EP1043757A1 - Gasentladungslampe - Google Patents
Gasentladungslampe Download PDFInfo
- Publication number
- EP1043757A1 EP1043757A1 EP00201148A EP00201148A EP1043757A1 EP 1043757 A1 EP1043757 A1 EP 1043757A1 EP 00201148 A EP00201148 A EP 00201148A EP 00201148 A EP00201148 A EP 00201148A EP 1043757 A1 EP1043757 A1 EP 1043757A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dielectric
- gas discharge
- discharge lamp
- lamp
- lamp according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
- H01J65/042—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
- H01J65/046—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
Definitions
- the invention relates to a gas discharge lamp with at least one capacitive coupling structure.
- Known gas discharge lamps consist of a vessel with a filling gas in which the Gas discharge expires, and usually two metallic electrodes placed in the discharge vessel have melted down.
- An electrode supplies the electrons for the discharge, which go through the second electrode can be fed back to the outer circuit.
- the release of the electrons usually takes place by means of glow emission (hot electrodes), but can also be caused by Emission in a strong electric field or directly by ion bombardment (ion-induced Secondary emission) (cold electrodes).
- hot electrodes glow emission
- ion-induced Secondary emission cold electrodes
- the charge carriers are operated directly in the gas volume via an electromagnetic High frequency alternating field (typically greater than 1 MHz for low pressure gas discharge lamps) generated.
- the electrons move on circular orbits within the discharge vessel, conventional electrodes are missing in this operating mode.
- capacitive coupling structures are used as electrodes. This are formed from insulators (dielectrics), which have contact on one side for gas discharge have and on the other hand electrically conductive (for example by means of a metallic Contact) are connected to an external circuit.
- dielectrics dielectrics
- One with the capacitive Electricity applied to electrodes forms an electrical one in the discharge vessel Alternating field, on whose linear electrical fields the charge carriers move.
- the capacitive lamps are similar to the inductive ones Lamps, since the charge carriers are also generated here in the entire gas volume.
- the surface properties of the dielectric electrode are of little importance here (so-called ⁇ discharge mode).
- a necessary driver electronics is disadvantageous for the operation of known gas discharge lamps. This has the task of igniting the gas discharge of the lamp and one Deliver ballast for the operation of the lamp on a circuit. Without an appropriate one Ballasting the lamp in an external circuit would result in the current in the gas discharge lamp by increasing the charge carriers in the gas volume of the discharge vessel rise so high that the lamp is quickly destroyed.
- Such gas discharge lamps are also from the American patent US 2,624,858 known.
- a gas discharge lamp with capacitive electrodes is used a dielectric material with a high dielectric constant ⁇ > 100 (preferred ⁇ > 2000) operated at an operating frequency of less than 120 Hz.
- the external tension must be between 500 V and 10000 V. Therefore, such a capacitive Gas discharge lamp not operated on the mains for private households with 230 V and 50 Hz a circuit with driver electronics is necessary.
- the object of the invention is therefore to provide a gas discharge lamp with at least one to create capacitive coupling structure that has improved operating properties.
- the gas discharge lamp consists of a transparent discharge vessel with a customary filling gas (for example, a rare gas or a rare gas with mercury for low-pressure gas discharge lamps).
- the discharge vessel contains at least two spatially separated electrodes or coupling structures, at least one of which is designed as a capacitive coupling structure.
- the capacitive coupling structure according to the invention can, for example, also be combined with a metallic electrode.
- the dielectric of the capacitive coupling structure can consist of one or more layers.
- Such a lamp can in particular without a circuit with a driver electronics Electricity network for private households (e.g. 230V / 50Hz) can be operated.
- a driver electronics Electricity network for private households e.g. 230V / 50Hz
- Preferred configurations the gas discharge lamp are the other claims and the description remove.
- All of the exemplary embodiments use a dielectric solid as the dielectric base material, which has the properties according to the invention.
- Ba (Ti 0.9 Zr 0.1 ) O 3 which is doped with a small amount of Mn acceptor, is preferably used as the material for the dielectric of the capacitive coupling structures.
- the coercive field strength is E C ⁇ 60 V / mm.
- a product of saturation polarization P and effective surface A with P ⁇ A> 10 -5 C and a product of coercive field strength E c and effective thickness of the dielectric d of E c ⁇ d ⁇ 200 V is thus achieved in all exemplary embodiments for the capacitive coupling structures.
- the gas discharge lamps can thus be operated directly on the network for private households without additional driver electronics.
- the choice of dielectric material is not limited to the above material. All other dielectric materials, preferably paraelectrics, ferroelectrics and antiferroelectrics, can also be used, the product of which consists of saturation polarization P and effective surface A fulfills the condition PA> 10 -5 C.
- the material for the dielectric must easily have electrons on the surface facing the plasma submit.
- To characterize the emission properties of the dielectric serves the relationship between ion current and electron current on the surface of the plasma-facing side of the dielectric. This ratio is called ion-induced Secondary emission coefficient ⁇ .
- ⁇ should advantageously be greater than 0.001, otherwise the plasma will not ignites.
- ⁇ Between the dielectric surface and the light-generating part of the plasma a narrow, approximately 1 mm thick plasma boundary layer forms.
- the one in the plasma boundary layer output can take high values and significantly reduce the efficiency (lumens per watt) of the lamp.
- a high secondary emission coefficient ⁇ leads to a reduction in this power share and an increase in the efficiency of the lamp.
- Such materials are therefore particularly suitable for the dielectric in which additional electrons on the plasma face during operation of the lamp Attach surface, and which lead to a secondary emission coefficient ⁇ > 0.01.
- the pressure and filling gas for the lamp are chosen so that the coupling structures operate in an abnormal glow mode. This gives the cathode drop area a positive U / I characteristic for the entire gas discharge lamp.
- the internally phosphor-coated glass tube 1 has an inner diameter of 50 mm and is filled with 5 mbar Ar and 5 mg Hg.
- a dielectric capacitive coupling structure consisting of a disk-shaped dielectric layer 2 and an electrically conductive layer 3 is attached to both sides of the glass tube 1.
- the dielectric layer 2 is formed by a disc with a diameter of 5 cm and a thickness of 0.5 mm, which consists of Ba (Ti 0.9 Zr 0.1 ) O 3 , which is doped with a small amount of Mn acceptor is.
- the dielectric plate 2 is attached to the gas discharge vessel 1 by means of a soldering process, so that a vacuum-tight connection is created.
- the electrically conductive layer 3 is realized by applying a silver paste, so that an electrical contact for connection to an external power network 4 is available.
- the network for private households with 230 V and 50 Hz is used as the external power network 4.
- the charging of the dielectric (2) that occurs during operation of the lamp leads to an electric field between the dielectric coupling structures (2), which results in simplified re-ignition in the next half phase of the AC voltage supply (after current reversal) and an increase in the ion-induced secondary emission coefficient ⁇ . This reduces the cathode drop region (dark zone in the vicinity of the coupling structure, in which no light is generated) and thus increases the efficiency of the gas discharge lamp.
- FIG. 2 shows a lamp with a glass tube 5 as a gas discharge vessel, which has a smaller inner diameter.
- the inside diameter is only 9 mm with a filling of the inside phosphor-coated glass tube 5 with 15 mbar Ar and 5 mg Hg.
- At both ends of the glass tube 5 there is again a dielectric coupling structure consisting of a disk-shaped dielectric layer 2 and an electrically conductive layer 3.
- the dielectric layer 2 is also formed here by a disc with a diameter of 5 cm and a thickness of 0.5 mm made of Ba (Ti 0.9 Zr 0.1 ) O 3 , which is doped with a small amount of Mn acceptor .
- the dielectric pane 2 is connected to the glass tube 5 in a vacuum-tight manner using a glass soldering technique.
- the electrically conductive layer 3 is realized by applying a silver paste, so that an electrical contact for connection to an external power network 4 is available.
- the network for private households with 230 V and 50 Hz is also to be used as the external power network 4.
- This embodiment of the lamp offers increased efficiency due to the smaller inside diameter, since in this case the positive column of the gas discharge and the electrode and cathode drop region can each be optimized separately.
- the embodiment of the lamp shown in FIG. 3 has a discharge vessel which consists of a bent glass tube 6.
- the internally phosphor-coated glass tube 6 has an inner diameter of 9 mm and is filled with 15 mbar Ar and 5 mg Hg.
- the dielectric coupling structure at both ends is formed in each case by a cylindrical tube 7 made of the dielectric material (specially doped BaTiO 3 ).
- the dielectric cylinder 7 has an outer diameter of 10 mm with a wall thickness of 0.5 mm and a length of 60 mm.
- the glass tube 6 is closed in a vacuum-tight manner with the glass tube by a disk-shaped, dielectric cap 8 by means of a soldering process.
- a layer of conductive silver is applied to the dielectric cylinder 7, so that electrical contacting is possible.
- the lamp is connected to an external power supply 4 (230 V, 50 Hz).
- an external power supply 4 230 V, 50 Hz.
- this gas discharge lamp also offers very good lighting efficiency.
- other embodiments of the gas discharge lamp according to the invention are also conceivable, in particular in the design of the discharge vessel or in the choice of the dielectric and electrically conductive materials used for the coupling structures (for example to meet certain requirements for the shape of the lamp or production-technical specifications).
- the invention is not limited to lamps whose electromagnetic radiation is limited to the visible spectral range.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Discharge Lamp (AREA)
Abstract
Description
- Figur 1:
- eine schematische Darstellung einer ersten möglichen Ausführungsform einer Gasentladungslampe gemäß der Erfindung,
- Figur 2:
- eine weitere denkbare Ausführungsform der Gasentladungslampe und
- Figur 3:
- eine dritte Ausführungsform.
Claims (9)
- Gasentladungslampe mit wenigstens einer kapazitiven Einkoppelstruktur (2),
dadurch gekennzeichnet,
daß ein Dielektrikum (2) mit einer dielektrischen Sättigungspolarisation P und mit einer wirksamen Oberfläche A zur Bildung der kapazitiven Einkoppelstruktur (2) vorgesehen ist, wobei das Produkt aus P·A > 10-5 C beträgt. - Gasentladungslampe nach Anspruch 1,
dadurch gekennzeichnet,
daß ein Dielektrikum (2) mit einer Koerzitivfeldstärke EC und einer wirksamen Dicke d zur Bildung der kapazitiven Einkoppelstruktur (2) vorgesehen ist, wobei das Produkt aus EC.d<200V beträgt. - Gasentladungslampe nach Anspruch 2,
dadurch gekennzeichnet,
daß ein Dielektrikum (2) mit einer elektrischen Durchbruchfeldstärke Ebd zur Bildung der kapazitiven Einkoppelstruktur (2) vorgesehen ist, wobei das Produkt aus Ebd·d<200V beträgt. - Gasentladungslampe nach Anspruch 1,
dadurch gekennzeichnet,
daß das Dielektrikum (2) aus einem paraelektrischen, ferroelektrischen oder antiferroelektrischen Feststoff besteht. - Gasentladungslampe nach Anspruch 1,
dadurch gekennzeichnet,
daß das Dielektrikum (2) aus Ba(Ti1-xZrx)O3 mit Akzeptor-Dotierungen besteht. - Gasentladungslampe nach Anspruch 5,
dadurch gekennzeichnet,
daß der Gehalt an Zirkon x=0,10 beträgt. - Gasentladungslampe nach Anspruch 5,
dadurch gekennzeichnet,
daß eine Dotierung mit Mn3+ die Akzeptor-Dotierung bildet. - Gasentladungslampe nach Anspruch 5,
dadurch gekennzeichnet,
daß das Dielektrikum (2) eine wirksame Oberfläche A>0,5cm2 besitzt. - Gasentladungslampe nach Anspruch 5,
dadurch gekennzeichnet,
daß das Dielektrikum (2) eine wirksame Dicke d<5mm besitzt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19915617A DE19915617A1 (de) | 1999-04-07 | 1999-04-07 | Gasentladungslampe |
DE19915617 | 1999-04-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1043757A1 true EP1043757A1 (de) | 2000-10-11 |
EP1043757B1 EP1043757B1 (de) | 2005-10-05 |
Family
ID=7903741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00201148A Expired - Lifetime EP1043757B1 (de) | 1999-04-07 | 2000-03-28 | Gasentladungslampe |
Country Status (5)
Country | Link |
---|---|
US (1) | US6465955B1 (de) |
EP (1) | EP1043757B1 (de) |
JP (1) | JP2000311660A (de) |
CN (1) | CN1214442C (de) |
DE (2) | DE19915617A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1087422A2 (de) * | 1999-09-24 | 2001-03-28 | Philips Corporate Intellectual Property GmbH | Gasentladungslampe mit kapazitiver Einkoppelstruktur |
EP1256971A2 (de) * | 2001-05-09 | 2002-11-13 | Philips Corporate Intellectual Property GmbH | Gasentladungslampe |
US6710535B2 (en) | 2001-08-06 | 2004-03-23 | Koninklijke Philips Electronics N.V. | Low-pressure gas discharge lamps |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005502171A (ja) * | 2001-09-05 | 2005-01-20 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 低圧ガス放電ランプ |
KR100498307B1 (ko) * | 2002-10-24 | 2005-07-01 | 엘지전자 주식회사 | 무전극 조명 시스템의 재발광 촉진 장치 |
JP2005216647A (ja) * | 2004-01-29 | 2005-08-11 | Ushio Inc | 高放射輝度閃光放電ランプ |
KR101123454B1 (ko) * | 2004-12-24 | 2012-03-26 | 엘지디스플레이 주식회사 | 형광램프, 그 제조 방법 및 이를 구비한 백라이트 유닛 |
WO2006103574A2 (en) * | 2005-03-30 | 2006-10-05 | Koninklijke Philips Electronics N.V. | Discharge lamp and backlight unit for backlighting a display device comprising such a discharge lamp |
KR101183418B1 (ko) * | 2005-12-30 | 2012-09-14 | 엘지디스플레이 주식회사 | 외부 전극 형광램프 및 이를 이용한 액정표시장치의백라이트 유닛 |
NL2004872A (en) * | 2009-06-18 | 2010-12-20 | Asml Netherlands Bv | Lithographic projection apparatus. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2624858A (en) * | 1948-11-15 | 1953-01-06 | William B Greenlee | Gaseous discharge lamp |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5013966A (en) * | 1988-02-17 | 1991-05-07 | Mitsubishi Denki Kabushiki Kaisha | Discharge lamp with external electrodes |
DE69507283T2 (de) * | 1994-11-08 | 1999-07-01 | Koninklijke Philips Electronics N.V., Eindhoven | Niederdruckentladundslampe |
US5720859A (en) * | 1996-06-03 | 1998-02-24 | Raychem Corporation | Method of forming an electrode on a substrate |
JPH1140462A (ja) * | 1997-07-22 | 1999-02-12 | Tdk Corp | Cr複合電子部品とその製造方法およびインダクタ |
US6191539B1 (en) * | 1999-03-26 | 2001-02-20 | Korry Electronics Co | Fluorescent lamp with integral conductive traces for extending low-end luminance and heating the lamp tube |
-
1999
- 1999-04-07 DE DE19915617A patent/DE19915617A1/de not_active Withdrawn
-
2000
- 2000-03-28 DE DE50011273T patent/DE50011273D1/de not_active Expired - Fee Related
- 2000-03-28 EP EP00201148A patent/EP1043757B1/de not_active Expired - Lifetime
- 2000-04-03 CN CNB001181688A patent/CN1214442C/zh not_active Expired - Fee Related
- 2000-04-04 JP JP2000102401A patent/JP2000311660A/ja active Pending
- 2000-04-07 US US09/545,786 patent/US6465955B1/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2624858A (en) * | 1948-11-15 | 1953-01-06 | William B Greenlee | Gaseous discharge lamp |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1087422A2 (de) * | 1999-09-24 | 2001-03-28 | Philips Corporate Intellectual Property GmbH | Gasentladungslampe mit kapazitiver Einkoppelstruktur |
EP1087422A3 (de) * | 1999-09-24 | 2003-11-05 | Philips Intellectual Property & Standards GmbH | Gasentladungslampe mit kapazitiver Einkoppelstruktur |
EP1256971A2 (de) * | 2001-05-09 | 2002-11-13 | Philips Corporate Intellectual Property GmbH | Gasentladungslampe |
EP1256971A3 (de) * | 2001-05-09 | 2006-01-25 | Philips Intellectual Property & Standards GmbH | Gasentladungslampe |
US6710535B2 (en) | 2001-08-06 | 2004-03-23 | Koninklijke Philips Electronics N.V. | Low-pressure gas discharge lamps |
Also Published As
Publication number | Publication date |
---|---|
EP1043757B1 (de) | 2005-10-05 |
DE19915617A1 (de) | 2000-10-12 |
CN1214442C (zh) | 2005-08-10 |
DE50011273D1 (de) | 2005-11-10 |
CN1274943A (zh) | 2000-11-29 |
US6465955B1 (en) | 2002-10-15 |
JP2000311660A (ja) | 2000-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68908214T2 (de) | Elektrodenlose Niederdruckentladungslampe. | |
EP0733266B1 (de) | Verfahren zum betreiben einer inkohärent emittierenden strahlungsquelle | |
DE69317500T2 (de) | Fluoreszenzlampe | |
EP0922297B1 (de) | Leuchtstofflampe | |
EP1137050A1 (de) | Kapazitive Einkoppelstruktur für Niederdruckgasentladungslampe | |
DE69214681T2 (de) | Hochfrequentes Röhrenlichtsystem | |
EP1984936A1 (de) | Hochdruckentladungslampe | |
EP1043757B1 (de) | Gasentladungslampe | |
DE2821826A1 (de) | Gasentladungsvorrichtung mit quellenfreiem elektrischen feld | |
EP1977440B1 (de) | Hochdruckentladungslampe mit verbesserter zündfähigkeit | |
EP1088335B1 (de) | Entladungslampe mit sockel | |
DE60033299T2 (de) | Hochdruckentladungslampe | |
EP1004137A2 (de) | Entladungslampe mit dielektrisch behinderten elektroden | |
DE102006026750A1 (de) | Hochdruckentladungslampe mit verbesserter Zündfähigkeit sowie Hochspannungspulsgenerator | |
DE19945758A1 (de) | Gasentladungslampe | |
DE69322731T2 (de) | Fluoreszierende Lichtquelle | |
DE69032825T2 (de) | Niederdruckedelgasentladungslampe | |
DE102006026751A1 (de) | Hochdruckentladungslampe mit verbesserter Zündfähigkeit sowie Hochspannungspulsgenerator | |
EP0990262B1 (de) | Entladungslampe mit dielektrisch behinderten elektroden | |
EP2092642B1 (de) | Hochspannungspulsgenerator und hochdruckentladungslampe mit derartigem generator | |
EP2025207A1 (de) | Hochdruckentladungslampe mit verbesserter zündfähigkeit sowie hochspannungspulsgenerator | |
WO2010025770A1 (de) | Entladungslampe | |
WO2007074032A2 (de) | Hochdruckentladungslampe mit verbesserter zündfähigkeit | |
DE10016736A1 (de) | Gasentladungslampe | |
EP2116111B1 (de) | Hochspannungspulsgenerator und hochdruckentladungslampe mit derartigem generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010411 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V. Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V. |
|
17Q | First examination report despatched |
Effective date: 20031125 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50011273 Country of ref document: DE Date of ref document: 20051110 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20051114 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060706 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080227 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080515 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080327 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080425 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090328 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091123 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090328 |