EP1041161A1 - Procédé de préparation d'un dextrose cristallin alpha anhydre de haute pureté - Google Patents

Procédé de préparation d'un dextrose cristallin alpha anhydre de haute pureté Download PDF

Info

Publication number
EP1041161A1
EP1041161A1 EP00400882A EP00400882A EP1041161A1 EP 1041161 A1 EP1041161 A1 EP 1041161A1 EP 00400882 A EP00400882 A EP 00400882A EP 00400882 A EP00400882 A EP 00400882A EP 1041161 A1 EP1041161 A1 EP 1041161A1
Authority
EP
European Patent Office
Prior art keywords
hydrolyzate
glucose
microfiltration
syrup
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00400882A
Other languages
German (de)
English (en)
Other versions
EP1041161B1 (fr
Inventor
Jean-Jacques Caboche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9543983&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1041161(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Publication of EP1041161A1 publication Critical patent/EP1041161A1/fr
Application granted granted Critical
Publication of EP1041161B1 publication Critical patent/EP1041161B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B20/00Purification of sugar juices
    • C13B20/16Purification of sugar juices by physical means, e.g. osmosis or filtration
    • C13B20/165Purification of sugar juices by physical means, e.g. osmosis or filtration using membranes, e.g. osmosis, ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/06Glucose; Glucose-containing syrups obtained by saccharification of starch or raw materials containing starch
    • C13K1/08Purifying
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/10Crystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/92Detection of biochemical

Definitions

  • the present invention relates to a method of high crystalline anhydrous dextrose ⁇ preparation purity from a starch hydrolyzate.
  • the invention relates to a process for the preparation of an anhydrous crystalline dextrose which consists in subjecting a starch hydrolyzate to a nanofiltration to prepare a syrup with high content glucose, then evaporate the syrup of glucose thus obtained to obtain crystals of high purity anhydrous dextrose ⁇ .
  • Dextrose can come in three forms crystalline, hydrated form or ⁇ monohydrate form, and two anhydrous forms, i.e. ⁇ anhydrous and ⁇ anhydrous.
  • Solid dextrose is conventionally produced by crystallization of supersaturated syrups with a high content of glucose, and the crystals collected are crystals of dextrose ⁇ monohydrate. This process is also described in US Patent 3,039,935.
  • Anhydrous dextrose ⁇ is classically obtained by dissolving crystals of dextrose ⁇ monohydrate in water, then by crystallizing at temperatures between 60 and 65 ° C and in vacuum evapo-crystallization operating conditions carefully set.
  • the crystalline dextroses obtained by these processes have a strong tendency to agglomerate, which makes handling all the more difficult. Their flow characteristics are otherwise particularly poor.
  • the product obtained still has more than 50% of anhydrous ⁇ form with the anhydrous ⁇ form, and a content non-negligible amorphous structure.
  • the first is to optimize the process of preparation of said starch hydrolyzate.
  • the second solution consists in implementing a nanofiltration process which removes all traces of these superior PDs, as described in the request for Patent FR 2,762,616 of which the Applicant company is holder, or US patent 5,869,297.
  • the invention therefore aims to remedy this situation, and to propose a process that responds better than those that already exist to the various constraints of the convenient.
  • the Applicant company thus succeeded in bringing point a process for obtaining an anhydrous dextrose high purity crystalline from high syrup glucose content prepared by nanofiltration of a starch hydrolyzate.
  • raw saccharified starch hydrolyzate a hydrolyzate starch free of insoluble matter and not undergone no purification treatment aimed at eliminating soluble matter (enzymes, proteins, amino acids, dyes, salts, ).
  • the liquefaction stage is carried out in two sub-stages, the first consisting in heating, for a few minutes and at a temperature included between 105 and 108 ° C, starch milk in the presence of the enzyme (type THERMAMYL 120L sold by the company NOVO) and a calcium activator, the second consisting in heating the starch milk thus treated, to a temperature between 95 and 100 ° C for one to two hours.
  • the enzyme type THERMAMYL 120L sold by the company NOVO
  • a calcium activator the second consisting in heating the starch milk thus treated, to a temperature between 95 and 100 ° C for one to two hours.
  • the starch milk is subjected liquefied by the action of a glucogenic enzyme, in particular chosen from the group consisting of amyloglucosidase, the glucoamylase or any other glucogenic enzyme.
  • a glucogenic enzyme in particular chosen from the group consisting of amyloglucosidase, the glucoamylase or any other glucogenic enzyme.
  • this debranching enzyme is isoamylase or pullulanase.
  • the saccharification stage is carried out in conditions and in a manner known in themselves, during approximately 12 hours to no more than 24 hours, so as to obtain a final hydrolyzate with a richness of between 50%, preferably 75%, and 95% by weight.
  • the enzymes used can be of origin bacterial or fungal.
  • the hydrolyzate thus saccharified is then preferably filtered preferably by microfiltration on membranes so as to collect a permeate of microfiltration comprising the crude saccharified hydrolyzate and a microfiltration retentate.
  • the conditions of this treatment are chosen to maintain activity saccharifying enzyme within the starch hydrolyzate saccharified. This is why, according to an embodiment preferred of the invention, the microfiltration of raw saccharified hydrolyzate at a lower temperature or equal to the enzyme inhibition temperature glucogenic (the enzyme of saccharification) and, advantageously, at a substantially equivalent temperature at the saccharification temperature. So if the saccharification temperature is between 50 ° C and 60 ° c, microfiltration must be carried out at a temperature between 50 ° C and 60 ° C.
  • the microfiltration membrane used in the process according to the invention advantageously presents a porosity between 50 nm and 200 nm, said porosity preferably being of the order of 50 nm.
  • the operating temperature is between 50 ° C and 60 ° C and the pressure (transmembrane) is between 1 and 2 bars.
  • An advantageously put microfiltration membrane used in the process according to the invention is that marketed by the company SCT (channels with a diameter of 4 mm).
  • the separation on membranes is carried out under conditions of temperatures between 30 ° C and 60 ° C, preferably between 40 ° C and 50 ° C and pressures included between 15 and 35 bars, and preferably between 20 and 30 bars.
  • the nanofiltration membrane advantageously implemented in the process according to the invention is of the NF40 type marketed by the company FILMTEC or DESAL 5 DL 3840 type marketed by DESALINATION SYSTEMS.
  • a saccharification of at least part of the retentate of nanofiltration so as to obtain a retentate of saccharified nanofiltration.
  • This saccharification secondary (with reference to primary saccharification intervening upstream of the microfiltration stage) is possible because throughout the process according to the invention, the necessary was made to maintain a saccharifying enzymatic activity within the hydrolyzate especially at the level of the saccharification stage in not inhibiting the glucogenic enzyme at the end of hydrolysis and at the microfiltration stage by working in temperature conditions similar to that of step of saccharification.
  • At least part of the retentate is recycled nanofiltration upstream of the separation step by nanofiltration on membranes. More specifically, we mixes at least part of the nanofiltration retentate with microfiltration permeate to form a mixture which is then advantageously saccharified. This secondary saccharification (here before the stage of separation by nanofiltration on membranes) is carried out for a period such that the saccharified mixture presents a glucose richness of at most 80%, and preferably 75% by weight.
  • This molecular sieving step can consist, for example, in a chromatographic separation step or in a separation step on membranes.
  • the chromatographic fractionation step is carried out in a manner known per se, discontinuously or continuous (simulated moving bed), on adsorbents of the type cationic resins, or on strongly acidic zeolites, preferentially charged using alkaline ions or alkaline earth such as calcium or magnesium but more preferably using sodium ions.
  • the chromatographic fractionation is carried out using the process and the apparatus described in the patent American US-A-4,422,881, of which the applicant company is holder.
  • recourse is preferably made to the adsorbent, to a strong cationic resin used under sodium or potassium form and crosslinked with about 4 to 10 % of divinylbenzene.
  • the resins are advantageously of homogeneous particle size and between 100 and 800 micrometers.
  • the fraction enriched in glucose obtained at the outlet of the chromatography step can then be mixed with the syrup with high glucose content previously obtained.
  • the following stages of the process according to the invention then consists in evapo-crystallizing the high glucose syrup thus obtained to obtain a high purity anhydrous ⁇ crystalline dextrose.
  • the third step (c) of the process according to the invention therefore consists in concentrating the syrup at high glucose content in a dry matter of at least 70% in weight.
  • This concentration step is carried out so known per se, for example by evaporation of water under vacuum at a temperature of the order of 70 ° C.
  • the concentration of glucose-enriched syrup can reach a value of around 80% in M.S.
  • crystallization is initiated by the addition of anhydrous dextrose ⁇ in concentrated glucose syrup and under agitation.
  • spontaneous nucleation is carried out by any method known per se by a person skilled in the art, for example by shearing said concentrated solution.
  • the fourth step (d) of the process according to the invention consists in continuing crystallization by evaporation and stirring of said concentrated syrup so as to obtain a crystalline mass containing at least 30% by weight of crystals.
  • the residence time in the evaporator-crystallizer is around 5 to 8 h, preferably for 6 h, at a temperature of the order of 70 ° C.
  • the evapo-crystallization is carried out in a rotary evaporator where a relatively high vacuum is established, of the order of 6.67 10 3 Pa (50 mm Hg).
  • the last stage of process according to the invention consists in separating, recover and dry the anhydrous dextrose crystals thus obtained.
  • the crystalline mass containing at least 30% of individualized crystals is then separated from the liquor mother by all known methods in themselves, by example by spinning or filtering the ⁇ dextrose syrup anhydrous crystallized.
  • the crystals are then purified by clearing with water, then dried at a lower temperature at the melting point of anhydrous dextrose ⁇ , preferably at a temperature of around 60 ° C, by any method also known, for example in an oven, or on a fluidized bed.
  • the implementation of the process according to the invention produces crystals with a richness of the order of 100% in anhydrous ⁇ form.
  • Starch milk is conventionally liquefied at using 0.5 per thousand THERMAMYL 120L (a-amylase marketed by the company NOVO) up to a DE of 6.5.
  • the reaction medium is then heated for a few seconds at 140 ° C. so as to inhibit the ⁇ -amylase.
  • the enzymatic activity measured is 3 U / l.
  • the hydrolyzate thus saccharified is then filtered by microfiltration on membranes.
  • the enzymatic activity measured is 2.5 U / l
  • hydrolyzate thus microfiltered is separated into two to form a hydrolyzate A and a hydrolyzate B.
  • hydrolyzate A is not demineralized.
  • Hydrolyzate B is demineralized by passing over black carbon and resin.
  • the characteristics of the nanofiltration permeates and retentates A and B of hydrolysates A and B are as follows: glucose / purity Enzymatic activity Permeate A 99.7% 0 U / l Retentate A 80% 7 U / l Permeate B 98.5% 0 U / l Retentate B 80% 0 U / l
  • the enzymatic activity measured is 3 U / l.
  • hydrolyzate thus saccharified is then filtered by microfiltration on membranes, under the same conditions than example 1.
  • the enzymatic activity measured is 2.5 U / l
  • hydrolyzate thus microfiltered is separated into two to form a hydrolyzate C and a hydrolyzate D.
  • hydrolyzate C is not demineralized.
  • Hydrolyzate D is demineralized by passing over black carbon and resin.
  • the characteristics of the C and D nanofiltration permeates and retentates of the C and D hydrolysates are as follows: glucose / purity Enzymatic activity Permeate C 99.4% 0 U / l Retentate C 50% 7 U / l Permeate D 97.9% 0 U / l Retentate D 50% 0 U / l
  • the permeate A of example 1 (99.4% richness in glucose) is concentrated to 80% dry matter, by evaporation at 70 ° C, and placed in a rotary evaporator of 2 1 usable volume laboratory marketed by BÜCHI company.
  • the temperature is maintained at 70 ° C, and the crystallization by adding 5 g of anhydrous dextrose ⁇ .
  • Evapo-crystallization is carried out for 6 h, in continuously feeding with concentrated glucose syrup to 30% of M.S. at a flow rate of 1 l / h.
  • the crystals are then separated from the mother liquor by centrifugation at 1000 g for 10 min with a laboratory wringer marketed by the company ROUSSELET.
  • the crystals are finally dried in a bed drier fluidized for 15 min at 60 ° C.
  • the crystallization yield is 56% by weight, expressed by weight of anhydrous dextrose ⁇ crystallized on the total dry matter weight.
  • the purity of the crystals recovered is 99.7% over dry.
  • the water content is 0.2%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Steroid Compounds (AREA)

Abstract

L'invention concerne un procédé de préparation d'un dextrose α anhydre cristallin à partir d'un hydrolysat d'amidon, caractérisé par le fait que l'on prépare un hydrolysat d'amidon, nanofiltre sur membranes ledit hydrolysat d'amidon de manière à obtenir un perméat de nanofiltration constituant un sirop à haute teneur en glucose et un rétentat de nanofiltration, concentre ledit sirop enrichi en glucose à une matière sèche d'au moins 70 % en poids de glucose et à une température comprise entre 50 et 110°C, cristallise ledit sirop concentré par évaporation et agitation de manière à obtenir une masse cristalline renfermant au moins 30 % en poids de cristaux, et sépare, récupère et sèche les cristaux de dextrose α anhydre ainsi obtenus.

Description

La présente invention est relative à un procédé de préparation de dextrose α anhydre cristallin de haute pureté à partir d'un hydrolysat d'amidon.
Plus particulièrement, l'invention concerne un procédé de préparation d'un dextrose α anhydre cristallin qui consiste à soumettre un hydrolysat d'amidon à une nanofiltration pour préparer un sirop à haute teneur en glucose, puis à réaliser une évapo-cristallisation du sirop de glucose ainsi obtenu pour obtenir des cristaux de dextrose α anhydre de haute pureté.
Le dextrose peut se présenter sous trois formes cristallines, une forme hydratée ou forme α monohydrate, et deux formes anhydres, i.e. α anhydre et β anhydre.
Le dextrose solide est classiquement produit par cristallisation de sirops sursaturés à haute teneur en glucose, et les cristaux recueillis sont des cristaux de dextrose α monohydrate. Ce procédé est d'ailleurs décrit dans le brevet US 3.039.935.
Le dextrose α anhydre est quant à lui classiquement obtenu en dissolvant des cristaux de dextrose α monohydrate dans l'eau, puis en effectuant une cristallisation à des températures comprise entre 60 et 65°C et dans des conditions opératoires d'évapo-cristallisation sous vide soigneusement réglées.
Il existe par ailleurs un certain nombre de procédés permettant la fabrication de dextrose anhydre à partir d'hydrolysats d'amidon, par exemple :
  • le procédé décrit dans le brevet US 3.197.338, consistant à concentrer un hydrolysat d'amidon à une matière sèche en dextrose d'au moins 95 % sur sec, de préférence d'au moins 98 % sur sec, à le cristalliser par malaxage à une température comprise entre 75 et 110°C, et à l'extruder sous la forme d'un ruban dans une zone qui refroidit le produit à une température inférieure à 65,5 °C,
  • le procédé décrit dans le brevet US 3.236.687, consistant à concentrer un hydrolysat d'amidon à une matière sèche en dextrose d'une valeur comprise entre 93 et 96 % sur sec et à le soumettre à un fort cisaillement en présence de gaz pour former de très petits cristaux de dextrose,
  • le procédé décrit dans le brevet US 4.059.460, consistant à préparer un concentré fondu d'un sirop de glucose ayant une concentration de 85 à 93 % sur sec, à une température supérieure à 110°C. Le sirop de glucose concentré est ensuite mélangé par cisaillement et refroidi à une température inférieure à 95 °C. Le sirop est enfin maintenu à une concentration inférieure à 93 % et à une température supérieure à la température de cristallisation du dextrose α monohydrate, puis façonné et transformé en masse solide. Cette masse solide est alors granulée et déshydratée à une teneur en eau inférieure à 2 %.
Cependant, tous ces procédés présentent deux inconvénients majeur :
  • celui d'utiliser directement des hydrolysats d'amidon qui contiennent, outre le glucose, des proportions non négligeables d'autres sucres de degré de polymérisation (D.P.) supérieur, par exemple des D.P. 2 (tel le maltose) et D.P. 3 (tel le maltotriose). Ces sucres de D.P. supérieur résultent de l'hydrolyse non totale, qu'elle soit chimique ou enzymatique, dudit hydrolysat d'amidon.
  • celui de conduire à des mélanges des deux formes anhydres du dextrose, au mieux en proportion équivalentes, voire favorisant la forme β anhydre, et s'accompagnant parfois de la présence de dextrose α monohydrate, résultant de l'incorporation de l'humidité résiduelle en eau de recristallisation.
Les dextroses cristallins obtenus par ces procédés présentent alors une forte tendance à s'agglomérer, ce qui rend leur manutention d'autant plus difficile. Leurs caractéristiques d'écoulement sont par ailleurs particulièrement médiocres.
Pour résoudre le premier et principal inconvénient décrit ci-avant et conduire à l'obtention d'un dextrose de structure cristalline plus homogène, il a été proposé dans le brevet FR 2.483.427 de concentrer un hydrolysat d'amidon à une matière sèche en glucose d'environ 92 à 99 %, de préférence d'environ 95 à 99 % dans un évaporateur à couche mince et à une température comprise entre 90 et 135°C.
Mais le produit obtenu présente encore plus de 50 % de forme β anhydre avec la forme α anhydre, et une teneur en structure amorphe non négligeable.
Le caractère anhydre est obtenu dans ce procédé grâce aux températures particulièrement élevées utilisées, mais ces conditions opératoires ont également pour conséquence directe d'augmenter la proportion en forme β anhydre qui cristallise naturellement auxdites températures.
Quant au problème lié à la contamination en sucres de D.P. supérieur des hydrolysats d'amidon, il a été proposé deux solutions.
La première consiste à optimiser le procédé de préparation dudit hydrolysat d'amidon.
Cependant, si cette solution permet de réduire la part des sucres de D.P. 2 et D.P. 3 de façon remarquable, il est particulièrement difficile d'en obtenir des teneurs résiduelles inférieures à 5 %.
La seconde solution consiste à mettre en oeuvre un procédé de nanofiltration qui permet d'éliminer toute trace de ces D.P. supérieurs, tel que décrit dans la demande de brevet FR 2.762.616 dont la société Demanderesse est titulaire, ou le brevet US 5.869.297.
De tout ce qui précède, il résulte cependant qu'il existe un besoin non satisfait de disposer d'un dextrose cristallin α-anhydre de haute pureté.
En effet, tous les procédés de l'art antérieur ne permettent de disposer que de dextrose solide constitué d'un mélange de formes α et β anhydres, voire de formes monohydrates, associées à des quantités relativement importantes de D.P. 2, de D.P. 3, voire de D.P. supérieur.
L'invention a donc pour but de remédier à cette situation, et de proposer un procédé répondant mieux que ceux qui existent déjà aux diverses contraintes de la pratique.
En effet, il apparaít clairement dans l'état de la technique que les procédés classiques de préparation du dextrose anhydre qui nécessitent par exemple la mise en oeuvre de deux techniques successives de cristallisation, ont lieu dans des domaines de température élevée qui conduisent invariablement à des mélanges de formes cristallines α et β.
La société Demanderesse a ainsi réussi à mettre au point un procédé permettant d'obtenir un dextrose a anhydre cristallin de haute pureté à partir d'un sirop de haute teneur en glucose préparé par nanofiltration d'un hydrolysat d'amidon.
Au sens de l'invention, on entend par « dextrose cristallin α anhydre de haute pureté », une teneur en dextrose α anhydre d'environ 100 % en poids.
Le procédé de préparation d'un dextrose α anhydre cristallin conforme à l'invention est donc caractérisé par le fait que l'on :
  • (a) prépare un hydrolysat d'amidon ;
  • (b) nanofiltre sur membranes ledit hydrolysat d'amidon de manière à obtenir un perméat de nanofiltration constituant un sirop à haute teneur en glucose et un rétentat de nanofiltration ;
  • (c) concentre ledit sirop à haute teneur en glucose à une matière sèche d'au moins 70 % en poids de glucose et à une température comprise entre 50 et 110°C ;
  • (d) cristallise ledit sirop concentré par évaporation et agitation de manière à obtenir une masse cristalline renfermant au moins 30 % en poids de cristaux ;
  • (e) sépare, récupère et sèche les cristaux de dextrose α anhydre ainsi obtenus.
  • Selon un premier mode de réalisation du procédé conforme à l'invention, ledit hydrolysat d'amidon est un hydrolysat d'amidon brut obtenu par :
    • liquéfaction d'un lait d'amidon à l'aide d'une α-amylase de façon à obtenir un lait d'amidon liquéfié,
    • saccharification dudit lait d'amidon liquéfié à l'aide d'une enzyme glucogénique de manière à obtenir un hydrolysat saccharifié brut, et
    • éventuellement, microfiltration dudit hydrolysat saccharifié brut de manière à recueillir un perméat de microfiltration comprenant ledit hydrolysat d'amidon brut et un rétentat de microfiltration.
    Selon un second mode de réalisation du procédé conforme à l'invention, ledit hydrolysat d'amidon est un hydrolysat d'amidon brut obtenu par :
    • liquéfaction d'un lait d'amidon à l'aide d'une α-amylase de façon à obtenir un lait d'amidon liquéfié,
    • saccharification dudit lait d'amidon liquéfié à l'aide d'une enzyme glucogénique de manière à obtenir un hydrolysat d'amidon saccharifié brut d'une richesse d'au maximum 80 % en poids, et de préférence d'au maximum 75 % en poids, et
    • microfiltration de l'hydrolysat saccharifié brut de manière à recueillir un perméat de microfiltration comprenant ledit hydrolysat d'amidon brut et un rétentat de microfiltration.
    Au sens de la présente invention, on entend par hydrolysat d'amidon saccharifié brut, un hydrolysat d'amidon débarrassé de ses matières insolubles et n'ayant subi aucun traitement de purification visant à éliminer les matières solubles (enzymes, protéines, acides aminés, colorants, sels,...).
    Ainsi, contrairement à l'enseignement de l'état de la technique qui prévoit classiquement, en fin de saccharification, une étape d'inhibition de l'enzyme de saccharification (pour éviter la formation de produits de réversion), on cherche donc au contraire dans la présente invention à maintenir une activité enzymatique saccharifiante au sein de l'hydrolysat d'amidon saccharifié.
    On cherche également, dans la présente invention, à maintenir la présence de charges au sein de l'hydrolysat d'amidon saccharifié. Dans les procédés conventionnels de l'état de la technique, ces charges sont classiquement éliminées par passage de l'hydrolysat d'amidon saccharifié sur du noir de carbone et sur une résine de déminéralisation. Dans la présente invention, l'hydrolysat n'est pas déminéralisé.
    On préfère, avantageusement dans le procédé conforme à l'invention, effectuer une hydrolyse ménagée du lait d'amidon de façon à obtenir un lait d'amidon liquéfié à faible taux de transformation.
    Ainsi, dans le procédé conforme à l'invention, on conduit l'étape de liquéfaction de préférence jusqu'à un DE compris entre 2 et 10, et plus particulièrement jusqu'à un DE compris entre 4 et 8.
    De préférence, l'étape de liquéfaction est conduite en deux sous-étapes, la première consistant à chauffer, pendant quelques minutes et à une température comprise entre 105 et 108°C, le lait d'amidon en présence de l'enzyme (type THERMAMYL 120L commercialisée par la société NOVO) et d'un activateur à base de calcium, la seconde consistant à chauffer le lait d'amidon ainsi traité, à une température comprise entre 95 et 100°C pendant une à deux heures.
    Une fois l'étape de liquéfaction terminée, dans les conditions de teneur en matières sèches, de pH, de taux d'enzyme et de calcium bien connues de l'homme de métier et après avantageusement inhibition de l'enzyme liquéfiante (en procédant, par exemple, en sortie de liquéfaction à un choc thermique de quelques secondes à une température supérieure ou égale à 130°C), on procède à l'étape de saccharification du lait d'amidon liquéfié.
    Lors de cette étape, on soumet le lait d'amidon liquéfié à l'action d'une enzyme glucogénique, notamment choisie dans le groupe constitué de l'amyloglucosidase, la glucoamylase ou toute autre enzyme glucogénique.
    Pour éviter les réactions de réversion et la formation notamment de disaccharides (maltose, isomaltose) par repolymérisation du glucose, il peut être intéressant d'associer à l'enzyme glucogénique une enzyme hydrolysant spécifiquement les liaisons α-1,6 de l'amidon. De préférence, cette enzyme débranchante est l'isoamylase ou la pullulanase.
    L'étape de saccharification est conduite dans des conditions et de façon connues en elles-mêmes, pendant environ 12 heures à au plus 24 heures, de manière à obtenir un hydrolysat final d'une richesse comprise entre 50 %, de préférence 75 %, et 95 % en poids.
    Les quantités et les conditions d'action des différentes enzymes mises en oeuvre dans le procédé conforme à l'invention sont choisies parmi les suivantes :
    • α-amylase : 20 à 2.000 KNU (Kilo Novo Units) par kilogramme de substrat sec, température de 80 à 150°C, durée d'action de 2 à 15 minutes.
    • amyloglucosidase : 4.000 à 400.000 unités internationales par kilogramme de substrat sec, température de 50°C à 60°C, durée d'action de 12 à au maximum 24 heures, pH de 4 à 6.
    • pullulanase : 150 à 15.000 unités ABM.
    Les enzymes utilisées peuvent être d'origine bactérienne ou fongique.
    L'hydrolysat ainsi saccharifié est ensuite avantageusement filtré de préférence par microfiltration sur membranes de manière à recueillir un perméat de microfiltration comprenant l'hydrolysat saccharifié brut et un rétentat de microfiltration. Les conditions de ce traitement, en particulier sur le plan de la température, sont choisies de manière à maintenir une activité enzymatique saccharifiante au sein de l'hydrolysat d'amidon saccharifié. C'est pourquoi, selon un mode de réalisation préféré de l'invention, on effectue la microfiltration de l'hydrolysat saccharifié brut à une température inférieure ou égale à la température d'inhibition de l'enzyme glucogénique (l'enzyme de saccharification) et, avantageusement, à une température sensiblement équivalente à la température de saccharification. Ainsi, si la température de saccharification est comprise entre 50°C et 60°c, la microfiltration doit s'effectuer à une température comprise entre 50°C et 60°C.
    La membrane de microfiltration mise en oeuvre dans le procédé conforme à l'invention, présente avantageusement une porosité comprise entre 50 nm et 200 nm, ladite porosité étant de préférence de l'ordre de 50 nm. La température opératoire est comprise entre 50°C et 60°C et la pression (transmembranaire) est comprise entre 1 et 2 bars. Une membrane de microfiltration avantageusement mis en oeuvre dans le procédé conforme à l'invention est celle commercialisée par la société SCT (canaux d'un diamètre de 4 mm).
    On effectue alors sur cet hydrolysat saccharifié brut, éventuellement microfiltré mais non déminéralisé, une séparation par nanofiltration sur membranes de manière à recueillir un perméat de nanofiltration constituant le sirop à haute teneur en glucose, d'une richesse supérieure à 97 % et plus préférentiellement encore supérieure à 99 %, et un rétentat de nanofiltration.
    Contre toute attente, la Société Demanderesse a en effet constaté, à mêmes conditions opératoires, un meilleur enrichissement du perméat en glucose lorsque l'hydrolysat saccharifié à nanofiltrer était non déminéralisé. Sans vouloir être lié à une quelconque théorie, la Société Demanderesse pense que ce meilleur enrichissement est dû à la formation d'une couche de polarisation plus importante à la surface de la membrane, la formation de cette couche de filtration supplémentaire permettant d'obtenir une richesse en glucose du perméat plus élevée.
    Selon un mode de réalisation préféré, la séparation sur membranes est réalisée sous des conditions de températures comprises entre 30°C et 60°C, de préférence comprises entre 40°C et 50°C et de pressions comprises entre 15 et 35 bars, et de préférence comprises entre 20 et 30 bars. Ainsi la membrane de nanofiltration avantageusement mise en oeuvre dans le procédé conforme à l'invention est du type NF40 commercialisée par la société FILMTEC ou du type DESAL 5 DL 3840 commercialisée par la société DESALINATION SYSTEMS.
    Avantageusement, on réalise ensuite une saccharification d'au moins une partie du rétentat de nanofiltration de façon à obtenir un rétentat de nanofiltration saccharifié. Cette saccharification secondaire (en référence à la saccharification primaire intervenant en amont de l'étape de microfiltration) est possible du fait que tout au long du procédé conforme à l'invention, le nécessaire a été fait pour maintenir une activité enzymatique saccharifiante au sein de l'hydrolysat notamment au niveau de l'étape de saccharification en n'inhibant pas l'enzyme glucogénique en fin d'hydrolyse et au niveau de l'étape de microfiltration en travaillant dans des conditions de température similaire à celle de l'étape de saccharification.
    Selon une variante du procédé conforme à l'invention, on recycle au moins une partie du rétentat de nanofiltration en amont de l'étape de séparation par nanofiltration sur membranes. Plus particulièrement, on mélange au moins une partie du rétentat de nanofiltration avec le perméat de microfiltration pour former un mélange qui est ensuite avantageusement saccharifié. Cette saccharification secondaire (ici en amont de l'étape de séparation par nanofiltration sur membranes) est effectuée pendant une durée telle que le mélange saccharifié présente une richesse en glucose d'au maximum 80 %, et de préférence de 75 % en poids.
    Dans le cas d'une saccharification secondaire intervenue en amont de l'étape de nanofiltration, on réalise ensuite une saccharification tertiaire du rétentat de nanofiltration de façon à obtenir un rétentat de nanofiltration saccharifié. La durée de cette saccharification tertiaire est d'environ 48 heures.
    Il est alors éventuellement possible d'effectuer sur ce rétentat de nanofiltration saccharifié (obtenu après mise en oeuvre de la saccharification secondaire ou tertiaire), qui peut présenter une richesse en glucose allant jusque 90 %, un tamisage moléculaire de manière à recueillir une fraction enrichie en glucose et une fraction appauvrie en glucose.
    Cette étape de tamisage moléculaire peut consister, par exemple, en une étape de séparation chromatographique ou en une étape de séparation sur membranes.
    L'étape de fractionnement chromatographique est effectué de manière connue en soi, de façon discontinue ou continue (lit mobile simulé), sur des adsorbants du type résines cationiques, ou sur des zéolithes fortement acides, chargées préférentiellement à l'aide d'ions alcalins ou alcalino-terreux tels que le calcium ou le magnésium mais plus préférentiellement à l'aide d'ions sodium.
    Selon un mode de réalisation préféré, le fractionnement chromatographique est réalisé en employant le procédé et l'appareillage décrits dans le brevet américain US-A-4 422 881 dont la société demanderesse est titulaire. Quel que soit le procédé chromatographique retenu, on a recours de préférence en ce qui concerne l'adsorbant, à une résine cationique forte employée sous forme sodium ou potassium et réticulée avec environ 4 à 10 % de divinylbenzène. Les résines sont avantageusement de granulométrie homogène et comprise entre 100 et 800 micromètres.
    En lieu et place de l'étape de séparation chromatographique, il est possible, dans le procédé conforme à l'invention, de mettre en oeuvre une étape de séparation par nanofiltration sur membranes, du type de celle décrite ci-dessus.
    La fraction enrichie en glucose obtenue en sortie de l'étape de chromatographie peut alors être mélangée avec le sirop à haute teneur en glucose précédemment obtenu.
    Les étapes suivantes du procédé conforme à l'invention consistent ensuite à évapo-cristalliser le sirop à haute teneur en glucose ainsi obtenu pour obtenir un dextrose cristallin α anhydre de haute pureté.
    La troisième étape (c) du procédé conforme à l'invention consiste donc à concentrer le sirop à haute teneur en glucose à une matière sèche d'au moins 70 % en poids.
    Cette étape de concentration est effectuée de manière connue en soi, par exemple par évaporation de l'eau sous vide à une température de l'ordre de 70°C.
    Les conditions de température et de matière sèche sont ainsi spécifiquement fixées pour placer le sirop de glucose dans le domaine de cristallisation de la forme α anhydre.
    Il est en effet connu de l'homme du métier que pour une solution de haute pureté en glucose, le dextrose α anhydre cristallise dans un domaine de température compris entre 50 et 110°C, pour une M.S. supérieure à 70 %.
    Dans le procédé conforme à l'invention, la concentration du sirop enrichi en glucose peut atteindre une valeur de l'ordre de 80 % en M.S. De préférence, on se place alors à une température de l'ordre de 70 °C.
    Dans un premier mode préférentiel conforme à l'invention, on amorce la cristallisation par l'ajout de dextrose α anhydre dans le sirop de glucose concentré et sous agitation.
    Dans un second mode du procédé conforme à l'invention, on réalise la nucléation spontanée par toute méthode connue en soi par l'homme du métier, par exemple par cisaillement de ladite solution concentrée.
    La quatrième étape (d) du procédé conforme à l'invention consiste à poursuivre la cristallisation par évaporation et agitation dudit sirop concentré de manière à obtenir une masse cristalline renfermant au moins 30 % en poids de cristaux.
    Le temps de séjour dans l'évapo-cristallisoir est de l'ordre de 5 à 8 h, de préférence pendant 6 h, à une température de l'ordre de 70°C.
    Dans un mode préférentiel conforme à l'invention, l'évapo-cristallisation est effectuée dans un évaporateur rotatif où l'on établit un vide relativement poussé, de l'ordre de 6,67 103 Pa (50 mm Hg).
    En fin d'évapo-cristallisation, la dernière étape du procédé conforme à l'invention consiste à séparer, récupérer et sécher les cristaux de dextrose α anhydre ainsi obtenus.
    La masse cristalline contenant au moins 30 % de cristaux individualisés est ensuite séparée de la liqueur mère par toutes méthodes en elles-mêmes connues, par exemple par essorage ou filtration du sirop de dextrose α anhydre cristallisé.
    De préférence, les cristaux sont ensuite purifiés par clairçage à l'eau, puis séchés à une température inférieure au point de fusion du dextrose α anhydre, préférentiellement à une température de l'ordre de 60°C, par toute méthode également connue, par exemple en étuve, ou sur lit fluidisé.
    La mise en oeuvre du procédé conforme à l'invention permet d'obtenir des cristaux d'une richesse de l'ordre de 100 % en forme α anhydre.
    D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de l'exemple non limitatif décrit ci-dessous.
    EXEMPLE 1
    Un lait d'amidon est liquéfié de manière classique à l'aide de 0,5 pour mille de THERMAMYL 120L (a-amylase commercialisée par la société NOVO) jusqu'à un DE de 6,5.
    On chauffe ensuite le milieu réactionnel pendant quelques secondes à 140°C de manière à inhiber l'α-amylase.
    On effectue alors, de manière connue en soi, la saccharification de l'hydrolysat à 35 % de matières sèches en présence de 0,8 pour mille d'amyloglucosidase G990 commercialisée par la société ABM (température : 60°C, pH = 4,5).
    Après 24 heures de saccharification, on obtient un hydrolysat ayant le spectre glucidique suivant :
    glucose 93 %
    DP2 2,5 %
    DP3 0,5 %
    DP supérieurs 4 %
       étant entendu que l'abbréviation "DP" signifie degré de polymérisation.
    L'activité enzymatique mesurée est de 3 U/l.
    L'hydrolysat ainsi saccharifié est ensuite filtré par microfiltration sur membranes.
    Les conditions opératoires sont les suivantes :
    • Membrane SCT : 50nm
    • Température : 60°C
    • Pression : 2 bars
    L'activité enzymatique mesurée est de 2,5 U/l
    L'hydrolysat ainsi microfiltré est séparé en deux pour constituer un hydrolysat A et un hydrolysat B.
    L'hydrolysat A n'est pas déminéralisé. L'hydrolysat B est quant à lui déminéralisé par passage sur noir de carbone et résine.
    Chacun des hydrolysats A et B est soumis à une nanofiltration sous les conditions opératoires suivantes :
    • Membrane DESAL 5 DL
    • Température : 45°C
    • Pression : 25 bars
    Les caractéristiques des perméats et rétentats de nanofiltration A et B des hydrolysats A et B sont les suivantes :
    glucose / pureté Activité enzymatique
    Perméat A 99,7 % 0 U/l
    Rétentat A 80 % 7 U/l
    Perméat B 98,5 % 0 U/l
    Rétentat B 80 % 0 U/l
    EXEMPLE 2
    On effectue la liquéfaction et la saccharification d'un lait d'amidon comme décrit dans l'exemple 1.
    Après 12 heures de saccharification, on obtient un hydrolysat ayant le spectre glucidique suivant :
    glucose 75,8 %
    DP2 2,1%
    DP3 et supérieurs 20,1 %
    L'activité enzymatique mesurée est de 3 U/l.
    L'hydrolysat ainsi saccharifié est ensuite filtré par microfiltration sur membranes, dans les mêmes conditions que l'exemple 1.
    L'activité enzymatique mesurée est de 2,5 U/l
    L'hydrolysat ainsi microfiltré est séparé en deux pour constituer un hydrolysat C et un hydrolysat D.
    L'hydrolysat C n'est pas déminéralisé. L'hydrolysat D est quant à lui déminéralisé par passage sur noir de carbone et résine.
    Chacun des hydrolysats C et D est soumis à une nanofiltration sous les conditions opératoires suivantes :
    • Membrane DESAL 5 DL
    • Température : 45°C
    • Pression : 25 bars
    Les caractéristiques des perméats et rétentats de nanofiltration C et D des hydrolysats C et D sont les suivantes :
    glucose / pureté Activité enzymatique
    Perméat C 99,4 % 0 U/l
    Rétentat C 50 % 7 U/l
    Perméat D 97,9 % 0 U/l
    Rétentat D 50 % 0 U/l
    EXEMPLE 3
    Le perméat A de l'exemple 1 (99,4 % de richesse en glucose) est concentré à une matière sèche de 80 %, par évaporation à 70°C, et placé dans un évaporateur rotatif de laboratoire de volume utile de 2 1 commercialisé par la société BÜCHI.
    On maintient la température à 70°C, et on amorce la cristallisation par l'ajout de 5 g de dextrose α anhydre.
    L'évapo-cristallisation est conduite pendant 6 h, en alimentant en continu avec le sirop de glucose concentré à 30 % de M.S. à un débit de 1 l/h.
    En fin d'évapo-cristallisation, on obtient 3 kg d'une masse cristalline renfermant 50,8 % en poids de cristaux individualisés.
    Les cristaux sont ensuite séparés de la liqueur mère par centrifugation à 1000 g pendant 10 min avec une essoreuse de laboratoire commercialisée par la société ROUSSELET.
    Pendant cette centrifugation, on procède au clairçage des cristaux avec 200 ml d'eau déminéralisée.
    Les cristaux sont enfin séchés dans un séchoir à lit fluidisé pendant 15 min à 60°C.
    Le rendement de cristallisation est de 56 % en poids, exprimé en poids de dextrose α anhydre cristallisé sur le poids total de matière sèche.
    La pureté des cristaux récupérés est de 99,7 % sur sec. La teneur en eau est de 0,2 %.

    Claims (9)

    1. Procédé de préparation d'un dextrose α anhydre cristallin, caractérisé par le fait que l'on :
      (a) prépare un hydrolysat d'amidon ;
      (b) nanofiltre sur membranes ledit hydrolysat d'amidon de manière à obtenir un perméat de nanofiltration constituant un sirop à haute teneur en glucose et un rétentat de nanofiltration ;
      (c) concentre ledit sirop à haute teneur en glucose à une matière sèche d'au moins 70 % en poids de glucose et à une température comprise entre 50 et 110°C ;
      (d) cristallise ledit sirop concentré par évaporation et agitation de manière à obtenir une masse cristalline renfermant au moins 30 % en poids de cristaux ;
      (e) sépare, récupère et sèche les cristaux de dextrose α anhydre ainsi obtenus.
    2. Procédé selon la revendication 1, caractérisé par le fait que ledit hydrolysat d'amidon est un hydrolysat d'amidon brut obtenu par :
      liquéfaction d'un lait d'amidon à l'aide d'une α-amylase de façon à obtenir un lait d'amidon liquéfié, et
      saccharification dudit lait d'amidon liquéfié à l'aide d'une enzyme glucogénique de manière à obtenir un hydrolysat saccharifié brut, et
      éventuellement, microfiltration dudit hydrolysat saccharifié brut de manière à recueillir un perméat de microfiltration comprenant ledit hydrolysat d'amidon brut et un rétentat de microfiltration.
    3. Procédé selon la revendication 1, caractérisé par le fait que ledit hydrolysat d'amidon est un hydrolysat d'amidon brut obtenu par :
      liquéfaction d'un lait d'amidon à l'aide d'une α-amylase de façon à obtenir un lait d'amidon liquéfié,
      saccharification dudit lait d'amidon liquéfié à l'aide d'une enzyme glucogénique de manière à obtenir un hydrolysat d'amidon saccharifié brut d'une richesse d'au maximum 80 % en poids, et de préférence d'au maximum 75 % en poids, et
      microfiltration de l'hydrolysat saccharifié brut de manière à recueillir un perméat de microfiltration comprenant ledit hydrolysat d'amidon brut et un rétentat de microfiltration.
    4. Procédé selon l'une ou l'autre des revendications 2 et 3, caractérisé par le fait que l'on effectue la microfiltration de l'hydrolysat saccharifié brut à une température inférieure ou égale à la température d'inhibition de l'enzyme glucogénique.
    5. Procédé selon l'une ou l'autre des revendications 3 et 4, caractérisé par le fait que l'on mélange au moins une partie du rétentat de nanofiltration avec le perméat de microfiltration pour former un mélange et que l'on effectue une saccharification dudit mélange.
    6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé par le fait que l'on effectue :
      une saccharification d'au moins une partie du rétentat de nanofiltration de façon à obtenir un rétentat de nanofiltration saccharifié ;
      un tamisage moléculaire dudit rétentat de nanofiltration saccharifié de manière à obtenir une fraction enrichie en glucose, et
      un mélange de ladite fraction enrichie en glucose avec ledit sirop à haute teneur en glucose.
    7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé par le fait que le sirop à haute teneur en glucose présente une teneur en glucose supérieure à 97 %, de préférence supérieure à 99 %.
    8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé par le fait que l'étape de concentration du sirop à haute teneur en glucose est effectué par évaporation à une température de l'ordre de 70°C.
    9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé par le fait que les cristaux de dextrose α anhydre obtenus à l'étape de cristallisation du sirop à haute teneur en glucose concentré sont collectés par centrifugation et séchés à une température de l'ordre de 60°C.
    EP00400882A 1999-04-02 2000-03-30 Procédé de préparation d'un dextrose cristallin alpha anhydre de haute pureté Revoked EP1041161B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9904178A FR2791703B1 (fr) 1999-04-02 1999-04-02 Procede de preparation d'un dextrose cristallin alpha anhydre de haute purete
    FR9904178 1999-04-02

    Publications (2)

    Publication Number Publication Date
    EP1041161A1 true EP1041161A1 (fr) 2000-10-04
    EP1041161B1 EP1041161B1 (fr) 2004-05-19

    Family

    ID=9543983

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00400882A Revoked EP1041161B1 (fr) 1999-04-02 2000-03-30 Procédé de préparation d'un dextrose cristallin alpha anhydre de haute pureté

    Country Status (6)

    Country Link
    US (1) US6184003B1 (fr)
    EP (1) EP1041161B1 (fr)
    AT (1) ATE267268T1 (fr)
    DE (1) DE60010787T2 (fr)
    ES (1) ES2220355T3 (fr)
    FR (1) FR2791703B1 (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1652938A1 (fr) * 2004-10-29 2006-05-03 Roquette FrÀ¨res Utilisation non alimentaire et non pharmaceutique d'une composition de dextrose anhydre sélectionnée

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FI111959B (fi) * 2000-12-28 2003-10-15 Danisco Sweeteners Oy Menetelmä maltoosin puhdistamiseksi
    US9055752B2 (en) 2008-11-06 2015-06-16 Intercontinental Great Brands Llc Shelf-stable concentrated dairy liquids and methods of forming thereof
    UA112972C2 (uk) 2010-09-08 2016-11-25 Інтерконтінентал Грейт Брендс ЛЛС Рідкий молочний концентрат з високим вмістом сухих речовин
    BR112013024898B1 (pt) * 2011-03-29 2019-10-22 Toray Industries métodos para produzir um líquido de açúcar e método para produzir um produto químico
    CN103484511A (zh) * 2012-12-20 2014-01-01 西王药业有限公司 一种高pH无水葡萄糖生产方法
    CN103725731B (zh) * 2013-12-30 2015-09-02 河南飞天农业开发股份有限公司 葡萄糖酸钠专用结晶葡萄糖及其制备方法

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB2014578A (en) * 1978-02-09 1979-08-30 Cpc International Inc Process for Producing Multi- Sugar Syrups Plus Crystalline Dextrose from Starch
    EP0452238A2 (fr) * 1990-03-23 1991-10-16 ARCHER DANIELS MIDLAND COMPANY, a Delaware Corporation Procédé de nanofiltration pour la préparation de dextrose
    US5853487A (en) * 1998-04-27 1998-12-29 Roquette Freres Process for producing low de starch hydrolysates by nanofiltration fractionation and blending of resultant products, preferably in liquid form, with other carbohydrates

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3039935A (en) 1960-02-25 1962-06-19 Delmar F Rentshler Production of crystalline glucose
    US3197338A (en) 1962-06-21 1965-07-27 Staley Mfg Co A E Method of producing dried starch conversion product
    US3236687A (en) 1962-07-09 1966-02-22 Grain Processing Corp Process for producing sugars from starch
    US4059460A (en) 1975-11-07 1977-11-22 A. E. Staley Manufacturing Company Solid anhydrous dextrose
    AR227782A1 (es) 1980-06-03 1982-12-15 Cpc International Inc Metodo continuo para preparar un producto con alto contenido de dextrosa,anhidro,estable en composicion,manipulable,de fluencia suave que tiene menos de aproximadamente 0,5% de humedad total
    US4422881A (en) 1980-10-29 1983-12-27 Roquette Freres Installation and process for the continuous separation of mixtures of sugars and/or of polyols by selective adsorption
    US4429122A (en) * 1982-04-20 1984-01-31 Uop Inc. Separation of saccharides

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB2014578A (en) * 1978-02-09 1979-08-30 Cpc International Inc Process for Producing Multi- Sugar Syrups Plus Crystalline Dextrose from Starch
    EP0452238A2 (fr) * 1990-03-23 1991-10-16 ARCHER DANIELS MIDLAND COMPANY, a Delaware Corporation Procédé de nanofiltration pour la préparation de dextrose
    US5853487A (en) * 1998-04-27 1998-12-29 Roquette Freres Process for producing low de starch hydrolysates by nanofiltration fractionation and blending of resultant products, preferably in liquid form, with other carbohydrates

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1652938A1 (fr) * 2004-10-29 2006-05-03 Roquette FrÀ¨res Utilisation non alimentaire et non pharmaceutique d'une composition de dextrose anhydre sélectionnée
    FR2877186A1 (fr) * 2004-10-29 2006-05-05 Roquette Freres Utilisation non alimentaire et non pharmaceutique d'une composition de dextrose anhydre selectionnee
    JP2006124395A (ja) * 2004-10-29 2006-05-18 Roquette Freres 選択された無水デキストロース組成物の非食用且つ非医薬用の使用
    US7731991B2 (en) 2004-10-29 2010-06-08 Roquette Freres Non-food and non-pharmaceutical use of a selected anhydrous dextrose composition

    Also Published As

    Publication number Publication date
    DE60010787T2 (de) 2005-07-14
    ATE267268T1 (de) 2004-06-15
    EP1041161B1 (fr) 2004-05-19
    DE60010787D1 (de) 2004-06-24
    FR2791703A1 (fr) 2000-10-06
    ES2220355T3 (es) 2004-12-16
    FR2791703B1 (fr) 2001-06-15
    US6184003B1 (en) 2001-02-06

    Similar Documents

    Publication Publication Date Title
    EP1016728B1 (fr) Procédé de fabrication d'un sirop riche en maltose
    CA2248439C (fr) Procede de fabrication d'un sirop riche en maltose
    FR2619380A1 (fr) Procede de recuperation de l-amino-acides de liqueurs de fermentation les contenant
    EP1041161B1 (fr) Procédé de préparation d'un dextrose cristallin alpha anhydre de haute pureté
    FR2791701A1 (fr) Procede de fabrication d'un hydrolysat d'amidon a haute teneur en dextrose
    EP0481903A1 (fr) Procédé de fabrication de cyclodextrines
    EP0905138B2 (fr) Cristaux de maltitol de formes particulières, compositions cristallines les contenant et procédés pour leur préparation
    FR2830021A1 (fr) Procede de fabrication d'un hydrolysat d'amidon a haute teneur en dextrose
    FR2791700A1 (fr) Procede de fabrication d'un hydrolysat d'amidon a haute teneur en dextrose
    CA2348052C (fr) Procede de preparation d'acide lactique par evapocristallisation
    EP2061893B1 (fr) Procédé d'obtention d'un sirop à haute teneur en maltitol
    EP1016713A1 (fr) Alpha-amylase maltogénique immobilisee et son utilisation dans la fabrication d'un sirop riche en maltose
    EP0580490B1 (fr) Procédé de fabrication de mannitol
    FR2762616A1 (fr) Procede de fabrication d'un hydrolysat d'amidon a haute teneur en dextrose
    WO1995002967A1 (fr) Compositions liquides visqueuses de xylitol et leur procede de preparation
    EP0957106B1 (fr) Procédé de préparation de maltulose monohydrate cristallisé
    EP3320090A1 (fr) Procede de fabrication de maltitol presentant un rendement ameliore
    BE563320A (fr)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20010312

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RTI1 Title (correction)

    Free format text: PROCESS FOR PREPARING AN ALPHA CRYSTALLINE ANHYDROUS DEXTROSE OF HIGH PURITY

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 60010787

    Country of ref document: DE

    Date of ref document: 20040624

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040819

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040819

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040819

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20040519

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2220355

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE4

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20050317

    Year of fee payment: 6

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050330

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050330

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050331

    26 Opposition filed

    Opponent name: CERESTAR HOLDING B.V.

    Effective date: 20050218

    R26 Opposition filed (corrected)

    Opponent name: CERESTAR HOLDING B.V.

    Effective date: 20050218

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: CERESTAR HOLDING B.V.

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: CERESTAR HOLDING B.V.

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20060216

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20060217

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20060307

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20060323

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20060331

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20060403

    Year of fee payment: 7

    RDAF Communication despatched that patent is revoked

    Free format text: ORIGINAL CODE: EPIDOSNREV1

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    27W Patent revoked

    Effective date: 20060512

    NLR2 Nl: decision of opposition

    Effective date: 20060512

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041019