EP1043094B1 - Process for making castings - Google Patents
Process for making castings Download PDFInfo
- Publication number
- EP1043094B1 EP1043094B1 EP99107009A EP99107009A EP1043094B1 EP 1043094 B1 EP1043094 B1 EP 1043094B1 EP 99107009 A EP99107009 A EP 99107009A EP 99107009 A EP99107009 A EP 99107009A EP 1043094 B1 EP1043094 B1 EP 1043094B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- process according
- silica sol
- binder
- expansion
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/02—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/18—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
- B22C1/186—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
Definitions
- the invention relates to a method for producing cast pieces, in particular filigree precision castings in the medical field, in which a consisting of a ceramic investment material mold is selectively expanded before filling a casting material to compensate for occurring during cooling from the molten state volume contraction of the casting material, said Investment of a quartz-free oxide ceramic mixture, a binder and serving as a mixing liquid silica sol is formed with the addition of an organic carboxylic acid.
- the casting molds used for this purpose consist of a ceramic investment material, which is obtained by means of a wax model corresponding to the body part to be reconstructed. This is done by mixing a slurry consisting of a ceramic mixture and a binder with a mixing liquid and applying it to the wax model. After the slurry is set at room temperature after a short time, the solid mold formed in this way is heated to a temperature at which the wax of the wax model flows out without residue. To the required casting parameters, such as the Edge stability of the mold, to reach the mold is preheated to temperatures of up to 1000 ° C before the introduction of the casting material.
- the casting process is characterized by a volume contraction of the casting material.
- a shrinkage occurs, which passes into a shrinkage during solidification.
- the overall expansion of the embedding compound is composed of a setting expansion during the setting of the slurry and a thermal expansion during heating of the casting mold.
- a high thermal expansion can be achieved when quartz-containing investments are used. This is due to the thermal conversion behavior of silica modifications.
- quartz-containing investment materials are characterized by high expansion values of up to 2%, which often make a setting expansion unnecessary, but in addition to a harmful formation of fine dusts with a particle size of ⁇ 10 microns to the disadvantage of a likewise uneven cooling behavior.
- a disadvantage of quartz-containing investment materials is also a relatively low softening temperature, which cause at high casting temperatures, such as those required when casting, for example, titanium alloys, slagging reactions that bring pass inaccuracies with it.
- a quartz-containing Gusseinbettmasse for producing molds for alloy parts is known.
- a molten metal alloy can be cast into a mold made from the cast investment. After cooling and hardening of the alloy, the mold is removed and the alloy casting removed.
- the fit of the tooth replacement part produced by casting therefore depends decisively on the casting mold and in particular on the surface quality of the casting mold.
- the investment material hardens, the chemical reactions that occur can result in "efflorescence" that adversely affects the usability of the casting mold. Practical experience has shown that blooming occurs particularly when the setting of the investment materials is completed, but these are not yet dry due to the formation of moisture caused by setting. It is therefore proposed a quartz-containing Gusseinbettmasse that is mixed with a water-soluble acid to reduce such efflorescence.
- quartz-free ceramic investment materials which are less hazardous to health and less susceptible to alpha-case formation, have an almost constant thermal expansion behavior. Due to a up to about 900 ° C, that is, up to the preheating temperature of the mold, small expansion coefficient, can be achieved with quartz-free investment materials, however, only a small thermal expansion of 0.5% maximum. To compensate for the occurring during cooling volume contraction of the casting material therefore high values for the setting expansion are required.
- the invention has for its object to provide a method for the production of Gußwerk GmbH, with which a comparatively simple control of the occurring during setting expansion of a quartz-free investment material can be achieved.
- This object is achieved in a method for the preparation of Gußwerk Westernen with the above frameworkon features according to the invention characterized in that the occurring during the setting expansion of the embedding material by varying the content of colloidal amorphous silica (SiO 2) in the silica sol is controlled in dependence on the used castable is targeted by the addition of colloidal, amorphous silica (SiO 2 ).
- the invention takes the surprising finding of its own that it is sufficient to set a sufficiently large setting expansion in quartz-free investment materials to vary the content of silica (SiO 2 ) in serving as a mixing fluid silica corresponding to the respective casting materials.
- the reason for the achievable setting expansion values is primarily the interaction of the organic carboxylic acid with the silica sol.
- Silica sol as an aqueous anionic solution of colloidal, amorphous silica (SiO 2 ) with a pH above 10, has negatively charged and, as a result, mutually repulsive SiO 2 particles, which sufficiently stabilize the silica sol and give it a relatively low viscosity.
- the carboxylic acid lowers the pH of the silica sol and results in an acid-base reaction which precipitates silica gel according to the following equation: ⁇ Si-O - (Sol) + H + ⁇ ⁇ Si-OH (Gel) with ⁇ Si-O - : silicate anion on the surface of a SiO 2 particle and ⁇ Si-OH: Undissociated silica on the surface of a SiO 2 particle.
- the silicon dioxide (SiO 2 ) content in the silica sol is varied between 30% by weight and 40% by weight in order to set a certain expansion of the embedding compound.
- 30% silica sol leads to a setting expansion of 0.8%
- a proportion of silicon dioxide (SiO 2 ) in the silica sol of 40% by weight a setting expansion of 6% can be achieved.
- the variation of the silica content in the above interval thus allows sufficiently large setting expansion values for most of the cast materials.
- silica sol in which the silicon dioxide piadicles have a BET surface area of 50 m 2 / g to 350 m 2 / g.
- the quartz-free oxide ceramic mixture of oxides is preferably composed of aluminum silicates, zirconium silicate and stable silicates of the alkaline earth metals, as well as magnesium oxide (MgO) and corundum ( ⁇ -Al 2 O 3 ).
- Such oxide ceramic mixtures are of high thermal and chemical stability, are generally high-melting and have a low thermal expansion coefficient. Compared to quartz-containing investments, they are much more stable and, in particular, more suitable for investment casting of titanium (Ti) or zirconium (Zr) based metal alloys. Moreover, the risk of slagging is comparatively low.
- the embedding composition according to the invention advantageously has a proportion of oxides of high thermal and chemical stability of 96 wt .-% to 30 wt .-%, a proportion of corundum ( ⁇ -Al 2 O 3 ) of trace to 40 wt .-% and a proportion on magnesium oxide (MgO) of 4 wt .-% to 30 wt .-% to.
- a phosphate binder based on magnesium oxide (MgO) and monoammonium phosphate (NH 4 H 2 PO 4 ) is used as the binder.
- the component P 2 O 5 is unstable to liquid metals, but passes at a temperature of about 1400 ° C in the thermochemically stable compound Mg 2 P 2 O 7 .
- the relatively low proportion of monoammonium phosphate (NH 4 H 2 PO 4 ) in the investment ensures that the P 2 O 5 content is less than 3% hereinafter. This is especially important when a titanium (Ti) based casting material is used because titanium (Ti) or titanium alloys are highly reducing.
- the triangular diagram according to Fig. 1 lets recognize the composition of the oxide ceramic mixture of an investment material.
- the corners of the equilateral triangle correspond to the pure components corundum ( ⁇ -Al 2 O 3 ), magnesium oxide (MgO) and oxides of high thermal and chemical stability, such as aluminum silicates, a ternary system.
- the binary edge systems are found, while points within the triangle represent the ternary mixture.
- Constant mass content lines w of one component are parallel to the triangle sides facing the respective corner of the pure component, and cut off the respective mass fractions on the edge scales.
- the diagram in Fig. 2 shows the relationship between the size of the occurring when setting a quartz-free investment material expansion ⁇ A and the content w of silica (SiO 2 ) in a serving as a mixing silica sol. It can be seen that with a content w of silicon dioxide (SiO 2 ) of 30 wt.%, A setting expansion of about 0.8% occurs, while with a content w of silicon dioxide (SiO 2 ) of 40 wt Be achieved curing expansion of nearly 6%.
- the setting expansion ⁇ A is understood as meaning the change in length ⁇ L of a particle of the embedding compound after setting in relation to the initial length L 0 of the particle in a coordinate direction.
- Such an embedding compound can be processed in the mushy state to form a casting mold, wherein after about 10 minutes, the setting reaction occurs at room temperature. After about 1 h, when the mold is completely set and firm, the in Fig. 2 for different contents w of silicon dioxide (SiO 2 ) in the setting solution ⁇ A shown in the silica sol serving as mixing liquid.
- SiO 2 silicon dioxide
- temperature range up to 900 ° C such investment has a low, almost linear thermal expansion ⁇ th of 0.35%.
- the investment material is particularly suitable for applications in the medical field, in particular in dental technology, for example for the production of implants.
- NEM non-precious metal alloys
- dental alloys based on cobalt, chromium and molybdenum, cobalt, chromium and tungsten or nickel, chromium and molybdenum, which replace expensive precious metal alloys setting expansion values of 2.8% are generally to 3.5%, which can be achieved with the above investment with a 36% to 38% silica sol.
- the setting expansion values must be between 2.3% and 3.8%.
- a silica sol whose content w of silicon dioxide (SiO 2 ) is between 34% by weight and 36% by weight is suitable for this purpose.
- the embedding compound described above is characterized in that the main constituents of the oxide ceramic mixture are refractory oxides, namely mullite and zirconium silicate (ZrSiO 4 ).
- refractory oxides namely mullite and zirconium silicate (ZrSiO 4 ).
- ZrSiO 4 zirconium silicate
- zirconium (IV) oxide) zirconium (IV) oxide
- the likewise refractory corundum ( ⁇ -Al 2 O 3 ) is present, which is relatively coarse-grained at a grain fraction of more than 100 microns and therefore forms predetermined breaking points in the matrix of the investment.
- the zirconium silicate has a fine grain fraction of less than 40 microns and thus serves to improve the surface
- the setting reaction likewise occurs after about 10 minutes at room temperature. After about 1 h, the finished casting mold is completely set and a setting expansion ⁇ A of about 2.5% occurs.
- Glass ceramics which are used to produce biocompatible implants, for example as a substitute for tooth parts, cartilage or small bone parts in the jaw or ear area, are generally based on the semi-crystalline basic system SiO 2 -Al 2 O 3 -MgO-CaO-K 2 O / Na 2 O. / NaF / P 2 O 5 .
- the glass ceramic is usually pressed at temperatures of about 900 ° C in the mold. Precisely fitting precision parts can therefore be produced because the volume contraction that occurs when the glass ceramic cools is compensated for by the setting expansion of the investment material forming the casting mold.
- the investment materials described above are particularly suitable for a titanium investment casting, in which the use temperature of the casting mold, however, should be in about 500 ° C to prevent the formation of an alpha-case shape.
- the above investments are characterized by their use in a process for producing castings in which the expansion occurring during setting is controlled in a simple manner. Simple handling is ensured not least by the fact that the organic acid required to achieve high setting expansion values either already contained in the investment material before the mixing with the silica sol, or is added only during the mixing process together with the silica sol in solid or already dissolved form.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Dental Preparations (AREA)
- Dental Prosthetics (AREA)
- Mold Materials And Core Materials (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von Gußwerkstücken, insbesondere filigraner Präzisionsgußteile im medizinischen Bereich, bei dem eine aus einer keramischen Einbettmasse bestehende Gießform vor dem Einfüllen eines Gießwerkstoffes zur Kompensation einer beim Abkühlen aus dem schmelzflüssigen Zustand auftretenden Volumenkontraktion des Gießwerkstoffes gezielt expandiert wird, wobei die Einbettmasse aus einer quarzfreien Oxidkeramikmischung, einem Bindemittel und einem als Anmischflüssigkeit dienenden Kieselsol unter Zufügung einer organischen Carbonsäure gebildet wird.The invention relates to a method for producing cast pieces, in particular filigree precision castings in the medical field, in which a consisting of a ceramic investment material mold is selectively expanded before filling a casting material to compensate for occurring during cooling from the molten state volume contraction of the casting material, said Investment of a quartz-free oxide ceramic mixture, a binder and serving as a mixing liquid silica sol is formed with the addition of an organic carboxylic acid.
Im medizinischen Bereich, insbesondere in der Dentaltechnik, werden individuell anzufertigende Prothesen üblicherweise aus Metallegierungen, etwa auf Basis von Titan (Ti), Palladium (Pd), Nickel-Chrom (NiCr), Cobalt-Chrom (CoCr), oder aus glaskeramischen Werkstoffen gegossen. Die hierzu verwendeten Gießformen bestehen aus einer keramischen Einbettmasse, die mit Hilfe eines dem zu rekonstruierenden Körperteil entsprechenden Wachsmodells gewonnen wird. Dies geschieht dadurch, daß ein aus einer Keramikmischung und einem Bindemittel bestehender Brei mit einer Anmischflüssigkeit angerührt und auf das Wachsmodell aufgetragen wird. Nachdem bei Raumtemperatur der Brei nach kurzer Zeit abgebunden ist, wird die auf diese Weise gebildete feste Gießform auf eine Temperatur erwärmt, bei der das Wachs des Wachsmodells rückstandslos herausfließt. Um die erforderlichen Gießparameter, beispielsweise die Kantenstabilität der Gießform, zu erreichen, wird die Gießform vor dem Einbringen des Gießwerkstoffes auf Temperaturen von bis zu 1000°C vorgewärmt.In the medical field, in particular in dental technology, individually manufactured prostheses are usually cast from metal alloys, for example based on titanium (Ti), palladium (Pd), nickel-chromium (NiCr), cobalt-chromium (CoCr), or glass-ceramic materials , The casting molds used for this purpose consist of a ceramic investment material, which is obtained by means of a wax model corresponding to the body part to be reconstructed. This is done by mixing a slurry consisting of a ceramic mixture and a binder with a mixing liquid and applying it to the wax model. After the slurry is set at room temperature after a short time, the solid mold formed in this way is heated to a temperature at which the wax of the wax model flows out without residue. To the required casting parameters, such as the Edge stability of the mold, to reach the mold is preheated to temperatures of up to 1000 ° C before the introduction of the casting material.
Während des Abkühlens ist der Gießvorgang durch eine Volumenkontraktion des Gießwerkstoffes gekennzeichnet. Bereits im flüssigen Zustand tritt eine Schrumpfung ein, die beim Erstarren in eine Schwindung übergeht. Um eine möglichst geringe Abweichung des Gußteils von dem dem zu rekonstruierenden Körperteil entsprechenden Wachsmodell sicherzustellen, ist es bekannt, die Volumenkontraktion des Gießwerkstoffes durch eine Expansion der die Gießform bildenden Einbettmasse zu kompensieren. Die Gesamtexpansion der Einbettmasse setzt sich dabei aus einer Abbindeexpansion während des Abbindens des Breis und einer thermischen Expansion beim Erwärmen der Gießform zusammen. Eine hohe thermische Expansion läßt sich dann erreichen, wenn quarzhaltige Einbettmassen verwendet werden. Dies ist auf das thermische Umwandlungsverhalten von Siliciumdioxid-Modifikationen zurückzuführen. So findet durch eine β-Umwandlung eine sprunghafte Ausdehnung von Cristobalit bei etwa 270°C und von Quarz bei etwa 570°C statt.During cooling, the casting process is characterized by a volume contraction of the casting material. Already in the liquid state, a shrinkage occurs, which passes into a shrinkage during solidification. In order to ensure the smallest possible deviation of the casting from the wax model corresponding to the body part to be reconstructed, it is known to compensate the volume contraction of the casting material by an expansion of the investment material forming the casting mold. The overall expansion of the embedding compound is composed of a setting expansion during the setting of the slurry and a thermal expansion during heating of the casting mold. A high thermal expansion can be achieved when quartz-containing investments are used. This is due to the thermal conversion behavior of silica modifications. Thus, by a β-conversion, a sudden expansion of cristobalite at about 270 ° C and of quartz at about 570 ° C instead.
Quarzhaltige Einbettmassen zeichnen sich zwar durch hohe Expansionswerte von bis zu 2% aus, die eine Abbindeexpansion oftmals entbehrlich machen, weisen aber neben einer gesundheitsschädlichen Bildung von Feinstäuben mit einer Korngröße von < 10 µm den Nachteil eines gleichfalls ungleichmäßigen Abkühlungsverhaltens auf. Dies hat zur Folge, daß in dem beim Abkühlen mit der Einbettmasse in Kontakt stehenden Gußteil Spannungen auftreten, die zu einer unzulässigen plastischen Verformung oder Rissbildung führen können. Nachteilig bei quarzhaltigen Einbettmassen ist ferner eine verhältnismäßig niedrige Erweichungstemperatur, die bei hohen Gießtemperaturen, wie sie beim Vergießen von beispielsweise Titanlegierungen erforderlich sind, Verschlackungsreaktionen hervorrufen, die Passungenauigkeiten mit sich bringen. Bei Gießwerkstoffen auf Basis von Titan (Ti) oder Zirkonium (Zr), die oberhalb einer Temperatur von etwa 900°C eine hohe Affinität zu Sauerstoff, Kohlenstoff, Stickstoff und Wasserstoff aufweisen, ergibt sich darüber hinaus eine durch Oxidation gebildete Versprödung der Außenhaut des Gußwerkstückes. Diese unter der Bezeichnung Alpha-case-Form bekannte Randzonenoxidation geht zwar mit einer erhöhten Materialhärte einher, die für gewisse Anwendungszwecke erwünscht ist, für Präzisionsgußteile aber aufgrund der damit verbundenen Passungenauigkeiten infolge von beispielsweise Lunker oder Gaseinschlüssen zu vermeiden ist.Although quartz-containing investment materials are characterized by high expansion values of up to 2%, which often make a setting expansion unnecessary, but in addition to a harmful formation of fine dusts with a particle size of <10 microns to the disadvantage of a likewise uneven cooling behavior. As a result, in the casting which is in contact with the embedding compound during cooling, stresses occur which can lead to unacceptable plastic deformation or cracking. A disadvantage of quartz-containing investment materials is also a relatively low softening temperature, which cause at high casting temperatures, such as those required when casting, for example, titanium alloys, slagging reactions that bring pass inaccuracies with it. In casting materials based on titanium (Ti) or zirconium (Zr), which have a high affinity for oxygen, carbon, nitrogen and hydrogen above a temperature of about 900 ° C, there is also an embrittlement formed by oxidation of the outer skin of the Gußwerkstückes , Although known under the name alpha-case-form, edge zone oxidation is accompanied by increased material hardness, which is desirable for certain applications Precision castings but due to the associated fit inaccuracies due to, for example, voids or gas inclusions to avoid.
Aus der
Im Vergleich hierzu weisen die weniger gesundheitsgefährdenden und weniger zu einer Alpha-case-Form-Bildung neigenden quarzfreien keramischen Einbettmassen ein nahezu konstantes thermisches Ausdehnungsverhalten auf. Aufgrund eines bis zu etwa 900°C, daß heißt bis zur Vorwärmtemperatur der Gießform, kleinen Ausdehnungskoeffizienten, läßt sich mit quarzfreien Einbettmassen allerdings nur eine geringe thermische Expansion von maximal 0.5% erreichen. Zur Kompensation der beim Abkühlen auftretenden Volumenkontraktion des Gießwerkstoffes sind daher hohe Werte für die Abbindeexpansion erforderlich.In comparison, the quartz-free ceramic investment materials, which are less hazardous to health and less susceptible to alpha-case formation, have an almost constant thermal expansion behavior. Due to a up to about 900 ° C, that is, up to the preheating temperature of the mold, small expansion coefficient, can be achieved with quartz-free investment materials, however, only a small thermal expansion of 0.5% maximum. To compensate for the occurring during cooling volume contraction of the casting material therefore high values for the setting expansion are required.
Mit der Europäischen Patentanmeldung
Dies ist jedoch mit dem Nachteil verbunden, daß sich eine hohe Anzahl bereitzustellender Einbettmassen entsprechend den unterschiedlichen Gießwerkstoffen ergibt. Neben dieser in wirtschaftlicher Hinsicht unbefriedigenden Vorratshaltung ist bei dem aus der oben bezeichneten Europäischen Patentanmeldung bekannten Verfahren auch die aufwendige Handhabung zum Einstellen der erforderlichen Abbindeexpansionswerte nachteilig.However, this has the disadvantage that there is a high number of investments to be made available according to the different casting materials. In addition to this economically unsatisfactory stockpiling in the known from the above-mentioned European patent application method, the complex handling for setting the required Abbindeexpansionswerte is disadvantageous.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Gußwerkstücken zu schaffen, mit dem sich eine vergleichsweise einfache Steuerung der beim Abbinden auftretenden Expansion einer quarzfreien Einbettmasse erzielen läßt.The invention has for its object to provide a method for the production of Gußwerkstücken, with which a comparatively simple control of the occurring during setting expansion of a quartz-free investment material can be achieved.
Diese Aufgabe ist bei einem Verfahren zur Herstellung von Gußwerkstücken mit den eingangs genannton Merkmalen erfindungsgemäß dadurch gelöst, daß die beim Abbinden auftretende Expansion der Einbettmasse durch Variieren des Gehalts an kolloidalem, amorphem Siliciumdioxid (SiO2) in dem Kieselsol gesteuert in Abhängigkeit von dem verwendeten Gießwerkstoff mittels zZugabe vom kolloidalem, amorphen Siliciumdioxid (SiO2) gezielt wird.This object is achieved in a method for the preparation of Gußwerkstücken with the above genannton features according to the invention characterized in that the occurring during the setting expansion of the embedding material by varying the content of colloidal amorphous silica (SiO 2) in the silica sol is controlled in dependence on the used castable is targeted by the addition of colloidal, amorphous silica (SiO 2 ).
Die Erfindung macht sich die überraschende Erkenntnis zu eigen, daß es zur Einstellung einer hinreichend großen Abbindeexpansion bei quarzfreien Einbettmassen ausreichend ist, den Gehalt an Siliciumdioxid (SiO2) in dem als Anmischflüssigkeit dienenden Kieselsol entsprechend den jeweiligen Gießwerkstoffen zu variieren. Ursächlich für die erzielbaren Abbindeexpansionswerte ist in erster Linie das Zusammenwirken der organischen Carbonsäure mit dem Kieselsol. Kieselsol weist als wässrige anionische Lösung von kolloidalem, amorphern Siliciumdioxid (SiO2) hei einem pH-Wert von über 10 negativ aufgeladene und sich infolgedessen gegenseitig abstoßende SiO2-Partikel auf, die das Kieselsol hinreichend stabilisieren und ihm eine verhältnismäßig geringe Viskosität verleihen. Durch die Carbonsäure wird der pH-Wert des Kieselsols abgesenkt, und es tritt eine Säure-Base-Reaktion auf, die Kieselgel gemäß der folgenden Gleichung ausfällen läßt:
≡Si-O- (Sol) + H+ → ≡Si-O-H(Gel)
mit ≡Si-O-: Silicatanion auf der Oberfläche eines SiO2-Partikels und
≡Si-O-H: undissoziierte Kieselsäure auf der Oberfläche eines SiO2-Partikels.The invention takes the surprising finding of its own that it is sufficient to set a sufficiently large setting expansion in quartz-free investment materials to vary the content of silica (SiO 2 ) in serving as a mixing fluid silica corresponding to the respective casting materials. The reason for the achievable setting expansion values is primarily the interaction of the organic carboxylic acid with the silica sol. Silica sol, as an aqueous anionic solution of colloidal, amorphous silica (SiO 2 ) with a pH above 10, has negatively charged and, as a result, mutually repulsive SiO 2 particles, which sufficiently stabilize the silica sol and give it a relatively low viscosity. The carboxylic acid lowers the pH of the silica sol and results in an acid-base reaction which precipitates silica gel according to the following equation:
≡Si-O - (Sol) + H + → ≡Si-OH (Gel)
with ≡Si-O - : silicate anion on the surface of a SiO 2 particle and
≡Si-OH: Undissociated silica on the surface of a SiO 2 particle.
Da Carbonsäure beispielsweise im Vergleich zu Mineralsäuren und deren Derivate verhältnismäßig schwach ist, wird der pH-Wert nicht so weit reduziert, daß eine Ladungsumkehr, etwa durch Absorption von H+-lonen, stattfände, die das nunmehr instabile Kieselsol stabilisierte. Während des Abbindens der Einbettmasse entstehen aus dem ausgefällten Kieselgel wasserhaltige, kristalline oder teilkristalline Silicate, die zu einer Volumenvergrößerung und damit zu einer Erhöhung der Abbindexpansion führen. Durch Variation des Gehaltes an Siliciumdioxid (SiO2) in dem Kieselsol läßt sich folglich der Volumenanteil expandierender, auskristallisierender Silicate verändern und damit die Abbindeexpansion stufenlos steuern, und zwar nahezu unabhängig von der Zusammensetzung der Oxidkeramikmischung.For example, since carboxylic acid is relatively weak compared to mineral acids and their derivatives, the pH is not reduced so much that charge reversal, such as absorption of H + ions, would occur, stabilizing the now unstable silica sol. During the setting of the embedding mass, hydrous, crystalline or semicrystalline silicates form from the precipitated silica gel, which lead to an increase in volume and thus to an increase in image index expansion. By varying the content of silicon dioxide (SiO 2 ) in the silica sol, the volume fraction of expanding, crystallizing silicates can consequently be changed and thus the Steplessly control setting expansion, almost independent of the composition of the oxide ceramic mixture.
Von besonderem Vorteil ist es, wenn zum Einstellen einer bestimmten Expansion der Einbettmasse der Gehalt an Siliciumdioxid (SiO2) in dem Kieselsol zwischen 30 Gew.-% und 40 Gew.-% variiert wird. Versuche ergaben, daß handelsübliches 30%-iges Kieselsol zu einer Abbindeexpansion von 0.8% führt, wohingegen sich bei einem Anteil an Siliciumdioxid (SiO2) in dem Kieselsol von 40 Gew.-% eine Abbindeexpansion von 6% erreichen läßt. Die Variation des Siliciumdioxid-Gehalts im obigen Intervall ermöglicht demnach für die meisten Gießwerkstoffe ausreichend große Abbindeexpansionswerte.It is particularly advantageous if the silicon dioxide (SiO 2 ) content in the silica sol is varied between 30% by weight and 40% by weight in order to set a certain expansion of the embedding compound. Experiments showed that commercially available 30% silica sol leads to a setting expansion of 0.8%, whereas with a proportion of silicon dioxide (SiO 2 ) in the silica sol of 40% by weight, a setting expansion of 6% can be achieved. The variation of the silica content in the above interval thus allows sufficiently large setting expansion values for most of the cast materials.
Es hat sich ferner als vorteilhaft herausgestellt, daß wenn 100 g Oxidkeramikmischung, Bindemittel und Carbonsäure mit 15 ml bis 40 ml Kieselsol angemischt werden, sich eine genügend hohe Absenkung des pH-Wertes erreichen läßt. Zweckmäßigerweise wird ein Kieselsol eingesetzt, bei dem die Siliciurndioxid-Piadikel eine BET-Oberfläche von 50 m2/g bis 350 m2/g aufweisen.It has also been found to be advantageous that when 100 g of oxide ceramic mixture, binder and carboxylic acid are mixed with 15 ml to 40 ml of silica sol, a sufficiently high reduction of the pH can be achieved. It is expedient to use a silica sol in which the silicon dioxide piadicles have a BET surface area of 50 m 2 / g to 350 m 2 / g.
In Weiterbildung der Erfindung wird vorgeschlagen, daß als Carbonsäure eine Di- oder Tricarbonsäure eingesetzt wird. Di- und Tricarbonsäuren gemäß der chemischen Formel R(COOH)x mit x= 2,3 können als feste Stoffe der Einbettmasse zugemischt werden, sind sehr gut wasserlöslich und können beim Erhitzen rückstandsfrei abgebaut werden. Besonders geeignet sind die folgenden Di- und Tricarbonsäuren:
- Oxalsäure ((COOH)2)
- Weinsäure (HOOC-(CHOH)2-COOH)
- Citronensäure (HOOC-CH2-C(OH)-(COOH)-CH2-COOH)
- Apfelsäure (HOOC-CH2-CH(OH)-COOH)
- Malonsäure (HOOC-CH2-COOH)
- Maleinsäure (HOOC-CH2=CH2-COOH)
- Oxalic acid ((COOH) 2 )
- Tartaric acid (HOOC- (CHOH) 2 -COOH)
- Citric acid (HOOC-CH 2 -C (OH) - (COOH) -CH 2 -COOH)
- Malic acid (HOOC-CH 2 -CH (OH) -COOH)
- Malonic acid (HOOC-CH 2 -COOH)
- Maleic acid (HOOC-CH 2 = CH 2 -COOH)
Gemäß einem weiteren Merkmal der Erfindung ist die quarzfreie Oxidkeramikmischung aus Oxiden vorzugsweise Aluminiumsilicate, Zirkoniumsilicat und stabile Silicate der Erdalkalimetalle, sowie Magnesiumoxid (MgO) und Korund (α-Al2O3) zusammengesetzt. Derartige Oxidkeramikmischungen sind von hoher thermischer und chemischer Stabilität, sind in der Regel hochschmelzend und weisen einen geringen thermischen Ausdehnungskoeffizienten auf. Im Vergleich zu quarzhaltigen Einbettmassen sind sie wesentlich beständiger und insbesondere besser geeignet für den Feinguß von auf Titan (Ti) oder Zirkonium (Zr) basierenden Metallegierungen. Überdies ist die Gefahr einer Verschlackung vergleichsweise gering. Die erfindungsgemäße Einbettmasse weist vorteilhafterweise einen Anteil an Oxiden hoher thermischer und chemischer Stabilität von 96 Gew.-% bis 30 Gew.-%, einen Anteil an Korund (α-Al2O3) von Spur bis 40 Gew.-% und einen Anteil an Magnesiumoxid (MgO) von 4 Gew.-% bis 30 Gew.-% auf.According to a further feature of the invention, the quartz-free oxide ceramic mixture of oxides is preferably composed of aluminum silicates, zirconium silicate and stable silicates of the alkaline earth metals, as well as magnesium oxide (MgO) and corundum (α-Al 2 O 3 ). Such oxide ceramic mixtures are of high thermal and chemical stability, are generally high-melting and have a low thermal expansion coefficient. Compared to quartz-containing investments, they are much more stable and, in particular, more suitable for investment casting of titanium (Ti) or zirconium (Zr) based metal alloys. Moreover, the risk of slagging is comparatively low. The embedding composition according to the invention advantageously has a proportion of oxides of high thermal and chemical stability of 96 wt .-% to 30 wt .-%, a proportion of corundum (α-Al 2 O 3 ) of trace to 40 wt .-% and a proportion on magnesium oxide (MgO) of 4 wt .-% to 30 wt .-% to.
In Weiterbildung der Erfindung wird ferner vorgeschlagen, daß als Bindemittel ein Phosphatbinder auf Basis von Magnesiumoxid (MgO) und Monoammoniumphosphat (NH4H2PO4) eingesetzt wird. Der Anteil an Monoammoniumphosphat (NH4H2PO4) in dem Bindemittel beträgt dabei zweckmäßigerweise zwischen 5 Gew.-% und 15 Gew.-% bezogen auf die Masse der Oxidkeramikmischung. Enthält die Oxidkeramikmischung Magnesiumoxid (MgO) wird beim Abbinden der Einbettmasse das Monoammoniumphosphat (NH4H2PO4) des Bindemittels in Mg2P2O7 = MgO·P2O5 umgewandelt. Die Komponente P2O5 ist zwar gegenüber flüssigen Metallen instabil, geht aber bei einer Temperatur von ca. 1400°C in die in thermochemischer Hinsicht stabile Verbindung Mg2P2O7 über. Durch den verhältnismäßig geringen Anteil an Monoammoniumphosphat (NH4H2PO4) in der Einbettmasse ist sichergestellt, daß der P2O5-Anteil hiernach weniger als 3% ausmacht. Dies kommt vor allem dann zum Tragen, wenn ein auf Titan (Ti) basierender Gießwerkstoff verwendet wird, da Titan (Ti) beziehungsweise Titanlegierungen stark reduzierend sind.In a further development of the invention it is further proposed that a phosphate binder based on magnesium oxide (MgO) and monoammonium phosphate (NH 4 H 2 PO 4 ) is used as the binder. The proportion of monoammonium phosphate (NH 4 H 2 PO 4 ) in the binder is expediently between 5 wt .-% and 15 wt .-% based on the mass of the oxide ceramic mixture. If the oxide ceramic mixture contains magnesium oxide (MgO), the binding of the embedding compound converts the monoammonium phosphate (NH 4 H 2 PO 4 ) of the binder into Mg 2 P 2 O 7 = MgO · P 2 O 5 . Although the component P 2 O 5 is unstable to liquid metals, but passes at a temperature of about 1400 ° C in the thermochemically stable compound Mg 2 P 2 O 7 . The relatively low proportion of monoammonium phosphate (NH 4 H 2 PO 4 ) in the investment ensures that the P 2 O 5 content is less than 3% hereinafter. This is especially important when a titanium (Ti) based casting material is used because titanium (Ti) or titanium alloys are highly reducing.
Einzelheiten und weitere Vorteile des Gegenstandes der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele. In den zugehörigen Zeichnungen zeigen im einzelnen:
- Fig. 1
- Die Zusammensetzung der Oxidkeramikmischung einer Einbettmasse in einem Dreiecksdiagramm und
- Fig. 2
- ein Diagramm, daß die Abbindeexpansion εA einer quarzfreien Einbettmasse in Abhängigkeit des Gehalts w an Siliciumdioxid (SiO2) in einer aus Kieselsol bestehende Anmischflüssigkeit darstellt.
- Fig. 1
- The composition of the oxide ceramic mixture of an investment material in a triangular diagram and
- Fig. 2
- a diagram that the setting expansion ε A represents a quartz-free investment material as a function of the content w of silicon dioxide (SiO 2 ) in a mixing liquid consisting of silica sol.
Das Dreiecksdiagramm gemäß
Das Diagramm in
Die dem Diagramm gemäß
- Oxidkeramikmischung (M1): 19 Gew.-% Korund (α- Al2O3) mit einem mittleren Komdurchmesser von 250 µm
5,4 Gew.-% Magnesiumoxid (MgO) mit verschiedenen Kornfraktionen von 10 µm bis 70 µm
63 Gew.-% Schmelzmullit mit einem mittleren Korndurchmesser von 70 µm
5,8 Gew.-% Zirkoniumsilicat (ZrSiO4) mit einemmittleren Komdurchmesser von 30 µm - Bindemittel: 6,2 Gew.-% Monoammoniumphosphat (NH4H2PO4) in wasserfreier Qualität
- Organische Säure: 0,6 Gew.-% Citronensäure
- Anmischflüssigkeit: 30
% bis 40%-iges Kieselsol; 16 ml für 100 g Einbettmasse
- Oxide ceramic mixture (M 1 ): 19% by weight of corundum (α-Al 2 O 3 ) with a mean grain diameter of 250 μm
5.4% by weight of magnesium oxide (MgO) with different particle fractions of 10 μm to 70 μm
63 wt .-% enamel mullite with a mean grain diameter of 70 microns
5.8 wt .-% zirconium silicate (ZrSiO 4 ) with a mean diameter of 30 microns - Binder: 6.2% by weight monoammonium phosphate (NH 4 H 2 PO 4 ) in anhydrous quality
- Organic acid: 0.6% by weight of citric acid
- Mixing liquid: 30% to 40% silica sol; 16 ml for 100 g investment
Eine solche Einbettmasse läßt sich im breiigen Zustand zu einer Gießform verarbeiten, wobei nach ca. 10 min die Abbindereaktion bei Raumtemperatur eintritt. Nach ca. 1 h, wenn die Gießform völlig abgebunden und fest ist, stellt sich die in
So sind für Dentallegierungen auf Basis von Cobalt, Chrom und Molybdän in der Modellgußtechnik regelmäßig eine Abbindeexpansion in der Größenordnung von 1,7% bis 2,3% erforderlich. Bei der oben beschriebenen Einbettmasse läßt sich dies mit einem Kieselsol, das einen Gehalt w an Siliciumdioxid (SiO2) von 34 Gew.-% bis 36 Gew.-% aufweist, realisieren. Für Nicht-Edel-Metall-Legierungen (NEM), beispielsweise Dentallegierungen auf Basis von Cobalt, Chrom und Molybdän, Cobalt, Chrom und Wolfram oder Nickel, Chrom und Molybdän, welche teuere Edelmetallegierungen ersetzen, sind in der Regel Abbindeexpansionswerte von 2,8% bis 3,5% erforderlich, die sich bei der obigen Einbettmasse mit einem 36% bis 38%-igem Kieselsol erreichen lassen. In der Kronen- und Brückentechnik, in der vor allem Dentallegierungen auf Basis von Cobalt, Chrom und Molybdän oder Titan Anwendung finden, müssen für die Abbindeexpansionswerte zwischen 2,3% und 3,8% erreicht werden. Hierzu eignet sich ein Kieselsol, dessen Gehalt w an Siliciumdioxid (SiO2) zwischen 34 Gew.-% und 36 Gew.-% beträgt. Für Legierungen mit einem hohen Schrumpfungswert läßt sich - wie zuvor erörtert - auch eine Abbindeexpansion von bis zu 6% erzielen. Dies eröffnet die Möglichkeit, neue Legierungstypen oder Glaskeramiken zur Herstellung biokompatibler Implantate zu verwenden, die selbst mit einer quarzhaltigen Einbettmasse nicht herstellbar sind.Thus, for dental alloys based on cobalt, chromium and molybdenum in the model casting technique, a setting expansion on the order of 1.7% to 2.3% is required on a regular basis. In the case of the embedding compound described above, this can be achieved with a silica sol which has a content w of silicon dioxide (SiO 2 ) of from 34% by weight to 36% by weight. For non-precious metal alloys (NEM), for example dental alloys based on cobalt, chromium and molybdenum, cobalt, chromium and tungsten or nickel, chromium and molybdenum, which replace expensive precious metal alloys, setting expansion values of 2.8% are generally to 3.5%, which can be achieved with the above investment with a 36% to 38% silica sol. In the crown and bridge technique, which mainly uses dental alloys based on cobalt, chromium and molybdenum or titanium, the setting expansion values must be between 2.3% and 3.8%. A silica sol whose content w of silicon dioxide (SiO 2 ) is between 34% by weight and 36% by weight is suitable for this purpose. For alloys with a high shrinkage value, a setting expansion of up to 6% can also be achieved, as previously discussed. This opens up the possibility of new types of alloys or glass-ceramics for producing biocompatible To use implants that can not be produced even with a quartz-containing investment material.
Die oben beschriebene Einbettmasse zeichnet sich dadurch aus, daß die Hauptbestandteile der Oxidkeramikmischung feuerfeste Oxide, nämlich Mullit und Zirkoniumsilicat (ZrSiO4) sind. Alternativ können auch andere Aluminiumsilicate, Spinell oder Magnesiumaluminate, Calciumaluminate oder sonstige Silicate der Erdalkalimetalle sowie stabilisiertes und unstabilisiertes Zirkoniumdioxid (Zirkonium(IV)-oxid) Anwendung finden. Zur Verbesserung der Ausbettung des Gußteils ist das gleichfalls feuerfeste Korund (α-Al2O3) vorhanden, das bei einer Kornfraktion von mehr als 100 µm vergleichsweise grobkörnig ist und daher Sollbruchstellen in der Matrix der Einbettmasse bildet. Demgegenüber weist das Zirkoniumsilicat eine feine Kornfraktion von weniger als 40 µm auf und dient demzufolge zur Verbesserung der Oberflächengüte des Gußteils.The embedding compound described above is characterized in that the main constituents of the oxide ceramic mixture are refractory oxides, namely mullite and zirconium silicate (ZrSiO 4 ). Alternatively, other aluminum silicates, spinel or magnesium aluminates, calcium aluminates or other silicates of the alkaline earth metals, and stabilized and unstabilized zirconia (zirconium (IV) oxide) may be used. To improve the Ausbettung of the casting, the likewise refractory corundum (α-Al 2 O 3 ) is present, which is relatively coarse-grained at a grain fraction of more than 100 microns and therefore forms predetermined breaking points in the matrix of the investment. In contrast, the zirconium silicate has a fine grain fraction of less than 40 microns and thus serves to improve the surface quality of the casting.
Eine weitere bevorzugte Einbettmasse setzt sich aus den folgenden Bestandteilen zusammen, wobei sich die Gehalts-Angaben erneut auf die Gesamtmasse der Einbettmasse beziehen:
- Oxidkeramikmischung (M2): 10 Gew.-% Korund (α-Al2O3) mit einem mittleren Komdurchmesser von 250 µm
5,3 Gew.-% Magnesiumoxid (MgO) mit verschiedenen Kornfraktionen von 10 µm bis 70 µm
78 Gew.-% Zirkoniumsilicat (ZrSiO4) mit einemmittleren Komdurchmesser von 30 µm - Bindemittel: 6,1 Gew.-% Monoammoniumphophat (NH4H2PO4) von wasserfreier Qualität
- Organsiche Säure: 0,6 Gew.-% Citronensäure
- Anmischfllüssigkeit: 37%-iges Kieselsol; 17 ml für 100 g Einbettmasse
- Oxide ceramic mixture (M 2 ): 10 wt .-% corundum (α-Al 2 O 3 ) with a mean grain diameter of 250 microns
5.3% by weight of magnesium oxide (MgO) with different particle fractions of 10 μm to 70 μm
78 wt .-% zirconium silicate (ZrSiO 4 ) with a mean diameter of 30 microns - Binder: 6.1% by weight monoammonium phophophate (NH 4 H 2 PO 4 ) of anhydrous quality
- Organic acid: 0.6% by weight of citric acid
- Mixing liquid: 37% silica sol; 17 ml for 100 g investment
Bei einer solchermaßen zusammengesetzten Einbettmasse tritt die Abbindereaktion gleichfalls nach ca. 10 min bei Raumtemperatur ein. Nach ca. 1 h ist die gefertigte Gießform völlig abgebunden und es stellt sich eine Abbindeexpansion εA von ca. 2,5% ein. Die Einbettmasse besitzt bis 900°C eine annähernd lineare thermische Ausdehnung von εth = 0,3% und ist daher universell in der Modellgußtechnik, insbesondere aber auch für Glaskeramiken, einsetzbar. Hinsichtlich letzterem kommt vorteilhafterweise zum Tragen, daß Zirkoniumsilicat (ZrSiO4) mit zähflüssiger Glaskeramik fast keine klebende Verbindung eingeht. Glaskeramiken, die zur Herstellung biokompatibler Implantate, etwa als Ersatz für Zahnteile, Knorpelteile oder kleine Knochenteile im Kiefer oder Ohrenbereich, beruhen in der Regel auf dem teilkristallinen Grundsystem SiO2-Al2O3-MgO-CaO-K2O/Na2O/NaF/P2O5. Die Glaskeramik wird dabei üblicherweise bei Temperaturen von ca. 900°C in die Gießform gepreßt. Passgenaue Präzisionsteile lassen sich deshalb herstellen, weil die beim Abkühlen der Glaskeramik einsetzende Volumenkontraktion durch die Abbindeexpansion der die Gießform bildenden Einbettmasse kompensiert wird. Im Unterschied zu einer quarzhaltigen Einbettmasse, die aufgrund der Quarz-Umwandlung bei 570°C und der Cristobalit-Umwandlung bei 270°C ein unstetiges Ausdehnungsverhalten beim Abkühlen aufweisen mit der Folge, daß in der einen nahezu konstanten Ausdehnungskoeffizienten aufweisenden Glaskeramik Spannungen auftreten, die zu einer unzulässigen Verformung oder gar zur Rissbildung führen, zeichnet sich die voranstehend beschriebene quarzfreie Einbettmasse durch einen annähernd konstanten thermischen Ausdehnungskoeffizienten aus, der damit einer hohen Passgenauigkeit Rechnung trägt.In the case of an embedding compound thus composed, the setting reaction likewise occurs after about 10 minutes at room temperature. After about 1 h, the finished casting mold is completely set and a setting expansion ε A of about 2.5% occurs. The investment has up to 900 ° C an approximately linear thermal expansion of ε th = 0.3% and is therefore universally applicable in the model casting, but especially for glass-ceramics. With regard to the latter comes advantageously to bear that zirconium silicate (ZrSiO 4 ) with viscous glass ceramic almost no adhesive compound. Glass ceramics, which are used to produce biocompatible implants, for example as a substitute for tooth parts, cartilage or small bone parts in the jaw or ear area, are generally based on the semi-crystalline basic system SiO 2 -Al 2 O 3 -MgO-CaO-K 2 O / Na 2 O. / NaF / P 2 O 5 . The glass ceramic is usually pressed at temperatures of about 900 ° C in the mold. Precisely fitting precision parts can therefore be produced because the volume contraction that occurs when the glass ceramic cools is compensated for by the setting expansion of the investment material forming the casting mold. In contrast to a quartz-containing investment, due to the quartz transformation at 570 ° C and the cristobalite conversion at 270 ° C have a discontinuous expansion behavior during cooling with the result that in a nearly constant expansion coefficient having glass ceramic stresses occur, the an impermissible deformation or even lead to cracking, the above-described quartz-free investment material characterized by an approximately constant coefficient of thermal expansion, which thus takes into account a high accuracy of fit.
Die zuvor beschriebenen Einbettmassen eignen sich in besonderem Maße für einen Titan-Feinguß, bei dem die Einsatztemperatur der Gießform allerdings in etwa 500°C betragen soll, um die Bildung einer Alpha-case-Form zu verhindern. Die obigen Einbettmassen zeichnen sich darüber hinaus durch die Verwendung in einem Verfahren zur Herstellung von Gußwerkstücken aus, bei dem die beim Abbinden auftretende Expansion auf einfache Art und Weise gesteuert wird. Eine einfache Handhabung ist hierbei nicht zuletzt dadurch sichergestellt, daß die zur Erzielung hoher Abbindeexpansionswerte erforderliche organische Säure entweder bereits vor dem Anmischvorgang mit dem Kieselsol in der Einbettmasse enthalten ist, oder erst während des Anmischvorganges zusammen mit dem Kieselsol in fester oder bereits aufgelöster Form zugegeben wird.The investment materials described above are particularly suitable for a titanium investment casting, in which the use temperature of the casting mold, however, should be in about 500 ° C to prevent the formation of an alpha-case shape. In addition, the above investments are characterized by their use in a process for producing castings in which the expansion occurring during setting is controlled in a simple manner. Simple handling is ensured not least by the fact that the organic acid required to achieve high setting expansion values either already contained in the investment material before the mixing with the silica sol, or is added only during the mixing process together with the silica sol in solid or already dissolved form.
- εA ε A
- AbbindeexpansionSetting expansion
- εth ε th
- thermische Expansionthermal expansion
- ww
- Massengehaltmatter content
- AA
- Bereich bevorzugter GemischeRange of preferred mixtures
- M1 M 1
- OxidkeramikmischungOxidkeramikmischung
- M2 M 2
- OxidkeramikmischungOxidkeramikmischung
- ΔL.DELTA.L
- Längenänderungchange in length
- L0 L 0
- Ausgangslängeinitial length
Claims (9)
- A process for making castings, in particular filigree precision castings in the medical area, in which a casting mould consisting of a ceramic embedding mass is specifically expanded before pouring in a casting material to compensate for volume contraction of the casting material which occurs during cooling from the molten state, wherein the embedding mass consists of a quartz-free oxide ceramic mixture (M1, M2), a binder and a silica sol serving as a pre-mixing liquid with the addition of an organic carboxylic acid,
characterised in
that the expansion (εA) of the embedding mass which occurs during setting can be specifically controlled by varying the content (w) of colloidal, amorphous silicon dioxide (SiO2) as a function of the casting material used by means of the addition of colloidal amorphous silicon dioxide (SiO2). - The process according to claim 1, characterised in that the content of silicon dioxide (SiO2) in the silica sol is varied between 30 wt.% and 40 wt. % for adjusting a specific expansion (εA) of the embedding mass.
- The process according to claim 2, characterised in that 100 g of oxide ceramic mixture, binder and carboxylic acid is pre-mixed with 15 ml to 40 ml of silica sol.
- The process according to one of claims 1 to 3, characterised in that a silica sol have BET surface areas of the silicon dioxide particles of 50 m2/g to 350 m2/g is used.
- The process according to any of the preceding claims, characterised in that a di- or tricarboxylic acid, preferably oxalic, malonic, maleic, tartaric, citric or malic acid is used as the carboxylic acid.
- The process according to any of the preceding claims, characterised in that the quartz-free oxide ceramic mixture is composed of oxides, preferably aluminium silicates, zirconium silicate and stable silicates of alkaline earth metals as well as magnesium oxide (MgO) and corundum (α-Al2O3).
- The process according to claim 6, characterised by a fraction of oxides of 96 wt.% to 30 wt.%, a fraction of corundum (α-Al2O3) of trace to 40 wt.% and a fraction of magnesium oxide (MgO) of 4 wt.% to 30 wt.%.
- The process according to any of the preceding claims, characterised in that a phosphate binder based on magnesium oxide (MgO) and monoammonium phosphate (NH4H2PO4) is used as binder.
- The process according to any of the preceding claims, characterised in that the fraction of monoammonium phosphate (NH4H2PO4) in the binder is selected to be 5 wt.% to 15 wt.% relative to the mass of oxide ceramic mixture.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99107009A EP1043094B1 (en) | 1999-04-09 | 1999-04-09 | Process for making castings |
DE59914938T DE59914938D1 (en) | 1999-04-09 | 1999-04-09 | Process for producing cast workpieces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99107009A EP1043094B1 (en) | 1999-04-09 | 1999-04-09 | Process for making castings |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1043094A1 EP1043094A1 (en) | 2000-10-11 |
EP1043094B1 true EP1043094B1 (en) | 2008-12-24 |
Family
ID=8237924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99107009A Expired - Lifetime EP1043094B1 (en) | 1999-04-09 | 1999-04-09 | Process for making castings |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1043094B1 (en) |
DE (1) | DE59914938D1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10321106A1 (en) * | 2003-05-09 | 2004-12-23 | Hydro Aluminium Deutschland Gmbh | Molded material, molded part and method for the production of moldings for a casting mold |
DE102006012630B4 (en) * | 2006-03-20 | 2010-04-08 | Amann Girrbach Ag | Dosing device for mixing at least one powdery substance with at least one liquid substance |
RU2012126601A (en) | 2009-11-27 | 2014-01-10 | Басф Се | COMPOSITION FOR APPLICATION OF FOAM PARTICLES |
EP2603550A1 (en) | 2010-08-09 | 2013-06-19 | Basf Se | High temperature- and moisture-stable materials with improved insulating properties based on foams and disperse silicates |
DE102010064142B4 (en) * | 2010-12-23 | 2019-06-13 | BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG | Investment material for use in a method of manufacturing a dental restoration by CAD-Cast method |
DE102013109039A1 (en) | 2012-08-22 | 2014-02-27 | SHERA Werkstoff-Technologie GmbH & Co. KG | Production of precision cast e.g. telescopic crown, involves preparing embedding compound by mixing ceramic powder mixture containing phosphate-containing binder with gelling agent, adding embedding compound into container, and heating |
DE102012113074A1 (en) | 2012-12-22 | 2014-07-10 | Ask Chemicals Gmbh | Mixtures of molding materials containing metal oxides of aluminum and zirconium in particulate form |
DE102012113073A1 (en) | 2012-12-22 | 2014-07-10 | Ask Chemicals Gmbh | Molding mixtures containing aluminum oxides and / or aluminum / silicon mixed oxides in particulate form |
DE102013113560B3 (en) | 2013-12-05 | 2015-05-28 | SHERA Werkstoff-Technologie GmbH & Co. KG | Ceramic investment material and its use and process for the production of precision castings |
CN108210101B (en) * | 2018-01-04 | 2020-11-10 | 北京圣爱吉友和义齿制作有限公司 | False tooth support manufacturing process |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS579554A (en) * | 1980-06-20 | 1982-01-19 | Tokuyama Soda Co Ltd | Mold material |
US4591385A (en) * | 1984-06-04 | 1986-05-27 | Aremco Products, Inc. | Die material and method of using same |
US4814011A (en) * | 1986-12-03 | 1989-03-21 | G-C Dental Industrial Corp. | Investments for dental casting |
EP0417527A2 (en) * | 1989-09-14 | 1991-03-20 | Krupp Medizintechnik GmbH | Investment model and process for the prevention of deposit formation on models or castings from the investment material |
DE4210004A1 (en) * | 1992-03-27 | 1993-09-30 | Joachim Pajenkamp | Process and ceramic casting mold for the production of dental casting workpieces made of titanium and ceramicizable composition for the production of a ceramic casting mold for the production of dental casting workpieces made of titanium |
RU2061572C1 (en) * | 1992-12-21 | 1996-06-10 | Александр Васильевич Климкин | Self-curing sand for manufacture of casting molds and cores |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2209035A (en) * | 1938-11-26 | 1940-07-23 | Nobilium Products Inc | Refractory investment |
JPS6044061B2 (en) * | 1982-11-18 | 1985-10-01 | 大成歯科工業株式会社 | Investment material composition for precision casting |
EP0916430B1 (en) * | 1997-11-14 | 2009-06-24 | Shera-Werkstofftechnologie Gmbh | Process for controlling the expansion of ceramic molding material |
-
1999
- 1999-04-09 DE DE59914938T patent/DE59914938D1/en not_active Expired - Lifetime
- 1999-04-09 EP EP99107009A patent/EP1043094B1/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS579554A (en) * | 1980-06-20 | 1982-01-19 | Tokuyama Soda Co Ltd | Mold material |
US4591385A (en) * | 1984-06-04 | 1986-05-27 | Aremco Products, Inc. | Die material and method of using same |
US4814011A (en) * | 1986-12-03 | 1989-03-21 | G-C Dental Industrial Corp. | Investments for dental casting |
EP0417527A2 (en) * | 1989-09-14 | 1991-03-20 | Krupp Medizintechnik GmbH | Investment model and process for the prevention of deposit formation on models or castings from the investment material |
DE4210004A1 (en) * | 1992-03-27 | 1993-09-30 | Joachim Pajenkamp | Process and ceramic casting mold for the production of dental casting workpieces made of titanium and ceramicizable composition for the production of a ceramic casting mold for the production of dental casting workpieces made of titanium |
RU2061572C1 (en) * | 1992-12-21 | 1996-06-10 | Александр Васильевич Климкин | Self-curing sand for manufacture of casting molds and cores |
Also Published As
Publication number | Publication date |
---|---|
EP1043094A1 (en) | 2000-10-11 |
DE59914938D1 (en) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1372521B1 (en) | Method for producing all-ceramic dental devices | |
EP1043094B1 (en) | Process for making castings | |
EP2847138A1 (en) | Pre-sintered blank for dental purposes | |
EP1250895B1 (en) | Method for producing dental ceramic elements | |
EP2651839A1 (en) | Production of shaped dental parts composed of porous glass | |
EP1579934A1 (en) | Process for the production of a muffle for investment casing or modell casting and composition of such a muffle | |
DE69521416T2 (en) | GLASS MATERIAL, REPLACEMENT MATERIAL FOR LIVING TISSUE AND TOOTH REINFORCING MATERIAL | |
EP0916430B1 (en) | Process for controlling the expansion of ceramic molding material | |
EP2062665B1 (en) | Ceramic embedding compound for creating a casting mould and related production methods | |
DE3445848A1 (en) | Investment casting compound and fine-investment casting compound | |
DE19626656C2 (en) | Coated mold made of refractory ceramic and process for its production | |
EP2976311B1 (en) | Sinterable and/or fusible ceramic mass, production and use thereof | |
DE10110687B4 (en) | Method for producing filigree precision castings and ceramic Gusseinbettmasse therefor | |
EP1461173B1 (en) | Casting material for producing casting molds for casting high-melting point materials | |
EP1366727B1 (en) | Preparation and use of quartz free investment material | |
EP0372180B1 (en) | Ceramic system | |
DE3839088C2 (en) | Use of a composition as a refractory dental model material | |
DE3821204C2 (en) | ||
DE3100822A1 (en) | HIGH EXPANSION PLASTER | |
DE4001057C2 (en) | Process for separating layer formation in the infusion technique | |
WO1993019692A1 (en) | Process and ceramic mould for producing titanium dental castings and ceramisable composition for making such a ceramic mould | |
DE10245010B4 (en) | Ceramic investment | |
WO2004006868A1 (en) | Model material for dental applications | |
EP2881078B1 (en) | Ceramic embedding compound and method for making precision castings | |
EP0920297B1 (en) | Investment compound for moulding technics in dental technology, use of investment compound and method for the production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20001010 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
RTI1 | Title (correction) |
Free format text: PROCESS FOR MAKING CASTINGS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59914938 Country of ref document: DE Date of ref document: 20090205 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090925 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130418 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20130423 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140409 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59914938 Country of ref document: DE Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180420 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180628 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59914938 Country of ref document: DE |