EP1046187B1 - Röhre, vorrichtung und verfahren zur emission elektromagnetischer strahlung - Google Patents

Röhre, vorrichtung und verfahren zur emission elektromagnetischer strahlung Download PDF

Info

Publication number
EP1046187B1
EP1046187B1 EP99900934A EP99900934A EP1046187B1 EP 1046187 B1 EP1046187 B1 EP 1046187B1 EP 99900934 A EP99900934 A EP 99900934A EP 99900934 A EP99900934 A EP 99900934A EP 1046187 B1 EP1046187 B1 EP 1046187B1
Authority
EP
European Patent Office
Prior art keywords
tube
bore
radiation
tube according
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99900934A
Other languages
English (en)
French (fr)
Other versions
EP1046187B8 (de
EP1046187A1 (de
Inventor
Christian Lumpp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumpp Christian
Original Assignee
Lumpp and Consultants
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumpp and Consultants filed Critical Lumpp and Consultants
Publication of EP1046187A1 publication Critical patent/EP1046187A1/de
Application granted granted Critical
Publication of EP1046187B1 publication Critical patent/EP1046187B1/de
Publication of EP1046187B8 publication Critical patent/EP1046187B8/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/025Associated optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/33Special shape of cross-section, e.g. for producing cool spot

Definitions

  • the present invention relates to a transmitter tube electromagnetic radiation, produced in one transparent non-fluorescent material, especially based on glass or quartz, and having a structure straight pierced end to end with an elongated bore around an axis so as to define a housing suitable for containing a filament or a bundle radiation emitting plasma.
  • the invention finds a particularly application important, although not exclusive, in the field of photochemical treatment of materials by radiation ultraviolet with emitting tubes containing a gas ionized, the pressure of which depends on the concentration of plasma inside the tube, by example used in the field of sterilization, in the paper industry, the textile industry, the wood and plastics, industry food, automotive and in the field of printing, especially for polymerization inks or varnishes on films, for example formed by widths as a support in paper, cardboard material, or even material support metallic, such as aluminum strip, copper or steel, or even support in synthetic material such than plastic, PVC, polyethylene or other, even support in natural wood, recomposed or synthetic, even electronic circuits or any other medium.
  • Another application is in the field of infrared.
  • the invention is not limited to the types of products to treat. It can for example be used for drying of plate products, for drying certain varnishes and adhesives, for drying wired products lying around an axis, or for the sterilization of liquid products in sheet form or in column around an axis.
  • Emitting glass tubes of ultraviolet or infrared radiation including a cylindrical bore.
  • transmitters / reflectors separate, implementing a distribution of radiation emitted by a beam or a filament according to two embodiments, namely radiation primary from the source in a flow divergent, and secondary radiation which, starting from the source, are reflected on a surface having a cross section along a curve mathematical to arrive at the irradiated plane according to a convergent or parallel flow.
  • primary radiation therefore does not have the same optimized trajectory, and consequently the same efficiency as secondary radiation.
  • Document US-A-3885181 describes a lighting lamp high pressure sodium intended to emit lines in the visible range. It includes a tubular discharge envelope, made in a polycrystalline material loaded with alumina. She owns a non-circular section for a distribution asymmetric polar of the light emitted by the lamp. The emissive source is diffuse from a surface luminous, and its plasma section is imposed by the internal geometry of the envelope. Source radiant is not punctual, and the lamp is without reflector or monobloc transmitter / reflector. Such a lamp is used for public lighting, or traffic lights.
  • Document US-A-2254962 relates to a device optical composed of a cylindrical lens having a central refractive surface, and a reflector additional elliptical reflection and same virtual focus refraction.
  • the light source is separate, and is housed in a semi-open notch by being dissociated from the reflector, which does not can restore all of the radiation.
  • the walls of the notch are arranged so as to obtain in the lens, divergent fluxes as the dioptric planes formed by the edges delimiting the notch.
  • Such a device does not constitute a monoblock transmitter / longitudinal reflector likely to recover 360 ° the entire radiation emitted.
  • the present invention aims to provide a transmitter tube radiation, a device and a method using using such a tube, responding better than those previously known to the requirements of practice.
  • a first object of the invention consists in producing a compact and space-saving tube, suitable for rendering homogeneous, complementary, and in the same direction towards the irradiated product, primary radiation and ⁇ secondary, to optimize the radiant energy photochemical, photothermal and / or photoluminous, usable
  • a second object of the invention consists in recovering all the spatial radiation emitted by a tube electromagnetic transmitter to increase the focus and energy efficiency.
  • the invention starts from the idea of giving the bore a substantially square cross section or rectangular, at least two opposite sides of which are of cross section in the shape of a convex curve, so as to obtain flows parallel to the passage of dioptric planes formed by said sides.
  • convex is meant here a convex curve interior, the apex of which is directed towards the axis of the bore.
  • the center of the plasma beam, or the radiating filament is arranged to be at the center of the geometric optics of said dioptric surfaces.
  • the convex dioptric surfaces of the bore modify the divergent radiant flux from the geometric center of the convex curves, to form a parallel, or substantially parallel, flow in the transparent solid medium, then parallel or again converge on the plane to be irradiated, in combination with the dioptric exit surface of the tube and / or a reflective surface of emitted radiation located on the sides, on both sides, for example symmetrically with respect to the axial plane of the bore.
  • the tube according to the invention is characterized in that the bore has a cross section of shape substantially square or rectangular of which at least two opposite sides are shaped like convex curves, said sides forming dioptric surfaces arranged to change direction of radiation emitted from filament or beam axis transmitter to make them parallel or substantially parallels in the solid transparent medium of the glass.
  • the sides of the bore are respectively symmetrical with respect to the planes of symmetry of the square or rectangle, the direction of rays being substantially parallel to that of a plane of symmetry of the square or the rectangle of the bore.
  • the present invention uses a tube rectilinear transmitter whose geometric center emission is confused with the focus of a reflector correspondent, also rectilinear and of section transverse at least partly flat or substantially flat to treat flat, or cross-sectional surfaces transverse at least partially reverse parabolic to focus the radiation, the generator at top of the reflector curve being parallel to the axis coincides with the focal line, and the edges end of straight or parabolic portions being located below the axis of the bore, on the other side of it relative to said generator at the top.
  • inverse parabola is meant the reflection curve which transforms parallel flow into convergent flow focused on a line.
  • radiation emitters ultraviolet, and / or visible, and / or infrared of the invention more particularly described here are tubes with very high electrodes temperature (above 1000 ° C) called electrodes heat generating an emission plasma arc continuous or discontinuous photonics.
  • the electric arc generated by the two electrodes, respectively located on each side of the tube transparent non-fluorescent, generates a cylinder bright constant cross section generally formed by one or more metal iodides to the plasma state, or by xenon or a mercury / xenon mixture or other gases or rare earths
  • the light cylinder has a total length constituted by the distance between the two electrodes, for example between a few mm for short arc transmitters and more generally between 30 mm and 2500 mm or even several meters, for example ten or fifteen meters, and also presents a section of the bright area with high plasma concentration lower than the inner section of the transparent tube which contains it.
  • a voltage between electrodes between 20 volts / cm and 150 volts / cm, for example 30 volts / cm or 100 volts / cm indeed leads to a cross section of substantially reduced extremely cylindrical beam, forming a luminous brush appearing as fully detached from the bore walls, creating a space of a relative vacuum that generates pressure reduced substantially equal to atmospheric pressure at the inner wall of the cylindrical tube or the monobloc transmitter / reflector tube.
  • the plasma concentration promotes a electronic vacuum and plasma gas in the vicinity internal walls which slow down heat transfer outward, causing walls of the envelope colder.
  • the metal iodide (s) can come from pure metals or alloys namely and for example a pure mercury, pure iron, pure gallium, iron / cobalt (mixture), one gallium / lead (mixture), one mercury / gallium (mixture), etc.
  • the gas or gases used can be pure (for example xenon) or as a mixture (e.g. mercury / xenon), as it is known to frequencies other than 50Hz, or alternating current, either pulsed current or not, constant polarity and of varying intensity.
  • mixtures of metals, rare earths and / or gases mentioned above is of course not limiting. Furthermore, their respective proportions, such as those of the choice of frequency, pulsation or modulation, are determined based on specific wavelengths of radiation.
  • a third object of the invention consists in making a transmitter / reflector device implementing a or several tubes as described above.
  • the device comprises, located on the plane focal point of emitted radiation, a slide with parallel or substantially lateral sides funnel-shaped parallels with a radiation input dioptric surface specific to transform the convergent radiation received into a parallel flow of radiation.
  • the device has reflective surfaces separate from the tube and constituted by reflective plates, which can advantageously be flat.
  • a fourth subject of the invention relates also to a method of applying radiation to a product in sheet form or placed on a flat surface or curve. It consists in irradiating the product with a element (plasma beam or electrical filament) radiation emitter and having a section cylindrical or substantially cylindrical very weak, that is to say with a diameter less than about 10 mm, for example of the order of 4 mm, of the order of 2 mm, or even up to 1 mm or even 0.5 mm (by the order of, should be understood ⁇ 1 mm and / or 10 to 15%), centered in the bore of a straight glass tube, elongated around an axis, said bore being of cross section of substantially square shape or rectangular with at least two opposite sides in form of convex curves, said sides forming dioptric surfaces arranged to modify the direction of the radiation emitted from the axis of the bore to make them parallel or substantially parallels in the solid transparent medium of the glass, before being deflected by reflecting surfaces metallic or dioptric towards the product.
  • the bore has four convex sides, opposite sides being identical two by two.
  • the emitting element is a beam tubular plasma of photon radiation ultraviolet, and / or visible, and / or infrared.
  • the plasma tubular bundle of ultraviolet radiation is of section presenting a maximum radial dimension less than or equal to on the order of 4 mm.
  • the emitting element can be constituted by a filament electric, infrared emitter.
  • it is irradiated with the same tube two irradiation planes located symmetrically on either side of said emitter tube.
  • Figures 1 and 2 show a tube 1 in section transverse, straight in glass, for example in extruded quartz.
  • the tube 1 is drilled end to end by a bore 2, for example obtained by spinning.
  • the sides 4 form dioptric surfaces which modify the direction of the rays 5 emitted at from axis 3, or substantially from axis 3, for example by the plasma beam or the infrared filament with axis coincident with axis 3 and shown at 6 in the figures, to make them parallel or substantially parallel (radiation 5 ') in the solid transparent medium 7 of the glass.
  • the tube is closed each time end with electrode-carrying plugs (not shown), and contains an ionized gas, for example iodide, or mercury, or xenon, or krypton, suitable for emitting 5 or ultraviolet radiation, either infrared or essentially in the spectrum visible light when the tube is energized and that it creates a plasma arc between the electrodes, in a manner known in itself.
  • an ionized gas for example iodide, or mercury, or xenon, or krypton
  • the surface 9 of the central portion 11 in cylindrical part C3, symmetrical with respect to the plane 12, is covered, for example by spraying cathodic under vacuum or any other known means of a person skilled in the art allowing adhesion to quartz, a film 13 (in broken lines in the figure 1) a material reflecting ultraviolet (U.V.) emitted, for example consisting of a metallic layer micron thick aluminum, for Wavelength UV from 100 nm to 500 nm, by example of 360 nm.
  • U.V. ultraviolet
  • This same reflection material can be used for radiant emissions in the visible or infrared spectrum.
  • the tube 1 closes on the other side of the portion 11 relative to bore 2 by a solid wall 14, extending between the ends 15 of the side wings solid 16 formed by satellite sections inverse symmetrical with respect to the axial plane 12.
  • the intensity radiated in any direction is equal to the product of the intensity radiated in the direction of the normal to the surface irradiated by the cosine of the angle that this direction makes with the normal to the irradiated plane (Lambert law).
  • the external face 17 of FIGS. 1 and 2 is convex to the center along a curve C1 forming a portion of cylinder of radius R1 and substantially straight C6 towards the ends, from or substantially from the point of the curve C1 situated in the extension of the radius passing through the end 19 of the lateral points 20 of the bore located on the side of the plane to be irradiated.
  • the transmitter / reflector device is a monobloc entity, in extruded quartz glass material, very high quality of transparency in the band bandwidth from 180 nm to 2000 nm and with a very low fluorescence level, in which are intimately linked, confused and inseparable, the issuer and its reflector.
  • the other part, facing the irradiated product, is transparent and arranged to direct all radiation emitted to the product in such a way that all or most of the radiation primary and secondary, parallel flow or substantially parallel perpendicular to the product irradiated, according to Lambert's law, or in the direction of axial plane 12 towards the focal point F ′ of the reverse parabola in the focused case.
  • the geometric shape of the dioptric surfaces of sides of the bore is designed with reference to the hearth geometrical of the device comprising a tube according to the invention, home generally confused with the axis of the bore, which will therefore be called the axis below focal.
  • any light point coming from the focal axis radiates radially as shown later in the figures.
  • any light point of the beam located outside the focal axis, only partially responds to this mode of radial irradiation corresponding to the design of the dioptric surfaces. Only the radiations emitted in the plane passing through the focal axis correspond to this conception.
  • Figure 2 shows a tube 1, including a bore 2 and a cross section similar to those described with reference to Figure 1. Only the angle incidence / reflection of rays 5, ⁇ 1 ⁇ 2 x 42 ° east different here, needing to cover the surface external 9 of a reflective layer 13, for example obtained by metallization of the entire curve reflection represented in broken lines by C3 and C5.
  • the diopter curve C6 of the external face 17 of the bottom wall 14, unlike that of Figure 1, is here in all point perpendicular to the secondary rays 5 'which pass through (so the radiation is not deflected) to end up with the primary radiation crossing the curve C1, the virtual focus F '.
  • Figure 3 shows a variant of Figure 2 with the upper face 8 'of the tube truncated by a surface horizontal plane C3 covered with film reflective 13 ', shown in broken lines.
  • the rays 5 pass through the transparent solid medium 7, in strictly parallel flow, and meet a dioptric reflection curve C5 in reverse parabola in which the angles of incidence / reflection of the rays 5 are such that ⁇ 3> ⁇ 2> ⁇ 1 ⁇ 2 X 42 °.
  • the metallic reflection curve C3 of planar shape responds to the inverse light image. Recall that the limiting angle ⁇ L of refraction taken here equal to 42 ° is a function of the wavelength used.
  • Figure 4 is the same type as Figure 3, but ⁇ ⁇ ⁇ , and ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 2 x 42 ° imposing a layer of 13 "metallic reflection over the entire surface outer 9 of the upper wall 8 'characterized in C'3 and C'5, with R '# R and therefore the C' curves of the figure different from the curves C of figure 3.
  • Figure 5 shows a transmitter / reflector tube 22 monobloc called "head to tail” with two virtual homes opposite irradiated and arranged at an angle of 180 °, F 'and F' ', characterized in that the radiation reflected 5 'never goes back through the hearth plasma.
  • the tube comprises two wings 23 symmetrical with respect to to the perpendicular axial planes 24 and 25, and has on both sides an external face 26 of the type of that described with reference to Figures 1 and 2 and two reflecting surfaces 27 and 28 in the form of portion of symmetrical reverse parabola, forming between they an obtuse angle 29.
  • the 5 'radiation here crosses the solid medium 32 transparent with strictly parallel flow.
  • the tube 30 has an external upper face 33 comprising two surfaces 34 symmetrical with respect to the axial plane 35 perpendicular to the irradiated plane 36, reflecting dioptric, flat, inclined at 45 ° to the axial plane 35 in which ⁇ 1 is equal to 90 ° (therefore> 2 x 42 °).
  • the upper face of the tube also has a rectangular, flat central part 37, covered a reverse image reflective layer 38, the face lower 39 being flat, rectangular and parallel on face 37 and on plane 36 to be irradiated.
  • This type of embodiment of the transmitter / reflector monobloc allows irradiation by primary and secondary radiation fully returned perpendicularly or substantially perpendicular to the irradiated plane 36.
  • the curve C3 of the central part 37 is identical to that of Figure 3 covered with a material reflective.
  • flux 5 ' passing through the solid transparent medium can be slightly divergent, so that ⁇ 1 becomes ⁇ 2 x 42 °. In this case, we accept a tolerance in the divergence of plus or minus 5 °.
  • Figure 6A fall under the same principle of design, construction and use upside down as that of Figure 5.
  • the tube 40 has two identical parts 41, symmetrical with respect to the axial plane 42, centered on the geometric center 43 bore 44 with four convex sides of the type described in FIG. 1.
  • Such a device comprises four rectangular exit planes, two by two parallel, making it possible to attack the irradiation planes 47 with the rays 46 perpendicularly.
  • FIG. 7 describes a tube 50, formed by spinning, with a bore 51 with four convex faces 52 in portion of cylinder of radii R2 and R4, with R2 ⁇ R4, or R4 ⁇ R2, as described with reference to the previous figures.
  • the outer dioptric circle is "notched" on its periphery at 53, so as to receive (see FIGS. 8 and 9) elements of right and left wings in the form of a parabolic inverse curve 54 or plane at 45 °, with a surface of dioptric or metallic reflection or on the same principle, head-to-tail wings 55 as described above.
  • the radius R3 can have an infinitely large dimension, the axial origin of which is distant and situated on the vertical axis, so that the curve C3, initially constituted by a portion of cylinder, then becomes a portion of the plane characterizing the reverse light image.
  • Figure 9 shows a tube 50, composite, finding in all respects the characteristics and advantages of monobloc of Figure 1, and formed by assembly of the tube 50 of FIG. 7 with similar wings 61 to those described with reference to Figure 1, which have clean ends 62 to come to the contact cooperate and click into place with the notches 53 of the tube 50, and an internal face 63 cooperating in contact and partly complementary to the face cylindrical outer 64 of the tube 50.
  • FIG. 10 shows a device 70 comprising a tube 1 identical to that described with reference to the FIG. 1, and a blade element or blade 71, transparent, with 72 parallel side faces.
  • the transparent blade 71 with a thickness Lcr has on the upper edge 75 a concave shape of radius of curvature R'3, and located at a distance dF1 with respect to the virtual focus F ', so that the rays 76 arriving on this concave dioptric plane are rectified in parallel radiating flux represented in the drawing by the width Luv.
  • the mechanical link between the monoblock transmitter / reflector and the radiant collector can be for example produced by two sheets 78, or T index, represented in a heavy dashed line in Figure 10.
  • FIGS. 13 and 14 show tubes 84 and 85 of the same external shape as that of the tubes represented in FIGS. 11 and 12, adapted to a different form of bore 86 comprising an upper side 87 concave, of cylindrical shape but reversed from that of three other identical convex sides 88 and 89.
  • the radii of curvature of the upper 87 concave and lower 88 convex faces are for example identical, the sides 89 being identical.
  • the 90 ends of the bore are tangent to surfaces upper and lower faces, which removes blind spots 91 (see FIG. 13) shown in dashed lines in the figures.
  • the tubes 84 and 85 also have a transparent internal cylindrical tube made of glass 92 which makes it possible to center the emitting beam 93 at the geometric center of the cylinder 94 (in phantom in the figures).
  • a transparent internal cylindrical tube made of glass 92 which makes it possible to center the emitting beam 93 at the geometric center of the cylinder 94 (in phantom in the figures).
  • FIGS. 15 and 15 A show a tube 95, 95 ′ formed by four biconvex lenses 96, 96 ′ inserted in a quartz tube 97 of cylindrical or substantially cylindrical external shape according to FIGS. 7 and 8.
  • Each lens 96 has an outer surface of shape complementary to that of the cylindrical inner face of the tube 97, and is arranged in contact to form with its convex inner part 98 the bore 99 according to the invention.
  • a lens 96 ′ may be smaller (see FIG. 15A) and leave a dioptric space 100 between its external face 101 which is convex, and the internal face of the tube 97.
  • the tube 95 ′ in FIG. 15A also comprises an internal cylindrical tube 102 for retaining the plasma centered on its axis, as described above.
  • FIG. 16 shows a tube 105 belonging to the same principle of bore formation, with a transmitter / reflector with wings, of monobloc shape, with or without internal tube 102.
  • the tube includes a bore cylindrical 110 provided with the four biconvex elements 96 as described above to form bore 99 in four pointed star.
  • Figures 17 to 19 show a monoblock transmitter 120 or 120 ′ with symmetrical bore 121 in a four-star convex walls.
  • the tubes 120 have a cross-sectional shape circular and the 120 'tube crushed on top with a strong radius of curvature associated with walls planar reflectors 122 at 45 °.
  • the curve C3 becomes a plane when the radius R3 tends to infinity.
  • the radiation passes through the transparent solid medium with a divergent flow, the value of the angle of divergence is compatible with the curve of dioptric refraction of the outer cylinder, such so that the refracted rays 123 form a flux parallel coming out of the tube 120.
  • cylindrical emitter associated with two faces 122 symmetrical and flat reflection, inclined at 45 ° gives a low construction cost, a luminous effect irradiate identical to that of the best reflector parabolic.
  • the tube 120 of Figure 18 has a upper face 125 covered with film, curved shape, metallization C3. which allows a return of the reflected radiation elsewhere than on the 126 emission focus.
  • Figure 20 shows a tube 130 similar to that of Figure 19 with two sheets 131 extending longitudinally along the tube, symmetrical by relative to the axial plane 132, in the form of parabolas inverses, the radii of curvature being such way that all of the primary radiation and secondary are found in the irradiated virtual home F '.
  • the convex curves of the bore modify the divergent radiating flux from the focal point located in the plasma gas medium, by a parallel flow, or substantially parallel in the transparent solid quartz medium.
  • the effect more generally resulting from the reflector with an elliptical or parabolic curve is obtained from reflection curves whose mathematical form, as a reflector, is therefore new.
  • the fasteners of the entire transmitter tube, convex lens-shaped spacers and casing are easy to make.
  • the line voltage has a value greater than or equal to 50 Volts / cm, advantageously greater than or equal to 100 Volts / cm.
  • the radius of the cross section of the cylindrical plasma beam, with respect to the diameter d of the circle inscribed at the apices of the bore, is such that 1 / 100d ⁇ r ⁇ 1 / 2d, for example 1 / 50d ⁇ r ⁇ 1 / 4d or r ⁇ 1 / 8d, r ⁇ 1 / 10d, and / or r ⁇ 1 / 20d.
  • the invention also relates to apparatus which allow in particular the sterilization of water, i.e. for the reflector with reverse parabola around an axis, either in ply for the 45 ° plane reflector, and the drying ink and varnish to polymerize on wired or circular products around an axis such as the marking of electrical wires, cables, pipes rubber, P.V.C. tube, etc.
  • an ultraviolet transmitter / reflector according to the invention can be mounted on a sterilization or polymerization for example in opposition around a transparent cylinder serving as sterilization or polymerization chamber, or again, also and for example, in opposition to on either side of a liquid sheet contained between the two transparent walls formed by the flat faces of the planar emitter / reflector, thus achieving a sterilization chamber.

Claims (31)

  1. Elektromagnetische Strahlungen aussendendes Rohr aus einem transparenten, nicht fluoreszierenden Material, insbesondere auf Glas- oder Quarzbasis, mit gerader Bauweise, das eine von einem zum anderen Ende um eine Achse gehende, längliche Bohrung (2, 44, 51) aufweist, die einen Aufnahmeraum begrenzt, der geeignet ist, einen Plasmafaden oder ein Plasmabündel zu enthalten, der/das Strahlung abgibt, wobei die Bohrung (2, 44, 51) einen im Wesentlichen quadratischen oder rechtwinkligen Querschnitt hat, dadurch gekennzeichnet, dass mindestens zwei entgegengesetzte Seiten (4) der Bohrung die Form konvexer Krümmungen haben, welche Seiten lichtbrechende Flächen bilden, die so vorgesehen sind, dass sie die Richtung der von dem Faden oder der Achse (3) des emittierenden Bündels ausgesandte Strahlung (5) verändert, um sie in dem transparenten, festen Milieu (7) des Glases parallel oder im Wesentlichen parallel werden zu lassen.
  2. Rohr nach Anspruch 1, dadurch gekennzeichnet, dass die genannten Seiten so angeordnet sind, dass sie lichtbrechende Flächen bilden, um in Verbindung mit der lichtbrechenden Ausgangsfläche des Rohrs (1, 40, 80, 120) oder einer mit der lichtbrechenden Ausgangsfläche des Rohrs verbundenen reflektierenden Fläche die Strahlung in einem parallelen oder konvergierenden Strom in Richtung auf eine zu bestrahlende Fläche oder Linie zu leiten.
  3. Rohr nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die vier Seiten (4) der Bohrung (2) konvexe Formen haben.
  4. Rohr nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die konvexe Form der Innenwände der Bohrung ein Kreisabschnitt ist.
  5. Rohr nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es eine Oberseite genannte obere Außenwand (8, 9) mit einer Außenfläche umfasst, die so vorgesehen ist, dass sie die zur Achse der Bohrung gesandte Strahlung zurückwirft, wobei diese Außenwand mit einem reflektierenden Material (13) überzogen ist.
  6. Rohr nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es eine mit dem Rohr fest verbundene reflektierende Fläche umfasst.
  7. Rohr nach Anspruch 6, dadurch gekennzeichnet, dass es mit einer die ausgesandte Strahlung reflektierenden Fläche versehen ist, die sich auf einer Seite des Rohrs befindet und zwei seitliche Längsflügel (16) aufweist, die bezüglich einer Axialebene (12) der Bohrung (2) symmetrisch sind, wobei der reflektierende Flächenabschnitt dieser Seitenflügel auf einer Fläche mit geradem oder umgekehrt parabolischem oder auch im Wesentlichen geradem oder im Wesentlichen umgekehrt parabolischem Querschnitt liegt.
  8. Rohr nach Anspruch 7, dadurch gekennzeichnet, dass die reflektierende Fläche zumindest teilweise von den Innenseiten der Flügel durch Strahlenbrechung gebildet wird.
  9. Rohr nach Anspruch 7, dadurch gekennzeichnet, dass die reflektierende Fläche zumindest teilweise von einem reflektierenden Material gebildet wird.
  10. Rohr nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das Rohr eine Unterseite genannte Außenseite (17) aufweist, welche die Enden der Flügel miteinander verbindet und auf der zur Erzeugenden an der Spitze des Rohres entgegengesetzten Seite an der bezüglich der in der Mitte konvexen und an den Enden im Wesentlichen geraden Bohrung angeordnet ist, entsprechend einer Krümmung, die bezüglich der Axialebene, die die Erzeugende an der Spitze enthält, symmetrisch ist, welche untere Seite so vorgesehen ist, dass sie die zur Axialebene (12) der Bohrung (2) gesandten Strahlen in Richtung auf eine auf der Bestrahlungsebene gelegene Fokussierungslinie lenkt.
  11. Rohr nach Anspruch 10, dadurch gekennzeichnet, dass es bezüglich einer zur Bestrahlungsebene parallelen Axialebene der Bohrung symmetrisch ist.
  12. Rohr nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Oberseite des Rohrs auf der Seite der Erzeugenden an der Spitze des Rohrs zwischen den Außenseiten der Seitenflügel (16) teilweise zylindrisch ist.
  13. Rohr nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Oberseite (8') des Rohrs schräg abgeschnitten ist und so eine ebene Außenseite zwischen den Außenseiten der Seitenflügel bildet.
  14. Rohr nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es eine im Wesentlichen zylindrische Form hat.
  15. Rohr nach Anspruch 14, dadurch gekennzeichnet, dass es zwei angesetzte Flügel (23) aus Glas umfasst, die symmetrisch oder nicht symmetrisch zu der senkrecht zur Bestrahlungsebene gelegenen Axialebene der Bohrung sind.
  16. Rohr nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Bohrung von vier gleichmäßig verteilten Vierteln aus Glas gebildet wird, die an ihren Enden aneinander stoßen und sich in einen umfänglichen Glaszylinder oder eine zylindrische Bohrung in dem Rohr einfügen,
  17. Rohr nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es ein zweites zylindrisches Rohr (81) in der Bohrung umfasst, das geeignet ist, das Plasmabündel und/oder einen emittierenden Faden zu enthalten.
  18. Rohr nach Anspruch 17, dadurch gekennzeichnet, dass es einen Zwischenraum (83) zwischen dem Innenrohr (81) und dem Außenrohr umfasst, um das Strömen eines gasförmigen oder flüssigen Kühlfluids zu erlauben.
  19. Rohr nach Anspruch 14, dadurch gekennzeichnet, dass die Bohrung eine Oberseite mit konkavem Querschnitt umfasst.
  20. Rohr nach Anspruch 19, dadurch gekennzeichnet, dass es Elektrodenkammern mit einem Innenquerschnitt umfasst, der größer als der oder gleich dem Innenquerschnitt des emittierenden Strahlungsbereichs des Rohrs ist.
  21. Rohr nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Bohrung (2, 4, 51, 121) so vorgesehen ist, dass sie ein ionisiertes Gas enthält, das auf variablen Frequenzen erregt wird, wobei die ausgesandte Strahlung eine ultraviolette Strahlung und/oder sichtbar und/oder Infrarotstrahlung ist.
  22. Rohr nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass es einen Infrarotstrahlung emittierenden Faden umfasst.
  23. Vorrichtung zum Ausstrahlen/Reflektieren elektromagnetischer Strahlung, die ein gerades Glasrohr nach einem der vorstehenden Ansprüche 1 bis 22 umfasst.
  24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, dass sie auf der Fokussierungsebene der ausgesandten Strahlung eine Zunge (71) mit parallelen oder im Wesentlichen parallelen trichterförmigen Seitenflächen umfasst, die eine lichtbrechende Strahlungseintrittsfläche umfasst, die geeignet ist, die empfangenen konvergenten Strahlen in einen parallelen Strom von Strahlen umzuwandeln.
  25. Vorrichtung nach einem der Ansprüche 23 oder 24, dadurch gekennzeichnet, dass sie vom Rohr getrennte reflektierende Flächen aufweist, die von reflektierenden Platten gebildet werden.
  26. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, dass die Platten eben sind.
  27. Verfahren zur Beaufschlagung eines in Schichten oder auf einer ebenen oder gekrümmten Fläche angeordneten Produkts, dadurch gekennzeichnet, dass das Produkt mit einem elektromagnetische Strahlung emittierenden Rohr nach Anspruch 2 bestrahlt wird.
  28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass das Plasmabündel ein röhrenförmiges Bündel ist, das ultraviolette und/oder sichtbare und/oder Infrarotstrahlung emittiert.
  29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, dass das röhrenförmige Plasmabündel einen Querschnitt mit maximaler Radialabmessung von unter oder gleich 4 mm aufweist.
  30. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass der Faden ein Glühfaden ist, der Infrarotstrahlung emittiert.
  31. Verfahren nach einem der Ansprüche 27 bis 30, dadurch gekennzeichnet, dass mit ein und demselben Rohr mindestens zwei Bestrahlungsebenen bestrahlt werden, die symmetrisch beidseits des emittierenden Rohrs angeordnet sind.
EP99900934A 1998-01-15 1999-01-15 Röhre, vorrichtung und verfahren zur emission elektromagnetischer strahlung Expired - Lifetime EP1046187B8 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9800382 1998-01-15
FR9800382A FR2773640B1 (fr) 1998-01-15 1998-01-15 Tube, dispositif et procede emetteur de rayonnements electromagnetiques
PCT/FR1999/000074 WO1999036939A1 (fr) 1998-01-15 1999-01-15 Tube, dispositif et procede emetteur de rayonnements electromagnetiques

Publications (3)

Publication Number Publication Date
EP1046187A1 EP1046187A1 (de) 2000-10-25
EP1046187B1 true EP1046187B1 (de) 2002-06-12
EP1046187B8 EP1046187B8 (de) 2002-12-18

Family

ID=9521810

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99900934A Expired - Lifetime EP1046187B8 (de) 1998-01-15 1999-01-15 Röhre, vorrichtung und verfahren zur emission elektromagnetischer strahlung

Country Status (13)

Country Link
US (1) US6583535B1 (de)
EP (1) EP1046187B8 (de)
JP (1) JP2002510122A (de)
KR (1) KR20010033901A (de)
CN (1) CN1288585A (de)
AT (1) ATE219290T1 (de)
AU (1) AU741688B2 (de)
CA (1) CA2317629A1 (de)
DE (1) DE69901785T2 (de)
ES (1) ES2181385T3 (de)
FR (1) FR2773640B1 (de)
IL (1) IL136786A0 (de)
WO (1) WO1999036939A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798187B1 (fr) 1999-09-06 2002-02-01 Christian Lumpp Dispositif d'irradiation electromagnetique comportant des moyens de refroidissement
FR2846585B1 (fr) * 2002-10-30 2006-02-03 Prospection Et D Inv S Tech So Tube d'alimentation en elements de fixation pour un appareil de fixation
DE10341805A1 (de) * 2003-09-10 2005-06-23 Giesecke & Devrient Gmbh Beleuchtungsvorrichtung
JP4339143B2 (ja) * 2004-02-10 2009-10-07 株式会社小糸製作所 車両用灯具ユニット
US8434892B2 (en) * 2011-03-30 2013-05-07 Varroccorp Holding Bv Collimator assembly
KR102475565B1 (ko) * 2013-09-05 2022-12-08 어플라이드 머티어리얼스, 인코포레이티드 감소된 코일 가열을 위한 램프 단면
CN105782975A (zh) * 2016-04-19 2016-07-20 英菲实业(辽宁)有限公司 多反射面抛物线型红外线辐射能全反射罩

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2356654A (en) * 1944-08-22 Catadioptric lens
US2254962A (en) * 1937-09-22 1941-09-02 George M Cressaty Unitary lens system
GB1401293A (en) * 1972-04-19 1975-07-16 Gen Electric Co Ltd Electric discharge lamps
FI841491A (fi) * 1983-04-25 1984-10-26 Christian Lumpp Anordning foer aostadkommande och reflektering av infraroed eller ultraviolett straolning.
JPH0129928Y2 (de) * 1984-09-29 1989-09-12
JPH068864B2 (ja) 1985-02-28 1994-02-02 富士電機株式会社 光電スイッチ
JP3145249B2 (ja) * 1994-06-07 2001-03-12 シャープ株式会社 放電ランプ及びそれを用いた照明装置並びに液晶表示装置
JPH08174567A (ja) * 1994-10-25 1996-07-09 Ushio Inc 光照射器
US5813743A (en) * 1995-03-27 1998-09-29 Fuji Photo Film Co., Ltd. Lighting unit
AU720653B2 (en) 1996-07-09 2000-06-08 Lumpp & Consultants Electromagnetic radiation transmitter/reflector device, apparatus and process implementing such a device

Also Published As

Publication number Publication date
EP1046187B8 (de) 2002-12-18
WO1999036939A1 (fr) 1999-07-22
KR20010033901A (ko) 2001-04-25
CN1288585A (zh) 2001-03-21
JP2002510122A (ja) 2002-04-02
CA2317629A1 (en) 1999-07-22
EP1046187A1 (de) 2000-10-25
US6583535B1 (en) 2003-06-24
ATE219290T1 (de) 2002-06-15
DE69901785T2 (de) 2003-02-20
AU2058799A (en) 1999-08-02
IL136786A0 (en) 2001-06-14
FR2773640B1 (fr) 2003-05-23
DE69901785D1 (de) 2002-07-18
FR2773640A1 (fr) 1999-07-16
AU741688B2 (en) 2001-12-06
ES2181385T3 (es) 2003-02-16

Similar Documents

Publication Publication Date Title
EP0910772B1 (de) Einrichtung zum übertragen/reflektieren elektromagnetischer strahlen;vorrichtung und verfahren mit einer solchen einrichtung
US10520741B2 (en) System and method for separation of pump light and collected light in a laser pumped light source
WO2007042689A2 (fr) Lampe uv plane a decharge coplanaire et utilisations
EP1046187B1 (de) Röhre, vorrichtung und verfahren zur emission elektromagnetischer strahlung
WO2016012724A1 (fr) Module de couplage d'une matrice de diodes lasers
FR2504313A1 (fr) Lampe reflectrice electrique
FR2458895A1 (fr) Lampe electrique a decharge basse pression a cloisonnement interieur
FR2893719A1 (fr) Panneau a plasma dote d'un reseau de concentrateurs
EP3224342A1 (de) Lichtinjektionselement
FR3034166A1 (fr) Dispositif d'eclairage lineaire a diodes electroluminescentes avec un lobe d'eclairage decale
CA2173224A1 (fr) Generateur de lumiere a enceinte reflechissante pour ensemble d'eclairage ou d'illumination mettant en oeuvre un guide de lumiere
EP1966535B1 (de) Leuchtende signalisierungsvorrichtung
WO1998001889A1 (fr) Tube emetteur de rayonnements electromagnetiques, dispositif et procede mettant en oeuvre un tel tube
FR2751093A1 (fr) Dispositif emetteur/reflecteur de rayonnements electromagnetiques, appareil et procede mettant en oeuvre un tel dispositif
EP0791156A1 (de) Beleuchtungsvorrichtung mit abgelenkter lichtquelle mit wärmeverteiler und lampenständer der diese beleuchtungsvorrichtung enthält
FR2750892A1 (fr) Procede et appareil d'application de rayonnements electromagnetiques a un produit en nappe ou courbe
WO2016083547A1 (fr) Element injecteur de lumiere a energie repartie
BE892845A (fr) Lampe reflectrice electrique
EP3015758A1 (de) Lineare beleuchtungsvorrichtung mit elektrolumineszenzdioden und linearer linse
EP3936763A1 (de) Lumineszenzkonzentrator
FR2732181A1 (fr) Projecteur de rayonnement et panneau radiant
CH615535A5 (en) Device for forming the image of the discharge of an excitation source in a substance emitting laser radiation
FR3034168A1 (fr) Dispositif d'eclairage lineaire a diodes electroluminescentes avec deux lobes d'eclairage lateraux
FR2920257A1 (fr) Laser a excitation optique et son milieu actif
FR2871289A1 (fr) Lampe a barrieres de decharge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010809

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020612

REF Corresponds to:

Ref document number: 219290

Country of ref document: AT

Date of ref document: 20020615

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69901785

Country of ref document: DE

Date of ref document: 20020718

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020912

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020916

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020912

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LUMPP, CHRISTIAN

RIN2 Information on inventor provided after grant (corrected)

Free format text: LUMPP, CHRISTIAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030113

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030115

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030116

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030130

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2181385

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1046187E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040115

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040409

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040116

BERE Be: lapsed

Owner name: *LUMPP CHRISTIAN

Effective date: 20050131

BERE Be: lapsed

Owner name: *LUMPP CHRISTIAN

Effective date: 20050131