproduce reality with sufficient finesse.
- the traction-compression model retains an order Student.
- the analysis of the eigen modes of the traction-compression model allows to quantify the contribution of each mode to the outputs of interest. Onne then keeps only the relevant modes; that is to say those who have an influence notable on the dynamic behavior represented by said outputs.
- the reduction method used is the singular disturbance method. It consists in keeping from the state matrix and from the command matrix, the lines and the columns corresponding to the modes to keep. To keep static gains, the modes Rapids are replaced by their static value, which has the consequence of introducing a direct matrix.
- the method assumes that the fast modes take their equilibrium in a time negligible, that is to say that they are established instantaneously (quasi-static hypothesis).
- FIG. 3 shows the block diagram of a loop-type estimation system opened.
- Block 40 shows diagrammatically the means for measuring surface parameters, here the voltage Tms and vertical acceleration Zms, the speed of rotation of the lining Vms measured at the table or at the motorized injection head.
- Block 41 represents the model which simulates the physical model of non-linear tension-compression by calculating the function transfer between the inputs (Vms, Zms) and the outputs Tes, Tef and Zef representing respectively the estimated tension on the lining at the surface, the estimated tension and the estimated vertical acceleration at the lower end of the packing in the well.
- the transfer function is always an approximation of reality and any mismatch between the model and the actual drilling process can create a discrepancy between the estimated values and the real values by integrating the differences. Also in the in most cases, it is advantageous to carry out a readjustment, or readjustment, using at least minus a comparison between the value of an estimated output and its value actually measured.
- the linear estimator is preferably readjusted from the surface tension.
- the estimation technique is based on the filtering principles of Luenberger and Kalman ("Automatic linear systems" by P. De Larminat and Y. Thomas-Flammarion science; Paris IV, 1975).
- the principle of a linear estimator can be illustrated by FIG. 4 where the measurement of the voltage Tms and the estimated value Tes and of the voltage are compared in the means 42, the difference between these two values being injected into an adapter 43 in real time.
- the objective here is to reconstruct as faithfully as possible the outputs rather than having an exact model. This is why we perform a registration state.
- state registration consists in weighting between the states predicted by the model at time t and the states reconstructed from the only measured outputs. This weighting is not a simple average, but it takes into account the degree of precision of the state estimates obtained by its two independent channels.
- Tes is the equivalent of a value filtered on the basis of a model: this is why we generally use the term filtering (filtering of Luenberger, Kalman filtering ).
- the state registration technique introduces a slaving of Tms measured on Tes estimated.
- the voltage T for carrying out the readjustment: it does not seem possible to readjust a large number of states from this measured. This is why, the nonlinear traction-compression model is not suitable in despite its greater precision.
- the reduced estimation model must, preferably meet the technological constraints of real time.
- Block 50 represents a physical model representing a rotary drilling process, for example illustrated in Figure 2. This model takes into account account for a determined operating situation, in particular by receiving the mechanical characteristics of the drill string used, symbolization referenced 51, well and surface conditions, symbolization referenced 52, and friction laws, symbolized by reference 53.
- Block 54 represents the main tension model once linearized and reduced as described above. All these steps gathered under the DF brace run in delayed time compared to the progress of the process rotary drilling, the other steps gathered under the TR brace are executed in time real.
- Block 55 is directly what has been called the estimator.
- Means of measure 56 placed on the top of the drill string give the measurements vertical acceleration, tension and speed of rotation at the top of the rods, i.e. surface. These surface measurements are taken into account in the estimator, as described above, to give an estimate of the displacement values of the tool drilling, in particular the vertical acceleration Zef from which the vertical displacement will be deducted of the drilling tool.
- the present invention is advantageously implemented on a construction site drilling in order to have as precise an estimate as possible of the vertical acceleration of the drilling tool in real time, using only surface measurements, in particular the vertical acceleration and the speed of rotation of conventional means of setting rotation of the drill string, and of a surface installation equipped with means electronic and computer. It is very interesting to have an estimate of the parameters background so as to detect, and even prevent known malfunctions, by example the so-called "bit bouncing" behavior characterized by a separation of the tool from the size face although the head of the drill string remains substantially stationary and a force of significant compression is applied to the tool. This can result in harmful effects on the life of the tools, on the increase of the mechanical fatigue of the drill string and the frequency of connection breaks.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Automatic Control Of Machine Tools (AREA)
Description
La présente invention concerne le domaine des mesures en cours de forage, en particulier des mesures concernant le comportement d'un outil de forage fixé à l'extrémité d'un train de tiges de forage. La méthode selon l'invention propose une solution pour estimer notamment l'amplitude des déplacements verticaux de l'outil de forage ou l'effort appliqué à l'outil, lesdites estimations étant obtenues par le moyen d'un programme de calcul prenant en compte des mesures effectuées au sommet du train de tiges, c'est-à-dire sensiblement à la surface du sol, généralement par le moyen de capteurs ou d'un raccord instrumenté situés dans le voisinage des moyens d'entraínement en rotation de la garniture.The present invention relates to the field of measurements during drilling, in particular measures concerning the behavior of a drilling tool attached to the end of a drill string. The method according to the invention provides a solution for estimate in particular the amplitude of the vertical displacements of the drilling tool or the effort applied to the tool, said estimates being obtained by means of a calculation taking into account measurements made at the top of the drill string, i.e. substantially on the ground surface, generally by means of sensors or a fitting instrumented located in the vicinity of the means for rotating the lining.
On connaít des techniques de mesure pour l'acquisition d'informations liées au comportement dynamique de la garniture de forage, qui utilisent un ensemble de capteurs de fond reliés à la surface par un conducteur électrique. Dans le document FR-2 688 026, il est utilisé deux ensembles de capteurs de mesure reliés par un câble du type logging, l'un étant situé au fond du puits, l'autre au sommet de la garniture de forage. Cependant, la présence d'un câble le long de la garniture de forage est gênante pour les opérations de forage proprement dites.We know measurement techniques for the acquisition of information related to dynamic behavior of the drill string, which use a set of sensors bottom connected to the surface by an electrical conductor. In document FR-2 688 026, it two sets of measurement sensors are used connected by a logging type cable, one being located at the bottom of the well, the other at the top of the drill string. However, the presence of a cable along the drill string is troublesome for the operations of proper drilling.
On connaít le document EP-A-709546 qui décrit une méthode prédictive de mesures de fond de puits consécutives à des mesures de surface, à partir d'une équation prédictive obtenue à la suite de collectes de mesures de fond et de surface. Cette méthode impose une collecte de mesures de fond et donc des moyens de collecte de fond de puits.We know the document EP-A-709546 which describes a predictive method of Downhole measurements following surface measurements, from an equation predictive obtained following collections of background and surface measurements. This method requires the collection of bottom measurements and therefore means of bottomhole collection.
On connaít par les documents FR 2645205 ou FR 2666845 des dispositifs de surface placés au sommet de la garniture qui déterminent certains dysfonctionnements de forage en fonction de mesures de surface, mais sans prendre en compte, de manière physique, le comportement dynamique de la garniture et de l'outil de forage dans le puits. We know from documents FR 2645205 or FR 2666845 of the surface placed at the top of the lining which determine certain malfunctions of drilling according to surface measurements, but without taking into account, so physical, dynamic behavior of the lining and the drilling tool in the well.
Entre le fond d'un puits et la surface du sol, il existe un train de tiges le long duquel ont lieu des phénomènes dissipatifs d'énergie (frottement sur la paroi, amortissement de torsion,...), des phénomènes conservatifs de flexibilité, notamment en traction-compression. Il y a ainsi une distorsion entre les mesures des déplacements de fond et de surface qui dépend principalement des caractéristiques intrinsèques de la garniture (longueur, raideur, géométrie), des caractéristiques de frottement à l'interface tiges/paroi et de phénomènes aléatoires.Between the bottom of a well and the soil surface, there is a string of rods along from which energy dissipative phenomena take place (friction on the wall, torsional damping, ...), conservative phenomena of flexibility, especially in tension-compression. There is thus a distortion between the measurements of the displacements of bottom and surface which mainly depends on the intrinsic characteristics of the lining (length, stiffness, geometry), friction characteristics at the interface rods / wall and random phenomena.
C'est pourquoi, les informations contenues dans les mesures de surface ne suffisent pas à elles seules à résoudre le problème posé, c'est-à-dire connaítre les déplacements instantanés de l'outil en connaissant les déplacements instantanés de la garniture en surface. Il faut compléter les informations de mesures de surface par des informations indépendantes, d'une autre nature, qui prennent en compte la structure du train de tiges et son comportement entre le fond et la surface: c'est le rôle du modèle de connaissance qui établit les relations théoriques entre le fond et la surface.This is why, the information contained in the surface measurements does not alone are not enough to solve the problem posed, that is to say knowing the instantaneous movements of the tool by knowing the instantaneous movements of the surface trim. The surface measurement information must be supplemented by independent information of another kind which takes into account the structure of the drill string and its behavior between the bottom and the surface: this is the role of the knowledge which establishes the theoretical relationships between the bottom and the surface.
La méthodologie de la présente invention utilise la conjonction d'un tel modèle, défini a priori, et de mesures de surface acquises en temps réel.The methodology of the present invention uses the conjunction of such a model, defined a priori, and surface measurements acquired in real time.
Ainsi, la présente invention concerne une méthode d'estimation du comportement effectif d'un outil de forage fixé à l'extrémité d'une garniture de forage et entraíné en rotation dans un puits par des moyens d'entraínement situés en surface, dans laquelle on utilise un modèle physique non linéaire du processus de forage fondé sur des équations générales de la mécanique. Dans la méthode, on effectue les étapes suivantes:
- on identifie les paramètres dudit modèle en prenant en compte les paramètres dudit puits et de ladite garniture,
- on linéarise ledit modèle autour d'un point de fonctionnement,
- on réduit ledit modèle linéarisé en ne conservant que certains des modes propres de la matrice d'état dudit modèle,
- on calcule, en temps réel, le déplacement de l'outil de forage ou l'effort appliqué sur l'outil, à l'aide du modèle réduit et d'au moins un paramètre mesuré en surface.
- the parameters of said model are identified by taking into account the parameters of said well and of said lining,
- we linearize said model around an operating point,
- said linearized model is reduced by retaining only some of the eigen modes of the state matrix of said model,
- the displacement of the drilling tool or the force applied to the tool is calculated in real time, using the reduced model and at least one parameter measured at the surface.
Le modèle peut prendre en compte essentiellement les déplacements et efforts verticaux et ledit modèle réduit peut calculer en temps réel le mouvement ou l'effort vertical de l'outil de forage, ledit paramètre mesuré en surface étant l'accélération verticale de la garniture. The model can mainly take into account displacements and efforts vertical and said reduced model can calculate in real time the movement or the effort drilling tool vertical, said parameter measured at the surface being the vertical acceleration of the filling.
La vitesse de rotation mesurée à la surface peut être un deuxième paramètre utilisé dans le modèle réduit.The rotational speed measured on the surface can be a second parameter used in the scale model.
Le modèle réduit peut être affiné par un filtrage auto adaptatif qui minimise la différence entre une mesure réelle d'un paramètre lié au déplacement de la garniture en surface et la sortie correspondante obtenue par ledit modèle réduit.The reduced model can be refined by self-adaptive filtering which minimizes the difference between an actual measurement of a parameter related to the displacement of the lining in surface and the corresponding output obtained by said reduced model.
Le filtrage peut prendre en compte la force de tension des tiges.The filtering can take into account the tension force of the rods.
L'invention concerne également un système d'estimation du comportement effectif d'un outil de forage fixé à l'extrémité d'une garniture de forage et entraíné en rotation dans un puits par des moyens d'entraínement situés en surface, dans lequel une installation de calcul comporte des moyens de modélisation physique non linéaire du processus de forage fondé sur des équations générales de la mécanique. Les paramètres desdits moyens de modélisation sont identifiés en prenant en compte les paramètres dudit puits et de ladite garniture, et l'installation de calcul comporte des moyens de linéarisation dudit modèle autour d'un point de fonctionnement, des moyens de réduction dudit modèle linéarisé afin de ne conserver que certains des modes propres de la matrice d'état dudit modèle, des moyens de calcul, en temps réel, du déplacement de l'outil de forage ou de l'effort appliqué sur l'outil, à l'aide des moyens de modélisation une fois linéarisés et réduits et des moyens de mesure d'au moins un paramètre lié au déplacement de la garniture en surface.The invention also relates to a system for estimating effective behavior. of a drilling tool attached to the end of a drill string and rotated in a well by means of drive located on the surface, in which an installation of calculation includes means for non-linear physical modeling of the drilling process based on general mechanical equations. The parameters of said means modeling are identified by taking into account the parameters of said well and said lining, and the calculation installation includes means for linearizing said model around an operating point, means for reducing said linearized model so to keep only some of the eigen modes of the state matrix of said model, means of calculating, in real time, the displacement of the drilling tool or the applied force on the tool, using the modeling means once linearized and reduced and the means measuring at least one parameter related to the displacement of the lining on the surface.
Les moyens de modélisation peuvent ne prendre en compte que la traction-compression, et le paramètre peut être l'un des suivants: la vitesse de rotation, l'accélération verticale et la tension de la garniture.The modeling means may only take into account the traction-compression, and the parameter can be one of the following: the rotation speed, vertical acceleration and packing tension.
La présente invention sera mieux comprise et ses avantages apparaítront clairement à la lecture de la description d'un exemple, nullement limitatif, illustrés par les figures ci-après annexées, parmi lesquelles:
- la figure 1 représente schématiquement les moyens mis en oeuvre pour une opération de forage,
- la figure 2 représente un exemple de diagramme d'un modèle physique en traction-compression,
- la figure 3 représente un diagramme d'un estimateur en boucle ouverte,
- la figure 4 représente un diagramme d'un estimateur avec recalage,
- la figure 5 représente schématiquement la méthodologie de la constitution de l'estimateur selon l'invention.
- FIG. 1 schematically represents the means used for a drilling operation,
- FIG. 2 represents an example of a diagram of a physical model in traction and compression,
- FIG. 3 represents a diagram of an open loop estimator,
- FIG. 4 represents a diagram of an estimator with registration,
- FIG. 5 schematically represents the methodology of the constitution of the estimator according to the invention.
La figure 1 illustre un appareil de forage sur lequel on mettra en oeuvre
l'invention. L'installation de surface comprend un appareil de levage 1 comprenant une
tour de levage 2, un treuil 3 qui permettent le déplacement d'un crochet de forage 4. Sous
le crochet de forage sont suspendus des moyens d'entraínement 5 en rotation de l'ensemble
de la garniture de forage 6 placée dans le puits 7. Ces moyens d'entraínement peuvent être
du type tige d'entraínement ou kelly accouplée à une table de rotation 8 et les
motorisations mécaniques, ou du type tête d'entraínement motorisée ou "power swivel"
suspendue directement au crochet et guidée longitudinalement dans la tour.Figure 1 illustrates a drilling rig on which we will operate
the invention. The surface installation comprises a lifting device 1 comprising a
lifting tower 2, a
La garniture de forage 6 est constituée conventionnellement par des tiges de
forage 10, d'une partie 11 appelée couramment BHA pour "Bottom Hole Assembly"
comportant principalement des masses-tiges, un outil de forage 12 en contact avec le
terrain en cours de forage. Le puits 7 est rempli d'un fluide, dit de forage, qui circule de la
surface au fond par le canal intérieur de la garniture de forage et remonte en surface par
l'espace annulaire entre les parois du puits et la garniture de forage.The
Pour la mise en oeuvre de l'invention, on intercale un raccord instrumenté 13
entre les moyens d'entraínement et le sommet de la garniture. Ce raccord permet de
mesurer la vitesse de rotation, la force de tension et les vibrations longitudinales du
sommet de la garniture, et accessoirement le couple. Ces mesures, dites de surface, sont
transmises par câble ou radio vers une installation électronique d'enregistrement, de
traitement, d'affichage, non représentée ici. A la place du raccord 13, on pourra utiliser
d'autres capteurs tels un tachymètre sur la table de rotation pour mesurer la vitesse de
rotation, une mesure de tension sur le brin mort du mouflage et éventuellement un appareil
de mesure du couple sur l'appareil de motorisation, si la précision des mesures ainsi
obtenues est suffisante. For the implementation of the invention, an
La partie 11 de la BHA peut plus précisément comporter, des masses-tiges, des
stabilisateurs, et un second raccord instrumenté 14 qui ne sera utilisé que pour contrôler
expérimentalement la présente invention en permettant la comparaison entre le
déplacement de l'outil de forage 12 effectivement mesuré par le raccord instrumenté 14 et
le déplacement estimé grâce à la mise en oeuvre de la présente invention. Il est donc clair
que l'application de la présente invention n'utilise pas de raccord instrument placé au fond
du puits.
Le foreur qui conduit une opération de forage avec les appareils décrits sur la figure 1 a trois actions possibles, qui sont donc les variables de commande possibles permettant la conduite, le poids sur l'outil qui est réglé par le treuil lequel contrôle la position du crochet, la vitesse de rotation de la table de rotation ou équivalent, le débit de fluide de forage injecté.The driller who conducts a drilling operation with the devices described in the Figure 1 has three possible actions, which are therefore the possible control variables for driving, the weight on the tool which is adjusted by the winch which controls the hook position, rotation speed of the rotary table or equivalent, the flow of injected drilling fluid.
Pour illustrer un exemple de la présente invention, on utilisera un modèle du système mécanique composé des éléments technologiques suivants:
- un appareil de forage comprenant une installation de levage,
- un ensemble d'entraínement: organe de régulation et motorisation,
- un ensemble de tiges,
- un ensemble de masses-tiges,
- un outil,
- un terrain représentant le contact outil/roche.
- a drilling rig comprising a lifting installation,
- a set of drive: regulator and motor,
- a set of rods,
- a set of drill sticks,
- a tool,
- a terrain representing the tool / rock contact.
Le modèle décrit traitera le train de tiges comme un élément monodimensionnel vertical. Les déplacements en translation verticale seront considérés, les déplacements latéraux étant négligés.The described model will treat the drill string as a one-dimensional element vertical. Displacements in vertical translation will be considered, displacements being neglected.
La figure 2 représente le schéma-bloc du modèle de traction-compression. C'est
un modèle classique aux différences finies qui comporte plusieurs mailles représentées par
les blocs 20. Chaque maille représente une partie du train de tiges, tiges de forage et
masses-tiges. Il s'agit de triplets masse-ressort-amortissement figurés par les schémas
référencés 21, 22, 23. Chaque bloc est muni de deux entrées et sorties représentées par les
couples de flèches 24 et 25 qui représentent les tensions d'entrées et de sorties et les
vitesses de déplacement vertical d'entrées et de sorties. Cette représentation montre la
manière de connecter numériquement plusieurs tiges (ou mailles) comme on connecte
physiquement les tiges de la garniture.FIG. 2 represents the block diagram of the traction-compression model. It is
a classic model with finite differences which includes several meshes represented by
Le bloc 26 représente l'appareil de forage. C'est un ensemble de masses, de
ressorts et de frottements.
Le bloc 27 représente l'outil dans son comportement longitudinal.
Le bloc 28 représente la loi reliant les déplacements de l'outil de forage à la forme
du front de taille et à la résistance à la compression de la roche. En fonction d'une position
verticale instantanée de l'outil et de la forme du front de taille, on détermine le poids
agissant sur l'outil.
Ce modèle est validé en utilisant des données enregistrées sur chantier à l'aide des raccords instrumentés de fond et de surface.This model is validated using data recorded on site using the instrumented bottom and surface fittings.
Le fluide de forage et les parois du puits n'interviennent que dans la mesure où ils génèrent un couple résistant de friction. Par expérience, et en utilisant les mesures de fond et de surface, on pourra établir une loi de friction le long des tiges linéaire en fonction de vitesse de rotation et de la vitesse longitudinale.The drilling fluid and the well walls only intervene insofar as they generate a resistant friction torque. From experience, and using background measurements and surface, we can establish a friction law along the linear rods as a function of rotational speed and longitudinal speed.
Le modèle de traction-compression ainsi obtenu est généralement d'ordre élevé, c'est-à-dire de l'ordre de 50 à 100 pour reproduire la réalité avec une finesse suffisante.The tensile-compression model thus obtained is generally of high order, that is to say of the order of 50 to 100 to reproduce reality with sufficient finesse.
Pour obtenir un modèle rapidement exécutable et robuste au changement de conditions de forage, par exemple le changement de terrains traversés, on procède aux étapes ci-après décrites.To obtain a quickly executable and robust model when changing drilling conditions, for example the change of land crossed, we proceed to steps below described.
On linéarise le modèle généralement non linéaire. Dans l'exemple ci-dessus décrit, on linéarise le modèle en choisissant un point de fonctionnement (une vitesse de rotation et un poids sur l'outil) représentatif des conditions de forage réelles. On peut vérifier que le comportement du modèle de traction-compression de connaissance, une fois linéarisé, est correct dans le voisinage du point de fonctionnement.We linearize the generally non-linear model. In the example described above, we linearize the model by choosing an operating point (a rotation speed and a weight on the tool) representative of the actual drilling conditions. We can verify that the behavior of the knowledge traction-compression model, once linearized, is correct in the vicinity of the operating point.
La linéarisation autour d'un point de fonctionnement consiste à calculer le
Jacobien du système d'état non-linéaire. Le système d'état linéaire obtenu est alors de la
forme:
- x = X-X 0
- X 0= valeurs des états au point de fonctionnement
- e = E-E 0
- E 0= valeurs des entrées au point de fonctionnement
- s = S-S 0
- S 0= valeurs des sorties au point de fonctionnement
- x = X - X 0
- X 0 = values of the states at the operating point
- e = E - E 0
- E 0 = values of the inputs at the operating point
- s = S - S 0
- S 0 = values of the outputs at the operating point
La mise sous forme pseudo-modale se fait d'abord par un changement de base :
Après résolution on obtient:
Après linéarisation, le modèle de traction-compression conserve un ordre élevé. L'analyse des modes propres du modèle de traction-compression permet de quantifier la contribution de chaque mode sur les sorties dignes d'intérêt. On ne conserve alors que les modes pertinents; c'est-à-dire ceux qui ont une influence notable sur le comportement dynamique représenté par lesdites sorties.After linearization, the traction-compression model retains an order Student. The analysis of the eigen modes of the traction-compression model allows to quantify the contribution of each mode to the outputs of interest. Onne then keeps only the relevant modes; that is to say those who have an influence notable on the dynamic behavior represented by said outputs.
Le modèle réduit doit reproduire les phénomènes dans une certaine bande de fréquences. Les critères de sélection des modes sont donc de deux ordres et reposent sur des concepts d'observabilité:
- suppression des modes non ou peu observables sur les sorties mesurées,
- suppression des modes hautes fréquences, n'entrant pas dans la bande de fréquence de la commande ou de l'estimateur.
- deletion of the modes not or hardly observable on the measured outputs,
- suppression of the high frequency modes, not entering the frequency band of the control or the estimator.
La méthode de réduction employée est la méthode des perturbations singulières. Elle consiste à garder de la matrice d'état et de la matrice de commande, les lignes et les colonnes correspondant aux modes à garder. Pour conserver les gains statiques, les modes rapides sont remplacés par leur valeur statique, ce qui a pour conséquence d'introduire une matrice directe.The reduction method used is the singular disturbance method. It consists in keeping from the state matrix and from the command matrix, the lines and the columns corresponding to the modes to keep. To keep static gains, the modes Rapids are replaced by their static value, which has the consequence of introducing a direct matrix.
La méthode suppose que les modes rapides prennent leur équilibre en un temps négligeable, c'est-à-dire qu'ils s'établissent instantanément (hypothèse quasi-statique).The method assumes that the fast modes take their equilibrium in a time negligible, that is to say that they are established instantaneously (quasi-static hypothesis).
La figure 3 montre le bloc diagramme d'un système d'estimation du type boucle
ouverte. Le bloc 40 schématise les moyens de mesures de paramètres de surface, ici, la
tension Tms et l'accélération verticale Zms, la vitesse de rotation de la garniture Vms
mesurée à la table ou à la tête d'injection motorisée. Le bloc 41 représente le modèle réduit
qui simule le modèle physique de tension-compression non linéaire en calculant la fonction
de transfert entre les entrées (Vms, Zms) et les sorties Tes, Tef et Zef représentant
respectivement la tension estimée sur la garniture à la surface, la tension estimée et
l'accélération verticale estimée à l'extrémité inférieure de la garniture dans le puits.Figure 3 shows the block diagram of a loop-type estimation system
opened.
Cependant la fonction de transfert est toujours une approximation de la réalité et toute désadaptation entre le modèle et le processus réel de forage peut créer une divergence entre les valeurs estimées et les valeurs réelles par intégration des écarts. Aussi, dans la plupart des cas, il est avantageux d'effectuer un réajustement, ou recalage, à l'aide d'au moins une comparaison entre la valeur d'une sortie estimée et sa valeur réellement mesurée. Ici, l'estimateur linéaire est recalé de préférence à partir de la tension de surface.However, the transfer function is always an approximation of reality and any mismatch between the model and the actual drilling process can create a discrepancy between the estimated values and the real values by integrating the differences. Also in the in most cases, it is advantageous to carry out a readjustment, or readjustment, using at least minus a comparison between the value of an estimated output and its value actually measured. Here, the linear estimator is preferably readjusted from the surface tension.
La technique d'estimation repose sur les principes de filtrage de Luenberger et de
Kalman ("Automatique des systèmes linéaires" par P. De Larminat et Y. Thomas-Flammarion
Sciences; Paris IV, 1975). Le principe d'un estimateur linéaire peut être
illustré par la figure 4 où la mesure de la tension Tms et la valeur estimée Tes et de la
tension sont comparées dans les moyens 42, l'écart entre ces deux valeurs étant injecté dans
un adaptateur 43 en temps réel. L'objectif est ici de reconstituer le plus fidèlement possible
les sorties plutôt que d'avoir un modèle exact. C'est pourquoi on effectue un recalage
d'état. Comme les sorties sont reliées directement aux états, le recalage d'état consiste à
effectuer une pondération entre les états prédits par le modèle à l'instant t et les états
reconstitués à partir des seules sorties mesurées. Cette pondération n'est pas une simple
moyenne, mais elle prend en compte le degré de précision des estimations des états
obtenus par ses deux voies indépendantes.The estimation technique is based on the filtering principles of Luenberger and
Kalman ("Automatic linear systems" by P. De Larminat and Y. Thomas-Flammarion
science; Paris IV, 1975). The principle of a linear estimator can be
illustrated by FIG. 4 where the measurement of the voltage Tms and the estimated value Tes and of the
voltage are compared in the
Une fois recalés les états du modèle qui représentent la dynamique du processus de forage, toutes les sorties, qu'elles soient mesurées ou non peuvent être recalculées.Once readjusted the states of the model which represent the dynamics of the process drilling, all outputs, whether measured or not, can be recalculated.
Cette estimation n'est pas seulement intéressante pour les variables non mesurées comme Tef et Zef elle s'applique également aux variables mesurées (par exemple Tms) qui ont servi au recalage. La valeur estimée Tes est l'équivalent d'une valeur filtrée sur la base d'un modèle: c'est pourquoi on utilise généralement le terme de filtrage (filtrage de Luenberger, filtrage de Kalman...).This estimate is not only interesting for unmeasured variables like Tef and Zef it also applies to the measured variables (for example Tms) which were used for registration. The estimated value Tes is the equivalent of a value filtered on the basis of a model: this is why we generally use the term filtering (filtering of Luenberger, Kalman filtering ...).
La technique de recalage d'états, telle que décrite précédemment introduit un asservissement de Tms mesuré sur Tes estimé.The state registration technique, as described above, introduces a slaving of Tms measured on Tes estimated.
Ce bouclage supprime le risque de divergence mentionné ci-dessus, lorsque le modèle est simulé en boucle ouverte (figure 3).This closure eliminates the risk of divergence mentioned above, when the model is simulated in open loop (figure 3).
Il y a ainsi une désensibilisation des variables estimées vis à vis des imperfections du modèle. Dans ce contexte, on n'a plus besoin d'avoir un modèle parfait : un modèle approché est suffisant.There is thus a desensitization of the estimated variables with respect to imperfections of the model. In this context, we no longer need to have a perfect model: a model approached is sufficient.
En outre, on ne dispose ici que d'une mesure, la tension T, pour effectuer le recalage : il ne paraít pas possible de recaler un grand nombre d'états à partir de cette mesure. C'est pourquoi, le modèle de traction-compression non linéaire ne convient pas en dépit de sa plus grande précision.Furthermore, only one measurement is available here, the voltage T, for carrying out the readjustment: it does not seem possible to readjust a large number of states from this measured. This is why, the nonlinear traction-compression model is not suitable in despite its greater precision.
Il existe donc un compromis à effectuer entre la précision et l'ordre du système. Il faut rechercher le modèle d'ordre minimum qui respecte les tolérances de précision souhaitables, et qui soit également facile à régler et robuste.There is therefore a compromise to be made between the precision and the order of the system. he look for the minimum order model that meets precision tolerances desirable, and that is also easy to adjust and robust.
Le choix de l'ordre du modèle réduit dépend des critères qualitatifs suivants :
- il faut sauvegarder les modes propres de vibration en traction-compression qui sont prépondérants dans les sorties à ré estimer ;
- pour des raisons de cohérence et de stabilité numérique, il faut rejeter les modes de fréquences élevées supérieures à fmax = fe/2 où fe est la fréquence d'échantillonnage des entrées et des sorties.
- it is necessary to save the eigen modes of vibration in traction and compression which are predominant in the outputs to be re-estimated;
- for reasons of consistency and numerical stability, it is necessary to reject the high frequency modes greater than f max = f e / 2 where fe is the sampling frequency of the inputs and outputs.
Il est donc superflu de choisir un modèle réduit d'ordre supérieur si on veut intégrer le modèle à la cadence d'échantillonnage.It is therefore superfluous to choose a reduced model of higher order if we want integrate the model at the sampling rate.
De plus, il ne faut pas oublier que le modèle réduit d'estimation doit, de préférence, satisfaire les contraintes technologiques du temps réel.In addition, it should not be forgotten that the reduced estimation model must, preferably meet the technological constraints of real time.
L'estimateur est donc construit suivant les étapes suivantes :
- discrétisation du modèle réduit,
- discrétisation des filtres passe-haut,
- agrégation des filtres passe-haut et du modèle réduit, l'ensemble devient le modèle d'estimation,
- calcul des gains de recalage,
- construction de l'estimateur complet.
- discretization of the reduced model,
- discretization of high-pass filters,
- aggregation of high-pass filters and the reduced model, the whole becomes the estimation model,
- calculation of registration gains,
- construction of the complete estimator.
La méthodologie pour la construction de l'estimateur selon l'invention peut être
illustrée par la figure 5. Le bloc 50 représente un modèle physique représentant un
processus de forage rotary, par exemple illustré par la figure 2. Ce modèle prend en
compte une situation de fonctionnement déterminée en recevant notamment les
caractéristiques mécaniques de la garniture de forage utilisée, symbolisation référencée 51,
les conditions de puits et de surface, symbolisation référencée 52, et des lois de friction,
symbolisation référencée 53. Le bloc 54 représente le modèle de tension principal une fois
linéarisé et réduit selon la description ci-dessus. Toutes ces étapes rassemblées sous
l'accolade DF s'exécutent en temps différé par rapport au déroulement du processus de
forage rotary, les autres étapes rassemblées sous l'accolade TR sont exécutées en temps
réel.The methodology for the construction of the estimator according to the invention can be
illustrated by FIG. 5.
Le bloc 55 est directement ce que l'on a appelé l'estimateur. Des moyens de
mesure 56 placés sur le sommet de la garniture de forage donnent les mesures
d'accélération verticale, de tension et de vitesse de rotation au sommet des tiges, c'est-à-dire
en surface. Ces mesures de surface sont prises en compte dans l'estimateur, comme
décrit plus haut, pour donner une estimation des valeurs de déplacement de l'outil de
forage, en particulier l'accélération verticale Zef d'où sera déduite le déplacement vertical
de l'outil de forage.
La présente invention est avantageusement mis en oeuvre sur un chantier de forage afin d'avoir une estimation aussi précise que possible de l'accélération verticale de l'outil de forage en temps réel, et cela à partir des seules mesures de surface, notamment l'accélération verticale et la vitesse de rotation des moyens conventionnels de mise en rotation de la garniture de forage, et d'une installation de surface équipée de moyens électroniques et informatiques. Il est très intéressant d'avoir une estimation des paramètres de fond de façon à détecter, et même à prévenir des dysfonctionnements connus, par exemple le comportement dit "bit bouncing" caractérisé par un décollement de l'outil du front de taille bien que la tête du train de tiges reste sensiblement fixe et qu'une force de compression importante soit appliquée à l'outil. Cela peut avoir pour conséquences des effets néfastes sur la durée de vie des outils, sur l'augmentation de la fatigue mécanique du train de tiges et la fréquence des ruptures des connexions.The present invention is advantageously implemented on a construction site drilling in order to have as precise an estimate as possible of the vertical acceleration of the drilling tool in real time, using only surface measurements, in particular the vertical acceleration and the speed of rotation of conventional means of setting rotation of the drill string, and of a surface installation equipped with means electronic and computer. It is very interesting to have an estimate of the parameters background so as to detect, and even prevent known malfunctions, by example the so-called "bit bouncing" behavior characterized by a separation of the tool from the size face although the head of the drill string remains substantially stationary and a force of significant compression is applied to the tool. This can result in harmful effects on the life of the tools, on the increase of the mechanical fatigue of the drill string and the frequency of connection breaks.
Claims (5)
- A method designed to estimate the effective behaviour of a drill bit (12) fastened to the end of a drill string (6) and driven into rotation in a well (7) by surface driving means (8), wherein a non-linear physical model (50) of the drilling process based on general mechanics equations is used, characterized in that the following stages are carried out :the parameters of said model are identified by taking account of the parameters of said well and of said string (51, 52, 53),said model is linearized about a working point,said linearized model is reduced while keeping only some of the specific modes of the state matrix of said model,the displacement of the drill bit or the stress applied to the bit is computed in real time by means of the reduced model (54) and of at least one parameter measured at the surface, and in that said model mainly takes account of the displacements and the vertical stresses, and said reduced model computes in real time the vertical motion or stress of the drill bit, said parameter measured at the surface being the vertical acceleration of the string.
- A method as claimed in claim 1, wherein the displacement of the drill bit or the stress applied to the bit is computed in real time by means of the reduced model and of at least the two parameters measured at the surface : the vertical acceleration and the rotational speed of the string.
- A method as claimed in any one of claims 1 to 2, wherein the reduced model is fined down by means of self-adaptive filtering which minimizes the difference between a real measurement of a parameter linked with the displacement of the string at the surface and the corresponding output obtained by said reduced model.
- A method as claimed in claim 3, wherein said filtering takes account of the tensile stress measured at the surface on the string.
- A system designed to estimate the effective behaviour of a drill bit (12) fastened to the end of a drill string (6) and driven into rotation in a well (7) by surface driving means (8), wherein a computing unit (9) comprises means intended for non-linear physical modelling of the drilling process based on general mechanics equations, characterized in that parameters of said modelling means are identified by taking account of the parameters of said well and of said string, in that the computing unit comprises means designed for linearization of said model about a working point, means for reducing said linearized model so as to keep only certain specific modes of the state matrix of said model, means for real-time computation of the displacement of the drill bit or of the stress applied to the bit, by means of the modelling means once linearized and reduced and means (13) for measuring at least one parameter linked with the displacement of the string at the surface : the rotational speed, the vertical acceleration and the tension of the string, wherein the modelling means only take account of the traction and the compression.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9607913 | 1996-06-24 | ||
FR9607913A FR2750159B1 (en) | 1996-06-24 | 1996-06-24 | METHOD AND SYSTEM FOR REAL-TIME ESTIMATION OF AT LEAST ONE PARAMETER RELATED TO THE BEHAVIOR OF A DOWNHOLE TOOL |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0816630A1 EP0816630A1 (en) | 1998-01-07 |
EP0816630B1 true EP0816630B1 (en) | 2003-05-21 |
Family
ID=9493414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97401298A Expired - Lifetime EP0816630B1 (en) | 1996-06-24 | 1997-06-09 | Method and system for real time estimation of at least one parameter connected to the performance of a downhole tool |
Country Status (5)
Country | Link |
---|---|
US (1) | US5844132A (en) |
EP (1) | EP0816630B1 (en) |
CA (1) | CA2209059C (en) |
FR (1) | FR2750159B1 (en) |
NO (1) | NO972931L (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6347292B1 (en) * | 1999-02-17 | 2002-02-12 | Den-Con Electronics, Inc. | Oilfield equipment identification method and apparatus |
FR2792363B1 (en) * | 1999-04-19 | 2001-06-01 | Inst Francais Du Petrole | METHOD AND SYSTEM FOR DETECTING THE LONGITUDINAL MOVEMENT OF A DRILLING TOOL |
EP1410072A4 (en) * | 2000-10-10 | 2005-08-31 | Exxonmobil Upstream Res Co | Method for borehole measurement of formation properties |
US6915686B2 (en) * | 2003-02-11 | 2005-07-12 | Optoplan A.S. | Downhole sub for instrumentation |
EP2108166B1 (en) | 2007-02-02 | 2013-06-19 | ExxonMobil Upstream Research Company | Modeling and designing of well drilling system that accounts for vibrations |
US8589136B2 (en) * | 2008-06-17 | 2013-11-19 | Exxonmobil Upstream Research Company | Methods and systems for mitigating drilling vibrations |
AU2009318062B2 (en) | 2008-11-21 | 2015-01-29 | Exxonmobil Upstream Research Company | Methods and systems for modeling, designing, and conducting drilling operations that consider vibrations |
GB2466812B (en) | 2009-01-08 | 2011-10-19 | Schlumberger Holdings | Drillstring dynamics |
MY157452A (en) * | 2009-08-07 | 2016-06-15 | Exxonmobil Upstream Res Co | Methods to estimate downhole drilling vibration amplitude from surface measurement |
CA2770232C (en) * | 2009-08-07 | 2016-06-07 | Exxonmobil Upstream Research Company | Methods to estimate downhole drilling vibration indices from surface measurement |
GB2554190B (en) | 2015-04-29 | 2021-03-31 | Halliburton Energy Services Inc | Systems and methods for sensorless state estimation, disturbance estimation, and model adaption for rotary steerable drilling systems |
NL2016859B1 (en) * | 2016-05-30 | 2017-12-11 | Engie Electroproject B V | A method of and a device for estimating down hole speed and down hole torque of borehole drilling equipment while drilling, borehole equipment and a computer program product. |
US10443334B2 (en) | 2017-05-19 | 2019-10-15 | Weatherford Technology Holdings Llc | Correction for drill pipe compression |
WO2019119107A1 (en) | 2017-12-23 | 2019-06-27 | Noetic Technologies Inc. | System and method for optimizing tubular running operations using real-time measurements and modelling |
WO2019183374A1 (en) * | 2018-03-23 | 2019-09-26 | Conocophillips Company | Virtual downhole sub |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4794535A (en) * | 1986-08-18 | 1988-12-27 | Automated Decisions, Inc. | Method for determining economic drill bit utilization |
US4845628A (en) * | 1986-08-18 | 1989-07-04 | Automated Decisions, Inc. | Method for optimization of drilling costs |
FR2614360B1 (en) * | 1987-04-27 | 1989-06-16 | Forex Neptune | METHOD FOR MEASURING THE RUNNING SPEED OF A DRILLING TOOL |
DE3715424C2 (en) * | 1987-05-08 | 1995-01-26 | Henkel Kgaa | Use of a fatty oil from Helianthus annuus for the production of fatty acid monoglycerides |
FR2645295B1 (en) * | 1989-03-29 | 1994-06-10 | Renault | DEVICE FOR MONITORING THE OPERATION OF A MICROPROCESSOR |
FR2645205B1 (en) * | 1989-03-31 | 1991-06-07 | Elf Aquitaine | DEVICE FOR AUDITIVE AND / OR VISUAL REPRESENTATION OF MECHANICAL PHENOMENAS IN A WELL AND USE OF THE DEVICE IN A METHOD OF CONDUCTING A WELL |
FR2666845B1 (en) * | 1990-09-14 | 1997-01-10 | Elf Aquitaine | METHOD FOR CONDUCTING A WELL. |
GB2264562B (en) * | 1992-02-22 | 1995-03-22 | Anadrill Int Sa | Determination of drill bit rate of penetration from surface measurements |
FR2688026B1 (en) * | 1992-02-27 | 1994-04-15 | Institut Francais Petrole | SYSTEM AND METHOD FOR ACQUIRING PHYSICAL DATA RELATED TO A CURRENT DRILLING. |
US5305836A (en) * | 1992-04-08 | 1994-04-26 | Baroid Technology, Inc. | System and method for controlling drill bit usage and well plan |
GB9216740D0 (en) * | 1992-08-06 | 1992-09-23 | Schlumberger Services Petrol | Determination of drill bit rate of penetration from surface measurements |
GB9218836D0 (en) * | 1992-09-05 | 1992-10-21 | Schlumberger Services Petrol | Method for determining weight on bit |
NO315670B1 (en) * | 1994-10-19 | 2003-10-06 | Anadrill Int Sa | Method and apparatus for measuring drilling conditions by combining downhole and surface measurements |
US5581024A (en) * | 1994-10-20 | 1996-12-03 | Baker Hughes Incorporated | Downhole depth correlation and computation apparatus and methods for combining multiple borehole measurements |
-
1996
- 1996-06-24 FR FR9607913A patent/FR2750159B1/en not_active Expired - Fee Related
-
1997
- 1997-06-09 EP EP97401298A patent/EP0816630B1/en not_active Expired - Lifetime
- 1997-06-23 CA CA002209059A patent/CA2209059C/en not_active Expired - Fee Related
- 1997-06-23 NO NO972931A patent/NO972931L/en not_active Application Discontinuation
- 1997-06-23 US US08/880,858 patent/US5844132A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
FR2750159A1 (en) | 1997-12-26 |
NO972931D0 (en) | 1997-06-23 |
FR2750159B1 (en) | 1998-08-07 |
CA2209059C (en) | 2006-11-21 |
EP0816630A1 (en) | 1998-01-07 |
NO972931L (en) | 1997-12-29 |
CA2209059A1 (en) | 1997-12-24 |
US5844132A (en) | 1998-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0816629B1 (en) | Method and system for real time estimation of at least one parameter connected to the rate of penetration of a drilling tool | |
EP0816630B1 (en) | Method and system for real time estimation of at least one parameter connected to the performance of a downhole tool | |
EP1046781B1 (en) | Method and system for detecting bit-bounce | |
FR3070180A1 (en) | NEURON NETWORK MODELS FOR REAL-TIME OPTIMIZATION OF DRILLING PARAMETERS DURING DRILLING OPERATIONS | |
US5247830A (en) | Method for determining hydraulic properties of formations surrounding a borehole | |
FR2869067A1 (en) | SYSTEM AND METHOD FOR FIELD SYNTHESIS FOR OPTIMIZING A DRILLING DEVICE | |
FR3069930A1 (en) | ESTIMATING THE SPEED OF TRAINING BY VERTICAL SEISMIC PROFILING | |
US8120357B2 (en) | Method and system for fluid characterization of a reservoir | |
FR3039196A1 (en) | ||
WO2013153311A1 (en) | Method for determining geomechanical parameters of a rock sample | |
EP2817607B1 (en) | Measuring head intended to be fitted to a dynamic penetrometer and method of measurement using such a measuring head | |
US20210270120A1 (en) | Drilling evaluation based on coupled torsional vibrations | |
Versteijlen et al. | Effective soil-stiffness validation: Shaker excitation of an in-situ monopile foundation | |
FR2614360A1 (en) | METHOD FOR MEASURING THE SPEED OF ADVANCE OF A DRILLING TOOL | |
FR2611804A1 (en) | METHOD FOR CONTROLLING WELL DRILLING OPERATIONS | |
Ueda et al. | Applicability of the generalized scaling law to a pile-inclined ground system subject to liquefaction-induced lateral spreading | |
Guerriero et al. | Clay landslide movement triggered by artificial vibrations: new insights from monitoring data | |
JP3117637B2 (en) | Ground survey device and ground survey method | |
EP0341109A1 (en) | Method for evaluating the organic material content of sediments from data acquired by borehole logging probes | |
WO2019016448A1 (en) | Static penetrometer and associated measurement method | |
FR3035147A1 (en) | ||
Wiktorski et al. | Comparative study of surface and downhole drillstring vibrations measurements on a laboratory-scale drilling rig | |
JP6832211B2 (en) | Ground survey equipment and ground survey method | |
FR3034191A1 (en) | DETERMINATION OF TRAINING PRESSURE | |
EP0505276A1 (en) | Probe for determining particularly the injectivity of an oil well and measuring process making use of this probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): GB IT NL |
|
17P | Request for examination filed |
Effective date: 19980707 |
|
AKX | Designation fees paid |
Free format text: GB IT NL |
|
RBV | Designated contracting states (corrected) |
Designated state(s): GB IT NL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
17Q | First examination report despatched |
Effective date: 20010309 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030521 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20030627 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030925 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040609 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20050101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070622 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080609 |