EP1046753B1 - Verfahren und Vorrichtung zum Herstellen von Ortbetonpfählen im Boden - Google Patents

Verfahren und Vorrichtung zum Herstellen von Ortbetonpfählen im Boden Download PDF

Info

Publication number
EP1046753B1
EP1046753B1 EP19990107303 EP99107303A EP1046753B1 EP 1046753 B1 EP1046753 B1 EP 1046753B1 EP 19990107303 EP19990107303 EP 19990107303 EP 99107303 A EP99107303 A EP 99107303A EP 1046753 B1 EP1046753 B1 EP 1046753B1
Authority
EP
European Patent Office
Prior art keywords
screw
soil
drive tool
shaft
lead section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19990107303
Other languages
English (en)
French (fr)
Other versions
EP1046753A1 (de
Inventor
Robert Alfred Vickars
Jeremiah Charles Tilney Vickars
Gary Matheus Toebosch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vickars Developments Co Ltd
Original Assignee
Vickars Developments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vickars Developments Co Ltd filed Critical Vickars Developments Co Ltd
Priority to DE69918265T priority Critical patent/DE69918265D1/de
Priority to EP19990107303 priority patent/EP1046753B1/de
Publication of EP1046753A1 publication Critical patent/EP1046753A1/de
Application granted granted Critical
Publication of EP1046753B1 publication Critical patent/EP1046753B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • E02D5/801Ground anchors driven by screwing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/56Screw piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
    • E02D5/44Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds with enlarged footing or enlargements at the bottom of the pile
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/22Placing by screwing down

Definitions

  • This invention relates to a method for making piles and to apparatus for practising the method of the invention.
  • a preferred embodiment of the invention provides a method and apparatus for making piles to support the foundation of a structure, such as a building.
  • Piles are used to support structures, such as buildings, when the soil underlying the structure is too weak to support the structure.
  • One technique is to cast the pile in place. In this technique, a hole is excavated in the place where the pile is needed and the hole is filled with cement. A problem with this technique is that in weak soils the hole tends to collapse. Therefore, expensive shoring is required. If the hole is more than about 4 to 5 feet deep then safety regulations typically require expensive shoring and other safety precautions to prevent workers from being trapped in the hole.
  • Turzillo United States Patent No. 3,962,879 is a modification of this technique.
  • a helical auger is used to drill a cylindrical cavity in the earth.
  • the upper end of the auger is held fixed while the auger is rotated about its axis to remove all of the earth from the cylindrical cavity.
  • cement water is pumped through the shaft of the auger until the hole is filled with cement.
  • the auger is left in place.
  • Turzillo, United States Patent No. 3,354,657 shows a similar system.
  • Langenbach Jr. United States Patent No. 4,678,373 discloses a method for supporting a structure in which a piling bearing a footing structure is driven down into the ground by pressing from above with a large hydraulic ram anchored to the structure.
  • the void cleared by the footing structure may optionally be filled by pumping concrete into the void through a channel inside the pile.
  • the ram used to insert the Langenbach Jr. piling is large, heavy and expensive.
  • the CHANCE helical pier system includes one or more helical screws mounted at the end of a shaft.
  • the helical screw comprises a section of metal plate having its inner edge welded to the shaft. The area around the inner edge is the root region of the screw. The plate is bent so that its outer edge generally follows a helix.
  • the shaft is turned to draw the helical screw downwardly into a body of soil. The screw is screwed downwardly until the screw is seated in a region of soil sufficiently strong to support the weight which will be placed on the pier.
  • Brackets may be mounted on the upper end of the pier to support the foundation of a building.
  • Helical pier systems have the advantages that they are relatively inexpensive to use and are relatively easy to install in tight quarters.
  • Helical pier systems have two primary disadvantages. Firstly, they rely upon the surrounding soil to support the shaft and to prevent the shaft from bending. In situation where the surrounding soil is very weak or the pier is required to support very large loads the surrounding soil cannot provide the necessary support. Consequently, helical piers can bend in such situations.
  • a second disadvantage of helical piers is that the metal components of the piers are in direct contact with the surrounding soil.
  • a third disadvantage of helical piers exists in piers which comprise large diameter helices which bear large loads. Such helices can buckle and cause the pier to fail. Because their load bearing capacity is limited, helical pier systems have not been able to replace more conventional piles in many applications.
  • Raaf United States Patent No. 5,575,593, discloses a method and apparatus for installing an anchor used to improve the ability of soil to support structures and to provide a tie-back anchoring force.
  • the anchor includes a helical member which is hollow and includes multiple perforated holes along its length. The helical member is rotated into the ground and pressurized grout is injected through the hollow helical member and out through the perforated holes. The grout fills any voids along the sides of the anchor and stiffens the surrounding soil, such that it may be used to support structures and to provide tie-back anchoring.
  • Vickars United States Patent No. 5,707,180, provides a method for making piles and an apparatus for practising the method.
  • the method involves drawing a soil displacing member on a shaft down through a body of soil by turning a screw at the lower end of the shaft.
  • the soil displacing member forces soil out of a cylindrical region surrounding the shaft and then the cylindrical region is filled with grout to encapsulate and strengthen the shaft.
  • the grout may be fed by gravity into the cylindrical region from a bath of grout surrounding the shaft.
  • the soil displacing member may be a disk extending in a plane perpendicular to the shaft.
  • This invention provides methods for forming piles which use a screw to pull a soil displacing member through soil.
  • One aspect of the invention provides methods to protect the screw with a hardenable substance after the screw has been inserted into the ground.
  • a preferred embodiment comprises encasing at least a root portion of the screw in solidified grout. This protects the root portion of the screw from corrosive soils and reinforces the screw.
  • the method includes the steps of removing soil from a volume surrounding at least a root portion of the screw by holding the shaft against longitudinal motion, turning the screw in a first sense and forcing a fluid grout under pressure into the volume; and, allowing the grout in the volume to harden, thereby encasing surfaces of the screw in a protective layer of solidified grout.
  • the fluid grout is forced under pressure into the volume while the screw is rotating.
  • the fluid grout is forced under pressure into the volume by forcing the fluid grout under pressure through a longitudinal channel within the shaft and directing the grout into the volume through apertures in a wall of the shaft.
  • the screw pier comprises a plurality of additional soil displacing members having diameters larger than a diameter of the first soil displacing member, the additional soil displacing members at spaced apart locations on the portion of the shaft between the second end and the first soil displacing member.
  • the additional soil displacing members toward the second end have diameters larger than diameters of the additional soil displacing members toward the first soil displacing member.
  • the method includes drawing the additional soil displacing members through the soil to stepwise increase a diameter of the cylindrical region.
  • a further aspect of the invention provides a screw pier for making a grout encased pile.
  • the screw pier comprises: a lead section comprising a screw, a head and a soil displacement member between the screw and the head; an elongated shaft having a first end coupled to the lead section head; an elongated drive tool having a socket in driving engagement with the lead section head, the elongated shaft extending through a central bore in the drive tool; and a fastener at a second end of the elongated shaft, the fastener holding the drive tool socket engaged with the lead section head.
  • the drive tool may be removed and re-used.
  • the drive tool comprises two or more sections connected by one or more joints and each joint comprises a head end of one drive tool section received in a socket on one end of another drive tool section.
  • the socket is movable longitudinally relative to the head end between first and second positions. When the socket is in its first position, an edge of the socket projects past an abutment on the head end to provide a recess facing the screw. The recess is capable of receiving tab portions of sectors of a soil displacing member. When the socket is in its second position, the edge of the socket is retracted, thereby releasing the tab portions of the sectors.
  • the invention also provides a drive tool for installing a grout encased screw pier.
  • the drive tool comprises an elongated shaft penetrated by a central bore.
  • the shaft comprises two or more sections connected by one or more joints.
  • the drive tool has a socket for drivingly coupling to a screw pier lead section at one end of the shaft.
  • Each of the joints comprises a head end of one shaft section slidably received in a socket on one end of another shaft section.
  • the socket is movable longitudinally relative to the head end between first and second positions. When the socket is in its first position, an edge of the socket projects past an abutment on the head end to define a recess facing toward the first end of the shaft. When the socket is in its second position, the edge of the socket does not project past the abutment.
  • FIG. 1 shows a prior art helical pier 20 supporting the foundation 22 of a building 24 .
  • Helical pier 20 has a lead section 30 which comprises a shaft 32 and a screw 34 mounted to shaft 32 .
  • shaft 32 comprises a number of extension sections 36 which are coupled together at joints 37 .
  • Each extension section 36 comprises a shaft section 39 and a socket 38 .
  • Shaft sections 39 are typically square in section but may, of course, have other shapes.
  • Sockets 38 comprise a square recess which fits over the top end of lead section 30 or the top end of the shaft section 39 of a previous one of extension sections 36 .
  • Bolts 40 are then used to secure extension sections 36 together.
  • Lead sections are typically available in lengths in the range of 3 feet to 10 feet.
  • Lead section 30 shown in Figure 1 has a helical screw 34 comprising two helical segments attached to it. Screw 34 may comprise one or more helical segments. Additionally, some of extension sections 36 may also be equipped with screws 34 .
  • Helical pier 20 is installed in the body of soil underlying foundation 22 by screwing lead section 30 into the earth adjacent foundation 22 and continuing to turn lead section 30 so that helical screw 34 draws lead section 30 downwardly. As lead section 30 is drawn downwardly extension sections 36 are added as needed. The installation is complete when helical screw 34 has been screwed down into a layer of soil capable of supporting the weight which will be placed on pier 20 . In the example of Figure 1, helical screw 34 has been screwed down through two weaker layers of soil 46 and 48 and into a layer 50.
  • Bracket 54 at the top of helical pier 20 supports foundation 22.
  • Bracket 54 may be equipped with lifting means, as described, for example, in U.S. patent Nos. 5,120,163; 5,011,336; 5, 139,368; 5,171,107 or 5,213,448 for adjusting the force on the underside of foundation 22 .
  • a problem with the pier shown in Figure 1 is that the pier can bend, and may even buckle, if the soil in regions 46 and/or 48 is not sufficiently strong to support shaft 32 against lateral motion. This tendency is exacerbated because sockets 38 are somewhat larger in diameter than shaft sections 39 . Consequently, as sockets 38 are pulled down through the soil they disturb and further weaken a small cylindrical volume 52 of soil immediately surrounding shaft 32 . Furthermore, there is generally some clearance between the side faces of shaft sections 39 and the walls of the indentations in sockets 38 . Shaft 32 is therefore freely able to bend slightly at each of joints 37 . It can be readily appreciated that when shaft 32 is in compression, the forces tending to push shaft 32 laterally are increased as shaft 32 becomes bent.
  • a second problem with the pier shown in Figure 1 is that it is prone to corrosion.
  • pier 20 will be installed so that screw 34 is in a layer of soil 50 which will not corrode screw 34 .
  • shaft 32 passes through other layers of soil which are more chemically active.
  • shaft 32 is in direct contact with the soil of layer 48 which may be highly corrosive.
  • the integrity of the entire pier 20 may be reduced if layer of soil 48 is highly chemically active and erodes those portions of shaft 32 which pass through layer of soil 48 .
  • FIG 2 shows apparatus 51 for practising the method of the invention to make a pile 65 (see Figures 4C and 4D).
  • Pile 65 may be used to support a structure, which, for clarity, is not shown.
  • Apparatus 51 comprises a helical pier 20 , which is preferably a helical pier of the general type described above as shown in Figure 1 and available from the A.B. Chance Company of Centralia MO. Other types of helical pier could also be used, as will be readily apparent to those skilled in the art, after reading this specification.
  • Helical pier 20 is modified for practising the invention by the addition of a soil displacing member which preferably comprises a disk 60 on shaft 32 , spaced above screw 34 . Disk 60 projects in flange like fashion in a plane generally perpendicular to shaft 32 .
  • One or more additional soil displacing members which are preferably additional disks 62 are spaced apart along shaft 32 above disk 60 .
  • Soil displacing members for use with the invention may have various forms without departing from the invention.
  • the soil displacing member may comprise a section of shaft 32 having an enlarged diameter.
  • a portion of the material being used to form the socket may be flared outwardly in a flange-like fashion.
  • the outwardly flared material can function as a soil displacement member without the necessity of separate parts.
  • the sockets 38 on prior art helical piers, as described above might be large enough for use in practising the methods of the invention on a limited scale, although a larger diameter soil displacing member is generally preferred.
  • the diameter of the soil displacing member should be at least about twice the diameter of shaft 32 .
  • Soil displacing members should be sufficiently rigid that they will not be unduly deformed by the forces acting on them during installation of a pile, as described below.
  • Disk 60 may be rigidly held in place on shaft 32 but may also be slidably mounted on shaft 32 . Where disk 60 is slidably mounted on shaft 32 it is blocked from moving very far upwardly along shaft 32 by a projection formed by, for example, the lowermost one of sockets 38 .
  • the apparatus includes one or more additional disks 62 . Disks 62 are not necessarily all the same size and may be larger or smaller than disk 60 as is discussed in more detail below.
  • disks 60 , 62 and screw 34 depend upon the weight to be borne by pile, the properties of the soil in which pile 65 will be placed and the engineering requirements for pile 65 . For example, in general: if the soil is very soft then larger disks may be used; if the soil is highly chemically active then larger disks may also be used (to provide a thicker layer of grout to protect the metal portions of the apparatus as described below); and if the soil is harder then smaller disks may be used. Disks 62 are spaced apart from disk 60 along shaft 32 .
  • disks 60 and 62 are typically smaller than screw 34 .
  • screw 34 is typically in the range of 15 cm (6 inches) to 36 cm (14 inches) in diameter.
  • Shaft sections 39 are typically on the order of 3.8 cm (1.5 inches) to 5.1 cm (2 inches) in thickness and disks 60, 62 are typically in the range of 10 cm (4 inches) to 41 cm (16 inches) in diameter.
  • the preferred size for disks 60 depends upon the weight that will be borne by the pile, the relative softness or hardness of the soil where pile 65 will be placed and on the diameter of screw 34 .
  • Disk 60 may, for example, comprise a circular piece of steel plate thick enough to withstand significant bending forces as it is used and most typically approximately 6.35 mm (.25 inches) to 9.5 mm (3/8 inches) in thickness with a hole 64 at its centre.
  • disks 60 , 62 are galvanized although this is not necessary.
  • Hole 64 is preferably shaped to conform with the cross sectional shape of shaft 32 so that disk 60 can be slid onto shaft sections 39 . Hole 64 is smaller than joints 37 .
  • disks 60 and 62 do not necessarily need to be flat but may be curved and/or dished. Flat disks 60 , 62 are generally preferred because they can work well and are less expensive to make than curved or dished disks.
  • Disk 60 displaces soil from a cylindrical region 74 around shaft 32 as it is pulled downwardly through the soil by screw 34 .
  • disk 60 may be replaced with an alternative soil displacing member which will clear cylindrical region 74 of soil as it is pulled through the soil by screw 34 .
  • various members of different shapes or configurations may be attached to shaft 32 in place of disk 60 to displace soil from a generally cylindrical volume surrounding shaft 32 and that such members can therefore function as soil displacing members within the broad scope of this invention.
  • FIGS 4A through 4D The method provided by the invention for making and placing a pile 65 is illustrated in Figures 4A through 4D.
  • the lead section 30 of a helical pier is turned with a suitable tool 72 so that screw 34 is screwed into the soil at the point where a pile is desired.
  • disk 60 is slipped onto the shaft portion of lead section 30 and a tubular casing 66 is placed around the projecting shaft of lead section 30 .
  • the lower edge of tubular casing 66 is embedded in the surface of soil 46 .
  • Tubular casing 66 is then partially filled with fluid grout 70 and the level of grout 70 is marked.
  • casing 66 may be placed first at the location where it is desired to place pile 65 and lead section 30 may be introduced downwardly through casing 66 and screwed into the soil inside casing 66 either before or after grout 70 has been introduced into casing 66 .
  • lead section 30 is started after grout 70 has been placed in casing 66 then grout 70 may lubricate screw 34 and thereby reduce the torque needed to start screw 34 into the soil beneath casing 66 .
  • Tubular casing 66 typically and conveniently comprises a round cardboard form approximately 61 cm (24 inches) high and approximately 46 cm (18 inches) in diameter.
  • casing 66 may be any form capable of holding a bath of fluid grout 70 and large enough to pass disks 62 . It is not necessary that casing 66 be round although it is convenient and attractive to make casing 66 round.
  • an extension section 36 is attached to lead section 30 and a driving tool is attached to the top of extension section 36 to continue turning shaft 32 and screw 34 .
  • Shaft 32 slips through then centre of disk 60 until first joint 37 hits disk 60 .
  • screw 34 pulls disk 60 down through soil 46.
  • Disk 60 compresses and displaces the soil below its lower surface as disk 60 is pulled downwardly. As this happens, grout flows downwardly under the action of gravity from tubular casing 66 into a cylindrical region 74 which disk 60 has cleared of soil.
  • tubular casing 66 As disk 60 is pulled downwardly, grout 70 flows into cylindrical region 74 and the level of grout 70 in tubular casing 66 goes down. Tubular casing 66 is periodically refilled with grout. Preferably the amount of grout introduced into tubular casing 66 is measured so that the total amount of grout which flows into cylindrical region 74 may be readily calculated. This information may be needed obtain an engineer's approval of pile 65 .
  • Disks 62 on additional extension sections 36 are added as screw 34 pulls disks 60 and 62 downwardly through soil 46 until, ultimately, screw 34 is embedded in a stable layer 50 of soil. Disks 62 maintain shaft 32 centered in cylindrical region 74 and may also help to keep soil from collapsing inwardly into cylindrical region 74. In some applications only one or two disks 60, 62 may be necessary. Tubular casing 66 is then removed and grout 70 is allowed to harden. Tubular casing 66 may also be left in place.
  • extension sections 36 are encased in a hardened cylindrical column of grout 70 .
  • Hardened grout 70 prevents extension section 36 from moving relative to one another and reinforces the portions of shaft 32 above disk 60 .
  • Grout 70 also protects shaft 32 from corrosion.
  • the diameter of the column of grout 70 surrounding shaft 32 depends upon the diameter of the soil displacement means (i.e. disk 60 in the embodiment shown in Figure 4) being used.
  • disks 62 may, in some soils, seal against the walls of cylindrical region 74 and isolate portions of cylindrical region 74 between disks 62 . If this happened then the hydrostatic pressure of grout 70 in one or more of the isolated portions could be reduced if grout 70 leaked out of that portion into the surrounding soil. This could tend to allow the surrounding soil to collapse into cylindrical region 74 .
  • disks 62 may be of a type 62B provided with fenestrations 73 so that the column of grout 70 in cylindrical region 74 is not interrupted by disks 62 . This allows the full hydrostatic head of fluid grout 70 in cylindrical region 74 to press outwardly against the soil adjacent cylindrical region 74 .
  • the hardened cylindrical column of grout 70 has a diameter similar to the diameter of disk 60 , which is significantly larger than the diameter of shaft 32 . It therefore takes a larger lateral force to displace pile 65 in soil of a given consistency than would be needed to displace the prior art helical pier 20 shown in Figure 1. Therefore, pile 65 should have a significantly increased capacity for bearing compressive loads than a prior art helical pier 20 with a similarly sized shaft 32 and screw 34 .
  • Grout 70 is preferably an expandable grout such as the MICROSIL TM anchor grout, available from Ocean Construction Supplies Ltd. of Vancouver British Columbia Canada. This grout has the advantages that it tends to plug small holes and rapidly acquires a high compressive strength during hardening. Another property of this grout is that it resists mixing with water.
  • grout 70 is fiber reinforced.
  • the MICROSIL grout referred to above can usefully be reinforced by mixing it with fibrillated polypropylene fiber, such as the PROMESH TM fibers available from Canada Concrete Inc. of Kitchener, Ontario, Canada according to the fiber manufacturer's instructions. Typically approximately 0.7 kg (1.5 pounds) of fibers are introduced per 0.76 cubic meters (cubic yard) of grout 70 although this amount may vary. Other soil specific additives may be mixed with the grout as is known to those skilled in this art.
  • grout 70 any suitable flowable material, such as, for example, cement or concrete, which will firmly set around shaft 32 after it is introduced into cylindrical region 74 .
  • grout 70 seals materials which are embedded in it from contact with any corrosive fluids which may be present in the surrounding soil.
  • shaft 32 is placed in tension as screw 34 pulls disks 60, 62 downwardly through soil 46 , it is desirable to compress shaft 32 before grout 70 hardens.
  • the projecting end of shaft 32 atop pile 65 is hammered with a heavy hammer, for example, a 7-11 kg (16-25 pound) sledge.
  • the amount that pile 65 will collapse depends upon the amount of play in joints 37 . Usually there is approximately 3.2 mm (1/8 inch) of play per joint 37 so that for a pile 65 which comprises 5 or 6 extension sections 36 one would expect shaft 32 to collapse by approximately 16-19 mm (5/8 to 3/4 inch) when it is compressed after placement.
  • the amount of collapse of shaft 32 is preferably measured to verify proper placement of pile 65 .
  • pile 65 After pile 65 has been placed then it may be attached to a foundation or other structure in a manner similar to the way that prior art helical piers 20 are attached to foundations, as discussed above.
  • Stepped piles generally have greater load bearing capacities than piles having a constant outer diameter.
  • This invention provides a convenient and relatively inexpensive way to create a stepped pile.
  • a series of additional soil displacing members, such as disks 62 may increase in diameter in steps along the length of shaft 32 .
  • Each larger diameter disk 62 increases the diameter of the portion of cylindrical region 74 that it is pulled through.
  • the largest diameter disks 62A are nearest the surface of the ground
  • the smallest diameter disks 62C are deepest in the ground
  • intermediate diameter discs 62B lie along shaft 32 between large discs 62A and smaller discs 62C .
  • the result is a pile 130 having a stepped diameter.
  • disk 60 and those of disks 62 in the lowermost 3-6 m (10 to 20 feet) of a 12-15 m (40 to 50 foot) pile 130 could be in the range of about 15 cm (6 inches) to 20 cm (8 inches) in diameter, the disks 62 in the next 3 m (10 feet) or so could be about 25 cm (10 inches) in diameter, the disks 62 in the next 3 m (10 feet) or so could be about 36 cm (14 inches) in diameter and the terminal 3 m (10 feet) or so of the pile could have disks 62 of about 46 cm (18 inches) in diameter.
  • a stepped pile 130 will be installed in a place where the topmost layers 46 of soil are very soft.
  • additional support may be provided for the uppermost portions of pile 130 by making the uppermost disk or disks 62 significantly larger than disk 60 .
  • screw 34 When screw 34 is in a deeper denser layer 50 of harder soil then it can pull a relatively large disk 62 downwardly through an overlying layer 46 of much softer soil. If surface layers 46 and/or 46 and 48 are extremely soft then one or more of disks 62 closest the surface may be even larger in diameter than screw 34 . This is possible when screw 34 has enough purchase in denser layer 50 to pull a larger diameter disk 62 (or other soil displacing member) down through softer layer 46 .
  • the upper layers of soil are extremely soft it is often desirable to have the uppermost sections of the pile encased in a sleeve made, for example, from a section of steel pipe. This can be accomplished as described below with reference to Figure 7.
  • soil displacement means for use with the invention may have many shapes, sizes and thicknesses.
  • Screw 34 need not be a helical screw exactly as shown in the prior art but may have other forms. What is particularly important is that screw 34 is capable of drawing a soil displacement member, for example a disk or flange on shaft 32 , through the soil as screw 34 is turned.
  • reinforcing material 75 such as steel reinforcing bar, which extend through cylindrical region 74 .
  • reinforcing material 75 may conveniently be 10 to 15 millimeters in diameter although, for some jobs, it may be larger or smaller.
  • disks 60 , 62 have apertures in them through which lengths of reinforcing material 75 can be passed.
  • Figure 5 shows an alternative disk 60A which has in it a number of apertures 77 for receiving the ends of length of reinforcing material 75 .
  • Lengths of reinforcing material 75 are inserted into apertures 77 as disks 60A are drawn down into cylindrical region 74 .
  • Each length of reinforcing material 75 extends through an aperture 77 in a disk 60A .
  • Lengths of reinforcing material are made to overlap to meet applicable engineering standards.
  • Apertures 77 hold reinforcing material 75 in place.
  • Lengths of reinforcing material 75 may optionally be welded to disks 60A or 60 , 62 .
  • Lengths of wire and/or stirrup reinforcements may be used to tie reinforcing material 75 in place during placement and until grout 70 sets.
  • pile 65 may be further reinforced by wrapping one or more additional lengths of reinforcing material 75 around shaft 32 in a spiral inside cylindrical region 74 . This is conveniently be done while pile 65 is being installed. A length of reinforcing material 75 can simply be attached to the pile and allowed to wind around the pile as the pile is turned and pulled down into the ground.
  • the method of the invention may also be used for making a cased pile 79 which extends inside a tubular casing 78 .
  • disks 60B as shown in Figures 8A and 8B are used.
  • Disks 60B have a flange 80 projecting around their perimeter.
  • Flange 80 is slightly larger in diameter than the exterior diameter of casing 78 .
  • the other portions of disks 60B are slightly smaller in diameter than the inner diameter of casing 78 .
  • the end of a length of casing 78 is held in contact with flange 80 on disk 60B as disk 60B is pulled into the ground.
  • Casing 78 is dropped into the ground behind disk 60B .
  • Disk 60B keeps casing 78 centered around shaft 32 .
  • a separate length of casing 78 is preferably used for each extension section 36 of shaft 32 .
  • Casing 78 may comprise, for example, a section of pipe, such as PVC pipe. Casing 78 may be used, for example, where the soil has voids in it into which fluid grout 70 would otherwise escape.
  • fluid grout 70 may also be introduced into cylindrical region 74 in other ways.
  • shaft 32 may have a central tubular passage 90 and at least one, and preferably a number of, apertures 92 extending from tubular passage 90 into cylindrical region 74 .
  • Fluid grout 70 may then be pumped downwardly through tubular passage 90 and into cylindrical region 74 through apertures 92 either after screw 34 has been screwed to the desired depth or at a point during the installation of screw 34 .
  • a pipe for pumping fluid grout into cylindrical region 74 may run alongside shaft 32 through suitable apertures in plates 62 .
  • the methods described above can produce a pile which is encased in grout above the level of disk 60 .
  • screw 34 may remain vulnerable to attack by corrosive agents in the soil in which it is embedded. Over time such corrosion could reduce the capacity of the pile.
  • the methods of this invention may be extended to encase screw 34 a suitable grout or another suitable protective medium.
  • the objective is to form a protective ball of solidified grout around at least the root portion 104 of screw 34 .
  • the solidified grout both protects screw 34 from attack by corrosive soils and reinforces screw 34 against buckling under load.
  • shaft 132 has a central conduit 100 extending longitudinally through to one or more apertures 106 in the vicinity of root 104 of screw 34 .
  • Shaft 132 may be inserted into the ground as described above (Fig 14, step 206 ).
  • grout or another suitable medium may be forced through conduit 100 under high pressure (step 210B ). The grout is delivered into a region 102 surrounding screw 34 through apertures 106 until it coats screw 34 . It is generally not sufficient to simply pump pressurized grout into region 102 because it will generally not be possible to introduce grout into region 102 in a way such that the flowing grout will reliably displace corrosive soils from contact with screw 34 .
  • Screw 34 is operated to remove soil surrounding screw 34 from area 102 (step 210A ) either during or just before the introduction of grout into region 102 . This may be done, for example, by preventing shaft 132 from moving vertically while turning screw 34 . Screw 34 then acts like an auger and displaces soil from region 102 either upwardly or downwardly depending upon the direction in which screw 34 is turned. Most preferably, screw 34 is turned in a sense which would move screw 34 deeper into the soil while shaft 132 is prevented from moving deeper. The soil in region 102 is thus displaced toward the lowermost soil displacing member (e.g. disk 60 ).
  • the lowermost soil displacing member e.g. disk 60
  • Shaft 132 may be prevented from moving deeper by coupling its upper end with a thrust bearing to a large plate or the like lying on the surface of the ground.
  • the plate is too large to be pulled downwardly by screw 34 .
  • the thrust bearing allows shaft 32 to turn relative to the large plate.
  • the soil in region 102 is loosened (step 208 ) before step 210 by repeatedly turning screw 34 through several turns in alternating directions of rotation.
  • step 210 grout flows upwardly from apertures 106 , as indicated by arrows 107 and helps to carry soil out of region 102 .
  • the flowing grout is deflected outwardly at disk 60 .
  • disk 60 is not more than about 20 cm (8 inches) above screw 34 .
  • disk 60 is not more than about 10-15 cm (4-6 inches) above screw 34 .
  • disk 60 has paddles 110 oriented as shown in Figure 13 to drive soil and grout outwardly when disk 60 turns in the direction indicated by arrow 109 . The result is that the root portion 104 of screw 34 and the lower portions of shaft 32 become encased in a ball of grout.
  • step 210 it may be possible to perform step 210 in two separate steps, first turning screw 34 to remove soil from region 102 (step 210A ) and subsequently pumping grout into region 102 (step 210B ). Most preferably, however, grout is introduced through apertures 106 at the same time as screw 34 is turned. The turning screw 34 both removes soil from region 102 and distributes grout through region 102 .
  • step 210 may be performed by turning screw 34 in a sense that would tend to cause screw 34 to move upwardly.
  • Shaft 132 may be prevented from moving upwardly by bearing down on its upper end with a heavy machine, such as a backhoe. Screw 34 then tends to push soil downwardly out of region 102 . In this case, apertures 106 would be on shaft 132 near the upper end of screw 34 .
  • screw 34 is preferably modified so that soil is cleared from a volume that is slightly larger in diameter than the bearing surfaces of screw 34 during the steps described above.
  • short radially outwardly projecting tabs 111 may be provided on the leading edge and/or leading and trailing edges of screw 34 .
  • tabs 111 loosen the soil in a cylindrical shell area around screw 34 .
  • grout When grout is pumped into region 102 the grout can flow into the cylindrical shell area and around the outside edges of screw 34 through the cylindrical shell area. The grout can thereby form a protective ball around the edge surfaces of screw 34 .
  • the outer edge of screw 34 may be serrated to achieve a similar effect.
  • step 212 the grout is allowed to harden around screw 34 and shaft 32 .
  • the hardened grout around screw 34 both protects screw 34 from corrosion and reinforces screw 34 against buckling.
  • FIGS 15 through 19 illustrate an alternative system 300 according to the invention in which torque is transmitted to screw 34 through a removable driving tool 332 . After screw 34 has been screwed to the desired depth then driving tool 332 may be removed and re-used.
  • System 300 has a screw 34 and a soil displacing member 60 mounted on a lead section 330 .
  • a shaft 333 extends upwardly from a head end 320 of lead section 330 . Shaft 333 does not need to be strong enough to transmit the torque necessary to screw screw 34 to its desired location.
  • Driving tool 332 has a central bore 328 .
  • Driving tool 332 is placed over shaft 333 with shaft 333 passing through bore 328 .
  • a socket 340 on the lower end of driving tool 332 engages a head 341 on head end 320 of lead section 330 .
  • Head 341 and socket 340 may, for example, be square in section.
  • a fastener 343 at the upper end of shaft 333 holds driving tool 332 in engagement with lead section 330 .
  • Rotating driving tool 332 about its axis turns lead section 330 .
  • the torque for turning screw 34 is delivered primarily through driving tool 332 and not through shaft 333 .
  • Shaft 333 could have a central bore connecting to a bore in lead section 330 to allow the methods described above with reference to Figure 12 to be used to encase screw 34 in grout.
  • Driving tool 332 preferably comprises a lower section 331 having a socket 340 adapted to engage lead section 330 and a number of intermediate sections 336 that may be added to increase the overall length of driving tool 332 as screw 34 enters the ground.
  • Each section 336 has a socket 340A at one end and a head 342 at its other end.
  • the head 342 of the uppermost section may be engaged by a rotary tool to turn driving tool 332 about its axis and to thereby turn screw 34 .
  • Shaft 333 may conveniently comprise a series of screw-together sections 324 each a few feet long.
  • Fastener 343 may be removed to permit the addition of more sections 324 and 336 and then replaced to continue the installation.
  • Sockets 340A and heads 342 may be the same as or different from socket 340 and head 341 respectively.
  • fastener 343 may be released and driving tool 332 may be removed from around shaft 333 while leaving shaft 333 in place.
  • Driving tool 332 may then be rinsed to remove any fluid grout adhering to it and re-used.
  • Additional soil displacement members 362 may optionally be mounted to driving tool 332 . Additional soil displacement members 362 should be attached to driving tool 332 in such a manner that they do not remain attached to driving tool 332 but fall away as driving tool 332 is withdrawn from around shaft 333 . Figures 16 through 19 show one possible way to mount additional soil displacement members 362 on driving tool 332 .
  • each section 336 of driving tool 332 has a socket 370 which slidably receives the head end 372 of the next section of driving tool 332 .
  • Head end 372 comprises abutments 374 which project outwardly from an adjoining portion 373 of head end 372 .
  • the outer faces of abutments 374 engage with the inner faces of socket 370 so that head end 372 is prevented from turning in socket 370 .
  • Sockets 370 are coupled to head portions 372 by fastening members which, in the drawings, are illustrated as pins or bolts 380 .
  • Fastening members 380 permit socket 370 to slide relative to head portion 372 between a first position (as shown in Figure 16) and a second position (as shown in Figure 17) without disengaging from head portion 372 .
  • socket 370 In the first position, as shown in Figure 16, socket 370 fully receives head end 372 and the lowermost edge 375 of socket 370 extends past abutments 374 to define a number of recesses 376 around the circumference of lowermost edge 375 .
  • Soil displacement member 362 comprises a number of segments 363 .
  • Each segment 363 has an outwardly projecting portion 364 which serves to displace soil, as described above in respect of soil displacement disks 62 , and a tab 365 which is received in one of recesses 376 .
  • Projections 378 which extend from head end 372 retain segments 363 with their tabs 365 engaged in recesses 376 .
  • Segments 363 collectively provide substantially the same function of other soil displacement members, such as the disks 62 which are described above. While screw 34 is being driven into the ground, fastener 343 holds each socket 370 in its first position. As screw 34 is being driven into the ground the forces on segments 363 tend to hold tabs 365 engaged in recesses 376 .
  • sockets 370 could be coupled to head portions 372 in many ways which allows limited motion between a first position in which segments 363 are retained and a second position in which segments 363 are released.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Claims (37)

  1. Verfahren zum Herstellen eines Pfahls bzw. Ortbetonpfahls, mit den folgenden Verfahrensschritten:
    Bereitstellen einer Schraubensäule (300) mit einem Führungsabschnitt (330), wobei der Führungsabschnitt (330) an einem Ende davon ein Schraubengewinde (34) und ein Bodenverdrängungselement (60) in einem Abstand von dem Schraubengewinde (34) aufweist;
    Einbringen des Schraubengewindes (34) in den Boden;
    Ankuppeln eines ersten Endes einer verlängerten Welle (132, 333) an den Führungsabschnitt (330), wobei ein zweites Ende der Welle (132, 333) sich von dem Führungsabschnitt (330) weg erstreckt;
    Drehen des Schraubengewindes (34) und dadurch Bewirken einer Bewegung des Schraubengewindes (34) durch den Boden hindurch und eines Vorantreibens des Bodenverdrängungselements (60) durch den Boden hindurch, wodurch Boden aus einem die Welle (132, 333) umgebenden zylindrischen Bereich verdrängt wird;
    Füllen des zylindrischen Bereichs mit einem flüssigen Mörtel entweder während oder nach dem Verdrängen von Boden aus dem das Antriebswerkzeug (332) umgebenden zylindrischen Bereich; und
    Ermöglichen eines Verfestigens des flüssigen Mörtels in dem zylindrischen Bereich und Ummantelns der Welle (132, 333) in einer Schutzschicht aus verfestigtem Mörtel;
    dadurch gekennzeichnet, dass der Verfahrensschritt Drehen des Schraubengewindes (34) die folgenden Teilschritte aufweist:
    Ankuppeln eines ersten Endes eines länglichen Antriebswerkzeugs (332) an den Führungsabschnitt (330), wobei die Welle (132, 333) sich durch eine längliche Bohrung (328) in dem Antriebswerkzeug (332) hindurch erstreckt, und sich das Antriebswerkzeug (332) durch den zylindrischen Bereich hindurch erstreckt, und
    Drehen eines zweiten Endes des Antriebswerkzeug (332) um die verlängerte Achse des Antriebswerkzeug (332), so dass das Antriebswerkzeug (332) ein Drehmoment direkt auf den Führungsabschnitt (330) überträgt; und
    danach Abkuppeln des ersten Endes des Antriebswerkzeugs (332) von dem Führungsabschnitt (330) vor dem Ermöglichen eines Verfestigens des flüssigen Mörtels in dem zylindrischen Bereich.
  2. Verfahren nach Anspruch 1, wobei der Führungsabschnitt (330) einen Führungsabschnittskopf (341) an einem dem Schraubengewinde (34) gegenüberliegenden Ende aufweist, wobei das erste Ende des Antriebswerkzeugs (332) einen Sockel (340) aufweist und das erste Ende des Antriebswerkzeugs (332) an den Führungsabschnitt (330) durch Aufnehmen des Führungsabschnittskopfes (341) in den Sockel (340) ankuppelt.
  3. Verfahren nach Anspruch 2, wobei der Führungsabschnitt (341) und ein Inneres des Sockels (340) beide einen quadratischen Querschnitt aufweisen.
  4. Verfahren nach einem der Ansprüche 2 oder 3, wobei die Welle (132, 333) eine Vielzahl von Abschnitten aufweist und das Verfahren den Teilschritt Anfügen von zusätzlichen Abschnitten bei Bewegung des Schraubengewindes durch den Boden aufweist.
  5. Verfahren nach einem der Ansprüche 1, 2, 3 oder 4, mit dem Teilschritt Ankuppeln des zweiten Endes des Antriebswerkzeugs (332) an das zweite Ende der Welle (132, 333) vor dem Verfahrensschritt Drehen des zweiten Endes des Antriebswerkzeugs (332) um die verlängerte Achse des Antriebswerkzeugs (332).
  6. Verfahren nach einem der Ansprüche 1, 2, 3, 4 oder 5, wobei der Verfahrensschritt Drehen des Schraubengewindes (34) Übertragen von zusätzlichem Drehmoment durch die Welle (132, 333) auf den Führungsabschnitt (330) aufweist, wobei ein Betrag des durch das Antriebswerkzeug (332) auf den Führungsabschnitt (330) übertragenen Drehmoments größer ist als ein Betrag von durch die Welle (132, 333) auf den Führungsabschnitt (330) übertragenen zusätzlichen Drehmoments.
  7. Verfahren nach einem der Ansprüche 1, 2, 3, 4, 5 oder 6, mit dem Teilschritt Aufbringen von einem oder mehreren zusätzlichen Bodenverdrängungselementen (62, 362) an mit Abständen voneinander entfernt liegenden Stellen längs des Antriebswerkzeugs (332).
  8. Verfahren nach Anspruch 7, mit dem Teilschritt Entfernen des einen oder der mehreren Bodenverdrängungselemente (62, 362) von dem Antriebswerkzeugs (332) vor oder während des Zurückziehens des Antriebswerkzeugs (332) aus dem zylindrischen Bereich.
  9. Verfahren nach Anspruch 7 oder 8, wobei das eine oder die mehreren Bodenverdrängungselemente (62, 362) Durchmesser aufweisen, welche größer sind als ein Durchmesser des Bodenverdrängungselements (60), und wobei der Verfahrensschritt Drehen des Schraubengewindes (34) den Teilschritt Ziehen der zusätzlichen Bodenverdrängungselemente (62, 362) durch den Boden hindurch zur Vergrößerung eines Durchmesser des zylindrischen Bereichs aufweist.
  10. Verfahren nach einem der Ansprüche 1, 2, 3, 4, 5 oder 6, mit dem Teilschritt Aufbringen von einer Vielzahl von zusätzlichen Bodenverdrängungselementen (62, 362) an mit Abständen voneinander entfernt liegenden Stellen längs des Antriebswerkzeugs (332), wobei die zusätzlichen Bodenverdrängungselemente (62, 362) größere Durchmesser, als der Durchmesser des Bodenverdrängungselements (60) beträgt, aufweisen, wobei die Durchmesser der zusätzlichen Bodenverdrängungselemente (62, 362), welche weiter von dem Schraubengewinde (34) entfernt sind, größer sind als die Durchmesser der zusätzlichen Bodenverdrängungselemente (62, 362), welche näher an dem Schraubengewinde (34) angeordnet sind, und wobei der Verfahrensschritt Drehen des Schraubengewindes (34) den Teilschritt Ziehen der zusätzlichen Bodenverdrängungselemente (62, 362) durch den Boden hindurch zur Vergrößerung eines Durchmesser des zylindrischen Bereichs in einer stufenförmigen Art und Weise aufweist.
  11. Verfahren nach einem der Ansprüche 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10, mit den V erfahrensschri tten:
    Entfernen von Boden aus einem das Schraubengewinde (34) umgebenden Volumen (102) durch Drehen des Schraubengewindes (34) in einer ersten Winkelrichtung bei Zurückhalten der Welle (132, 333) von der Bewegung entlang ihrer verlängerten Achse; und
    Pressen von flüssigem Mörtel unter Druck in das Volumen (102) und Ermöglichen des Verfestigens des Mörtels in dem Volumen (102), wodurch die Oberflächen des Schraubengewindes (34) durch eine Schutzschicht aus verfestigtem Mörtel ummantelt werden.
  12. Verfahren nach Anspruch 11, wobei der Verfahrensschritt Drehen des Schraubengewindes (34) in einer ersten Winkelrichtung mit Zurückhalten der Welle (132, 333) den Teilschritt Drehen des zweiten Endes des Antriebswerkzeugs (332) um die verlängerte Achse des Antriebswerkzeugs (332) und dadurch Übertragen von Drehmoment durch das Antriebswerkzeugs (332) auf den Führungsabschnitt (330) aufweist.
  13. Verfahren nach Anspruch 11, wobei der Verfahrensschritt Drehen des Schraubengewindes (34) in einer ersten Winkelrichtung mit Zurückhalten der Welle (132, 333) den Teilschritt Drehen des zweiten Endes der Welle (132, 333) um die verlängerte Achse der Welle (132, 333) und dadurch Übertragen von Drehmoment durch die Welle (132, 333) auf den Führungsabschnitt (330) aufweist.
  14. Verfahren nach einem der Ansprüche 11, 12 oder 13, wobei der Verfahrensschritt Pressen von flüssigem Mörtel unter Druck in das Volumen (102) den Teilschritt Drehen des Schraubengewindes (34) aufweist, wenn der flüssige Mörtel in das Volumen (102) gepresst wird.
  15. Verfahren nach einem der Ansprüche 11, 12, 13 oder 14, wobei der Verfahrensschritt Pressen von flüssigem Mörtel unter Druck in das Volumen (102) den Teilschritt Pressen von flüssigem Mörtel unter Druck durch einen länglichen Kanal (100) innerhalb der Welle (132, 333) und in einen länglichen Kanal in dem Führungsabschnitt (330) und Leiten des flüssigen Mörtels in das Volumen (102) durch Öffnungen (106) in einer Wand des Führungsabschnitts (330) aufweist.
  16. Verfahren nach einem der Ansprüche 11, 12, 13, 14 oder 15, welches vor dem Verfahrensschritt Entfernen von Boden aus dem Volumen (102) den Teilschritt Lockern des Bodens in dem Volumen (102) durch wiederholtes Drehen des Schraubengewindes (34) durch eine oder mehrere Umdrehungen und dann Umkehren einer Drehrichtung des Schraubengewindes (34) aufweist.
  17. Verfahren nach einem der Ansprüche 11, 12, 13, 14, 15 oder 16, wobei das Schraubengewinde (34) mindestens eine von einer äußeren Kante des Schraubengewindes (34) radial nach außen gerichtet hervorstehende Nase (111) aufweist, wobei die Nase (111) Boden in einer zylindrischen Hülle um das Schraubengewinde (34) herum lockert, und wobei der Verfahrensschritt Pressen von flüssigem Mörtel unter Druck in das Volumen (102) den Teilschritt Ermöglichen von Fließen des flüssigen Mörtels durch die zylindrische Hülle um äußere Kanten des Schraubengewindes (34) herum aufweist.
  18. Verfahren nach einem der Ansprüche 11, 12, 13, 14, 15, 16 oder 17, wobei der Verfahrensschritt Drehen des Schraubengewindes (34) in einer ersten Winkelrichtung mit Zurückhalten der Welle (132, 333) dazu tendiert, Boden aus dem Volumen (102) gegen das Bodenverdrängungselement (60) zu verschieben.
  19. Verfahren nach Anspruch 18, wobei das Bodenverdrängungselement (60) mindestens eine winklige Schaufel (110) aufweist, und der Verfahrensschritt Entfernen von Boden aus dem das Schraubengewinde (34) umgebenden Volumen (102) den Teilschritt Drehen des Bodenverdrängungselements (60) in der ersten Winkelrichtung aufweist, so dass Drehen der winkligen Schaufel (110) den von dem Schraubengewinde (34) gegen das Bodenverdrängungselement (60) verschobenen Boden radial nach außen schiebt.
  20. Verfahren nach einem der Ansprüche 18 oder 19, wobei das Bodenverdrängungselement (60) nicht mehr als 20 cm von dem Schraubengewinde (34) entfernt angeordnet ist.
  21. Schraubensäule (300) zur Erstellung eines mit Mörtel ummantelten Pfahls, wobei die Schraubensäule (300) Folgendes aufweist:
    a) einen Führungsabschnitt (330) mit einem Schraubengewinde (34) und einem Bodenverdrängungselement (60), welche mit dem Schraubengewinde (34) verbunden und in einem Abstand von dieser angeordnet ist;
    b) eine verlängerte Welle (132, 333) mit einem ersten an den Führungsabschnitt (330) angekuppelten Ende und mit einem zweiten sich von dem Führungsabschnitt (330) weg erstreckenden Ende;
    gekennzeichnet durch:
    c) ein längliches röhrenförmiges Antriebswerkzeug (332) mit einer Bohrung (328), wobei das Antriebswerkzeug ein erstes Ende aufweist, welches so ausgebildet ist, dass es beim Antreiben mit dem Führungsabschnitt (330) in Eingriff steht und von diesem lösbar ist, und ein zweites Ende aufweist, wobei die verlängerte Welle (132, 333) sich durch die Bohrung (328) hindurch erstreckt, wobei durch Drehen des zweiten Endes des Antriebswerkzeugs (332) Drehmoment von dem zweiten Ende des Antriebswerkzeugs (332) direkt auf den Führungsabschnitt (330) übertragbar ist, wenn das erste Ende des Antriebswerkzeugs (332) zum Antreiben mit dem Führungsabschnitt in Eingriff ist.
  22. Schraubensäule nach Anspruch 21, wobei der Führungsabschnitt (330) einen Führungsabschnittskopf (341) an einem dem Schraubengewinde (34) gegenüberliegenden Ende aufweist, und das erste Ende des Antriebswerkzeugs (332) einen Sockel (340) aufweist, wobei der Führungsabschnittskopf (341) in den Sockel (340) einsetzbar ist, um das erste Ende des Antriebswerkzeugs (332) mit dem Führungsabschnitt (330) zum Antrieb in Eingriff zu bringen.
  23. Schraubensäule nach Anspruch 22, wobei der Sitz des Führungsabschnittskopfs (341) ein loser Sitz ist, so dass das erste Ende des Antriebswerkzeugs (332) von dem Führungsabschnitt (330) abnehmbar ausgebildet ist.
  24. Schraubensäule nach einem der Ansprüche 22 oder 23, wobei ein Inneres des Sockels (340) und der Führungsabschnittskopf (341) beide mit einem quadratischen Querschnitt ausgebildet sind.
  25. Schraubensäule nach einem der Ansprüche 21, 22, 23 oder 24, mit einem abnehmbaren Verbindungselement (343), welches das zweite Ende der Welle (132, 333) an das zweite Ende des Antriebswerkzeug (332) ankuppelt.
  26. Schraubensäule nach einem der Ansprüche 21, 22, 23, 24 oder 25, mit einer Einrichtung (72) zum Drehen des zweiten Endes des Antriebswerkzeugs (332) zum Aufbringen von Drehmoment auf das zweite Ende des Antriebswerkzeugs (332).
  27. Schraubensäule nach einem der Ansprüche 21, 22, 23, 24, 25 oder 26, mit einem oder mit mehreren zusätzlichen Bodenverdrängungselementen (62, 362), welche abnehmbar in Abständen zueinander längs des Antriebswerkzeugs (332) angeordnet sind.
  28. Schraubensäule nach Anspruch 27, wobei das eine oder die mehreren zusätzlichen Bodenverdrängungselemente (62, 362) jede eine Vielzahl von Segmenten (363) aufweist, wobei jedes Segment (363) einen nach außen vorstehenden Abschnitt (364) und einen Laschenabschnitt (365) aufweist.
  29. Schraubensäule nach Anspruch 28, wobei das Antriebswerkzeug (332) zwei oder mehr Abschnitte (331, 336) aufweist, welche mit einer oder mit mehreren Verbindungen verbunden sind, und jede Verbindung ein Kopfende (342, 372) eines Antriebswerkzeugabschnitts (331, 336) aufweist, welches in einem Sockel (340A, 370) an einem Ende eines weiteren Antriebswerkzeugabschnitts (331, 336) aufgenommen ist, wobei der Sockel (340A, 370) längsbeweglich relativ zu dem Kopfende (342, 372) zwischen ersten und zweiten Stellungen ausgebildet ist, wobei, wenn der Sockel (340A, 370) sich in der ersten Stellung befindet, eine Kante (375) des Sockels (340A, 370) an einem Widerlager (374) an dem Kopfende (342, 372) vorbei hervorsteht, um eine Aussparung (376) zu bilden, wobei die Aussparung (376) geeignet ist, die Laschenabschnitte (365) der Segmente (363) aufzunehmen, und wobei, wenn der Sockel (340A 370) sich in der zweiten Stellung befindet, die Kante (375) des Sockels (340A, 370) zurückgezogen ist, wodurch die Laschenabschnitte (365) der Segmente (363) gelöst werden.
  30. Schraubensäule nach einem der Ansprüche 27, 28 oder 29, wobei das Bodenverdrängungselement (60) einen Durchmesser aufweist, welcher kleiner als der Durchmesser des Schraubengewindes (34) ist, und das eine oder die mehreren zusätzlichen Bodenverdrängungselemente (62, 362) Durchmesser aufweisen, welche größer als die Bodenverdrängungselemente (60) sind, wobei die weiter von dem Schraubengewinde (34) entfernten zusätzlichen Bodenverdrängungselemente (62, 362) größere Durchmesser aufweisen als die an dem Schraubengewinde (34) näher angeordneten zusätzlichen Bodenverdrängungselemente (62, 362).
  31. Schraubensäule nach einem der Ansprüche 21, 22, 23, 24, 25, 26, 27, 28, 29 oder 30, mit einem sich durch die Welle (123, 333) hindurch und in den Führungsabschnitt (330) erstreckenden Kanal (100), und mit einer oder mit mehreren Öffnungen (106), welche sich durch eine Wand des Führungsabschnitts (330) hindurch erstrecken, wobei der Kanal (100) mit den Öffnungen (106) für flüssige Stoffe in Verbindung steht.
  32. Schraubensäule nach einem der Ansprüche 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 oder 31, wobei das Schraubengewinde (34) mindestens eine radial von dem peripheren Rand nach außen vorstehende Nase (111) aufweist.
  33. Schraubensäule nach einem der Ansprüche 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 oder 31, wobei der periphere Rand des Schraubengewindes (34) eingekerbt ist.
  34. Schraubensäule nach einem der Ansprüche 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 oder 33, wobei die Welle (123, 333) eine Vielzahl von miteinander gekuppelten länglichen Abschnitten (324) aufweist.
  35. Schraubensäule nach Anspruch 34, wobei die länglichen Abschnitte (324) aneinander gekuppelt sind, indem sie zusammengeschraubt sind.
  36. Schraubensäule nach einem der Ansprüche 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 oder 35, wobei das Antriebswerkzeug (332) eine Vielzahl von miteinander gekuppelten länglichen Abschnitten (331, 336) aufweist.
  37. Schraubensäule nach Anspruch 36, wobei jeder längliche Abschnitt (331, 336) des Antriebswerkzeugs (332) einen Kopf (342) an einem Ende und einen Sockel (340A) an einem davon gegenüberliegenden Ende aufweist, und wobei die länglichen Abschnitte (331, 336) durch Einsetzen des Kopfes (342) eines Abschnitts (331, 336) in den Sockel (340A) eines angrenzenden Abschnitts (336) miteinander gekuppelt sind.
EP19990107303 1999-04-19 1999-04-19 Verfahren und Vorrichtung zum Herstellen von Ortbetonpfählen im Boden Expired - Lifetime EP1046753B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69918265T DE69918265D1 (de) 1999-04-19 1999-04-19 Verfahren und Vorrichtung zum Herstellen von Ortbetonpfählen im Boden
EP19990107303 EP1046753B1 (de) 1999-04-19 1999-04-19 Verfahren und Vorrichtung zum Herstellen von Ortbetonpfählen im Boden

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19990107303 EP1046753B1 (de) 1999-04-19 1999-04-19 Verfahren und Vorrichtung zum Herstellen von Ortbetonpfählen im Boden

Publications (2)

Publication Number Publication Date
EP1046753A1 EP1046753A1 (de) 2000-10-25
EP1046753B1 true EP1046753B1 (de) 2004-06-23

Family

ID=8237953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19990107303 Expired - Lifetime EP1046753B1 (de) 1999-04-19 1999-04-19 Verfahren und Vorrichtung zum Herstellen von Ortbetonpfählen im Boden

Country Status (2)

Country Link
EP (1) EP1046753B1 (de)
DE (1) DE69918265D1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2544121A1 (en) * 2003-10-21 2005-05-06 Michael Whitsett Piling apparatus and method of installation
JP6236974B2 (ja) * 2013-08-09 2017-11-29 株式会社大林組 地盤アンカーおよび地盤アンカーの構築方法
WO2015147675A1 (ru) 2014-03-28 2015-10-01 Открытое акционерное общество "Акционерная компания по транспорту нефти "ТРАНСНЕФТЬ" Свайный фундамент для обустройства опор воздушной линии электропередачи
WO2015147674A1 (ru) 2014-03-28 2015-10-01 Открытое акционерное общество "Акционерная компания по транспорту нефти "ТРАНСНЕФТЬ" Способ обустройства опор воздушных линий передач на вечномерзлых грунтах
JP6523064B2 (ja) * 2015-06-12 2019-05-29 東京製綱株式会社 パイプ式表層崩壊予防施設及びパイプ式表層崩壊予防施設の施工方法
CN114482111B (zh) * 2022-03-31 2024-02-02 安徽开盛津城建设有限公司 一种加固型建筑桩基

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326872A (en) 1940-04-19 1943-08-17 William R Marsden Apparatus for forming cast-in-place concrete piles
US2926500A (en) 1957-12-17 1960-03-01 Clemens B Hoppe Apparatus for making concrete piles
US3354657A (en) 1965-05-03 1967-11-28 Lee A Turzillo Method for installing anchoring or supporting columns in situ
US3962879A (en) 1973-05-03 1976-06-15 Turzillo Lee A Reinforced pile in earth situs and method of producing same
US4678373A (en) * 1985-03-27 1987-07-07 Perma-Jack Company Apparatus for and method of shoring a structure
US5575593A (en) * 1994-07-11 1996-11-19 Atlas Systems, Inc. Method and apparatus for installing a helical pier with pressurized grouting
US5707180A (en) * 1995-12-26 1998-01-13 Vickars Developments Co. Ltd. Method and apparatus for forming piles in-situ

Also Published As

Publication number Publication date
EP1046753A1 (de) 2000-10-25
DE69918265D1 (de) 2004-07-29

Similar Documents

Publication Publication Date Title
US6264402B1 (en) Method and apparatus for forming piles in place
US5707180A (en) Method and apparatus for forming piles in-situ
US6012874A (en) Micropile casing and method
US5575593A (en) Method and apparatus for installing a helical pier with pressurized grouting
US7112012B2 (en) Piling apparatus and method of installation
JP4768747B2 (ja) 先支保トンネル工法及びこれに適合した装置
CN100567659C (zh) 铁塔的基础构造
US7748932B2 (en) Soil stabilization and anchorage system
AU2005200758A1 (en) Earth Retention and Piling Systems
CN109024721B (zh) 一种加固基础及提高既有建筑刚性基础抗弯剪能力的方法
JP2007032044A (ja) 基礎杭の支持構造および鋼管杭
EP1046753B1 (de) Verfahren und Vorrichtung zum Herstellen von Ortbetonpfählen im Boden
TW202117138A (zh) 波浪狀殼支承樁及其設置方法
AU763775B2 (en) Method and apparatus for forming piles in place
CA2264197C (en) Method and apparatus for forming piles in place
US7429148B2 (en) Method for making a foundation pile
KR20030028518A (ko) 영구 앙카 옹벽 공법 및 장치
WO2022200692A1 (en) Method for forming a wall structure in the ground by drilling and wall structure formed by drilling
KR102060511B1 (ko) 흙막이 벽체용 고강도 phc 파일
KR102070912B1 (ko) 흙막이 벽체용 phc 파일, 이를 제조하기 위한 몰드 조립체 및 이를 이용한 제조방법
JP4853132B2 (ja) 基礎杭の施工方法
EP4144921A1 (de) Steinschuh
KR101158512B1 (ko) 압축형 강봉 영구 앵커 및 그 시공방법
WO2003035988A1 (en) Soil reinforcing device and method
JP3726991B2 (ja) 支持力向上杭の施工方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010406

AKX Designation fees paid

Free format text: DE DK ES FR GB IT NL

17Q First examination report despatched

Effective date: 20020812

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040623

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040623

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040623

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69918265

Country of ref document: DE

Date of ref document: 20040729

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041004

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050324

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140428

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150419