EP1036149A1 - Gewebebehandlungsmittel - Google Patents
GewebebehandlungsmittelInfo
- Publication number
- EP1036149A1 EP1036149A1 EP98958664A EP98958664A EP1036149A1 EP 1036149 A1 EP1036149 A1 EP 1036149A1 EP 98958664 A EP98958664 A EP 98958664A EP 98958664 A EP98958664 A EP 98958664A EP 1036149 A1 EP1036149 A1 EP 1036149A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- units
- group
- mixtures
- formula
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/001—Softening compositions
- C11D3/0015—Softening compositions liquid
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3723—Polyamines or polyalkyleneimines
Definitions
- the present invention relates to a fabric softening composition and more particularly to a method and a composition which reduce the amount of dyes released from colored fabrics upon subsequent wet treatments such as those which occur in a laundry operation.
- the domestic treatment of colored fabric is a problem known in the art to the formulator of laundry compositions. More particularly, the problem of formulating laundry compositions which reduces the amount of dyes released from colored fabrics upon wet treatment is a particular challenge to the formulator. This problem is now even more acute with the trends of consumers to move towards more colored fabrics.
- Solutions may be found for use in the industrial treatments. However, these solutions are not usually transposable to domestic treatments. Indeed, in industrial processes a strict control over parameters such as pH, electrolyte concentration, water hardness, temperature, etc. is possible whereas in a domestic washing machine, such a high level of control is not possible.
- EP 462806 provides the use of a cationic dye fixing agent in domestic treatment which assist in binding the loosely held dye to the fabric.
- the dye fixing agents described in this patent provide the fixation of the dye via electrostatic interactions with the dye and the cellulose fibre. These interactions are by definition reversible, and therefore labile.
- the Applicant has now found that the use of a composition comprising a polyamino-functional polymer and a cellulose reactive dye fixing agent fulfills such a need.
- the reactive dye fixing agents used in the present invention react covalently with cellulose fibers, i.e. form a chemical bond that is more irreversible than mere ionic interactions, thereby providing more longevity to the dye fixative treatment.
- compositions provide an increase performance of the above mentioned benefit after subjecting the treated fabrics with a heating source.
- a further advantage of the invention is that the treated fabrics will thereafter show a reduced tendency in the subsequent wash to release dye. Such benefit is more particularly seen after multi-wash cycles (e.g. 20 wash cycles).
- the present invention relates to a fabric care composition
- a fabric care composition comprising a polyamino-functional polymer and a cellulose reactive dye fixing agent.
- a method for the domestic treatment of a fabric to reduce the amount of dye released from the fabric during wet treatments comprising the step of contacting the fabrics with said composition; and thereafter contacting the treated fabrics with a heating source in a dry medium.
- a fabric care composition with effective and durable dye fixing properties.
- An essential component of the invention is an amino-functional polymer.
- the amino-functional polymer advantageously provides care to the colors of fabrics.
- the amino-functional polymers of the present invention are water-soluble or dispersible, polyamines.
- the amino-functional polymers for use herein have a molecular weight between 200 and 10 ⁇ , preferably between 600 and 20,000, most preferably between 1000 and 10,000.
- These polyamines comprise backbones that can be either linear or cyclic.
- the polyamine backbones can also comprise polyamine branching chains to a greater or lesser degree.
- the polyamine backbones described herein are modified in such a manner that at least one, preferably each nitrogen of the polyamine chain is thereafter described in terms of a unit that is substituted, quatemized, oxidized, or combinations thereof.
- the term "modification" as it relates to the chemical structure of the polyamines is defined as replacing a backbone -NH hydrogen atom by an R' unit (substitution), quatemizing a backbone nitrogen (quatemized) or oxidizing a backbone nitrogen to the N- oxide (oxidized).
- substitution and “substitution” are used interchangably when referring to the process of replacing a hydrogen atom attached to a backbone nitrogen with an R' unit. Quaternization or oxidation may take place in some circumstances without substitution, but substitution is preferably accompanied by oxidation or quaternization of at least one backbone nitrogen.
- linear or non-cyclic polyamine backbones that comprise the amino- functional polymer have the general formula: -' I
- the above backbones prior to optional but preferred subsequent modification comprise primary, secondary and tertiary amine nitrogens connected by R "linking" units.
- primary amine nitrogens comprising the backbone or branching chain once modified are defined as V or Z "terminal" units.
- a primary amine moiety located at the end of the main polyamine backbone or branching chain having the structure :
- H2N-[R]- is modified according to the present invention, it is thereafter defined as a V "terminal" unit, or simply a V unit.
- V terminal
- some or all of the primary amine moieties can remain unmodified subject to the restrictions further described herein below. These unmodified primary amine moieties by virtue of their position in the backbone chain remain “terminal” units.
- a primary amine moiety, located at the end of the main polyamine backbone having the structure: -NH 2 is modified according to the present invention, it is thereafter defined as a Z "terminal" unit, or simply a Z unit. This unit can remain unmodified subject to the restrictions further described herein below.
- secondary amine nitrogens comprising the backbone or branching chain once modified are defined as W "backbone" units.
- W backbone
- the major constituent of the backbones and branching chains of the present invention having the structure:
- [N-R]- is modified according to the present invention, it is thereafter defined as a W "backbone” unit, or simply a W unit.
- W backbone
- some or all of the secondary amine moieties can remain unmodified. These unmodified secondary amine moieties by virtue of their position in the backbone chain remain "backbone” units.
- tertiary amine nitrogens comprising the backbone or branching chain once modified are further referred to as Y "branching" units.
- Y branch point of either the polyamine backbone or other branching chains or rings, having the structure:
- [N-R] ⁇ is modified according to the present invention, it is thereafter defined as a Y "branching" unit, or simply a Y unit.
- some or all or the tertiary amine moieties can remain unmodified. These unmodified tertiary amine moieties by virtue of their position in the backbone chain remain “branching" units.
- the R units associated with the V, W and Y unit nitrogens which serve to connect the polyamine nitrogens, are described herein below.
- the final modified structure of the polyamines of the present invention can be therefore represented by the general formula : V (n+ 1)W m Y n Z for linear amino-functional polymer and by the general formula:
- V(n-k+1)W m YnY'kZ for cyclic amino-functional polymer.
- the polyamine backbone has the formula:
- [R 2 N-R]n-[N-R]m-[N-R] n - therefore comprising no Z terminal unit and having the formula : n-k mYnY'k wherein k is the number of ring forming branching units.
- the polyamine backbones of the present invention comprise no rings.
- a fully non-branched linear modified polyamine according to the present invention has the formula:
- VW m Z that is, n is equal to 0.
- n the lower the ratio of m to n
- m ranges from a minimum value of 2 to 700, preferably 4 to 400, however larger values of m, especially when the value of the index n is very low or nearly 0, are also preferred.
- Each polyamine nitrogen whether primary, secondary or tertiary, once modified according to the present invention, is further defined as being a member of one of three general classes; simple substituted, quatemized or oxidized. Those polyamine nitrogen units not modified are classed into V, W, Y, Y' or Z units depending on whether they are primary, secondary or tertiary nitrogens. That is unmodified primary amine nitrogens are V or Z units, unmodified secondary amine nitrogens are W units or Y' units and unmodified tertiary amine nitrogens are Y units for the purposes of the present invention.
- Modified primary amine moieties are defined as V "terminal" units having one of three forms: a) simple substituted units having the structure:
- R' b quatemized units having the structure: R' x "
- Modified secondary amine moieties are defined as W "backbone" units having one of three forms: a) simple substituted units having the structure:
- modified secondary amine moieties are defined as Y' units having one of three forms: a) simple substituted units having the structure:
- Modified tertiary amine moieties are defined as Y "branching" units having one of three forms: a) unmodified units having the structure: -N-R—
- Certain modified primary amine moieties are defined as Z "terminal" units having one of three forms: a) simple substituted units having the structure:
- a primary amine unit comprising one R' unit in the form of a hydroxyethyl moiety is a V terminal unit having the formula (HOCH2CH2)HN-.
- the Z "terminal” unit derives from a terminal primary amino moiety of the structure -NH2- Non-cyclic polyamine backbones according to the present invention comprise only one Z unit whereas cyclic polyamines can comprise no Z units.
- the Z "terminal” unit can be substituted with any of the R' units described further herein below, except when the Z unit is modified to form an N-oxide. In the case where the Z unit nitrogen is oxidized to an N-oxide, the nitrogen must be modified and therefore R' cannot be a hydrogen.
- the polyamines of the present invention comprise backbone R "linking" units that serve to connect the nitrogen atoms of the backbone.
- R units comprise units that for the purposes of the present invention are referred to as “hydrocarbyl R” units and “oxy R” units.
- the "hydrocarbyl" R units are C2- C-12 alkylene, C4-C12 alkenylene, C3-C12 hydroxyalkylene wherein the hydroxyl moiety may take any position on the R unit chain except the carbon atoms directly connected to the polyamine backbone nitrogens; C4-C12 dihydroxyalkylene wherein the hydroxyl moieties may occupy any two of the carbon atoms of the R unit chain except those carbon atoms directly connected to the polyamine backbone nitrogens; C8-C12 dialkylarylene which for the purpose of the present invention are arylene moieties having two alkyl substituent groups as part of the linking chain.
- a dialkylarylene unit has the formula:
- the unit need not be 1 ,4-substituted, but can also be 1 ,2 or 1 ,3 substituted C2-C12 alkylene, preferably ethylene, 1 ,2-propylene, and mixtures thereof, more preferably ethylene.
- the "oxy" R units comprise -
- R units are selected from the group consisting of C2-C12 alkylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxyalkylene, C8-C12 dialkylarylene, -
- R 1 0 X R1-, -CH2CH(OR2)CH2-, -(CH 2 CH(OH)CH2O) z (RlO) y Rl(OCH 2 CH- (OH)CH2)w.
- R 1 O) x R 5 (OR ) x - more preferred R units are C2-C-12 alkylene, C3-C12 hydroxy-alkyiene, C4-C12 dihydroxyalkylene, -(R 1 O) x R 1 -, -(R10) x R5(OR ) x -, -(CH 2 CH(OH)CH 2 O) Z (R1 O) y R 1 (OCH 2 CH-(OH)CH 2 ) w -, and mixtures thereof, even more preferred R units are C2-C12 alkylene, C3 hydroxyalkylene, and mixtures thereof, most preferred are C2-C6 alkylene.
- R 1 units are C2-C6 alkylene, and mixtures thereof, preferably ethylene.
- R 2 is hydrogen, and -(R 1 O) x B, preferably hydrogen.
- R 3 is C-
- C7-C12 arylalkylene, C7-C12 alkyl substituted aryl, CQ- C12 aryl, and mixtures thereof preferably C1-C12 alkyl, C7-C12 arylalkylene, more preferably C-
- R 3 units serve as part of R' units described herein below.
- R 4 is C-1-C12 alkylene, C4-C12 alkenylene, C8-C12 arylalkylene, C ⁇ -C-io arylene, preferably C-
- R 5 is C-j-C-12 alkylene, C3-C12 hydroxyalkylene, C4-C12 dihydroxyalkylene, C 8 -C 12 dialkylarylene, -C(O)-, -C(O)NHR 6 NHC(O)-, -C(O)(R4) r C(O)-, - R ⁇ (0R1)-, -CH 2 CH(OH)CH2O(RlO)yRlOCH 2 CH(OH)CH2-,
- R6 is C2-C12 alkylene or C6-C-12 arylene.
- the preferred "oxy" R units are further defined in terms of the R 1 , R 2 , and R 5 units.
- Preferred "oxy" R units comprise the preferred R 1 , R 2 , and R 5 units.
- the preferred cotton soil release agents of the present invention comprise at least 50% R 1 units that are ethylene.
- Preferred R 1 , R 2 , and R 5 units are combined with the "oxy" R units to yield the preferred "oxy” R units in the following manner. i) Substituting more preferred R 5 into -(CH2CH2 ⁇ ) x R 5 (OCH2CH2) x - yields -(CH2CH 2 O) x CH2CHOHCH 2 (OCH2CH2) x -. ii) Substituting preferred R and R 2 into -(CH 2 CH(OR 2 )CH 2 O) z -
- R' units are selected from the group consisting of hydrogen, C1-C22 alkyl, C3-C22 alkenyl, C7-C22 arylalkyl, C2-C22 hydroxyalkyl, -(CH2) p CO2M, - (CH 2 ) q SO 3 M, -CH(CH 2 CO 2 M)CO 2 M, -(CH 2 ) p PO 3 M, -(R 1 O) m B, -C(O)R 3 , preferably hydrogen, C2-C22 hydroxyalkylene, benzyl, C1-C22 alkylene, - (R 1 O) m B, -C(O)R3, -(CH 2 ) p C02M, -(CH 2 ) q SO 3 M, -CH(CH 2 CO 2 M)CO 2 M, more preferably C-1-C22 alkylene, -(R 1 O) x B, -C(O)R 3
- R' units do not comprise hydrogen atom when the V, W or Z units are oxidized, that is the nitrogens are N-oxides.
- the backbone chain or branching chains do not comprise units of the following structure:
- R' units do not comprise carbonyl moieties directly bonded to a nitrogen atom when the V, W or Z units are oxidized, that is, the nitrogens are N-oxides.
- the R' unit -C(O)R 3 moiety is not bonded to an N-oxide modified nitrogen, that is, there are no
- B is hydrogen, C ⁇ -C 6 alkyl, -(CH2) q SO3M, -(CH 2 ) p CO2M, -(CH2)q- (CHSO 3 M)CH 2 SO 3 M, -(CH2)q(CHSO 2 M)CH 2 SO3M, -(CH 2 ) p PO 3 M, - PO3M, preferably hydrogen, -(CH2)qSO 3 M, -(CH 2 )q(CHS ⁇ 3M)CH 2 S ⁇ 3M, -(CH2) q -(CHS ⁇ 2M)CH2S ⁇ 3M, more preferably hydrogen or -(CH2) q SO3M.
- (CH2)qSO3Na moieties More than one monovalent cation, (sodium, potassium, etc.) can be combined to satisfy the required chemical charge balance. However, more than one anionic group may be charge balanced by a divalent cation, or more than one mono-valent cation may be necessary to satisfy the charge requirements of a poly-anionic radical.
- a -(CH2)pPO3M moiety substituted with sodium atoms has the formula -
- Divalent cations such as calcium (Ca 2+ ) or magnesium (Mg 2+ ) may be substituted for or combined with other suitable mono-valent water soluble cations.
- Preferred cations are sodium and potassium, more preferred is sodium.
- X is a water soluble anion such as chlorine (Cl _ ), bromine (Br) and iodine (I " ) or X can be any negatively charged radical such as sulfate (SO4 2 -) and methosulfate (CH3SO3-).
- indices have the following values: p has the value from 1 to 6, q has the value from 0 to 6; r has the value 0 or 1 ; w has the value 0 or 1 , x has the value from 1 to 100; y has the value from 0 to 100; z has the value 0 or 1 ; m has the value from 2 to 700, preferably from 4 to 400, n has the value from 0 to 350, preferably from 0 to 200; m + n has the value of at least 5.
- x has a value lying in the range of from 1 to 20, preferably from 1 to 10.
- the preferred amino-functional polymers of the present invention comprise polyamine backbones wherein less than 50% of the R groups comprise "oxy" R units, preferably less than 20% , more preferably less than 5%, most preferably the R units comprise no "oxy" R units.
- the most preferred amino-functional polymers which comprise no "oxy" R units comprise polyamine backbones wherein less than 50% of the R groups comprise more than 3 carbon atoms.
- ethylene, 1 ,2-propylene, and 1 ,3-propylene comprise 3 or less carbon atoms and are the preferred "hydrocarbyl" R units. That is when backbone R units are C2-C12 alkylene, preferred is C2-C3 alkylene, most preferred is ethylene.
- the amino-functional polymers of the present invention comprise modified homogeneous and non-homogeneous polyamine backbones, wherein 100% or less of the -NH units are modified.
- the term "homogeneous polyamine backbone” is defined as a polyamine backbone having R units that are the same (i.e., all ethylene). However, this sameness definition does not exclude polyamines that comprise other extraneous units comprising the polymer backbone which are present due to an artifact of the chosen method of chemical synthesis.
- ethanolamine may be used as an "initiator" in the synthesis of polyethyleneimines, therefore a sample of polyethyleneimine that comprises one hydroxyethyl moiety resulting from the polymerization "initiator” would be considered to comprise a homogeneous polyamine backbone for the purposes of the present invention.
- a polyamine backbone comprising all ethylene R units wherein no branching Y units are present is a homogeneous backbone.
- a polyamine backbone comprising all ethylene R units is a homogeneous backbone regardless of the degree of branching or the number of cyclic branches present.
- non-homogeneous polymer backbone refers to polyamine backbones that are a composite of various R unit lengths and R unit types.
- a non-homogeneous backbone comprises R units that are a mixture of ethylene and 1 ,2- propylene units.
- a mixture of "hydrocarbyl” and “oxy” R units is not necessary to provide a non- homogeneous backbone.
- Preferred amino-functional polymers of the present invention comprise homogeneous polyamine backbones that are totally or partially substituted by polyethyleneoxy moieties, totally or partially quatemized amines, nitrogens totally or partially oxidized to N-oxides, and mixtures thereof.
- polyethyleneoxy moieties totally or partially quatemized amines
- nitrogens totally or partially oxidized to N-oxides, and mixtures thereof.
- backbone amine nitrogens must be modified in the same manner, the choice of modification being left to the specific needs of the formulator.
- the degree of ethoxylation is also determined by the specific requirements of the formulator.
- Preferred amine polymer backbones comprise R units that are C2 alkylene (ethylene) units, also known as polyethylenimines (PEI's).
- Preferred PEI's have at least moderate branching, that is the ratio of m to n is less than 4:1 , however PEI's having a ratio of m to n of 2:1 are most preferred.
- Preferred backbones, prior to modification have the general formula: v * I
- PEI's will have a molecular weight greater than 200 daltons.
- the relative proportions of primary, secondary and tertiary amine units in the polyamine backbone will vary, depending on the manner of preparation.
- Each hydrogen atom attached to each nitrogen atom of the polyamine backbone chain represents a potential site for subsequent substitution, quaternization or oxidation.
- polyamines can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
- a catalyst such as carbon dioxide, sodium bisulfite, sulfuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, etc.
- Specific methods for preparing these polyamine backbones are disclosed in U.S. Patent 2,182,306, Ulrich et al., issued December 5, 1939; U.S. Patent 3,033,746, Mayle et al., issued May 8, 1962; U.S. Patent 2,208,095, Esselmann et al., issued July 16, 1940; U.S. Patent 2,806,839, Crowther, issued September 17, 1957; and U.S. Patent 2,553,696, Wilson, issued May 21 , 1951 ; all herein incorporated by reference. Examples of amino-functional polymers comprising PEI's, are illustrated in
- Formula I depicts an amino-functional polymer comprising a PEI backbone wherein all substitutable nitrogens are modified by replacement of hydrogen with a polyoxyalkyleneoxy unit, -(CH2CH2O)H, having the formula
- Formula II depicts an amino-functional polymer comprising a PEI backbone wherein all substitutable primary amine nitrogens are modified by replacement of hydrogen with a polyoxyalkyleneoxy unit, -(CH2CH2O)2H, the molecule is then modified by subsequent oxidation of all oxidizable primary and secondary nitrogens to N-oxides, said polymer having the formula
- Formula III depicts an amino-functional polymer comprising a PEI backbone wherein all backbone hydrogen atoms are substituted and some backbone amine units are quatemized.
- the substituents are polyoxyalkyleneoxy units, -(CH2CH2O)7H, or methyl groups.
- the modified PEI has the formula
- Formula IV depicts an amino-functional polymer comprising a PEI backbone wherein the backbone nitrogens are modified by substitution (i.e. by - (CH2CH2O)3H or methyl), quatemized, oxidized to N-oxides or combinations thereof.
- the resulting polymer has the formula
- not all nitrogens of a unit class comprise the same modification.
- the present invention allows the formulator to have a portion of the secondary amine nitrogens ethoxylated while having other secondary amine nitrogens oxidized to N-oxides.
- This also applies to the primary amine nitrogens, in that the formulator may choose to modify all or a portion of the primary amine nitrogens with one or more substituents prior to oxidation or quaternization. Any possible combination of R' groups can be substituted on the primary and secondary amine nitrogens, except for the restrictions described herein above.
- amino-functional polymer suitable for use herein are poly(ethyleneimine) with a MW 1200, hydroxyethylated poly(ethyleneimine) from Polysciences, with a MW 2000, and 80% hydroxyethylated poly(ethyleneimine) from Aldrich.
- a typical amount of amino-functional polymer to be employed in the composition of the invention is preferably up to 90% by weight, preferably from 0.01% to 50% active by weight, more preferably from 0.1% to 20% by weight and most preferably from 0.5% to 15% by weight of the composition.
- the other essential component of the invention is a cellulose reactive dye fixing agent.
- Typical levels of such agents are from 0.01% to 50%, preferably from 0.01% to 25%, more preferably from 0.05 to 10% by weight, most preferably from 0.5 to 5% by weight of the composition.
- cellulose reactive dye fixing agent it is meant that the agent reacts with the cellulose fibers upon heat treatment.
- agents suitable for use herein can be defined by the following test procedure, so called cellulose reactivity test measurement.
- Two pieces of bleeding fabrics e.g. 10 x 10 cm of knitted cotton dyed with Direct Red 80
- an aqueous solution of 1% (w/w) of the cellulose reactive dye fixing agent candidate The pH of the solution is as it is obtained at this concentration.
- the swatches are then dried.
- One of the dried swatches as well as an unsoaked swatch (control 1) are passed 10 times trough an ironing calender set on a linen setting.
- a control 2 swatch is also used in this measurement test which is a non- soaked and non-ironed swatch.
- the 4 swatches are washed separately in Launder-o-meter pots under typical conditions with a commercial detergent used at the recommended dosage for VT. hour at 60°C, followed by a thorough rinsing of 4 times 200 ml of cold water and then line dried.
- Delta E is the computed color difference as defined in ASTM D2244, i.e the magnitude and direction of the difference between two psychophysical color stimuli defined by tristimulus values, or by chromaticity coordinates and luminance factor, as computed by means of a specified set of color-difference equations defined in the CIE 1976 CIELAB opponent-color space, the Hunter opponent-color space, the Friele-Mac Adam-Chickering color space or any equivalent color space.
- the candidate is a cellulose reactive dye fixing agent for the purpose of the invention.
- Typical cellulose reactive dye fixing agents are products containing the reactive group of the reactive dye classes selected from halogeno-triazine products, vinyl sulphones compounds, epichlorhydrine derivatives, hydroxyethyiene urea derivatives, formaldehyde condensation products, polycarboxylates, glyoxal and glutaraldehyde derivatives and mixtures thereof.
- Preferred hydroxyethyiene urea derivatives include dimethyloldihydroxyethylene, urea, and dimethyl urea glyoxal.
- Preferred formaldehyde condensation products include the condensation products derived from formaldehyde and a group selected from an amino- group, an imino-group, a phenol group, an urea group, a cyanamide group and an aromatic group.
- Commercially available compounds among this class are Sandofix WE 56 from Clariant, Zetex E from Zeneca and Levogen BF from Bayer.
- Preferred polycarboxylates derivatives include butane tetracarboxilic acid derivatives, citric acid derivatives, polyacrylates and derivatives thereof.
- a most preferred cellulosic reactive dye fixing agents is one of the hydroxyethyiene urea derivatives class commercialized under the tradename of Indosol CR from Clariant. Still other most preferred cellulosic reactive dye fixing agents are commercialized under the tradename Rewin DWR and Rewin WBS from CHT R. Beitlich.
- composition of the invention may also be formulated as a fabric softening composition. Accordingly, when formulated as a softening composition, it will comprises a fabric softening compound.
- Typical levels of incorporation of the softening compound in the softening composition are of from 1% to 80% by weight, preferably from 5% to 75%, more preferably from 15% to 70%, and even more preferably from 19% to 65%, by weight of the composition.
- the fabric softener compound is preferably selected from a cationic, nonionic, amphoteric or anionic fabric softening component.
- Typical of the cationic softening components are the quaternary ammonium compounds or amine precursors thereof as defined hereinafter.
- Preferred quaternary ammonium fabric softening active compound have the formula
- each R unit is independently hydrogen, C-
- R 2 is hydrogen, C1-C4 alkyl, C1-C4 hydroxyalkyl, and mixtures thereof;
- X is an anion which is compatible with fabric softener actives and adjunct ingredients;
- the index m is from 1 to 4, preferably 2;
- the index n is from 1 to 4, preferably 2.
- An example of a preferred fabric softener active is a mixture of quatemized amines having the formula:
- R is preferably methyl;
- R 1 is a linear or branched alkyl or alkenyl chain comprising at least 11 atoms, preferably at least 15 atoms.
- the unit -O2CR 1 represents a fatty acyl unit which is typically derived from a triglyceride source.
- the triglyceride source is preferably derived from tallow, partially hydrogenated tallow, lard, partially hydrogenated lard, vegetable oils and/or partially hydrogenated vegetable oils, such as, canola oil, safflower oil, peanut oil, sunflower oil, corn oil, soybean oil, tall oil, rice bran oil, etc. and mixtures of these oils.
- the preferred fabric softening actives of the present invention are the Diester and/or Diamide Quaternary Ammonium (DEQA) compounds, the diesters and diamides having the formula: +
- DEQA Diester and/or Diamide Quaternary Ammonium
- R is preferably methyl, Q and R 1 are as defined herein before; followed by quaternization to the final softener active.
- Non-limiting examples of preferred amines which are used to form the DEQA fabric softening actives according to the present invention include methyl bis(2-hydroxyethyl)amine having the formula:
- the counterion, ⁇ ( ⁇ ) above can be any softener-compatible anion, preferably the anion of a strong acid, for example, chloride, bromide, methylsulfate, ethylsulfate, sulfate, nitrate and the like, more preferably chloride or methyl sulfate.
- the anion can also, but less preferably, carry a double charge in which case ⁇ ( " ) represents half a group.
- Tallow and canola oil are convenient and inexpensive sources of fatty acyl units which are suitable for use in the present invention as R1 units.
- the following are non-limiting examples of quaternary ammonium compounds suitable for use in the compositions of the present invention.
- the term "tallowyl” as used herein below indicates the R 1 unit is derived from a tallow triglyceride source and is a mixture of fatty acyl units.
- canolyl refers to a mixture of fatty acyl units derived from canola oil.
- N,N-di(2-tallowyloxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride N,N-di(2-canolyloxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride
- quaternay ammoniun softening compounds are methylbis(tallowamidoethyl)(2-hydroxyethyl)ammonium methylsulfate and methylbis(hydrogenated tallowamidoethyl)(2-hydroxyethyl)ammonium methylsulfate; these materials are available from Witco Chemical Company under the trade names Varisoft® 222 and Varisoft® 110, respectively.
- N,N-di(tailowoyl-oxy-ethyl)-N,N-dimethyl ammonium chloride where the tallow chains are at least partially unsaturated.
- the level of unsaturation contained within the tallow, canola, or other fatty acyl unit chain can be measured by the Iodine Value (IV) of the corresponding fatty acid, which in the present case should preferably be in the range of from 5 to 100 with two categories of compounds being distinguished, having a IV below or above 25.
- IV Iodine Value
- R units are preferably methyl, however, suitable fabric softener actives are described by replacing the term "methyl” in the above examples in Table II with the units "ethyl, ethoxy, propyl, propoxy, isopropyl, butyl, isobutyl and t-butyl.
- the counter ion, X in the examples of Table II can be suitably replaced by bromide, methylsulfate, formate, sulfate, nitrate, and mixtures thereof.
- the anion, X is merely present as a counterion of the positively charged quaternary ammonium compounds. The scope of this invention is not considered limited to any particular anion.
- the pH of the compositions herein is an important parameter of the present invention. Indeed, it influences the stability of the quaternary ammonium or amine precursors compounds, especially in prolonged storage conditions.
- the pH as defined in the present context, is measured in the neat compositions at 20 °C. While these compositions are operable at pH of less than about 6.0, for optimum hydrolytic stability of these compositions, the neat pH, measured in the above-mentioned conditions, must preferably be in the range of from about 2.0 to about 5, preferably in the range of 2.5 to 4.5, preferably about 2.5 to about 3.5.
- the pH of these compositions herein can be regulated by the addition of a Bronsted acid.
- suitable acids include the inorganic mineral acids, carboxylic acids, in particular the low molecular weight (C1-C5) carboxylic acids, and alkylsulfonic acids.
- suitable inorganic acids include HCI, H2SO4, HNO3 and H3PO4.
- Suitable organic acids include formic, acetic, citric, methylsulfonic and ethylsulfonic acid.
- Preferred acids are citric, hydrochloric, phosphoric, formic, methylsulfonic acid, and benzoic acids.
- the diester when specified, it will include the monoester that is normally present in manufacture. For softening, under no/low detergent carry-over laundry conditions the percentage of monoester should be as low as possible, preferably no more than about 2.5%. However, under high detergent carry-over conditions, some monoester is preferred.
- the overall ratios of diester to monoester are from about 100:1 to about 2:1 , preferably from about 50:1 to about 5:1 , more preferably from about 13:1 to about 8:1. Under high detergent carry-over conditions, the di/monoester ratio is preferably about 11 :1.
- the level of monoester present can be controlled in the manufacturing of the softener compound.
- Mixtures of actives of formula (1) and (2) may also be prepared.
- quaternary ammonium fabric softening compounds for use herein are cationic nitrogenous salts having two or more long chain acyclic aliphatic C8-C22 hydrocarbon groups or one said group and an arylalkyl group which can be used either alone or as part of a mixture are selected from the group consisting of:
- R8_ _R5 A ' wherein R 4 is an acyclic aliphatic C8-C22 hydrocarbon group, R 5 is a C1-C4 saturated alkyl or hydroxyalkyl group, R 8 is selected from the group consisting of R 4 and R 5 groups, and A- is an anion defined as above;
- Examples of the above class cationic nitrogenous salts are the well-known dialkyldi methylammonium salts such as ditallowdimethylammonium chloride, ditallowdimethylammonium methylsulfate, di(hydrogenatedtallow)dimethylammonium chloride, distearyldimethylammonium chloride, dibehenyldimethylammonium chloride. Di(hydrogenatedtallow)di methylammonium chloride and ditallowdimethylammonium chloride are preferred.
- dialkyldimethyl ammonium salts examples include di(hydrogenatedtallow)dimethylammonium chloride (trade name Adogen® 442), ditallowdimethylammonium chloride (trade name Adogen® 470, Praepagen® 3445), distearyl dimethylammonium chloride (trade name Arosurf® TA-100), all available from Witco Chemical Company.
- Dibehenyldimethylammonium chloride is sold under the trade name Kemamine Q-2802C by Humko Chemical Division of Witco Chemical Corporation.
- Dimethylstearylbenzyl ammonium chloride is sold under the trade names Varisoft® SDC by Witco Chemical Company and Ammonyx® 490 by Onyx Chemical Company.
- Suitable amine fabric softening compounds for use herein which may be in amine form or cationic form are selected from: (i)- Reaction products of higher fatty acids with a polyamine selected from the group consisting of hydroxyalkylalkylenediamines and dialkylenetriamines and mixtures thereof. These reaction products are mixtures of several compounds in view of the multi-functional structure of the polyamines.
- the preferred Component (i) is a nitrogenous compound selected from the group consisting of the reaction product mixtures or some selected components of the mixtures.
- R 7 is an acyclic aliphatic C-15-C2 hydrocarbon group and R 8 is a divalent C-1-C3 alkylene group.
- compositions (i) can also be first dispersed in a Bronsted acid dispersing aid having a pKa value of not greater than about 4; provided that the pH of the final composition is not greater than about 6.
- a Bronsted acid dispersing aid having a pKa value of not greater than about 4; provided that the pH of the final composition is not greater than about 6.
- Some preferred dispersing aids are hydrochloric acid, phosphoric acid, or methylsulfonic acid.
- Both N,N"-ditallowalkoyldiethylenetriamine and 1-tallow(amidoethyl)-2- tallowimidazoline are reaction products of tallow fatty acids and diethylenetriamine, and are precursors of the cationic fabric softening agent methyl-1-tallowamidoethyl-2-tallowimidazolinium methylsulfate (see
- N,N"- ditallow alkoyldiethylenetriamine and 1-tallowamidoethyl-2-tallowimidazoline can be obtained from Witco Chemical Company as experimental chemicals.
- Methyl-1-taliowamidoethyl-2-tallowimidazolinium methylsulfate is sold by Witco Chemical Company under the tradename Varisoft® 475.
- each R 2 is a C ⁇ . ⁇ alkylene group, preferably an ethylene group; and G is an oxygen atom or an -NR- group; and each R, R 1 , R 2 and R have the definitions given above and A- has the definitions given above for
- Compound (ii) is 1-oleyiamidoethyl-2-oleylimidazoiinium chloride wherein R 1 is an acyclic aliphatic C15-C17 hydrocarbon group, R 2 is an ethylene group, G is a NH group, R 5 is a methyl group and A- is a chloride anion.
- lii)- softener having the formula:
- R, R 1 , R 2 , and A- are defined as above.
- Compound (iii) is the compound having the formula: wherein R1 is derived from oleic acid
- softening active can also encompass mixed softening active agents.
- DEQA diester or diamido quaternary ammonium fabric softening active compound
- Fully formulated fabric softening compositions may contain, in addition to the hereinbefore described components, one or more of the following ingredients.
- the liquid carrier employed in the instant compositions is preferably at least primarily water due to its low cost, relative availability, safety, and environmental compatibility.
- the level of water in the liquid carrier is preferably at least about 50%, most preferably at least about 60%, by weight of the carrier.
- Mixtures of water and low molecular weight, e.g., ⁇ about 200, organic solvent, e.g., lower alcohols such as ethanol, propanol, isopropanol or butanol are useful as the carrier liquid.
- Low molecular weight alcohols include monohydric, dihydric (glycol, etc.) trihydric (glycerol, etc.), and higher polyhydric (polyols) alcohols.
- compositions of the present invention may comprise one or more solvents which provide increased ease of formulation.
- ease of formulation solvents are all disclosed in WO 97/03169. This is particularly the case when formulating liquid, clear fabric softening compositions.
- the ease of formulation solvent system preferably comprises less than about 40%, preferably from about 10% to about 35%, more preferably from about 12% to about 25%, and even more preferably from about 14% to about 20%, by weight of the composition.
- the ease of formulation solvent is selected to minimize solvent odor impact in the composition and to provide a low viscosity to the final composition.
- isopropyl alcohol is not very effective and has a strong odor.
- n-Propyl alcohol is more effective, but also has a distinct odor.
- butyl alcohols also have odors but can be used for effective clarity/stability, especially when used as part of a ease of formulation solvent system to minimize their odor.
- the alcohols are also selected for optimum low temperature stability, that is they are able to form compositions that are liquid with acceptable low viscosities and translucent, preferably clear, down to about 40°F (about 4.4°C) and are able to recover after storage down to about 20°F (about 6.7°C).
- Suitable solvents can be selected based upon their octanol/water partition coefficient (P) as defined in WO 97/03169.
- the ease of formulation solvents herein are selected from those having a ClogP of from about 0.15 to about 0.64, preferably from about 0.25 to about 0.62, and more preferably from about 0.40 to about 0.60, said ease of formulation solvent preferably being at least somewhat asymmetric, and preferably having a melting, or solidification, point that allows it to be liquid at, or near room temperature. Solvents that have a low molecular weight and are biodegradable are also desirable for some purposes.
- compositions that have been diluted to the concentration used in the rinse.
- These dilute compositions appear to have dispersions of fabric softener that exhibit a more uni-lamellar appearance than conventional fabric softener compositions. The closer to uni-lamellar the appearance, the better the compositions seem to perform.
- These compositions provide surprisingly good fabric softening as compared to similar compositions prepared in the conventional way with the same fabric softener active.
- Particularly preferred ease of formulation solvents include hexanediols such as 1 ,2-Hexanediol and 2-Ethyl-1 ,3-hexanediol and pentanediols such as 2,2,4-Trimethyl-1 ,3- pentanediol.
- compositions containing both saturated and unsaturated diester quaternary ammonium compounds can be prepared that are stable without the addition of concentration aids.
- the compositions of the present invention may require organic and/or inorganic concentration aids to go to even higher concentrations and/or to meet higher stability standards depending on the other ingredients.
- concentration aids which typically can be viscosity modifiers may be needed, or preferred, for ensuring stability under extreme conditions when particular softener active levels are used.
- the surfactant concentration aids are typically selected from the group consisting of (1) single long chain alkyl cationic surfactants; (2) nonionic surfactants; (3) amine oxides; (4) fatty acids; and (5) mixtures thereof. These aids are described in WO 94/20597, specifically on page 14, line 12 to page 20, line 12, which is herein incorporated by reference.
- the total level is from 2% to 25%, preferably from 3% to 17%, more preferably from 4% to 15%, and even more preferably from 5% to 13% by weight of the composition.
- These materials can either be added as part of the active softener raw material, (I), e.g., the mono-long chain alkyl cationic surfactant and/or the fatty acid which are reactants used to form the biodegradable fabric softener active as discussed hereinbefore, or added as a separate component.
- the total level of dispersibility aid includes any amount that may be present as part of component (I).
- Inorganic viscosity/dispersibility control agents which can also act like or augment the effect of the surfactant concentration aids, include water- soluble, ionizable salts which can also optionally be incorporated into the compositions of the present invention.
- ionizable salts can be used. Examples of suitable salts are the halides of the Group IA and IIA metals of the Periodic Table of the Elements, e.g., calcium chloride, magnesium chloride, sodium chloride, potassium bromide, and lithium chloride.
- the ionizable salts are particularly useful during the process of mixing the ingredients to make the compositions herein, and later to obtain the desired viscosity.
- the amount of ionizable salts used depends on the amount of active ingredients used in the compositions and can be adjusted according to the desires of the formulator. Typical levels of salts used to control the composition viscosity are from about 20 to about 20,000 parts per million (ppm), preferably from about 20 to about 11 ,000 ppm, by weight of the composition.
- Alkylene polyammonium salts can be incorporated into the composition to give viscosity control in addition to or in place of the water-soluble, ionizable salts above.
- these agents can act as scavengers, forming ion pairs with anionic detergent carried over from the main wash, in the rinse, and on the fabrics, and may improve softness performance. These agents may stabilize the viscosity over a broader range of temperature, especially at low temperatures, compared to the inorganic electrolytes.
- Specific examples of alkylene polyammonium salts include l-lysine monohydrochloride and 1 ,5-diammonium 2-methyl pentane dihydrochloride.
- Stabilizers can be present in the compositions of the present invention.
- the term "stabilizer,” as used herein, includes antioxidants and reductive agents. These agents are present at a level of from 0% to about 2%, preferably from about 0.01 % to about 0.2%, more preferably from about 0.035% to about 0.1% for antioxidants, and more preferably from about 0.01 % to about 0.2% for reductive agents. These assure good odor stability under long term storage conditions for the compositions and compounds stored in molten form.
- the use of antioxidants and reductive agent stabilizers is especially critical for low scent products (low perfume).
- antioxidants examples include a mixture of ascorbic acid, ascorbic palmitate, propyl gallate, available from Eastman Chemical Products, Inc., under the trade names Tenox® PG and Tenox S-1 ; a mixture of BHT (butylated hydroxytoluene), BHA (butylated hydroxyanisole), propyl gallate, and citric acid, available from Eastman Chemical Products, Inc., under the trade name Tenox-6; butylated hydroxytoluene, available from UOP Process Division under the trade name Sustane® BHT; tertiary butylhydroquinone, Eastman Chemical Products, Inc., as Tenox TBHQ; natural tocopherols, Eastman Chemical Products, Inc., as Tenox GT-1/GT-2; and butylated hydroxyanisole, Eastman Chemical Products, Inc., as BHA; long chain esters (C8-C22) of gallic acid, e.g., dodecyl gallate, available from Eastman Chemical Products, Inc.
- Irganox® 1035 41484-35-9 Thiodiethyiene bis(3,5-di-tert-butyl-4- hydroxyhydrocinnamate
- Irganox® 1425 65140-91-2 Calcium bis(monoethyl(3,5-di-tert-butyl-4- hydroxybenzyl)phosphonate)
- reductive agents examples include sodium borohydride, hypophosphorous acid, Irgafos® 168, and mixtures thereof.
- Soil Release agents are desirably used in fabric softening compositions of the instant invention. Any polymeric soil release agent known to those skilled in the art can optionally be employed in the compositions of this invention. Polymeric soil release agents are characterized by having both hydrophiiic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophiiic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
- soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1 % to about 5%, preferably from about 0.2% to about 3.0%.
- soil release agents include the METOLOSE SM100, METOLOSE SM200 manufactured by Shin-etsu Kagaku Kogyo K.K., SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (Germany), ZELCON 5126 (from Dupont) and MILEASE T (from ICI).
- bactericides used in the compositions of this invention include glutaraldehyde, formaldehyde, 2-bromo-2-nitro-propane-1 ,3-diol sold by Inolex Chemicals, located in Philadelphia, Pennsylvania, under the trade name Bronopol®, and a mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one sold by Rohm and Haas Company under the trade name Kathon 1 to 1 ,000 ppm by weight of the agent.
- the present invention can contain a perfume. Suitable perfumes are disclosed in U.S. Pat. 5,500,138, said patent being incorporated herein by reference.
- perfume includes fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants), artificial (i.e., a mixture of different nature oils or oil constituents) and synthetic (i.e., synthetically produced) odoriferous substances.
- natural i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants
- artificial i.e., a mixture of different nature oils or oil constituents
- synthetic i.e., synthetically produced
- perfumes are complex mixtures of a plurality of organic compounds.
- the range of the natural raw substances can embrace not only readily- volatile, but also moderately-volatile and slightly-volatile components and that of the synthetics can include representatives from practically all classes of fragrant substances, as will be evident from the following illustrative compilation: natural products, such as tree moss absolute, basil oil, citrus fruit oils (such as bergamot oil, mandarin oil, etc.), mastix absolute, myrtle oil, palmarosa oil, patchouli oil, petitgrain oil Paraguay, wormwood oil, alcohols, such as farnesol, geraniol, linalool, nerol, phenylethyl alcohol, rhodinol, cinnamic alcohol, aldehydes, such as citral, HelionalTM, alpha- hexyi-cinnamaldehyde, hydroxycitronellal, LilialTM (p-tert-butyl-alpha - methyldihydrocinnamaldehyde
- any conventional fragrant acetal or ketal known in the art can be added to the present composition as an optional component of the conventionally formulated perfume (c).
- Such conventional fragrant acetals and ketals include the well-known methyl and ethyl acetals and ketals, as well as acetals or ketals based on benzaldehyde, those comprising phenylethyl moieties, or more recently developed specialties such as those described in a United States Patent entitled "Acetals and Ketals of Oxo-Tetralins and Oxo-lndanes, see U.S. Pat. No. 5 ,084,440, issued January 28, 1992, assigned to Givaudan Corp.
- perfume compositions for fully-formulated fabric softening compositions include the enol ethers of alkyl-substituted oxo-tetralins and oxo-indanes as described in U.S. Pat. 5,332,725, July 26, 1994, assigned to Givaudan; or Schiff Bases as described in U.S. Pat. 5,264,615, December 9, 1991 , assigned to Givaudan.
- the perfumes useful in the present invention compositions are substantially free of halogenated materials and nitromusks.
- Perfume can be present at a level of from 0% to 10%, preferably from 0.1% to 5%, and more preferably from 0.2% to 3%, by weight of the finished composition.
- Fabric softener compositions of the present invention provide improved fabric perfume deposition.
- compositions and processes herein can optionally employ one or more enzymes such as lipases, proteases, cellulase, amylases and peroxidases.
- a preferred enzyme for use herein is a cellulase enzyme. Indeed, this type of enzyme will further provide a color care benefit to the treated fabric.
- Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5. U.S.
- 4,435,307 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander. Suitable cellulases are also disclosed in GB-A- 2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. CAREZYME® and CELLUZYME® (Novo) are especially useful.
- compositions herein will typically comprise from 0.001% to 5%, preferably 0.01 %-1 % by weight of a commercial enzyme preparation.
- activity units are preferred (e.g. CEVU or cellulase Equivalent Viscosity Units).
- compositions of the present invention can contain cellulase enzymes at a level equivalent to an activity from 0.5 to 1000 CEVU/gram of composition.
- Cellulase enzyme preparations used for the purpose of formulating the compositions of this invention typically have an activity comprised between 1 ,000 and 10,000 CEVU/gram in liquid form, around 1 ,000 CEVU/gram in solid form.
- the present invention can include optional components conventionally used in textile treatment compositions, for example: brighteners, colorants; surfactants; anti-shrinkage agents; fabric crisping agents; spotting agents; germicides; fungicides; anti-oxidants such as butylated hydroxy toluene, anti-corrosion agents, antifoam agents, and the like.
- the present invention can also include other compatible ingredients, including those as disclosed in WO96/02625, WO96/21714, and WO96/21715, and dispersible polyolefin such as Velustrol® as disclosed in co-pending application PCT/US 97/01644, and the like.
- the present invention can also contain optional chelating agents.
- the fabric care composition can take a variety of physical forms including liquid such as aqueous or non-aqueous compositions and solid forms such as solid particulate forms.
- compositions may be applied onto a substrate such as a dryer sheet product, used as a rinse added product, or as a spray or foam product. Accordingly, in another aspect of the invention, there is provided a method for providing care to the color of fabrics which comprises the steps of contacting the fabrics with a composition of the invention.
- a method for the domestic treatment of a fabric to reduce the amount of dye released from the fabric during wet treatments comprising the step of: a)-contacting the fabrics with a composition of the invention; b)- thereafter subjecting the treated fabrics to a heating source in a dry medium.
- the contacting of the fabrics with a composition of the invention occurs during the rinse cycle of a washing process.
- the fabric care composition is a fabric softening composition.
- the resulting fabric softening composition is as described herein before.
- Preferred heating source for use herein are those in which a temperature of at least 60°C, more preferably at least 80°C is used, such as those commonly known in domestic processes, e.g. in tumble drying processes, ironing processes or even combination of the above processes.
- Dry medium is an important feature of the method aspect of the invention.
- the use of the heating source in an aqueous medium would not provide sufficient covalent linkage of the cellulose reactive dye fixing agent with the dye. It has been found that preferably for the linkage to occur, the presence of water is to be reduced to a minimum, that is to less than the moisture regain content of the fabric being treated.
- the moisture regain content is defined as in D2654-89a providing Standard Test Methods for Moisture in Textiles, page 724-733.
- the value for the moisture regain content is specific to the relative humidity, ambient temperature and type of fabric. In varying at least one of these characteristics, the moisture regain content value will also vary.
- what is preferred for the purpose of the invention is that the content of water in the fabric is below its moisture regain content for a good chemical linkage to take place. Reducing the amount of water on the fabrics to less than the moisture regain content is easily achieved by drying the fabrics in a tumble dryer and/or ironing these dried fabrics.
- the fabric softening composition can conveniently be made according to well known processes to the skilled person.
- An exemplary disclosure is given in EP-A-0,668,902.
- DEQA Di-(taliowyl-oxy-ethyl) dimethyl ammonium chloride DOEQA Di-(oleyloxyethyl) dimethyl ammonium methylsulfate
- DTDMAC Ditallow dimethylammonium chloride
- DHEQA Di-(soft-tallowyi-oxy-ethyl) hydroxyethyl methyl ammonium methylsulfate
- Glycosperse S-20 Polyethoxylated sorbitan monostearate available from Lonza
- PEI 1800 E1 Ethoxylated polyethylene imine (MW 1800, at 50% active) as synthesised in Synthesis example 1
- PEI 1800 E3 Ethoxylated polyethylene imine (MW 1800, at 50% active) as synthesised as per Synthesis example 1
- PEI 1800 E7 AO Amine oxide of ethoxylated polyethylene imine (MW 1800, at
- Dye Fix 1 Cellulose reactive dye fixing agent available under the tradename Indosol CR from Clariant Dye Fix 2 Cellulose reactive dye fixing agent available under the tradename Rewin WBS from CHT R. Beitlich
- Nai2(A102SiO2) 2- 27H2O having a primary particle size in the range from 0.1 to 10 micrometers
- Citric acid Anhydrous citric acid Carbonate
- Anhydrous sodium carbonate with a particle size between 200 ⁇ m and 900 ⁇ m
- Lipoiase Lipolytic enzyme of activity 10OkLU/g all sold by NOVO Industries A/S and of activity mentioned above unless otherwise specified
- Step A)-The ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid.
- a -20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.
- PEI polyethyleneimine
- the autoclave is then sealed and purged of air (by applying vacuum to minus 28" Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure).
- the autoclave contents are heated to 130 °C while applying vacuum.
- the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105 °C.
- Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate.
- the ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm.
- the temperature is maintained between 100 and 110 °C while the total pressure is allowed to gradually increase during the course of the reaction.
- the temperature is increased to 110 °C and the autoclave is allowed to stir for an additional hour. At this point, vacuum is applied to remove any residual unreacted ethylene oxide.
- Step A and B If a PEI 1800 E7 is desired, the following step of catalyst addition will be included between Step A and B.
- Vacuum is continuously applied while the autoclave is cooled to about 50 °C while introducing 376 g of a 25% sodium methoxide in methanol solution (1.74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
- the methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 130 °C.
- a device is used to monitor the power consumed by the agitator.
- the agitator power is monitored along with the temperature and pressure. Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed.
- the mixture is further heated and agitated under vacuum for an additional 30 minutes.
- Vacuum is removed and the autoclave is cooled to 105 °C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure.
- the autoclave is charged to 200 psia with nitrogen.
- Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100 and 110 °C and limiting any temperature increases due to reaction exotherm.
- 4500 g of ethylene oxide resulting in a total of 7 moles of ethylene oxide per mole of PEI nitrogen function
- the temperature is increased to 110 °C and the mixture stirred for an additional hour.
- reaction mixture is then collected in nitrogen purged containers and eventually transferred into a 22 L three neck round bottomed flask equipped with heating and agitation.
- the strong alkali catalyst is neutralized by adding 167 g methanesulfonic acid (1.74 moles).
- PEI 1800 E2, PEI 1800 E3, PEI 1800 E15 and PEI 1800 E20 can be prepared by the above method by adjusting the reaction time and the relative amount of ethylene oxide used in the reaction.
- Synthesis Example 2 -4.7% Quaternization of PEI 1800 E7 To a 500ml erlenmeyer flask equipped with a magnetic stirring bar is added poly(ethyleneimine), MW 1800 ethoxylated to a degree of 7 (224g, 0.637 mol nitrogen, prepared as in Synthesis Example 1) and acetonitrile (Baker, 150g, 3.65 mol).
- Dimethyl sulfate (Aldrich, 3.8g, 0.030 mol) is added all at once to the rapidly stirring solution, which is then stoppered and stirred at room temperature overnight.
- the acetonitrile is evaporated on the rotary evaporator at ⁇ 60°C, followed by a Kugelrohr apparatus (Aldrich) at ⁇ 80°C to afford ⁇ 220g of the desired material as a dark brown viscous liquid.
- a 13C-NMR (D2O) spectrum shows the absence of a peak at ⁇ 58ppm corresponding to dimethyl sulfate.
- a 1 H-NMR (D2O) spectrum shows the partial shifting of the peak at 2.5ppm (methylenes attached to unquaternized nitrogens) to ⁇ 3.0ppm.
- a 1 H-NMR (D2O) spectrum shows the total shifting of the methylene peaks at 2.5-3.0ppm to ⁇ 3.5ppm.
- To the solution is added ⁇ 5g of 0.5% Pd on alumina pellets, and the solution is allowed to stand at room temperature for ⁇ 3 days.
- Peroxide indicator paper shows that no peroxide is left in the system. The material is stored as a 46.5% solution in water.
- polyethyleneimine having a molecular weight of 1800 and ethoxylated to a degree of about 7 ethoxy groups per nitrogen (PEI-1800, E7) (209 g,
- Step A)-The ethoxylation is conducted in a 2 gallon stirred stainless steel autoclave equipped for temperature measurement and control, pressure measurement, vacuum and inert gas purging, sampling, and for introduction of ethylene oxide as a liquid.
- a -20 lb. net cylinder of ethylene oxide (ARC) is set up to deliver ethylene oxide as a liquid by a pump to the autoclave with the cylinder placed on a scale so that the weight change of the cylinder could be monitored.
- PEI polyethyleneimine
- the autoclave is then sealed and purged of air (by applying vacuum to minus 28" Hg followed by pressurization with nitrogen to 250 psia, then venting to atmospheric pressure).
- the autoclave contents are heated to 130 °C while applying vacuum.
- the autoclave is charged with nitrogen to about 250 psia while cooling the autoclave to about 105 °C.
- Ethylene oxide is then added to the autoclave incrementally over time while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate.
- the ethylene oxide pump is turned off and cooling is applied to limit any temperature increase resulting from any reaction exotherm.
- the temperature is maintained between 100 and 110 °C while the total pressure is allowed to gradually increase during the course of the reaction.
- the temperature is increased to 110 °C and the autoclave is allowed to stir for an additional hour.
- vacuum is applied to remove any residual unreacted ethylene oxide.
- Step B)- The reaction mixture is then deodorized by passing about 100 cu. ft. of inert gas (argon or nitrogen) through a gas dispersion frit and through the reaction mixture while agitating and heating the mixture to 130 °C.
- inert gas argon or nitrogen
- the final reaction product is cooled slightly and collected in glass containers purged with nitrogen.
- Step A If a PEI 1200 E7 is desired, the following step of catalyst addition will be included between Step A and B.
- Vacuum is continuously applied while the autoclave is cooled to about 50 °C while introducing 376 g of a 25% sodium methoxide in methanol solution (1.74 moles, to achieve a 10% catalyst loading based upon PEI nitrogen functions).
- the methoxide solution is sucked into the autoclave under vacuum and then the autoclave temperature controller setpoint is increased to 130 °C.
- a device is used to monitor the power consumed by the agitator.
- the agitator power is monitored along with the temperature and pressure. Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1 hour indicating that most of the methanol has been removed.
- the mixture is further heated and agitated under vacuum for an additional 30 minutes.
- Vacuum is removed and the autoclave is cooled to 105 °C while it is being charged with nitrogen to 250 psia and then vented to ambient pressure.
- the autoclave is charged to 200 psia with nitrogen.
- Ethylene oxide is again added to the autoclave incrementally as before while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 100 and 110 °C and limiting any temperature increases due to reaction exotherm.
- 4500 g of ethylene oxide resulting in a total of 7 moles of ethylene oxide per mole of PEI nitrogen function
- the temperature is increased to 110 °C and the mixture stirred for an additional hour.
- reaction mixture is then collected in nitrogen purged containers and eventually transferred into a 22 L three neck round bottomed flask equipped with heating and agitation.
- the strong alkali catalyst is neutralized by adding 167 g methanesulfonic acid (1.74 moles).
- Other preferred examples such as PEI 1200 E2, PEI 1200 E3, PEI 1200 E15 and PEI 1200 E20 can be prepared by the above method by adjusting the reaction time and the relative amount of ethylene oxide used in the reaction.
- the corresponding amine oxide of the above ethoxylated PEI can also be prepared following synthesis Example 4.
- Synthesis Example 6 -9.7% Quaternization of PEI 1200 E7
- poly(ethyleneimine) MW 1200 ethoxylated to a degree of 7 (248.4g, 0.707 mol nitrogen, prepared as in Synthesis Example 5)
- acetonitrile Baker, 200 mL.
- Dimethyl sulfate Aldrich, 8.48g, 0.067 mol is added all at once to the rapidly stirring solution, which is then stoppered and stirred at room temperature overnight.
- acetonitrile is evaporated on the rotary evaporator at ⁇ 60°C, followed by a Kugelrohr apparatus (Aldrich) at ⁇ 80°C to afford ⁇ 220g of the desired material as a dark brown viscous liquid.
- a 13 C-NMR (D2O) spectrum shows the absence of a peak at ⁇ 58ppm corresponding to dimethyl sulfate.
- a 1 H-NMR (D2O) spectrum shows the partial shifting of the peak at 2.5ppm (methylenes attached to unquaternized nitrogens) to ⁇ 3.0ppm.
- a 1 H-NMR (D2O) spectrum shows the total shifting of the methylene peaks at 2.5-3.0ppm to ⁇ 3.5ppm.
- To the solution is added just enough sodium bisulfite as a 40% water solution to bring the residual peroxide level down to 1-5ppm.
- the sodium sulfate which forms causes an aqueous phase to separate which contains salts, but little or no organics.
- the aqueous salt phase is removed and the desired oxidized polyethyleneimine derivative is obtained and stored as a 52% solution in water.
- compositions B to H 160 g of fabrics were treated with composition A. The fabrics were then line dried and then submitted to an ironing process set on linen. It is then observed after a further wash cycle that the fabric treated in this manner exhibit better dye fixing performance than fabrics which have not undergo a ironing process. The same results were obtained with compositions B to H.
- compositions for use as dryer-added sheets are in accordance with the invention.
- detergent formulations S and T are in accordance with the present invention:
- liquid detergent formulation according to the present invention was prepared:
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98958664A EP1036149A1 (de) | 1997-11-24 | 1998-11-20 | Gewebebehandlungsmittel |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97870189A EP0918089A1 (de) | 1997-11-24 | 1997-11-24 | Gewebebehandlungsmittel |
EP97870189 | 1997-11-24 | ||
PCT/US1998/024816 WO1999027055A1 (en) | 1997-11-24 | 1998-11-20 | Fabric care compositions |
EP98958664A EP1036149A1 (de) | 1997-11-24 | 1998-11-20 | Gewebebehandlungsmittel |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1036149A1 true EP1036149A1 (de) | 2000-09-20 |
Family
ID=8231071
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97870189A Withdrawn EP0918089A1 (de) | 1997-11-24 | 1997-11-24 | Gewebebehandlungsmittel |
EP98958664A Withdrawn EP1036149A1 (de) | 1997-11-24 | 1998-11-20 | Gewebebehandlungsmittel |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97870189A Withdrawn EP0918089A1 (de) | 1997-11-24 | 1997-11-24 | Gewebebehandlungsmittel |
Country Status (6)
Country | Link |
---|---|
EP (2) | EP0918089A1 (de) |
JP (1) | JP2001524617A (de) |
CN (1) | CN1284123A (de) |
BR (1) | BR9815018A (de) |
CA (1) | CA2311419A1 (de) |
WO (1) | WO1999027055A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6502325B1 (en) * | 1999-09-02 | 2003-01-07 | Colgate-Palmolive Co. | Method of treating fabric with fabric care composition containing polycarboxylate polymer and compound derived from urea |
EP1238138A1 (de) * | 1999-10-22 | 2002-09-11 | The Procter & Gamble Company | Nichtreaktives gewebeveredlungsmittel |
US6627591B2 (en) | 1999-12-17 | 2003-09-30 | Unilever Home & Personal Care Usa Division Of Conopco, Inc. | Dye fixing composition |
EP1283922A1 (de) * | 2000-05-22 | 2003-02-19 | The Procter & Gamble Company | Verfahren zur textilpflege sowie ein geeignetes system hierfür |
WO2001090294A1 (en) * | 2000-05-22 | 2001-11-29 | The Procter & Gamble Company | A kit for caring for a fabric article |
WO2003057815A1 (en) * | 2002-01-07 | 2003-07-17 | Ciba Specialty Chemicals Holding Inc. | Particulate composition comprising dye fixatives |
MY152745A (en) * | 2008-08-11 | 2014-11-28 | Basf Se | Method for gently aftertreating dyed textiles |
CN102471591B (zh) * | 2009-08-13 | 2015-02-11 | 亨斯迈先进材料(瑞士)有限公司 | 后清洗试剂 |
CN105001418B (zh) * | 2014-04-16 | 2017-06-27 | 中国科学院宁波材料技术与工程研究所 | 一种支化聚季铵盐及其合成方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0043622B1 (de) * | 1980-01-07 | 1984-11-21 | THE PROCTER & GAMBLE COMPANY | Textilweichmacherzusammensetzung |
DE3124210A1 (de) * | 1981-06-19 | 1982-12-30 | Henkel KGaA, 4000 Düsseldorf | "fluessiges waschmittel mit zusaetzen zur verhinderung der farbstoffuebertragung" |
EP0112593B1 (de) * | 1982-12-23 | 1989-07-19 | THE PROCTER & GAMBLE COMPANY | Detergenszusammensetzungen ethoxylierte Amine mit Fleckenentfernungs- und Anti-Wiederabsetz-Eigenschaften enthaltend |
DE3413292A1 (de) * | 1984-04-09 | 1985-10-17 | Henkel KGaA, 4000 Düsseldorf | Textil-waschmittel fuer farbige textilien |
US5460736A (en) * | 1994-10-07 | 1995-10-24 | The Procter & Gamble Company | Fabric softening composition containing chlorine scavengers |
-
1997
- 1997-11-24 EP EP97870189A patent/EP0918089A1/de not_active Withdrawn
-
1998
- 1998-11-20 BR BR9815018-9A patent/BR9815018A/pt not_active IP Right Cessation
- 1998-11-20 WO PCT/US1998/024816 patent/WO1999027055A1/en not_active Application Discontinuation
- 1998-11-20 JP JP2000522199A patent/JP2001524617A/ja not_active Withdrawn
- 1998-11-20 CN CN 98813290 patent/CN1284123A/zh active Pending
- 1998-11-20 EP EP98958664A patent/EP1036149A1/de not_active Withdrawn
- 1998-11-20 CA CA002311419A patent/CA2311419A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO9927055A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2001524617A (ja) | 2001-12-04 |
EP0918089A1 (de) | 1999-05-26 |
WO1999027055A1 (en) | 1999-06-03 |
BR9815018A (pt) | 2001-08-28 |
CA2311419A1 (en) | 1999-06-03 |
CN1284123A (zh) | 2001-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998020098A1 (en) | Color care compositions | |
EP0979861B1 (de) | Gewebepflegmittel | |
WO1999027055A1 (en) | Fabric care compositions | |
US6830593B1 (en) | Fabric care compositions | |
EP1019447A1 (de) | Ethoxylierte aminofunktionelle polymere | |
WO2000015745A1 (en) | Rinse-added fabric care compositions comprising low molecular weight linear and cyclic polyamines | |
CA2310434C (en) | Stabilised fabric softening compositions | |
US6410503B1 (en) | Fabric care compositions | |
EP1100857B1 (de) | vERWENDUNG VON OBERFLÄCHENAKTIVEN SUBSTANZEN ZUR SCUM-REDUZIERUNG IN GEWEBEPFLEGEMITTEL | |
US6500796B1 (en) | Stabilized fabric softening compositions | |
CA2311324A1 (en) | Fabric softening compositions | |
DE69831850T3 (de) | Verwendung eines Kristallwachstumsinhibitors zur Verminderung der Abreibung von Geweben | |
MXPA01001149A (en) | Fabric care compositions | |
MXPA00005126A (es) | Composiciones para el cuidado de telas | |
MXPA01001323A (en) | Fabric care compositions | |
MXPA00005061A (en) | Stabilised fabric softening compositions | |
WO1999027052A1 (en) | Use of a crystal growth inhibitor to reduce fabric abrasion | |
MXPA00005118A (en) | Fabric softening compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000605 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20010426 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20011107 |