EP1036610B1 - Investment and mould casting in carbon and organic aerogels - Google Patents
Investment and mould casting in carbon and organic aerogels Download PDFInfo
- Publication number
- EP1036610B1 EP1036610B1 EP00104214A EP00104214A EP1036610B1 EP 1036610 B1 EP1036610 B1 EP 1036610B1 EP 00104214 A EP00104214 A EP 00104214A EP 00104214 A EP00104214 A EP 00104214A EP 1036610 B1 EP1036610 B1 EP 1036610B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wax
- gel
- sol
- temperature
- plastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
- B22C1/16—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
- B22C1/165—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents in the manufacture of multilayered shell moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C1/00—Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
Definitions
- the invention relates to a molding material for the fine and casting of metals or metal alloys comprising plastic and / or carbon aerogels and a process for the preparation of corresponding molding materials.
- Aerogels are highly porous, open-pored oxidic solids, which are usually via sol-gel processes of metal alkoxides by polymerization, polycondensation to gels and subsequent supercritical drying are obtained.
- plastics via sol-gel processes gelled and by supercritical drying in a highly porous organic Transform solid state. Pyrolysis of such plastic aerogels under inert gas or in vacuum at temperatures above 1000 ° C, this converts into carbon aerogels around.
- the oxidic aerogels have plastic and carbon aerogels extremely low effective thermal conductivities (order of magnitude some mW / K / m) and are considerably lighter.
- the airgel mold may consist of silica aerogels or not working under reducing atmosphere of carbon aerogels.
- a Forming material for the fine and casting of metals or metal alloys comprising highly porous, open-pored plastic and / or carbon aerogels, available by sol-gel polymerization of organic plastic materials optionally followed by partial or complete pyrolysis of the obtained Kunststoffaerogels.
- the molding material according to the invention is particularly suitable for use in lost wax casting processes and does not have, as in the prior art in oxidic Gels, applied in several steps.
- the airgel forms produced according to the invention are particularly suitable for the casting of aluminum alloys (with the mold practically unheated must be because there is no heat dissipation by themselves). This increases the economy, because energy costs can be reduced. Magnesium- and titanium alloys also do not react with carbon, so that these carbon aerogels also for these alloys under inert gas or Offer vacuum as molding material.
- a particular advantage of the molding materials according to the invention is that the Sol-gel formation at room temperature, that is, especially at temperatures completed within a few hours below the pour point of the wax can be.
- a supercritical drying, as with the purely inorganic Gels are not required. Nevertheless, it is possible to increase the pore size in the micrometer range adjust. For drying in the supercritical temperature range In addition, pore sizes in the nanometer range possible.
- the molding materials according to the invention can also be inorganic or organic filler materials. These are essentially Under solidification conditions inert inert materials understood.
- inorganic Filler materials are, for example, selected from alumina, titania and / or quartz, each in an amount of 5 to 30% by volume. used can be. Fillers in the context of the present invention further include Fiber materials containing a fiber reinforcement with organic, inorganic or allow carbon and / or SiC fibers at about equal volume fractions.
- thermoplastic or thermosetting plastic particles for example polystyrene and / or organic (polyacrylonitrile) fibers.
- thermoplastic or thermosetting plastic particles for example polystyrene and / or organic (polyacrylonitrile) fibers.
- the molding material Plastic aerogels based on resorcinol / formaldehyde used in the suitable composition and suitable content of basic catalyst at temperatures between 20 and 50 ° C without supercritical drying in one microstructured plastic airgel can be transferred.
- the composition of the sol-gel polymerization is adjustable so that, for example First, a highly viscous liquid is formed, which is on a wax mold can be applied. This is also possible in several operations, so that the layer thickness adapted to the needs of the applications in the foundry can be.
- the temperature of the conversion of the solution into a plastic airgel must be Melting point of the wax can be adjusted. After conversion into one Plastic airgel, the wax can be melted out and at the same time Conversion into a carbon airgel takes place under exclusion of air.
- the gelation temperature Dependent from the composition of the starting solution, the gelation temperature, The density of the resulting porous body can be used to produce molds both as a plastic and as a carbon airgel, on a micrometer scale are superficially smooth and form sharp contours.
- the pyrolysis time is determined by the thickness the mold shell; for example, with a wall thickness of 1 cm, the time is less than 24 hours, usually 10 hours.
- the Kunststoffstöffaerogel was in a cold muffle furnace brought in.
- the oven was heated slowly (3 hours) to 1050 ° C, whereby continuous nitrogen (argon or another inert gas is possible analogously) was blown to avoid oxidation.
- the temperature of 1050 ° C was maintained for 24 hours.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Mold Materials And Core Materials (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Gegenstand der Erfindung ist ein Formstoff für den Fein- und Formguss von Metallen oder Metall-Legierungen umfassend Kunststoff- und/oder Kohlenstoffaerogele sowie ein Verfahren zur Herstellung von entsprechenden Formstoffen.The invention relates to a molding material for the fine and casting of metals or metal alloys comprising plastic and / or carbon aerogels and a process for the preparation of corresponding molding materials.
Feingießen in keramischen Formschalen ist eine Standardgusstechnik, um Präzisionsteile aus verschiedensten Legierungen herzustellen. Die Formen werden in der Regel über das Wachsausschmelzverfahren hergestellt; d. h. ein Wachskörper des zu gießenden Teils wird mit einem Silica-Sol benetzt, in mehreren Schritten besandet, getrocknet und anschließend wird die Formschale gebrannt, wobei das Wachs in einem Autoklaven ausgeschmolzen wird oder verbrennt. Mittels moderner Gussverfahren ist es möglich, konturgerecht und endformnah zu gießen (J.Sprunk, W. Blank, W. Grossmann, E. Hauschild, H. Rieksmeier, H.G. Rosselnbruch; Feinguss für alle Industriebereiche, 2. Auflage, Zentrale für Gussverwendung, Düsseldorf 1987; K.A. Krekeler, Feingießen, in: Handbuch der Fertigungstechnik Bd. 1., Herausgeber G. Speer, Hanser Verlag, München 1981).Investment casting in ceramic shell molds is a standard casting technique for precision parts made of various alloys. The forms are in usually made by the lost wax process; d. H. a wax body of the part to be cast is wetted with a silica sol, in several steps sanded, dried and then the shell mold is fired, wherein the wax is melted out in an autoclave or burned. through Modern casting process, it is possible to cast in the correct shape and close to the final form (J.Sprunk, W. Blank, W. Grossmann, E. Hauschild, H. Rieksmeier, H.G. Rosselnbruch; Investment casting for all industrial sectors, 2nd edition, headquarters for casting use, Dusseldorf 1987; K. A. Krekeler, investment casting, in: Handbuch der Fertigungstechnik Vol. 1, publisher G. Speer, Hanser Verlag, Munich 1981).
Aerogele sind hochporöse, offenporige oxidische Festkörper, die in der Regel über Sol-Gel-Verfahren aus Metallalkoxiden durch Polymerisation, Polykondensation zu Gelen und anschließender überkritischer Trocknung gewonnen werden. Seit einigen Jahren ist es gelungen, auch Kunststoffe über Sol-Gel-Verfahren zu gelieren und durch überkritische Trocknung in einen hochporösen organischen Festkörper umzuwandeln. Pyrolyse solcher Kunststoffaerogele unter Schutzgas oder im Vakuum bei Temperaturen oberhalb 1000 °C wandelt diese in Kohlenstoffaerogele um. Wie die oxidischen Aerogele haben Kunststoff- und Kohlenstoffaerogele extrem geringe effektive Wärmeleitfähigkeiten (Größenordnung einige mW/K/m) und sind erheblich leichter. Die physikalischen und mechanischen Eigenschaften von Kunststoff- und Kohlenstoffaerogelen sind in der Literatur dokumentiert (R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey; J. Non-Cryst. Solids 145 (1992) 90; R.W. Pekala, C.T. Alviso, Mat. Res. Soc. Symp. Proc. 270 (1992) 3; R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke; J.Non-Cryst.Solids (1998)). Sie lassen sich durch die Ausgangsstoffe, ihr Gemisch und das Herstellungsverfahren in weiten Grenzen variieren.Aerogels are highly porous, open-pored oxidic solids, which are usually via sol-gel processes of metal alkoxides by polymerization, polycondensation to gels and subsequent supercritical drying are obtained. For some years, it has also been possible to use plastics via sol-gel processes gelled and by supercritical drying in a highly porous organic Transform solid state. Pyrolysis of such plastic aerogels under inert gas or in vacuum at temperatures above 1000 ° C, this converts into carbon aerogels around. As the oxidic aerogels have plastic and carbon aerogels extremely low effective thermal conductivities (order of magnitude some mW / K / m) and are considerably lighter. The physical and mechanical Properties of plastic and carbon aerogels are in the literature Documented (R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non-Cryst. Solids 145 (1992) 90; R.W. Pekala, C.T. Alviso, Mat. Res. Soc. Symp. Proc. 270 (1992) 3; R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke; J. Non-Cryst. Solids (1998)). They let themselves by the starting materials, their mixture and vary the manufacturing process within wide limits.
DE 197384 66 C1 beschreibt eine Stranggussvorrichtung mit der Bänder eines beliebigen Querschnitts mittels Strang- oder Bandgussverfahren in einem Aerogetformwerkzeug hergestellt werden können. Das Aerogelformwerkzeug kann aus Silica Aerogelen bestehen oder bei arbeiten unter nicht reduzierender Atmosphäre aus Kohlenstoffaerogelen.DE 197384 66 C1 describes a continuous casting apparatus with the bands of a any cross-section by means of strand or strip casting in one Aerogetformwerkzeug can be produced. The airgel mold may consist of silica aerogels or not working under reducing atmosphere of carbon aerogels.
K.E. Höner "Gießereiwesen", Ullmanns Encyklopädie der technischen Chemie, S. 271-287, Bd 12, 4. Auflage, Verlag Chemie Weinheim, 1976 stellt in einem Übersichtsartikel die verschienen Gießereiverfahren zwischen denen mit verlorener Form wozu das Form- und Feingießen gehört und denen mit Dauerform, wozu das Stranggießen gehört dar.K. E. Höner "Foundry Industry", Ullmanns Encyklopädie der technischen Chemie, P. 271-287, Bd 12, 4th edition, Verlag Chemie Weinheim, 1976 in a review of the various foundry processes between those with lost form what the molding and casting belongs and those with Permanent form, to which the continuous casting belongs.
Es ist daher Aufgabe der vorliegenden Erfindung die im Stand der Technik bekannten Verfahren zur Herstellung von Formstoffen für den Fein- und Formguss von Metallen und Metall-Legierungen zu vereinfachen, insbesondere die Verfahrensdauer der Trocknung zu reduzieren.It is therefore an object of the present invention to simplify the known in the prior art process for the production of moldings for the fine and cast molding of metals and metal alloys, in particular to reduce the duration of the drying process.
Die vorgenannte Aufgabe wird in einer ersten Ausführungsform gelöst durch einen Formstoff für den Fein- und Formguss von Metallen oder Metall-Legierungen umfassend hochporöse, offenporige Kunststoff- und/oder Kohlenstoffaerogele, erhältlich durch Sol-Gel-Polymerisation von organischen Kunststoffmaterialien gegebenenfalls gefolgt von teilweise oder vollständiger Pyrolyse des erhaltenen Kunststoffaerogels. The above object is achieved in a first embodiment by a Forming material for the fine and casting of metals or metal alloys comprising highly porous, open-pored plastic and / or carbon aerogels, available by sol-gel polymerization of organic plastic materials optionally followed by partial or complete pyrolysis of the obtained Kunststoffaerogels.
Der erfindungsgemäße Formstoff eignet sich besonders zum Einsatz in Wachsausschmelzverfahren und muß nicht, wie im Stand der Technik bei oxidischen Gelen, in mehreren Schritten aufgebracht werden.The molding material according to the invention is particularly suitable for use in lost wax casting processes and does not have, as in the prior art in oxidic Gels, applied in several steps.
Die so gewonnenen Formen werden nach üblichen Techniken mit Schmelze gefüllt und die Schmelze erstarrt. Bei den üblichen Gusstechniken, erfolgt die Wärmeableitung über die Formschale oder den Formsand. Gießen und Erstarren in Aerogelen bedeutet hingegen, da Kohlenstoffaerogele quasi adiabatisch sind, dass die Wärmeabfuhr einzig über Speiser und Steiger beziehungsweise speziell angebrachte Kühlkörper erfolgt, wozu geschickterweise die Steiger und Speiser selbst verwendet werden können, aber nicht müssen. Auf diese Weise ist eine vollständig gelenkte Erstarrung möglich und das Gefüge kann entsprechend dem erforderlichen Eigenschaftsspektrum angepasst werden. The forms thus obtained are filled with melt by conventional techniques and the melt solidifies. In the usual casting techniques, the heat dissipation takes place over the mold shell or the molding sand. Pour and solidify in On the other hand, aerogels, since carbon aerogels are quasi adiabatic, that the heat dissipation is unique to feeders and risers respectively attached heat sink is done, what cleverly the riser and feeder can be used by yourself, but do not have to. That way is one Fully controlled solidification possible and the structure can be adjusted according to the required property spectrum are adjusted.
Die erfindungsgemäß hergestellten Aerogelformen eignen sich insbesondere für das Gießen von Aluminiumlegierungen (wobei die Gussform praktisch nicht aufgeheizt werden muß, da keine Wärmeableitung durch sie selbst erfolgt). Dies erhöht die Wirtschaftlichkeit, da Energiekosten gesenkt werden können. Magnesium- und Titanlegierungen reagieren mit Kohlenstoff ebenfalls nicht, so dass sich diese Kohlenstoffaerogelformen auch für diese Legierungen unter Schutzgas oder Vakuum als Formstoff anbieten.The airgel forms produced according to the invention are particularly suitable for the casting of aluminum alloys (with the mold practically unheated must be because there is no heat dissipation by themselves). This increases the economy, because energy costs can be reduced. Magnesium- and titanium alloys also do not react with carbon, so that these carbon aerogels also for these alloys under inert gas or Offer vacuum as molding material.
Ein besonderer Vorteil der erfindungsgemäßen Formstoffe besteht darin, dass die Sol-Gel-Bildung bei Raumtemperatur, das heißt insbesondere bei Temperaturen unterhalb des Fließpunktes des Wachses innerhalb weniger Stunden abgeschlossen werden kann. Eine überkritische Trocknung, wie bei den rein anorganischen Gelen ist nicht erforderlich. Dennoch ist es möglich, die Porengröße im Mikrometerbereich einzustellen. Bei Trocknung im überkritischen Temperaturbereich sind darüber hinaus auch Porengrößen im Nanometerbereich möglich.A particular advantage of the molding materials according to the invention is that the Sol-gel formation at room temperature, that is, especially at temperatures completed within a few hours below the pour point of the wax can be. A supercritical drying, as with the purely inorganic Gels are not required. Nevertheless, it is possible to increase the pore size in the micrometer range adjust. For drying in the supercritical temperature range In addition, pore sizes in the nanometer range possible.
Die erfindungsgemäßen Formstoffe können darüber hinaus auch anorganische oder organische Füllstoffmaterialien enthalten. Hierunter werden im wesentlichen bei Erstarrungsbedingungen inerte stabile Materialien verstanden. Anorganische Füllstoffmaterialien sind beispielsweise ausgewählt aus Aluminiumoxid, Titandioxid und/oder Quarz, die jeweils in einer Menge von 5 bis 30 Vol.-%. eingesetzt werden können. Füllstoffe im Sinne der vorliegenden Erfindung umfassen weiterhin Fasermaterialien, die eine Faserverstärkung mit organischen, anorganischen oder Kohlenstoff- und/oder SiC-Fasern bei etwa gleichen Volumenanteilen erlauben.In addition, the molding materials according to the invention can also be inorganic or organic filler materials. These are essentially Under solidification conditions inert inert materials understood. inorganic Filler materials are, for example, selected from alumina, titania and / or quartz, each in an amount of 5 to 30% by volume. used can be. Fillers in the context of the present invention further include Fiber materials containing a fiber reinforcement with organic, inorganic or allow carbon and / or SiC fibers at about equal volume fractions.
In gleicher Weise ist es aber auch möglich, organische Füllstoffe, beispielsweise thermoplastische oder duroplastische Kunststoffpartikel, beispielsweise Polystyrol und/oder organische (Polyacrylnitril) Fasern einzusetzen. Hierbei ist jedoch zu beachten, dass bei der Pyrolyse der Kunststoffgele diese Materialien mit ausgeschmolzen oder verbrannt werden. Mit Hilfe solcher Materialien ist jedoch eine Kontrolle der Schrumpfung während der Pyrolyse möglich. In the same way, it is also possible to use organic fillers, for example thermoplastic or thermosetting plastic particles, for example polystyrene and / or organic (polyacrylonitrile) fibers. However, this is too Note that during pyrolysis of the plastic gels these materials are also melted out or burned. However, with the help of such materials is one Control of shrinkage during pyrolysis possible.
Besonders bevorzugt im Sinne der vorliegenden Erfindung werden für den Formstoff Kunststoffaerogele auf der Basis Resorcin/Formaldehyd eingesetzt, die bei geeigneter Zusammensetzung und geeignetem Gehalt an basischem Katalysator bei Temperaturen zwischen 20 und 50 °C ohne überkritisches Trocknen in ein mikrostrukturiertes Kunststoffaerogel überführt werden können. Durch Auswahl der Zusammensetzung ist die Sol-Gel-Polymerisation so einstellbar, dass beispielsweise zunächst eine hochviskose Flüssigkeit entsteht, die auf eine Wachsform aufgebracht werden kann. Dies ist auch in mehreren Arbeitsgängen möglich, so dass die Schichtdicke den Bedürfnissen der Anwendungen in der Gießerei angepasst werden kann.For the purposes of the present invention, particular preference is given to the molding material Plastic aerogels based on resorcinol / formaldehyde used in the suitable composition and suitable content of basic catalyst at temperatures between 20 and 50 ° C without supercritical drying in one microstructured plastic airgel can be transferred. By selection the composition of the sol-gel polymerization is adjustable so that, for example First, a highly viscous liquid is formed, which is on a wax mold can be applied. This is also possible in several operations, so that the layer thickness adapted to the needs of the applications in the foundry can be.
Somit besteht eine weitere Ausführungsform der vorliegenden Erfindung in einem
Verfahren zur Herstellung von Gussformen für den Fein- und Formguss von Metallen
oder Metall-Legierungen und der Verwendung von hochporösen, offenporigen
Kunststoff- und/oder Kohlenstoffaerogelen, wobei man
Eine alternative Verfahrensweise zur Herstellung der Gussform besteht darin,
dass man
Somit ist es möglich, den Wachsformkörper einfach in einen geeigneten Behälter einzubringen, mit der Ausgangslösung für die Kunststoffaerogele aufzufüllen und dann das Verfahren der Aerogelherstellung durchzuführen.Thus, it is possible to simply place the wax molding in a suitable container to fill up with the starting solution for the plastic aerogels and then carry out the airgel production process.
Auf diese Weise lassen sich analog zum bekannten Block-Mold-Verfahren (das im wesentlichen Gips verwendet) massive, aber leichte quasi-adiabatische Formen herstellen.In this way can be analogous to the known block-mold process (in the essential gypsum used) massive but light quasi-adiabatic forms produce.
Die Temperatur der Umwandlung der Lösung in ein Kunststoffaerogel muß dem Schmelzpunkt des Wachses angepasst werden. Nach Umwandlung in ein Kunststoffaerogel kann das Wachs ausgeschmolzen werden und gleichzeitig dabei unter Luftabschluss die Konversion zu einem Kohlenstoffaerogel erfolgen. Abhängig von der Zusammensetzung der Ausgangslösung, der Gelierungstemperatur, der Dichte des entstehenden porösen Körpers lassen sich Gussformen herstellen, sowohl als Kunststoff- wie auch als Kohlenstoffaerogel, die auf einer Mikrometerskala oberflächlich glatt sind und konturscharf abbilden. Erfindungsgemäß benötigt die Herstellung von Formen bis zum Kunststoffaerogel meist 1 bis 3 Tage, häufig nur bis zu 24 Stunden. Die Pyrolysedauer ist bestimmt durch die Dicke der Gussformschale; bei einer Wanddicke von 1 cm beträgt die Zeit beispielsweise weniger als 24 Stunden, meist 10 Stunden. Im Vergleich zur Herstellung von typischen Feingussschalen unter Einsatz oxidischer Sol-Gel-Prozesse sind die Herstellungszeiten kurz und damit wirtschaftlich. Die Schrumpfung erfolgt in den beiden Prozessschritten immer isotrop und variiert von wenigen Prozent bis 20 % und ist daher beherrschbar. Sie lässt sich durch die Zusammensetzung des Sols, die Trocknungsbedingungen, das Formmaterial und Füllstoffe reduzieren und beeinflussen und ist somit beherrschbar. The temperature of the conversion of the solution into a plastic airgel must be Melting point of the wax can be adjusted. After conversion into one Plastic airgel, the wax can be melted out and at the same time Conversion into a carbon airgel takes place under exclusion of air. Dependent from the composition of the starting solution, the gelation temperature, The density of the resulting porous body can be used to produce molds both as a plastic and as a carbon airgel, on a micrometer scale are superficially smooth and form sharp contours. According to the invention requires the production of molds up to the plastic airgel usually 1 to 3 days, often only up to 24 hours. The pyrolysis time is determined by the thickness the mold shell; for example, with a wall thickness of 1 cm, the time is less than 24 hours, usually 10 hours. Compared to the production of typical investment casting shells using oxidic sol-gel processes are the Manufacturing times short and therefore economical. The shrinkage takes place in the both process steps is always isotropic and varies from a few percent to 20% and is therefore manageable. It can be explained by the composition of the sol, reduce and influence the drying conditions, the molding material and fillers and is therefore manageable.
Beispielhaft sind die jeweiligen Verfahrensschritte zur Herstellung von Kunststoffaerogelformen
wie folgt charakterisiert:
Eine Lösung aus 110 g Resorcin (Merck), 162 g Formaldehyd-Lösung (37 %ig, Merck), 0,075 g Na2CO3 und 750 ml Wasser wurde bei Zimmertemperatur mechanisch gerührt.A solution of 110 g of resorcinol (Merck), 162 g of 37% formaldehyde solution (Merck), 0.075 g of Na 2 CO 3 and 750 ml of water was mechanically stirred at room temperature.
Ein Glasbehälter, in dem sich ein Wachsmodell (mit Stahlplatten beschwert) des Formkörpers befand, wurde mit der Lösung aufgefüllt, bis das Modell vollständig bedeckt war. Der Behälter wurde verschlossen. Innerhalb von zwei Stunden gelierte die Lösung in einem Luftumwälzer (Heraeus) bei 40 °C. Es wurde ein Farbumschlag der klaren Lösung nach ockergelb/hellbraun beobachtet. Die Trocknung des Gels wurde im Luftumwälzer im Verlauf von 24 Stunden erhalten. Anschließend wurde bei einer Temperatur von 60 °C das Wachs ausgeschmolzen.A glass container in which a wax model (weighted with steel plates) of the Shaped body was filled with the solution until the model completely was covered. The container was sealed. Gelled within two hours the solution in an air circulator (Heraeus) at 40 ° C. It was a color change the clear solution after ocher yellow / light brown observed. The drying of the gel was obtained in the air circulator over 24 hours. Subsequently At a temperature of 60 ° C, the wax was melted out.
In einem weiteren Schritt wurde das Kunststöffaerogel in einem kalten Muffelofen eingebracht. Der Ofen wurde langsam (3 Stunden) auf 1050 °C aufgeheizt, wobei kontinuierlich Stickstoff (Argon oder ein anderes Schutzgas ist analog möglich) zur Vermeidung der Oxidation durchgeblasen wurde. Die Temperatur von 1050 °C wurde für 24 Stunden beibehalten.In a further step, the Kunststöffaerogel was in a cold muffle furnace brought in. The oven was heated slowly (3 hours) to 1050 ° C, whereby continuous nitrogen (argon or another inert gas is possible analogously) was blown to avoid oxidation. The temperature of 1050 ° C was maintained for 24 hours.
Anschließend wurde unter stetigem Gasfluss abgekühlt und die Kohlestoffaerogelform entnommen.It was then cooled under steady gas flow and the Kohlestoffaerogelform taken.
Claims (10)
- A molding material for the precision casting and dead-mold casting of metals or metal alloys comprising highly porous, open-pore plastic and/or carbon aerogels obtainable by sol-gel polymerization of organic plastic materials, optionally followed by the partial or complete pyrolysis of the obtained plastic aerogel.
- The molding material according to claim 1, containing inorganic or organic filler materials.
- The molding material according to claim 2, characterized in that said inorganic filler materials are selected from alumina, titanium dioxide and/or quartz, especially in an amount of from 5 to 30% by volume.
- The molding material according to claim 2, characterized in that said filler materials are selected from thermoplastic or thermosetting plastic particles, especially polystyrene.
- The molding material according to claim 2, characterized in that said filler materials comprise organic, inorganic carbon and/or SiC fibers.
- The molding material according to any of claims 1 to 5, comprising a resorcinol/formaldehyde sol-gel and a basic polymerization catalyst, especially ammonium hydroxide and/or sodium carbonate.
- A process for the preparation of casting molds for the precision casting and dead-mold casting of metals or metal alloys using highly porous, open-pore plastic and/or carbon aerogels, wherein:a) a wax mold is wetted with a plastic sol of appropriate composition and a suitable catalyst;b) the sol is transferred to a gel at a temperature below the flow temperature of the wax;b') optionally one or more layers of the sol are applied, which are each transferred to the gel form partially or completely;c) the gel is dried at a temperature below the flow point of the wax; andd) the wax is melted or burned from the solidified gel at a temperature above the flow temperature of the wax.
- A process for the preparation of casting molds for the precision casting and dead-mold casting of metals or metal alloys using highly porous, open-pore plastic and/or carbon aerogels, wherein:a) a wax molded part is inserted into a container;b) the container is filled partially or completely with a plastic sol;c) the sol is transferred to the gel form at a temperature below the flow temperature of the wax;d) the gel is dried at a temperature below the flow temperature of the wax; ande) the wax is melted or burned from the solidified gel at a temperature above the flow temperature of the wax.
- The process according to claim 7 or 8, characterized in that said drying of the gel is performed at a temperature within a range of from 20 to 50°C in the course of less than 24 hours.
- The process according to any of claims 7 to 8, characterized in that the pyrolysis of the solidified gel is performed at a temperature of at least 600 °C, especially at least 1000 °C, within 4 to 24 hours.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19911847A DE19911847A1 (en) | 1999-03-17 | 1999-03-17 | Fine and molded casting in plastic / carbon aerogels |
DE19911847 | 1999-03-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1036610A1 EP1036610A1 (en) | 2000-09-20 |
EP1036610B1 true EP1036610B1 (en) | 2005-08-31 |
Family
ID=7901270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00104214A Expired - Lifetime EP1036610B1 (en) | 1999-03-17 | 2000-03-01 | Investment and mould casting in carbon and organic aerogels |
Country Status (4)
Country | Link |
---|---|
US (2) | US6599953B1 (en) |
EP (1) | EP1036610B1 (en) |
AT (1) | ATE303214T1 (en) |
DE (2) | DE19911847A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104399446A (en) * | 2014-11-06 | 2015-03-11 | 北京化工大学 | A kind of TiO2/RFC composite microsphere-supported photodegradant and preparation method thereof |
CN107498003A (en) * | 2017-08-10 | 2017-12-22 | 合肥市田源精铸有限公司 | A kind of processing method of light wear-resistant steel casting |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19911847A1 (en) * | 1999-03-17 | 2000-09-28 | Deutsch Zentr Luft & Raumfahrt | Fine and molded casting in plastic / carbon aerogels |
DE19939062A1 (en) * | 1999-08-18 | 2001-02-22 | Deutsch Zentr Luft & Raumfahrt | Use of plastic / carbon aerogels as the core material |
US6806299B2 (en) * | 2001-05-18 | 2004-10-19 | The Regents Of The University Of California | Preparation of hydrophobic organic aeorgels |
DE10216403B4 (en) * | 2002-04-12 | 2004-03-18 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Airgel-bound molded materials with high thermal conductivity |
DE10352574A1 (en) * | 2003-11-11 | 2005-06-16 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Filler containing aerogels |
DE102004027382B4 (en) * | 2004-06-04 | 2006-03-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Carbon aerogel sand used as a core material for dead-mold casting to produce cylinder heads and hydraulic lines contains foundry sand and has a specified temperature of thermal decomposition of in the presence of an oxidant |
WO2006010449A2 (en) * | 2004-07-23 | 2006-02-02 | Ceramtec Ag Innovative Ceramic Engineering | Ceramic cores |
US20070089849A1 (en) * | 2005-10-24 | 2007-04-26 | Mcnulty Thomas | Ceramic molds for manufacturing metal casting and methods of manufacturing thereof |
US8851442B2 (en) * | 2008-01-22 | 2014-10-07 | Honeywell International Inc. | Aerogel-bases mold for MEMS fabrication and formation thereof |
DE102008056856A1 (en) * | 2008-11-12 | 2010-05-20 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Foundry cores with improved gutting properties I |
US8293657B2 (en) | 2010-11-05 | 2012-10-23 | Honeywell International Inc. | Sacrificial layers made from aerogel for microelectromechanical systems (MEMS) device fabrication processes |
CN102351506B (en) * | 2011-07-18 | 2013-04-10 | 南京工业大学 | Preparation method of blocky high-temperature-resistant silicon-carbon composite aerogel material |
CN102343285B (en) * | 2011-07-18 | 2013-04-10 | 南京工业大学 | Preparation method of massive silicon-carbon composite aerogel |
JP5997831B2 (en) | 2012-04-23 | 2016-09-28 | ゼネラル・エレクトリック・カンパニイ | Turbine blades with local wall thickness control |
DE102015225227A1 (en) * | 2015-12-15 | 2017-06-22 | Robert Bosch Gmbh | Feeder for castings consisting in particular of cast iron |
DE102016223619A1 (en) * | 2015-12-15 | 2017-06-22 | Robert Bosch Gmbh | Sizing for application to the porous surface of molds and / or cores for metal casting |
WO2018078512A1 (en) * | 2016-10-24 | 2018-05-03 | Blueshift International Materials, Inc. | Fiber-reinforced organic polymer aerogel |
CA3051470A1 (en) | 2017-01-26 | 2018-08-02 | Blueshift International Materials, Inc. | Organic polymer aerogels comprising microstructures |
BG67252B1 (en) * | 2017-06-27 | 2021-02-15 | Е.Миролио ЕАД | Method of obtaining a viscous artificial silk with variable thickness, a product obtained by this method and an installation for the implementation of the method |
CN109675620B (en) * | 2017-10-18 | 2021-07-09 | 中国石油化工股份有限公司 | Cobalt-containing catalyst, preparation method and application thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4873218A (en) * | 1988-05-26 | 1989-10-10 | The United States Department Of Energy | Low density, resorcinol-formaldehyde aerogels |
US5242647A (en) * | 1990-08-23 | 1993-09-07 | Regents Of The University Of California | Method of casting aerogels |
DE19523382C2 (en) * | 1995-06-30 | 2003-04-30 | Jochen Fricke | Carbon aerogels and processes for their manufacture |
WO1997017308A1 (en) * | 1995-11-09 | 1997-05-15 | Aspen Systems, Inc. | Flexible aerogel superinsulation and its manufacture |
WO1997043116A1 (en) * | 1996-05-15 | 1997-11-20 | Hyperion Catalysis International, Inc. | Rigid porous carbon structures, methods of making, methods of using and products containing same |
DE19721600A1 (en) * | 1997-05-23 | 1998-11-26 | Hoechst Ag | Gel materials comprising interpenetrating organic and inorganic networks |
DE19738466C1 (en) * | 1997-09-03 | 1998-12-24 | Deutsch Zentr Luft & Raumfahrt | Continuous casting apparatus |
DE19911847A1 (en) * | 1999-03-17 | 2000-09-28 | Deutsch Zentr Luft & Raumfahrt | Fine and molded casting in plastic / carbon aerogels |
-
1999
- 1999-03-17 DE DE19911847A patent/DE19911847A1/en not_active Ceased
-
2000
- 2000-03-01 AT AT00104214T patent/ATE303214T1/en not_active IP Right Cessation
- 2000-03-01 DE DE50011046T patent/DE50011046D1/en not_active Expired - Lifetime
- 2000-03-01 EP EP00104214A patent/EP1036610B1/en not_active Expired - Lifetime
- 2000-03-17 US US09/527,809 patent/US6599953B1/en not_active Expired - Fee Related
-
2003
- 2003-05-30 US US10/449,794 patent/US6887915B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104399446A (en) * | 2014-11-06 | 2015-03-11 | 北京化工大学 | A kind of TiO2/RFC composite microsphere-supported photodegradant and preparation method thereof |
CN107498003A (en) * | 2017-08-10 | 2017-12-22 | 合肥市田源精铸有限公司 | A kind of processing method of light wear-resistant steel casting |
Also Published As
Publication number | Publication date |
---|---|
EP1036610A1 (en) | 2000-09-20 |
US6599953B1 (en) | 2003-07-29 |
US20030212152A1 (en) | 2003-11-13 |
DE50011046D1 (en) | 2005-10-06 |
US6887915B2 (en) | 2005-05-03 |
DE19911847A1 (en) | 2000-09-28 |
ATE303214T1 (en) | 2005-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1036610B1 (en) | Investment and mould casting in carbon and organic aerogels | |
EP2244870B1 (en) | Production of molded parts for casting purposes | |
DE69008419T2 (en) | Ceramic materials for a casting mold. | |
AU595567B2 (en) | Mold core for investment casting, process for preparing the same and process for preparing mold for investment casting having therewithin said mold core | |
DE1262515B (en) | Thermally insulated molds | |
KR940011096A (en) | Process for producing non-porous carbon foundry sand and cast metal | |
EP1077097B1 (en) | Use of plastic and/or carbon aerogels as core material | |
DE2219163A1 (en) | Investment casting process | |
DE2520993C3 (en) | Refractory mass on the basis of silicic acid anhydride and its use for the production of the lining of a pouring funnel and a method for treating such a lining | |
DE10357539A1 (en) | Production of filler-containing aerogels | |
EP1658242A1 (en) | SIO sb 2 /sb MOLDED BODIES, METHOD FOR PRODUCING THEM AND USE THEREOF | |
DE10216403B4 (en) | Airgel-bound molded materials with high thermal conductivity | |
DE10216464B4 (en) | Silica-bonded core materials, processes for their production and their use | |
EP0143954B1 (en) | Process for manufacturing mould parts according to the cold-box method and moulding apparatus used | |
WO2002064285A2 (en) | Casting mould | |
WO2020058393A1 (en) | Casting core for casting molds and method for the production thereof | |
WO2020058394A1 (en) | Casting core for casting moulds and method for the production of same | |
CH631096A5 (en) | METHOD FOR PRODUCING FIREPROOF SHAPED BODIES. | |
DE3629079A1 (en) | Method for the precision casting of castings in a ceramic shell mould | |
DE19703176C2 (en) | Process for the production of ceramic or powder metallurgical components | |
DE102005053627B4 (en) | Process for the manufacture of ceramic products | |
WO2020058402A1 (en) | Casting core for casting moulds, and method for the production thereof | |
DE2459088C3 (en) | Monolithic mold for precision casting with a lost model | |
DE102005011019A1 (en) | Manufacture of destructible mold core for metal casting entails use of porously designed original form which is produced by means of rapid prototyping method | |
DE1583551C (en) | Manufacturing process of casting molds for the manufacture of precision castings using lost models |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE FR GB IT LI |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20001124 |
|
AKX | Designation fees paid |
Free format text: AT CH DE FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 20041014 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50011046 Country of ref document: DE Date of ref document: 20051006 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: RITSCHER & PARTNER AG |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20051024 |
|
ET | Fr: translation filed | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V. |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V. Free format text: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.# #53175 BONN (DE) -TRANSFER TO- DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.#LINDER HOEHE#51147 KOELN (DE) |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: RITSCHER & PARTNER AG;RESIRAIN 1;8125 ZOLLIKERBERG (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20100325 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100325 Year of fee payment: 11 Ref country code: FR Payment date: 20100331 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20100322 Year of fee payment: 11 Ref country code: GB Payment date: 20100324 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110301 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190215 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190215 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50011046 Country of ref document: DE |