EP1034376B1 - Fan blade - Google Patents

Fan blade Download PDF

Info

Publication number
EP1034376B1
EP1034376B1 EP99934796A EP99934796A EP1034376B1 EP 1034376 B1 EP1034376 B1 EP 1034376B1 EP 99934796 A EP99934796 A EP 99934796A EP 99934796 A EP99934796 A EP 99934796A EP 1034376 B1 EP1034376 B1 EP 1034376B1
Authority
EP
European Patent Office
Prior art keywords
impeller
hub
blades
impeller according
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP99934796A
Other languages
German (de)
French (fr)
Other versions
EP1034376A1 (en
Inventor
Stéphane MOREAU
Bruno Dessale
Eric Coggiola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermique Moteur SA
Original Assignee
Valeo Thermique Moteur SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9529114&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1034376(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Valeo Thermique Moteur SA filed Critical Valeo Thermique Moteur SA
Publication of EP1034376A1 publication Critical patent/EP1034376A1/en
Application granted granted Critical
Publication of EP1034376B1 publication Critical patent/EP1034376B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/02Formulas of curves

Definitions

  • the invention relates to a fan propeller comprising a hub and blades extending radially outward to from the hub, the hub being suitable for being fixed on the shaft of a motor so as to allow the motor to transmit at least 150 watts of power to the propeller.
  • Such propellers are used in particular for cooling motor vehicle driving engine, the propeller producing an air flow through a radiator cooling and are known for example from patent application EP 0 096 255 A1.
  • the invention relates in particular to a propeller of the kind defined in the introduction, and provides that its axial length L, measured in meters, is not notably greater than the value L 0 given by the following formula (I):
  • the 0 0.426262 - 5.14288.D + 23.1798.D 2 - 44.2505.D 3 + 30.8841.D 4 , D being the diameter of the propeller measured in meters.
  • L is not appreciably less than L 0 , because below this performance decreases.
  • the range of variation of L with respect to L 0 is 20%.
  • the propeller illustrated in Figures 1 to 4 includes, so classic, a multiplicity of blades 1 generally extending radially from a central hub 2 and connected between them, on the periphery of the propeller, by a ferrule 3.
  • the hub, blades and ferrule are formed in one part by molding.
  • the hub 2 has an annular wall cylindrical of revolution 4, to which the feet of the blades 1, and a flat front wall 5, turned upstream, the terms upstream and downstream referring here to direction of the air flow produced by the rotation of the propeller.
  • the walls 4 and 5 are interconnected by a rounded 6 to profile in an arc of a radius of 5 mm.
  • the wall 5 is connected to a central sleeve 7 molded onto a metallic annular insert 8 intended for the connection of the propeller to the shaft of a drive motor not represented.
  • Reinforcement ribs 9 are provided at the interior of the hub 2.
  • the ferrule 3 also has a cylindrical annular wall of revolution 10, to which connect the ends of the blades, and which continues, upstream side, by a rounded flare 11.
  • the wall 5 of the hub which in FIG. 1 represents the end axial of the latter on the upstream side, is arranged projecting by relative to the corresponding end of the ferrule 3.
  • the position of the leading edge of the blades it moves gradually downstream from the foot of the blades, where it is located at the upstream end of the cylindrical wall 4, that is to say 5 mm downstream from the upstream face of the wall 5, to the vicinity of the upstream end of the cylindrical wall 10.
  • the point M s situated halfway between the leading edge 21 and the trailing edge 20 of a blade 1, at the radially outer end of it ci, is offset by an angle ⁇ , in the direction of rotation of the propeller, indicated by arrow F1, relative to the point M p located halfway between the leading and trailing edges at the foot of the blade .
  • the angle ⁇ is advantageously between about half and three-quarters of the angular pitch ⁇ of the blades.
  • the leading edge 21 and the trailing edge 20 of each blade are curved in the direction of rotation F1, as well as the center line 23 along which moves, from the foot to the end of the blade, the point M located midway between the leading and trailing edges, the line 23 having the points M p and M s mentioned above as ends.
  • the line 23 progressively deviates towards the rear of the axial plane P containing the latter, then gradually returns to cut the plane P at a point M i . It then gradually deviates from this same plane forward, up to point M s .
  • the distance between the points M p and M i represents between 20 and 70% of the radial extent of the blades, that is to say the distance between the cylindrical walls 4 and 10.
  • Figure 4 shows the flat cross section of a pale, i.e. the closed plane curve obtained by cutting the blade by a cylindrical surface of revolution around the axis A of the propeller, and unrolling this surface flat cylindrical.
  • This flattened cross section has a airplane wing profile, the rope 25 of which is inclined by acute angle ⁇ relative to a radial plane such as plane 19 containing the downstream end of the propeller.
  • the invention provides that the angle ⁇ , or pitch angle, decreases progressively on the last 30% of the radial extent of the blade, i.e. from the cylindrical surface 27 indicated on the Figure 3 to wall 10, the distance between surface 27 and the wall 10 representing 30% of the distance between the walls 4 and 10.
  • point 28 of the cross section flattened farthest from the rope 25 is found substantially equidistant from the ends thereof, while the distance h between point 28 and rope 25 is at least equal to 3% of the length 1 thereof, and in particular equal to 10% of this length.
  • Figure 7 shows on a larger scale the region of the flattened cross section of the blade close to the edge attack.
  • the profile of the blade comprises in this region an elliptical arc 29, the ratio of the axes of the ellipse being greater than 1.5.
  • each of the points marked by a cross, a triangle, a square or a circle has for coordinates the diameter and the axial length, in millimeters, of the fan of a cooling fan existing on the market.
  • the table below gives the axial length and the maximum efficiency for fan propellers having the usual diameters for the cooling of motor vehicle engines, namely 280, 320, 350, 380 and 450 mm.
  • the maximum efficiency is the maximum efficiency obtained by varying the speed of rotation of the fan.
  • the table concerns, for each diameter, five propellers designated by the references 1 to 5, the first four being commercially available propellers and the fifth being a propeller according to the invention. Some of the propellers referenced 1 to 4 correspond to points marked in FIG. 5.
  • the propellers referenced 5 were defined by the method of calculation known as “Computational Fluid Dynamics”(CFD), described by Éric Coggiola et al. In article AIAA 98-0772 “On the use of CFD in the automotive engine cooling fan system design "presented at Aerospace Sciences Meeting and Exhibit, in Reno, United States of America, January 12-15, 1998.
  • CFD computational Fluid Dynamics

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

L'invention concerne une hélice de ventilateur comprenant un moyeu et des pales s'étendant radialement vers l'extérieur à partir du moyeu, le moyeu étant propre à être fixé sur l'arbre d'un moteur de manière à permettre au moteur de transmettre à l'hélice une puissance d'au moins 150 watts.The invention relates to a fan propeller comprising a hub and blades extending radially outward to from the hub, the hub being suitable for being fixed on the shaft of a motor so as to allow the motor to transmit at least 150 watts of power to the propeller.

De telles hélices sont utilisées notamment pour le refroidissement du moteur d'entraínement de véhicules automobiles, l'hélice produisant un flux d'air à travers un radiateur de refroidissement et sont connues par example de la demande de brevet EP 0 096 255 A1.Such propellers are used in particular for cooling motor vehicle driving engine, the propeller producing an air flow through a radiator cooling and are known for example from patent application EP 0 096 255 A1.

Il était admis jusqu'ici que les performances aérauliques et acoustiques de telles hélices sont d'autant meilleures que leur diamètre et leur longueur axiale sont plus importants.It has been accepted so far that air flow performance and acoustics of such propellers are all the better as their diameter and their axial length are greater.

La place disponible dans le compartiment moteur des véhicules étant généralement très limitée, il est souhaitable de disposer d'hélices de refroidissement d'encombrement réduit, notamment dans la direction axiale.The space available in the engine compartment of vehicles being generally very limited, it is desirable to have space-saving cooling propellers, especially in the axial direction.

De manière surprenante, on a découvert que, pour un diamètre donné, les performances aérauliques et acoustiques ne se détériorent pratiquement qu'en-deçà d'une certaine longueur axiale optimale.Surprisingly, it has been discovered that for a diameter given, the aeraulic and acoustic performances are not practically deteriorate only below a certain length optimal axial.

L'invention vise notamment une hélice du genre défini en introduction, et prévoit que sa longueur axiale L, mesurée en mètre, n'est pas notablement supérieure à la valeur L0 donnée par la formule (I) suivante: L0 = 0,426262 - 5,14288.D + 23,1798.D2 - 44,2505.D3 + 30,8841.D4, D étant le diamètre de l'hélice mesuré en mètre. The invention relates in particular to a propeller of the kind defined in the introduction, and provides that its axial length L, measured in meters, is not notably greater than the value L 0 given by the following formula (I): The 0 = 0.426262 - 5.14288.D + 23.1798.D 2 - 44.2505.D 3 + 30.8841.D 4 , D being the diameter of the propeller measured in meters.

Au moins pour certaines configurations géométriques des pales, il est préférable que L ne soit pas notablement inférieure à L0, car en-deçà les performances diminuent.At least for certain geometrical configurations of the blades, it is preferable that L is not appreciably less than L 0 , because below this performance decreases.

De préférence, le domaine de variation de L par rapport à L0, vers le haut et le cas échéant vers le bas, est de 20 %.Preferably, the range of variation of L with respect to L 0 , upwards and if necessary downwards, is 20%.

Les relations ci-dessus valent tout particulièrement lorsque la configuration géométrique de l'hélice présente certaines au moins des particularités suivantes:

  • Les extrémités axiales des pales et du moyeu tournées vers l'aval du flux d'air produit par l'hélice sont sensiblement contenues dans un même plan radial.
  • Le bord de fuite des pales est entièrement contenu dans ledit plan radial.
  • Les extrémités axiales des pales et du moyeu tournées vers l'amont du flux d'air produit par l'hélice sont sensiblement contenues dans un même plan radial.
  • Les extrémités radialement extérieures des pales sont reliées entre elles par une virole.
  • Les pales sont sensiblement identiques entre elles et uniformément espacées dans la direction circonférentielle selon un pas angulaire β, le point situé à mi-distance des bords d'attaque et de fuite à l'extrémité radialement extérieure étant décalé par rapport au point correspondant au pied de la pale, dans le sens opposé au sens de rotation de l'hélice, d'un angle α compris entre la moitié et les trois quarts environ dudit pas angulaire. Ceci concerne le cas des hélices dites symétriques.
  • Les bords d'attaque et de fuite de chaque pale sont bombés dans le sens de rotation de l'hélice, le point situé à mi-distance de ceux-ci s'écartant progressivement vers l'arrière du plan axial contenant sa position au pied de la pale, puis revenant progressivement jusque dans ce plan, sur une fraction de l'étendue radiale de la pale comprise entre 20 % et 70 %, et s'écartant progressivement de ce même plan vers l'avant sur la fraction restante.
  • L'angle aigu Ω entre la corde de la section transversale aplatie d'une pale et un plan radial décroít progressivement au moins sur les derniers 30 % de l'étendue radiale de la pale.
  • Le moyeu comprend une paroi sensiblement cylindrique à partir de laquelle s'étendent les pales, et une paroi de fond disposée sensiblement selon un plan radial, tournée vers l'amont du flux d'air produit par l'hélice, la paroi cylindrique et la paroi de fond étant raccordées entre elles par un arrondi convexe d'un rayon de courbure compris entre 4 et 8 mm.
  • L'arrondi a sensiblement un profil en quart de cercle de rayon 5 mm.
  • Les pales s'étendent sur toute la longueur axiale de la paroi cylindrique du moyeu.
  • Le moyeu est creux et présente intérieurement des nervures.
The above relationships are particularly valid when the geometric configuration of the propeller has at least some of the following characteristics:
  • The axial ends of the blades and of the hub facing downstream of the air flow produced by the propeller are substantially contained in the same radial plane.
  • The trailing edge of the blades is entirely contained in said radial plane.
  • The axial ends of the blades and of the hub facing upstream of the air flow produced by the propeller are substantially contained in the same radial plane.
  • The radially outer ends of the blades are interconnected by a ferrule.
  • The blades are substantially identical to each other and uniformly spaced in the circumferential direction at an angular pitch β, the point located halfway between the leading and trailing edges at the radially outer end being offset from the point corresponding to the foot of the blade, in the direction opposite to the direction of rotation of the propeller, by an angle α between about half and three quarters of said angular pitch. This concerns the case of so-called symmetrical propellers.
  • The leading and trailing edges of each blade are curved in the direction of rotation of the propeller, the point located halfway between them gradually moving towards the rear of the axial plane containing its position at the foot of the blade, then gradually returning to this plane, over a fraction of the radial extent of the blade between 20% and 70%, and gradually moving away from this same plane forward on the remaining fraction.
  • The acute angle Ω between the chord of the flattened cross section of a blade and a radial plane decreases progressively at least over the last 30% of the radial extent of the blade.
  • The hub comprises a substantially cylindrical wall from which the blades extend, and a bottom wall arranged substantially in a radial plane, facing upstream of the air flow produced by the propeller, the cylindrical wall and the bottom wall being connected to each other by a convex rounding with a radius of curvature between 4 and 8 mm.
  • The rounding has substantially a quarter-circle profile with a radius of 5 mm.
  • The blades extend over the entire axial length of the cylindrical wall of the hub.
  • The hub is hollow and internally has ribs.

Les caractéristiques et avantages de l'invention seront exposés plus en détail dans la description ci-après, en se référant aux dessins annexés, sur lesquels:

  • la figure 1 est une vue axiale d'arrière d'une hélice de ventilateur selon l'invention;
  • la figure 2 est une vue de côté en demi-coupe axiale de l'hélice;
  • la figure 3 est une partie agrandie de la figure 1;
  • la figure 4 est une vue de dessus du moyeu de l'hélice, montrant en outre la forme de la section transversale aplatie d'une pale;
  • les figures 5 et 6 sont des graphiques illustrant la longueur axiale en fonction du diamètre pour des hélices de ventilateur connues et pour des hélices de ventilateur selon l'invention; et
  • la figure 7 montre à plus grande échelle que la figure 4 la section transversale aplatie de la pale au voisinage du bord d'attaque de celle-ci.
The characteristics and advantages of the invention will be explained in more detail in the description below, with reference to the accompanying drawings, in which:
  • Figure 1 is an axial rear view of a fan propeller according to the invention;
  • Figure 2 is a side view in axial half-section of the propeller;
  • Figure 3 is an enlarged part of Figure 1;
  • Figure 4 is a top view of the propeller hub, further showing the shape of the flattened cross section of a blade;
  • FIGS. 5 and 6 are graphs illustrating the axial length as a function of the diameter for known fan propellers and for fan propellers according to the invention; and
  • Figure 7 shows on a larger scale than Figure 4 the flattened cross section of the blade in the vicinity of the leading edge thereof.

L'hélice illustrée sur les figures 1 à 4 comprend, de façon classique, une multiplicité de pales 1 s'étendant généralement radialement à partir d'un moyeu central 2 et reliées entre elles, à la périphérie de l'hélice, par une virole 3. Le moyeu, les pales et la virole sont formés d'une seule pièce par moulage. Le moyeu 2 présente une paroi annulaire cylindrique de révolution 4, à laquelle se raccordent les pieds des pales 1, et une paroi frontale plane 5, tournée vers l'amont, les termes amont et aval se référant ici au sens du flux d'air produit par la rotation de l'hélice. Les parois 4 et 5 sont reliées entre elles par un arrondi 6 à profil en arc de cercle de rayon 5 mm. En direction de l'axe A de l'hélice, la paroi 5 se raccorde à un manchon central 7 surmoulé sur un insert annulaire métallique 8 destiné à la liaison de l'hélice à l'arbre d'un moteur d'entraínement non représenté. Des nervures de renforcement 9 sont prévues à l'intérieur du moyeu 2. La virole 3 présente également une paroi annulaire cylindrique de révolution 10, à laquelle se raccordent les extrémités des pales, et qui se continue, du côté amont, par un évasement arrondi 11.The propeller illustrated in Figures 1 to 4 includes, so classic, a multiplicity of blades 1 generally extending radially from a central hub 2 and connected between them, on the periphery of the propeller, by a ferrule 3. The hub, blades and ferrule are formed in one part by molding. The hub 2 has an annular wall cylindrical of revolution 4, to which the feet of the blades 1, and a flat front wall 5, turned upstream, the terms upstream and downstream referring here to direction of the air flow produced by the rotation of the propeller. The walls 4 and 5 are interconnected by a rounded 6 to profile in an arc of a radius of 5 mm. Towards the axis A of the propeller, the wall 5 is connected to a central sleeve 7 molded onto a metallic annular insert 8 intended for the connection of the propeller to the shaft of a drive motor not represented. Reinforcement ribs 9 are provided at the interior of the hub 2. The ferrule 3 also has a cylindrical annular wall of revolution 10, to which connect the ends of the blades, and which continues, upstream side, by a rounded flare 11.

Les extrémités axiales du moyeu et de la virole tournée vers l'aval du flux d'air et le bord de fuite des pales sont contenues dans un même plan radial 19. En revanche, la paroi 5 du moyeu, qui, sur la figure 1, représente l'extrémité axiale de celui-ci du côté amont, est disposée en saillie par rapport à l'extrémité correspondante de la virole 3. Quant à la position du bord d'attaque des pales, il se déplace progressivement vers l'aval depuis le pied des pales, où il est situé à l'extrémité amont de la paroi cylindrique 4, c'est-à-dire à 5 mm en aval de la face amont de la paroi 5, jusqu'au voisinage de l'extrémité amont de la paroi cylindrique 10.The axial ends of the hub and of the ferrule turned towards the downstream of the air flow and the trailing edge of the blades are contained in the same radial plane 19. On the other hand, the wall 5 of the hub, which in FIG. 1 represents the end axial of the latter on the upstream side, is arranged projecting by relative to the corresponding end of the ferrule 3. As for the position of the leading edge of the blades, it moves gradually downstream from the foot of the blades, where it is located at the upstream end of the cylindrical wall 4, that is to say 5 mm downstream from the upstream face of the wall 5, to the vicinity of the upstream end of the cylindrical wall 10.

Selon l'invention, comme on le voit sur la figure 1, le point Ms situé à mi-distance du bord d'attaque 21 et du bord de fuite 20 d'une pale 1, à l'extrémité radialement extérieure de celle-ci, est décalé d'un angle α, dans le sens de rotation de l'hélice, indiqué par la flèche F1, par rapport au point Mp situé à mi-distance des bords d'attaque et de fuite au pied de la pale. L'angle α est avantageusement compris entre la moitié et les trois-quart environ du pas angulaire β des pales.According to the invention, as can be seen in FIG. 1, the point M s situated halfway between the leading edge 21 and the trailing edge 20 of a blade 1, at the radially outer end of it ci, is offset by an angle α, in the direction of rotation of the propeller, indicated by arrow F1, relative to the point M p located halfway between the leading and trailing edges at the foot of the blade . The angle α is advantageously between about half and three-quarters of the angular pitch β of the blades.

On voit également sur les figures 1 et 3 que le bord d'attaque 21 et le bord de fuite 20 de chaque pale sont bombés dans le sens de rotation F1, ainsi que la ligne médiane 23 le long de laquelle se déplace, du pied à l'extrémité de la pale, le point M situé à mi-distance des bords d'attaque et de fuite, la ligne 23 ayant pour extrémités les points Mp et Ms précités. A partir de Mp, la ligne 23 s'écarte progressivement vers l'arrière du plan axial P contenant celui-ci, puis revient progressivement pour couper le plan P en un point Mi. Elle s'écarte ensuite progressivement de ce même plan vers l'avant, jusqu'au point Ms. La distance entre les points Mp et Mi représente entre 20 et 70 % de l'étendue radiale des pales, c'est-à-dire de la distance entre les parois cylindriques 4 et 10.It can also be seen in FIGS. 1 and 3 that the leading edge 21 and the trailing edge 20 of each blade are curved in the direction of rotation F1, as well as the center line 23 along which moves, from the foot to the end of the blade, the point M located midway between the leading and trailing edges, the line 23 having the points M p and M s mentioned above as ends. From M p , the line 23 progressively deviates towards the rear of the axial plane P containing the latter, then gradually returns to cut the plane P at a point M i . It then gradually deviates from this same plane forward, up to point M s . The distance between the points M p and M i represents between 20 and 70% of the radial extent of the blades, that is to say the distance between the cylindrical walls 4 and 10.

La figure 4 montre la section transversale aplatie d'une pale, c'est-à-dire la courbe fermée plane obtenue en coupant la pale par une surface cylindrique de révolution autour de l'axe A de l'hélice, et en déroulant à plat cette surface cylindrique. Cette section transversale aplatie présente un profil en aile d'avion, dont la corde 25 est inclinée d'un angle aigu Ω par rapport à un plan radial tel que le plan 19 contenant l'extrémité aval de l'hélice. L'invention prévoit que l'angle Ω, ou angle de calage, décroít progressivement sur les derniers 30 % de l'étendue radiale de la pale, c'est-à-dire depuis la surface cylindrique 27 indiquée sur la figure 3 jusqu'à la paroi 10, la distance entre la surface 27 et la paroi 10 représentant 30 % de la distance entre les parois 4 et 10.Figure 4 shows the flat cross section of a pale, i.e. the closed plane curve obtained by cutting the blade by a cylindrical surface of revolution around the axis A of the propeller, and unrolling this surface flat cylindrical. This flattened cross section has a airplane wing profile, the rope 25 of which is inclined by acute angle Ω relative to a radial plane such as plane 19 containing the downstream end of the propeller. The invention provides that the angle Ω, or pitch angle, decreases progressively on the last 30% of the radial extent of the blade, i.e. from the cylindrical surface 27 indicated on the Figure 3 to wall 10, the distance between surface 27 and the wall 10 representing 30% of the distance between the walls 4 and 10.

Avantageusement, le point 28 de la section transversale aplatie le plus éloigné de la corde 25 se trouve sensiblement à égale distance des extrémités de celle-ci, tandis que la distance h entre le point 28 et la corde 25 est au moins égale à 3 % de la longueur 1 de celle-ci, et en particulier égale à 10 % de cette longueur.Advantageously, point 28 of the cross section flattened farthest from the rope 25 is found substantially equidistant from the ends thereof, while the distance h between point 28 and rope 25 is at least equal to 3% of the length 1 thereof, and in particular equal to 10% of this length.

La figure 7 montre à plus grande échelle la région de la section transversale aplatie de la pale voisine du bord d'attaque. Selon l'invention, le profil de la pale comporte dans cette région un arc d'ellipse 29, le rapport des axes de l'ellipse étant supérieur à 1,5.Figure 7 shows on a larger scale the region of the flattened cross section of the blade close to the edge attack. According to the invention, the profile of the blade comprises in this region an elliptical arc 29, the ratio of the axes of the ellipse being greater than 1.5.

Sur le graphique de la figure 5, chacun des points marqués par une croix, un triangle, un carré ou un cercle a pour coordonnées le diamètre et la longueur axiale, en millimètres, de l'hélice d'un ventilateur de refroidissement existant sur le marché.In the graph in Figure 5, each of the points marked by a cross, a triangle, a square or a circle has for coordinates the diameter and the axial length, in millimeters, of the fan of a cooling fan existing on the market.

Le tableau ci-après donne la longueur axiale et le rendement maximal pour des hélices de ventilateur ayant des diamètres usuels pour le refroidissement des moteurs de véhicules automobiles, à savoir 280, 320, 350, 380 et 450 mm. Le rendement maximal est la valeur maximale du rendement obtenue en faisant varier la vitesse de rotation du ventilateur. Le tableau concerne, pour chaque diamètre, cinq hélices désignées par les références 1 à 5, les quatre premières étant des hélices disponibles dans le commerce et la cinquième étant une hélice selon l'invention. Certaines des hélices référencées 1 à 4 correspondent à des points marqués sur la figure 5. Diamètre 280 mm Référence 1 2 3 4 5 Longueur axiale (mm) 45 32 42 50 22 Rendement maximal (%) 54 45 49 52 59 Diamètre 320 mm Référence 1 2 3 4 5 Longueur axiale (mm) 53 32 44 44 28 Rendement maximal (%) 50 47 55 55 55 Diamètre 350 mm Référence 1 2 3 4 5 Longueur axiale (mm) 38 47 47 55 32 Rendement maximal (%) 50 47 51 51 54 Diamètre 380 mm Référence 1 2 3 4 5 Longueur axiale (mm) 42 40 40 45 35 Rendement maximal (%) 55 55 54 56 59 Diamètre 450 mm Référence 1 2 3 4 5 Longueur axiale (mm) 54 89 52 60 40 Rendement maximal (%) 56 47 52 56 56 The table below gives the axial length and the maximum efficiency for fan propellers having the usual diameters for the cooling of motor vehicle engines, namely 280, 320, 350, 380 and 450 mm. The maximum efficiency is the maximum efficiency obtained by varying the speed of rotation of the fan. The table concerns, for each diameter, five propellers designated by the references 1 to 5, the first four being commercially available propellers and the fifth being a propeller according to the invention. Some of the propellers referenced 1 to 4 correspond to points marked in FIG. 5. Diameter 280 mm Reference 1 2 3 4 5 Axial length (mm) 45 32 42 50 22 Maximum yield (%) 54 45 49 52 59 Diameter 320 mm Reference 1 2 3 4 5 Axial length (mm) 53 32 44 44 28 Maximum yield (%) 50 47 55 55 55 Diameter 350 mm Reference 1 2 3 4 5 Axial length (mm) 38 47 47 55 32 Maximum yield (%) 50 47 51 51 54 Diameter 380 mm Reference 1 2 3 4 5 Axial length (mm) 42 40 40 45 35 Maximum yield (%) 55 55 54 56 59 Diameter 450 mm Reference 1 2 3 4 5 Axial length (mm) 54 89 52 60 40 Maximum yield (%) 56 47 52 56 56

Les hélices référencées 5 ont été définies par la méthode de calcul connue sous la dénomination "Computational Fluid Dynamics" (CFD), décrite par Éric Coggiola et al. dans l'article AIAA 98-0772 "On the use of CFD in the automotive engine cooling fan system design" présenté à Aerospace Sciences Meeting and Exhibit, à Reno, États-Unis d'Amérique, du 12 au 15 janvier 1998.The propellers referenced 5 were defined by the method of calculation known as "Computational Fluid Dynamics "(CFD), described by Éric Coggiola et al. In article AIAA 98-0772 "On the use of CFD in the automotive engine cooling fan system design "presented at Aerospace Sciences Meeting and Exhibit, in Reno, United States of America, January 12-15, 1998.

Sur la figure 5, les points correspondant aux hélices référencées 5 sont indiqués par des étoiles à huit branches. La formule (I) n'est autre que l'équation de la courbe C1 qui passe sensiblement par ces points. Dans le domaine considéré, c'est-à-dire pour des diamètres compris entre 0,2 et 0,5 m environ, cette équation peut-être en pratique remplacée par l'équation linéaire approchée (II): L0 = - 0,00584 + 0,105.D In FIG. 5, the points corresponding to the propellers referenced 5 are indicated by eight-pointed stars. The formula (I) is none other than the equation of the curve C1 which passes substantially through these points. In the field under consideration, that is to say for diameters of between 0.2 and 0.5 m approximately, this equation may in practice be replaced by the approximate linear equation (II): The 0 = - 0.00584 + 0.105.D

L0 et D étant mesurés en mètre. La droite représentative de cette équation est représentée en C2 sur la figure 5. Les courbes C1 et C2 sont reproduites sur la figure 6, avec une plus grande échelle pour les ordonnées.L 0 and D being measured in meters. The line representative of this equation is represented in C2 in FIG. 5. The curves C1 and C2 are reproduced in FIG. 6, with a larger scale for the ordinates.

On voit sur la figure 5 que, pour un diamètre donné, la longueur axiale des hélices existantes est plus élevée, parfois très sensiblement, que la valeur L0 donnée par la formule I. On voit par ailleurs sur le tableau que le rendement maximal de l'hélice selon l'invention, pour un diamètre donné, est supérieur, ou à peu près égal, au rendement maximal des hélices connues, une légère supériorité de ces dernières n'étant obtenue, dans des cas limités, qu'au prix d'un encombrement axial sensiblement supérieur.It can be seen in FIG. 5 that, for a given diameter, the axial length of the existing propellers is higher, sometimes very significantly, than the value L 0 given by the formula I. We can also see on the table that the maximum efficiency of the propeller according to the invention, for a given diameter, is greater, or approximately equal, to the maximum efficiency of known propellers, a slight superiority of the latter being obtained, in limited cases, only at the cost of '' a substantially larger axial size.

Claims (15)

  1. Fan impeller, particularly for cooling the engine that drives a motor vehicle, comprising a hub (2) and blades (1) extending radially outwards from the hub, the hub being able to be fixed to the shaft of a motor in such a way as to allow the motor to transmit to the impeller a power of at least 150 watts, characterized in that its axial length L, measured in metres, is less than or equal to the value L0 given by the following formula (I): L0 = 0.426262 - 5.14288 × D + 23.1798 × D2 - 44.2505 × D3 + 30.8841 × D4, D being the diameter of the impeller measured in metres, D being between 0.2 and 0.5 metre.
  2. Fan impeller, particularly for cooling the engine that drives a motor vehicle, comprising a hub (2) and blades (1) extending radially outwards from the hub, the hub being able to be fixed to the shaft of a motor in such a way as to allow the motor to transmit to the impeller a power of at least 150 watts, characterized in that its axial length L, measured in metres, is less than or equal to the value L0 given by the following formula (II): L0 = 0.00584 + 0.105 × D D being the diameter of the impeller measured in metres, D being between 0.2 and 0.5 metre.
  3. Impeller according to either of Claims 1 and 2, characterized in that L is more or less equal to L0.
  4. Impeller according to either of Claims 1 and 2, characterized in that L differs from L0 by no more than 20%.
  5. Impeller according to one of the preceding claims, characterized in that the axial ends of the blades and of the hub facing in the downstream direction of the airstream produced by the impeller are more or less contained in one and the same radial plane (19).
  6. Impeller according to Claim 5, characterized in that the trailing edge of the blades is entirely contained in the said radial plane.
  7. Impeller according to one of the preceding claims, characterized in that the axial ends of the blades and of the hub facing in the upstream direction of the airstream produced by the impeller are more or less contained in one and the same radial plane.
  8. Impeller according to one of the preceding claims, characterized in that the radially outer ends of the blades are joined together by a shroud (3).
  9. Impeller according to one of the preceding claims, characterized in that the blades are more or less mutually identical and uniformly spaced in the circumferential direction with an angular pitch β, the point (Ms) situated midway between the leading and trailing edges at the radially outer end being offset with respect to the corresponding point (Mp) at the blade root, in the opposite direction to the direction (F1) in which the impeller rotates, by an angle α of between half and about three-quarters of the said angular pitch.
  10. Impeller according to one of the preceding claims, characterized in that the leading and trailing edges of each blade are domed in the direction in which the impeller rotates, the point (M) situated midway between these diverging backwards progressively from the axial plane (P) containing its blade-root position (Mp) then gradually returning to this plane, over a fraction of between 20% and 70% of the radial extent of the blade and diverging forwards progressively from this same plane over the remaining fraction.
  11. Impeller according to one of the preceding claims, characterized in that the acute angle Ω between the chord (25) of the flattened cross section of a blade and a radial plane (19) decreases progressively at least over the last 30% of the radial extent of the blade.
  12. Impeller according to one of the preceding claims, characterized in that the hub comprises a more or less cylindrical wall (4) from which the blades extend, and an end wall (5) arranged more or less in a radial plane facing in the upstream direction of the airstream produced by the impeller, the cylindrical wall and the end wall being joined together by a convex rounded portion (6) with a radius of curvature of between 4 and 8 mm.
  13. Impeller according to Claim 12, characterized in that the rounded portion has more or less a profile of a quarter of a circle of radius 5 mm.
  14. Impeller according to either of Claims 12 and 13, characterized in that the blades extend over the entire axial length of the cylindrical wall (6) of the hub.
  15. Impeller according to one of the preceding claims, characterized in that the hub is hollow and has ribs (9) on the inside.
EP99934796A 1998-07-28 1999-07-28 Fan blade Revoked EP1034376B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9809648A FR2781843B1 (en) 1998-07-28 1998-07-28 OPTIMIZED COMPACT FAN PROPELLER
FR9809648 1998-07-28
PCT/FR1999/001861 WO2000006913A1 (en) 1998-07-28 1999-07-28 Fan blade

Publications (2)

Publication Number Publication Date
EP1034376A1 EP1034376A1 (en) 2000-09-13
EP1034376B1 true EP1034376B1 (en) 2003-04-23

Family

ID=9529114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99934796A Revoked EP1034376B1 (en) 1998-07-28 1999-07-28 Fan blade

Country Status (6)

Country Link
US (1) US6350104B1 (en)
EP (1) EP1034376B1 (en)
DE (1) DE69907134T2 (en)
ES (1) ES2198929T3 (en)
FR (1) FR2781843B1 (en)
WO (1) WO2000006913A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428277B1 (en) * 2001-05-17 2002-08-06 Siemens Vdo Automotive Inc. High speed, low torque axial flow fan
FR2848619B1 (en) * 2002-12-13 2006-03-17 Valeo Systemes Dessuyage ENGINE COOLING PROPELLER
US6872052B2 (en) * 2003-03-07 2005-03-29 Siemens Vdo Automotive Inc. High-flow low torque fan
US7484925B2 (en) * 2005-05-10 2009-02-03 Emp Advanced Development, Llc Rotary axial fan assembly
FR2898943B1 (en) 2006-03-23 2012-08-31 Valeo Systemes Thermiques FAN PROPELLER, ESPECIALLY FOR AUTOMOTIVE VEHICLES
US20070237656A1 (en) * 2006-04-11 2007-10-11 Pipkorn Nicholas T Rotary fan with encapsulated motor assembly
KR101018146B1 (en) * 2006-05-31 2011-02-28 로베르트 보쉬 게엠베하 Axial fan assembly
US8091177B2 (en) 2010-05-13 2012-01-10 Robert Bosch Gmbh Axial-flow fan
US9091452B2 (en) * 2012-11-14 2015-07-28 Yu-Chi Yen Misting fan
CN115750439B (en) * 2022-11-16 2023-06-16 南昌航空大学 Air-cooling integrated duct fan based on boundary layer ingestion

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3220574A1 (en) * 1982-06-01 1983-12-01 Siemens AG, 1000 Berlin und 8000 München STEEL-FREE AXIAL FAN, ESPECIALLY FOR ELECTRICALLY DRIVED MOTOR VEHICLE RADIATOR FANS
DE3335649A1 (en) * 1983-09-30 1985-04-18 Siemens AG, 1000 Berlin und 8000 München STEERING WHEELLESS AXIAL FAN, ESPECIALLY FOR VENTILATING HEAT EXCHANGERS
US5000660A (en) * 1989-08-11 1991-03-19 Airflow Research And Manufacturing Corporation Variable skew fan
EP0446316B2 (en) * 1989-09-29 2001-12-05 Micronel AG Miniature fan
ES2087501T5 (en) * 1992-01-30 1999-04-16 Spal Srl A FAN WITH CONVEX BLADES.
DE69333845T2 (en) * 1992-05-15 2006-04-27 Siemens Vdo Automotive Inc., Chatham Axial
US5399070A (en) * 1992-07-22 1995-03-21 Valeo Thermique Moteur Fan hub
US5423660A (en) * 1993-06-17 1995-06-13 Airflow Research And Manufacturing Corporation Fan inlet with curved lip and cylindrical member forming labyrinth seal
US5490693A (en) 1994-09-28 1996-02-13 Cajon Company Tube coupling locking device
DE69529379T2 (en) * 1994-09-29 2003-10-09 Valeo Thermique Moteur Le Mesn Fan
US5577888A (en) * 1995-06-23 1996-11-26 Siemens Electric Limited High efficiency, low-noise, axial fan assembly
US5769607A (en) * 1997-02-04 1998-06-23 Itt Automotive Electrical Systems, Inc. High-pumping, high-efficiency fan with forward-swept blades
US5957661A (en) * 1998-06-16 1999-09-28 Siemens Canada Limited High efficiency to diameter ratio and low weight axial flow fan

Also Published As

Publication number Publication date
DE69907134D1 (en) 2003-05-28
FR2781843A1 (en) 2000-02-04
DE69907134T2 (en) 2004-02-26
EP1034376A1 (en) 2000-09-13
ES2198929T3 (en) 2004-02-01
US6350104B1 (en) 2002-02-26
FR2781843B1 (en) 2000-10-20
WO2000006913A1 (en) 2000-02-10

Similar Documents

Publication Publication Date Title
EP2622227B1 (en) Propeller for ventilator, with a variable chord length
EP2622226B1 (en) Propeller for ventilator, with a variable blade angle
EP1034376B1 (en) Fan blade
FR2585778A3 (en) AXIAL FAN, ESPECIALLY FOR MOTOR VEHICLES
WO2011069762A2 (en) Fan propeller, in particular for a motor vehicle
EP0298861B1 (en) Scythe-shaped impeller blade, and its use, especially in motor vehicle ventilators
EP3271588B1 (en) Aerodynamically and acoustically improved car fan
EP1996818B1 (en) Fan propeller, in particular for motor vehicles
EP1813820B1 (en) Automotive fan and associated front unit
EP1152153B1 (en) Fan for a motor vehicle having guide vanes
FR2784421A1 (en) Axial flow cooling fan for motor vehicle engine has hub and shroud with curved blades extending between them at set curvature
WO2013156255A1 (en) Impeller for motor vehicle fan, including segmented hub stiffeners
FR2459387A1 (en) Air fan for sun room wall mounting - has S=shaped blade leading and trailing edges
EP3018359B1 (en) Automotive fan with blades optimised for high flow rates
FR2740274A1 (en) ALTERNATOR HAVING IMPROVED INTERNAL VENTILATION MEANS
WO2016050304A1 (en) Fan for a motor vehicle, having acoustically and aerodynamically optimized blades
WO2012084499A1 (en) Fan impeller and associated cooling module
EP2729356B1 (en) Propeller comprising a plate joining its hub and each of its blades
WO2013174729A1 (en) Motor vehicle fan having optimized blades
FR3010747A1 (en) AUTOMOBILE FAN WITH OPTIMIZED BLADES FOR ACOUSTICS AND AERODYNAMICS
EP3728861A1 (en) Propeller for fan of a thermal system of a motor vehicle, fan and thermal system comprising such a propeller
FR2816380A1 (en) Cooling fan, for vehicle engine, has propeller hub mounted on primary end of shaft and secured by means of collar, rigidly fixed to shaft and securing fixing, such that collar forms axial support.
WO2019025710A1 (en) Centrifugal wheel for motor-fan unit
CH198880A (en) Thruster device.
FR2750107A3 (en) Motorboat propeller with segmented hub

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020214

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69907134

Country of ref document: DE

Date of ref document: 20030528

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1034376E

Country of ref document: IE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2198929

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: TEMIC AUTOMOTIVE ELECTRIC MOTORS GMBH

Effective date: 20040122

Opponent name: EBM-PAPST MULFINGEN GMBH & CO. KG

Effective date: 20040121

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: TEMIC AUTOMOTIVE ELECTRIC MOTORS GMBH

Effective date: 20040122

Opponent name: EBM-PAPST MULFINGEN GMBH & CO. KG

Effective date: 20040121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100705

Year of fee payment: 12

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 69907134

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 69907134

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20110517

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20110517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110627

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 69907134

Country of ref document: DE

Effective date: 20111013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110726

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110727

Year of fee payment: 13