EP1031393B1 - Preparation of metal foams - Google Patents

Preparation of metal foams Download PDF

Info

Publication number
EP1031393B1
EP1031393B1 EP00102816A EP00102816A EP1031393B1 EP 1031393 B1 EP1031393 B1 EP 1031393B1 EP 00102816 A EP00102816 A EP 00102816A EP 00102816 A EP00102816 A EP 00102816A EP 1031393 B1 EP1031393 B1 EP 1031393B1
Authority
EP
European Patent Office
Prior art keywords
metal
blowing agent
temperature
melting
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00102816A
Other languages
German (de)
French (fr)
Other versions
EP1031393A1 (en
Inventor
Wilfried Dr. Knott
Andreas Dr. Weier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
TH Goldschmidt AG
Goldschmidt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TH Goldschmidt AG, Goldschmidt GmbH filed Critical TH Goldschmidt AG
Publication of EP1031393A1 publication Critical patent/EP1031393A1/en
Application granted granted Critical
Publication of EP1031393B1 publication Critical patent/EP1031393B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a method for producing Metal foams.
  • DE 197 44 300 A deals with the manufacture and use of porous light metal parts or light metal alloy parts, being made from a powder mixture (Light metal or Al alloy and blowing agent) pressed Body in a heated closed vessel with inlet and Outlet opening at temperatures above the decomposition temperature of the blowing agent and / or melting temperature of the metal or the alloy are heated.
  • JP 03017236 A describes a method for production metallic article with cavities by placing gases in a Metal melt dissolves and then the foaming process by sudden Reduces pressure. Cooling of the melt stabilized the foam thus obtained.
  • WO 92/21457 teaches the production of Al foam or Al alloy foam by blowing gas under the surface of a molten metal, whereby abrasives, such as. B. SiC, ZrO 2 , etc., serve as stabilizers.
  • Foam aluminum becomes molten aluminum after infiltration into a porous filler by removing it obtained from the solidified metal (Zhuzao Bianjibu (1997) (2) 1-4; ZHUZET, ISSN: 1001-4977).
  • the processes involving precompacting propellants Provide green bodies that are complex and costly not suitable for the production of bulk goods. Besides, is common to these processes is that the desired temperature difference between the melting point of the metal to be foamed and the decomposition temperature of the blowing agent used if possible should be low, otherwise it is already during compacting or later disruptive blowing agent decomposition in the melting phase takes place.
  • the infiltration technology should also be assessed from this perspective, in which one painstakingly removes the porous filler from the foam matrix must remove.
  • the dissolving or blowing in of propellant gases in molten metal is not suitable for the production of near-net shape workpieces, because a System consisting of the melt with occluded gas bubbles, is not sufficiently stable in time to be used in shaping tools to be processed.
  • the above object is thus achieved in a first embodiment by a method for producing metal foams, wherein one or more metal powders, optionally applied with more or less lumpy metallic or non-metallic, e.g. B. mineral aggregates, mixed with a gas-releasing blowing agent, the mixture in an open or closed form, if necessary preheated to a temperature below the decomposition temperature of the blowing agent, the mixture is then heated to a temperature above the melting temperature of the low-melting metal, that the temperature difference between the equilibrium decomposition temperature of the blowing agent and the melting temperature of the metal or the melting temperature of the lowest-melting metal in a metal mixture is bridged in a period of time that is shorter than the time required to reach the equilibrium state in the blowing agent / propellant system at this temperature is required and cools the metal foam obtained to a temperature below the melting point of the lowest-melting metal.
  • one or more metal powders optionally applied with more or less lumpy metallic or non-metallic, e.g. B. mineral aggregates, mixed
  • the method according to the invention dispenses with methods which are described in the metal matrix to be foamed for the construction of a Propellant pressure counteracting mechanical resistance are responsible.
  • Essential to the present invention is, however, that the temperature difference between the equilibrium decomposition temperature of the blowing agent and the melting temperature of the metal or the melting temperature of the lowest melting point Metal in a metal mixture in one Time span that is shorter than the time that is to achieve equilibrium in the propellant // propellant system at this temperature is required.
  • the rapid reaching of the melting temperature of the lowest melting Metal in a metal mixture to be foamed advantageously allows the use of end matrix compatible Components (unmelted metal particles) than that Nucleation promoting the uniformity of the metal foam.
  • reaction mass is heated quickly induction heating or bombardment with laser radiation.
  • reaction heat of a fast, strongly exothermic Process e.g. aluminothermic reduction
  • Magnesium hydride used as a gas-releasing blowing agent the is commercially available.
  • metal hydrides for example titanium hydride
  • carbonates for example calcium carbonate, potassium carbonate, Sodium carbonate, sodium bicarbonate, hydrates, for example Aluminum sulfate hydrate, alum, aluminum hydroxide or easily evaporating substances, for example mercury compounds or powdered organic substances used become.
  • the gas-releasing Blowing agent contains the same metal ions as for the melting metal are provided.
  • Blowing agent is usually very low. So that's enough Blowing agent proportions in the order of several tenths Weight percent usually from. As particularly cheap in For the purposes of the present invention, amounts of blowing agent have increased from 0.1 to 10% by weight, in particular 0.2 to 5% by weight on metal powder.
  • steel with a melting point of 1500 ° C. to 1600 ° C. can be foamed using magnesium hydride ( decomposition ⁇ 280 ° C.) as a blowing agent if a small amount of MgH 2 is added to a powdered THERMIT® mixture and then the ignition of the reaction mixture initiates the aluminothermic reduction of iron oxide to iron.
  • magnesium hydride decomposition ⁇ 280 ° C.
  • the one obtained after cooling and sawed in the longitudinal direction Regulus according to FIG. 1 contains hydride decomposition Gas pores in metallic iron.
  • this embodiment of the invention opens that wide field of "reactive foaming" of metals, with a exothermic process (e.g. a reduction) temporally and spatially to the foaming process (blowing agent decomposition and formation of the molten metal) is coupled.
  • a exothermic process e.g. a reduction
  • the mechanical dispensable according to the inventive method Pretreatment of the foam-forming mixture leaves almost Any shape for the foamed semi-finished products and prepares the way to mass production.
  • Another embodiment of the present invention relates hence a foam-shaped semi-finished metal product that is used of the method according to the invention is available.
  • the quality of the metal foam obtained using the new process depends, for example on the cooling rate of the metal mass.
  • Fig. 1 shows the longitudinal profile of the porous steel body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Metal foam production involves heating a metal powder and blowing agent mixture in a mold to above the metal melting temperature before blowing agent/gas equilibrium is achieved. Metal foam production comprises (a) mixing metal powder, optionally containing metallic or non-metallic lumps (e.g. mineral aggregate), with a gas-evolving blowing agent; (b) preheating the mixture in a mold to below the agent decomposition temperature; (c) heating the mixture to above the melting temperature of the lowest melting metal such that the heating time between the equilibrium decomposition temperature of the agent and the melting temperature of the metal is shorter than the time required for achieving the blowing agent/gas equilibrium state at this temperature; and (d) cooling the resulting metal foam to below the melting point of the lowest melting metal. An Independent claim is also included for a foamed metal semi-finished product obtained by the above process. Preferred Features: The blowing agent is selected from metal hydrides (especially magnesium hydride), carbonates, hydrates and materials which evaporate at the reaction temperature.

Description

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Metallschäumen.The invention relates to a method for producing Metal foams.

Der Stand der Technik zur Herstellung von Metallschäumen umfaßt im wesentlichen fünf prinzipielle Vorgehensweisen:

  • 1. das Kompaktieren von Metallpulvern mit geeigneten Treibmitteln und Erhitzen der so gewonnenen Grünkörper auf Temperaturen oberhalb der Liquidustemperatur der Metallmatrix und oberhalb der Zersetzungstemperatur des verwendeten Treibmittels;
  • 2. das Lösen bzw. Einblasen von Treibgasen in Metallschmelzen;
  • 3. das Einrühren von Treibmitteln in Metallschmelzen;
  • 4. das Sintern metallischer Hohlkugeln;
  • 5. die Infiltration von Metallschmelzen in Füllkörper, die nach Erstarren der Schmelze entfernt werden.
  • The prior art for the production of metal foams essentially comprises five basic procedures:
  • 1. the compacting of metal powders with suitable blowing agents and heating the green bodies thus obtained to temperatures above the liquidus temperature of the metal matrix and above the decomposition temperature of the blowing agent used;
  • 2. the dissolving or blowing in of propellant gases in metal melts;
  • 3. the stirring of blowing agents in molten metals;
  • 4. the sintering of hollow metallic spheres;
  • 5. the infiltration of molten metal into packing, which are removed after the melt solidifies.
  • ad 1) Die DE 197 44 300 A beschäftigt sich mit der Herstellung und Verwendung von porösen Leichtmetall-Teilen bzw. Leichtmetall-Legierungsteilen, wobei die aus einer Pulvermischung (Leichtmetall- bzw. Al-Legierung und Treibmittel) gepreßten Körper in einem beheizbaren geschlossenen Gefäß mit Einlaß- und Austrittsöffnung auf Temperaturen oberhalb der Zersetzungstemperatur des Treibmittels und/oder Schmelztemperatur des Metalls bzw. der Legierung erhitzt werden.ad 1) DE 197 44 300 A deals with the manufacture and use of porous light metal parts or light metal alloy parts, being made from a powder mixture (Light metal or Al alloy and blowing agent) pressed Body in a heated closed vessel with inlet and Outlet opening at temperatures above the decomposition temperature of the blowing agent and / or melting temperature of the metal or the alloy are heated.

    ad 2) Die JP 03017236 A beschreibt ein Verfahren zur Erzeugung metallischer Artikel mit Hohlräumen, indem man Gase in einer Metallschmelze löst und den Aufschäumvorgang dann durch plötzliche Druckverringerung einleitet. Abkühlen der Schmelze stabilisiert den so erhaltenen Schaum.ad 2) JP 03017236 A describes a method for production metallic article with cavities by placing gases in a Metal melt dissolves and then the foaming process by sudden Reduces pressure. Cooling of the melt stabilized the foam thus obtained.

    Die WO 92/21457 lehrt die Herstellung von Al-Schaum bzw. Al-Legierungsschaum durch das Einblasen von Gas unter die Oberfläche eines geschmolzenen Metalls, wobei Abrasivstoffe, wie z. B. SiC, ZrO2 usw., als Stabilisatoren dienen.WO 92/21457 teaches the production of Al foam or Al alloy foam by blowing gas under the surface of a molten metal, whereby abrasives, such as. B. SiC, ZrO 2 , etc., serve as stabilizers.

    ad 3) Der Lehre der JP 09241780 A folgend, werden metallische Schäume unter kontrollierter Freisetzung von Treibgasen gewonnen, indem die Metalle zunächst bei Temperaturen unterhalb der Zersetzungstemperatur des verwendeten Treibmittels geschmolzen werden. Durch nachfolgendes Dispergieren des Treibmittels im geschmolzenen Metall und Erhitzen der Matrix über die dann zur Freisetzung von Treibgasen benötigte Temperatur etabliert sich ein Metallschaum.ad 3) Following the teaching of JP 09241780 A, metallic Foams obtained with controlled release of propellant gases, by the metals initially at temperatures below the Decomposition temperature of the blowing agent used melted become. By subsequently dispersing the blowing agent in the molten metal and then heating the matrix over to The release of propellant gases required temperature is established a metal foam.

    ad 4) Die Herstellung ultraleichter Ti-6Al-4V-Hohlkugelschäume beruht auf der bei Temperaturen ≥ 1000 °C erfolgenden Sinterung metallischer Hohlkugeln, die aus der thermischen Zersetzung hydrierter Ti-6Al-4V-Hohlkugeln bei 600 °C hervorgehen (Synth./Process. Lightweight Met. Mater. II, Proc. Symp. 2nd (1997), 289-300).ad 4) The production of ultra-light Ti-6Al-4V hollow spherical foams is based on the sintering of hollow metallic spheres at temperatures ≥ 1000 ° C, which results from thermal decomposition hydrogenated Ti-6Al-4V hollow spheres emerge at 600 ° C (Synth./Process. Lightweight Met. Mater. II, Proc. Symp. 2nd (1997), 289-300).

    ad 5) Schaumaluminium wird nach Infiltration geschmolzenen Aluminiums in einen porösen Füllstoff durch Entfernen desselben aus dem erstarrten Metall erhalten (Zhuzao Bianjibu (1997) (2) 1-4; ZHUZET, ISSN: 1001-4977).ad 5) Foam aluminum becomes molten aluminum after infiltration into a porous filler by removing it obtained from the solidified metal (Zhuzao Bianjibu (1997) (2) 1-4; ZHUZET, ISSN: 1001-4977).

    Bei Würdigung des Standes der Technik ist festzustellen, daß die Verfahren, die ein Vorkompaktieren Treibmittel enthaltender Grünkörper vorsehen, aufwendig und kostspielig sind und sich nicht zur Herstellung von Massengütern eignen. Außerdem ist diesen Verfahren gemeinsam, daß die angestrebte Temperaturdifferenz zwischen dem Schmelzpunkt des zu schäumenden Metalls und der Zersetzungstemperatur des verwendeten Treibmittels möglichst gering sein soll, da sonst bereits während des Kompaktierens oder später in der Aufschmelzphase störende Treibmittelzersetzung stattfindet.When assessing the state of the art, it should be noted that the processes involving precompacting propellants Provide green bodies that are complex and costly not suitable for the production of bulk goods. Besides, is common to these processes is that the desired temperature difference between the melting point of the metal to be foamed and the decomposition temperature of the blowing agent used if possible should be low, otherwise it is already during compacting or later disruptive blowing agent decomposition in the melting phase takes place.

    In Analogie dazu gilt diese Betrachtung auch für das Eintragen von Treibmitteln in Metallschmelzen.In analogy to this, this consideration also applies to the entry of blowing agents in molten metals.

    Dem Versintern präformierter Hohlkugeln zu einem metallischen Schaum kommt allenfalls akademisches Interesse zu, da die Herstellung der Hohlkugeln bereits eine aufwendige Verfahrenstechnik erfordert.The sintering of preformed hollow spheres to a metallic one Foam is of academic interest at most, since the production the hollow spheres are already a complex process technology requires.

    Unter diesem Aspekt ist auch die Infiltrationstechnik zu bewerten, bei der man mühevoll den porösen Füllstoff aus der Schaummatrix entfernen muß.The infiltration technology should also be assessed from this perspective, in which one painstakingly removes the porous filler from the foam matrix must remove.

    Das Lösen bzw. Einblasen von Treibgasen in Metallschmelzen ist nicht zur Fertigung endkonturnaher Werkstücke geeignet, da ein System, bestehend aus der Schmelze mit okkludierten Gasblasen, nicht ausreichend zeitstabil ist, um in formgebenden Werkzeugen verarbeitet zu werden.The dissolving or blowing in of propellant gases in molten metal is not suitable for the production of near-net shape workpieces, because a System consisting of the melt with occluded gas bubbles, is not sufficiently stable in time to be used in shaping tools to be processed.

    Vor diesem Hintergrund war es Aufgabe der Erfindung, ein einfaches und zugleich für die Massenfertigung taugliches Verfahren zur Herstellung von Metallschäumen bereitzustellen, das mit geringem Aufwand die Produktion von endkonturnahen Teilen gestattet und auf der Verwendung fester, gasgenerierender Treibmittel beruht.Against this background, it was an object of the invention to make a simple one and at the same time process suitable for mass production to provide for the production of metal foams that with low effort allows the production of near net shape parts and on the use of solid, gas-generating propellants based.

    Erstaunlicherweise wurde nun gefunden, daß die Erzeugung metallischer Schäume weder mit Treibmittel versehene, kompaktierte Grünkörper noch das Eintragen von Treibmitteln in schmelzflüssige Metalle benötigt, wenn bestimmte verfahrenstechnische Randbedingungen eingehalten werden.Surprisingly, it has now been found that the production of metallic Foams neither compacted with blowing agents Green bodies still the introduction of blowing agents in molten Metals needed when certain process engineering Boundary conditions are observed.

    In der einfachsten Ausführungsform des erfindungsgemäßen Verfahrens ist es zur Erzeugung eines porösen Metallkörpers hinreichend, eine geringe Menge des gasliefernden Treibmittels unter das zu verschäumende, pulverförmige Metall zu mischen und dieses Gemisch zügig zu erwärmen. Erhalten wird ein poröser Metallkörper.In the simplest embodiment of the method according to the invention it is sufficient to create a porous metal body, a small amount of the gas-producing propellant to mix the powdery metal to be foamed and to warm this mixture quickly. A porous metal body is obtained.

    Die vorgenannte Aufgabe wird somit in einer ersten Ausführungsform gelöst durch ein Verfahren zur Herstellung von Metallschäumen, wobei man
    ein oder mehrere Metallpulver, gegebenenfalls beaufschlagt mit mehr oder minder stückigen metallischen oder nichtmetallischen, z. B. mineralischen Zuschlagstoffen, mit einem gasabspaltenden Treibmittel vermischt,
    das Gemisch in einer offenen oder geschlossenen Form gegebenenfalls auf eine Temperatur unterhalb der Zersetzungstemperatur des Treibmittels vorerhitzt,
    das Gemisch anschließend auf eine Temperatur oberhalb der Schmelztemperatur des niedrigstschmelzenden Metalls so erhitzt,
    daß die Temperaturdifferenz zwischen der Gleichgewichtszersetzungstemperatur des Treibmittels und der Schmelztemperatur des Metalls bzw. der Schmelztemperatur des niedrigstschmelzenden metalls in einem metallgemisch in einer Zeitspanne überbrückt wird, die kürzer ist als die Zeit, die zur Erreichung des Gleichgewichtszustandes im System Treibmittel//Treibgas bei dieser Temperatur erforderlich ist und
    den erhaltenen Metallschaum auf eine Temperatur unterhalb des Schmelzpunktes des niedrigstschmelzenden Metalls abkühlt.
    The above object is thus achieved in a first embodiment by a method for producing metal foams, wherein
    one or more metal powders, optionally applied with more or less lumpy metallic or non-metallic, e.g. B. mineral aggregates, mixed with a gas-releasing blowing agent,
    the mixture in an open or closed form, if necessary preheated to a temperature below the decomposition temperature of the blowing agent,
    the mixture is then heated to a temperature above the melting temperature of the low-melting metal,
    that the temperature difference between the equilibrium decomposition temperature of the blowing agent and the melting temperature of the metal or the melting temperature of the lowest-melting metal in a metal mixture is bridged in a period of time that is shorter than the time required to reach the equilibrium state in the blowing agent / propellant system at this temperature is required and
    cools the metal foam obtained to a temperature below the melting point of the lowest-melting metal.

    Das erfindungsgemäße Verfahren verzichtet auf Methoden, die in der aufzuschäumenden Metallmatrix für den Aufbau eines dem Treibmitteldruck entgegenwirkenden, mechanischen Widerstandes verantwortlich sind. Essentiell für die vorliegende Erfindung ist jedoch, daß die Temperaturdifferenz zwischen der Gleichgewichtszersetzungstemperatur des Treibmittels und der Schmelztemperatur des Metalls bzw. der Schmelztemperatur des niedrigstschmelzenden Metalls in einem Metallgemisch in einer Zeitspanne überbrückt wird, die kürzer ist als die Zeit, die zur Erreichung des Gleichgewichtszustandes im System Treibmittel//Treibgas bei dieser Temperatur erforderlich ist.The method according to the invention dispenses with methods which are described in the metal matrix to be foamed for the construction of a Propellant pressure counteracting mechanical resistance are responsible. Essential to the present invention is, however, that the temperature difference between the equilibrium decomposition temperature of the blowing agent and the melting temperature of the metal or the melting temperature of the lowest melting point Metal in a metal mixture in one Time span that is shorter than the time that is to achieve equilibrium in the propellant // propellant system at this temperature is required.

    Das rasche Erreichen der Schmelztemperatur des niedrigstschmelzenden Metalls in einem aufzuschäumenden Metallgemisch erlaubt in vorteilhafter Weise die Nutzung Endmatrix-verträglicher Komponenten (nichtgeschmolzene Metallpartikel) als die Gleichmäßigkeit des Metallschaums fördernde Keimbildner.The rapid reaching of the melting temperature of the lowest melting Metal in a metal mixture to be foamed advantageously allows the use of end matrix compatible Components (unmelted metal particles) than that Nucleation promoting the uniformity of the metal foam.

    Zur schnellen Erhitzung der Reaktionsmasse dienen beispielsweise die Induktiverhitzung oder der Beschuß mit Laserstrahlung. In einer besonderen Modifizierung des vorgestellten Verfahrens kann aber auch anstelle oder zusätzlich zu dem externen Energieeintrag die Reaktionswärme eines schnellen, stark exothermen Prozesses (z. B. der aluminothermischen Reduktion) die Aufgabe übernehmen, sowohl Schmelzwärme für das zu verschäumende Metall als auch Zersetzungswärme für das verwendete Treibmittel zu liefern.For example, the reaction mass is heated quickly induction heating or bombardment with laser radiation. In a special modification of the method presented can also be used instead of or in addition to the external one Energy input the reaction heat of a fast, strongly exothermic Process (e.g. aluminothermic reduction) Take on the task of both melting heat for the foam to be foamed Metal as well as heat of decomposition for the used To deliver propellants.

    Prinzipiell sind alle schmelzbaren Metalle oder Metall-Legierungen im Sinne der vorliegenden Erfindung schäumbar. Besonders bevorzugt im Sinne der vorliegenden Erfindung wird als Metallpulver Aluminium oder Eisen sowie deren Legierungen eingesetzt. Im Gegensatz zum üblichen Stand der Technik ist es somit möglich, nicht nur Leichtmetalle, sondern auch Schwermetalle in Schaumform herzustellen. In principle, all fusible metals or metal alloys foamable in the sense of the present invention. Especially preferred in the sense of the present invention is as metal powder Aluminum or iron and their alloys are used. In contrast to the usual state of the art, it is possible not only light metals but also heavy metals in To produce foam mold.

    Besonders bevorzugt im Sinne der vorliegenden Erfindung wird Magnesiumhydrid als gasabspaltendes Treibmittel eingesetzt, das kommerziell erhältlich ist. Neben Magnesiumhydrid können aber auch an sich bekannte Metallhydride, beispielsweise Titanhydrid, sowie Carbonate, beispielsweise Calciumcarbonat, Kaliumcarbonat, Natriumcarbonat, Natriumbicarbonat, Hydrate, beispielsweise Aluminiumsulfathydrat, Alaun, Aluminiumhydroxid oder leicht verdampfende Stoffe, beispielsweise Quecksilberverbindungen oder pulverisierte organische Substanzen eingesetzt werden. Im Sinne der vorliegenden Erfindung ist es selbstverständlich besonders bevorzugt, wenn das gasabspaltende Treibmittel dieselben Metallionen enthält, die auch für das zu schmelzende Metall vorgesehen sind.Is particularly preferred in the sense of the present invention Magnesium hydride used as a gas-releasing blowing agent, the is commercially available. In addition to magnesium hydride, however also known metal hydrides, for example titanium hydride, and carbonates, for example calcium carbonate, potassium carbonate, Sodium carbonate, sodium bicarbonate, hydrates, for example Aluminum sulfate hydrate, alum, aluminum hydroxide or easily evaporating substances, for example mercury compounds or powdered organic substances used become. For the purposes of the present invention, it is Of course, particularly preferred if the gas-releasing Blowing agent contains the same metal ions as for the melting metal are provided.

    Die erfindungsgemäß einzusetzende Menge des gasabspaltenden Treibmittels ist üblicherweise sehr gering. So reichen die Treibmittelanteile in der Größenordnung von mehreren Zehntel Gewichtsprozent üblicherweise aus. Als besonders günstig im Sinne der vorliegenden Erfindung haben sich Treibmittelmengen von 0,1 bis 10 Gew.-%, insbesondere 0,2 bis 5 Gew.-%, bezogen auf Metallpulver, erwiesen.The amount of gas-releasing to be used according to the invention Blowing agent is usually very low. So that's enough Blowing agent proportions in the order of several tenths Weight percent usually from. As particularly cheap in For the purposes of the present invention, amounts of blowing agent have increased from 0.1 to 10% by weight, in particular 0.2 to 5% by weight on metal powder.

    Insbesondere im letztgenannten Fall war für den Fachmann vollkommen überraschend, daß sich beispielsweise Stahl mit einem Schmelzpunkt von 1500 °C bis 1600 °C mit Hilfe von Magnesiumhydrid (Tzersetzung ≥ 280 °C) als Treibmittel verschäumen läßt, wenn man eine kleine Menge MgH2 einer pulverförmigen THERMIT®-Mischung zusetzt und dann durch Zündung des Reaktionsgemisches die aluminothermische Reduktion von Eisenoxid zu Eisen initialisiert.In the latter case in particular, it was completely surprising to the person skilled in the art that steel with a melting point of 1500 ° C. to 1600 ° C., for example, can be foamed using magnesium hydride ( decomposition ≥ 280 ° C.) as a blowing agent if a small amount of MgH 2 is added to a powdered THERMIT® mixture and then the ignition of the reaction mixture initiates the aluminothermic reduction of iron oxide to iron.

    Der nach dem Erkalten gewonnene und in der Längsrichtung aufgesägte Regulus gemäß Fig. 1 enthält auf Hydridzersetzung beruhende Gasporen im metallischen Eisen. The one obtained after cooling and sawed in the longitudinal direction Regulus according to FIG. 1 contains hydride decomposition Gas pores in metallic iron.

    Diese Beobachtung ist absolut verblüffend, da weder eine Vorkompaktierung der Pulvermischung notwendig war, noch die Prämisse einer möglichst kleinen Temperaturdifferenz zwischen dem Schmelzpunkt des Metalls und der Zersetzungstemperatur des Treibmittels erfüllt wurde. Darüber hinaus grenzt sich diese Beobachtung von den Verfahren ab, die auf einem nachträglichen Eintrag von Treibmitteln in die metallische Schmelze beruht, da das Ausgangsmaterial als Festkörpermischung vorlag.This observation is absolutely astounding, since neither precompaction the powder mixture was still necessary, the premise the smallest possible temperature difference between the Melting point of the metal and the decomposition temperature of the Propellant was met. In addition, this limits itself Observation of the procedures based on an ex post The introduction of blowing agents into the metallic melt is based on the starting material was in the form of a solid mixture.

    Zugleich eröffnet diese erfindungsgemäße Ausführungsform das weite Feld einer "Reaktivverschäumung" von Metallen, wobei ein exotherm verlaufender Vorgang (beispielsweise eine Reduktion) zeitlich und räumlich an den Aufschäumvorgang (Treibmittelzersetzung und Bildung der Metallschmelze) gekoppelt wird.At the same time, this embodiment of the invention opens that wide field of "reactive foaming" of metals, with a exothermic process (e.g. a reduction) temporally and spatially to the foaming process (blowing agent decomposition and formation of the molten metal) is coupled.

    Die nach dem erfindungsgemäßen Verfahren entbehrliche, mechanische Vorbehandlung der schaumbildenden Mischung läßt nahezu beliebige Formgebung bei den geschäumten Halbzeugen zu und bereitet einer Massenfertigung den Weg.The mechanical dispensable according to the inventive method Pretreatment of the foam-forming mixture leaves almost Any shape for the foamed semi-finished products and prepares the way to mass production.

    Eine weitere Ausführungsform der vorliegenden Erfindung betrifft daher ein schaumförmiges Metallhalbzeug, das unter Einsatz des erfindungsgemäßen Verfahrens erhältlich ist.Another embodiment of the present invention relates hence a foam-shaped semi-finished metal product that is used of the method according to the invention is available.

    Die Qualität des nach dem neuen Verfahren gewonnenen Metallschaums (Porengröße, Porenverteilung, etc.) hängt beispielsweise von der Abkühlrate der Metallmasse ab.The quality of the metal foam obtained using the new process (Pore size, pore distribution, etc.) depends, for example on the cooling rate of the metal mass.

    Ausführungsbeispielembodiment

    In einem Tiegel werden 6 kg einer handelsüblichen THERMIT®-Mischung mit 200 g (3,3 m-%) autokatalytisch hergestellten Magnesiumhydrids versetzt. Durch einen Thermitzünder wird die aluminothermische Reduktionsreaktion initialisiert. Nach Abklingen der heftigen Reaktionsphase läßt man den Ansatz im Tiegel erkalten. Der metallische Regulus wird von Schlackenresten befreit und in Längsrichtung aufgesägt. Fig. 1 zeigt das Längsprofil des porösen Stahlkörpers.6 kg of a commercially available THERMIT® mixture are placed in a crucible with 200 g (3.3 m%) of autocatalytically produced magnesium hydride added. With a thermal igniter aluminothermic reduction reaction initialized. After decay the violent reaction phase, the approach is left in the crucible cool. The metallic regulus is made of slag residues freed and sawn lengthways. Fig. 1 shows the longitudinal profile of the porous steel body.

    Claims (4)

    1. Process for producing metal foams, in which one or more metal powders, if appropriate with the addition of more or less lumpy metallic or non-metallic, e.g. mineral additions, is/are mixed with a gas-releasing blowing agent,
      the mixture, in an open or closed mould, is preheated if appropriate to a temperature below the decomposition temperature of the blowing agent,
      the mixture is then heated to a temperature above the melting point of the lowest-melting metal, in such a way that the temperature difference between the equilibrium decomposition temperature of the blowing agent and the melting point of the metal or the melting point of the lowest-melting metal in a metal mixture is covered within a period of time which is shorter than the time which is required to reach the equilibrium state in the blowing agent/blowing gas system at this temperature, and
      the metal foam obtained is cooled to a temperature below the melting point of the lowest-melting metal.
    2. Process according to Claim 1, characterized in that the energy required to melt the metal is introduced by induction heating, laser radiation and/or chemical reaction heat.
    3. Process according to Claim 1, characterized in that the gas-releasing blowing agent used is metal hydrides, in particular magnesium hydrides, carbonates, hydrates and/or substances which evaporate at the reaction temperature.
    4. Process according to one or more of Claims 1 to 3, characterized in that the gas-releasing blowing agent is used in an amount of from 0.1 to 10% by weight, in particular 0.2 to 5% by weight, based on metal powder.
    EP00102816A 1999-02-24 2000-02-11 Preparation of metal foams Expired - Lifetime EP1031393B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19907855A DE19907855C1 (en) 1999-02-24 1999-02-24 Manufacture of metal foams
    DE19907855 1999-02-24

    Publications (2)

    Publication Number Publication Date
    EP1031393A1 EP1031393A1 (en) 2000-08-30
    EP1031393B1 true EP1031393B1 (en) 2004-01-28

    Family

    ID=7898625

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00102816A Expired - Lifetime EP1031393B1 (en) 1999-02-24 2000-02-11 Preparation of metal foams

    Country Status (6)

    Country Link
    US (1) US6444007B1 (en)
    EP (1) EP1031393B1 (en)
    AT (1) ATE258477T1 (en)
    CA (1) CA2298348C (en)
    DE (2) DE19907855C1 (en)
    NO (1) NO20000848L (en)

    Families Citing this family (21)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6852272B2 (en) * 2001-03-07 2005-02-08 Advanced Ceramics Research, Inc. Method for preparation of metallic and ceramic foam products and products made
    ATE357304T1 (en) * 2001-05-19 2007-04-15 Goldschmidt Gmbh PRODUCTION OF METAL FOAM
    DE10161348A1 (en) * 2001-12-13 2003-06-26 Trw Automotive Safety Sys Gmbh vehicle steering wheel
    WO2005113179A2 (en) * 2004-05-14 2005-12-01 Jeanette Garr A process and system for manufacturing a metal foam product, and uses thereof
    US7582361B2 (en) * 2004-06-21 2009-09-01 Purgert Robert M Lightweight structural members
    TW201003024A (en) * 2008-04-28 2010-01-16 Basf Se Open-cell porous shaped bodies for heat exchangers
    US20110111251A1 (en) * 2009-11-10 2011-05-12 Ken Evans Process for producing a foamed metal article and process for producing a foamable metal precursor
    US20150321289A1 (en) * 2014-05-12 2015-11-12 Siemens Energy, Inc. Laser deposition of metal foam
    DE102014209408A1 (en) 2014-05-19 2015-11-19 Evonik Degussa Gmbh Ethoxylate preparation using highly active double metal cyanide catalysts
    ES2676430T3 (en) 2015-11-11 2018-07-19 Evonik Degussa Gmbh Curable polymers
    PL3321304T3 (en) 2016-11-15 2019-11-29 Evonik Degussa Gmbh Mixtures of cyclic branched d/t-type siloxanes and their ensuing products
    EP3415547B1 (en) 2017-06-13 2020-03-25 Evonik Operations GmbH Method for producing sic-linked polyether siloxanes
    EP3415548B1 (en) 2017-06-13 2020-03-25 Evonik Operations GmbH Method for producing sic-linked polyether siloxanes
    EP3438158B1 (en) 2017-08-01 2020-11-25 Evonik Operations GmbH Production of sioc-linked siloxanes
    EP3467006B1 (en) 2017-10-09 2022-11-30 Evonik Operations GmbH Mixtures of cyclic branched d/t-type siloxanes and their ensuing products
    EP3611215A1 (en) 2018-08-15 2020-02-19 Evonik Operations GmbH Method for producing acetoxy groups carrying siloxanes
    EP3611214A1 (en) 2018-08-15 2020-02-19 Evonik Operations GmbH Sioc-linked, linear polydimethylsiloxane polyoxyalkylene block copolymers
    CN111250707B (en) * 2020-03-14 2022-04-01 中北大学 Composite metal foaming powder material based on selective laser melting forming technology and preparation method thereof
    CN112662908B (en) * 2021-01-04 2023-09-12 云南迈特力医疗技术有限公司 Preparation device and method of porous low-melting-point metal exoskeleton
    CN114871433A (en) * 2022-04-21 2022-08-09 湖北黄石科创模具技术研究院有限公司 Preparation method of porous breathable steel based on sodium bicarbonate particles
    CN115074569B (en) * 2022-07-21 2023-03-31 内蒙古环投环保技术有限公司 Preparation method of porous copper alloy

    Family Cites Families (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2895819A (en) * 1957-09-03 1959-07-21 Bjorksten Res Lab Inc Method for preparing a catalytic metal foam and use thereof
    US2983597A (en) * 1959-06-11 1961-05-09 Lor Corp Metal foam and method for making
    US3087807A (en) * 1959-12-04 1963-04-30 United Aircraft Corp Method of making foamed metal
    US3300296A (en) * 1963-07-31 1967-01-24 American Can Co Method of producing a lightweight foamed metal
    US3297431A (en) * 1965-06-02 1967-01-10 Standard Oil Co Cellarized metal and method of producing same
    EP0362411A4 (en) * 1988-04-05 1991-03-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Foamable composition, process for its production, rigid foam, and process for its production
    JPH0317236A (en) * 1989-06-14 1991-01-25 Nkk Corp Manufacture of foamed metal
    US4973358A (en) * 1989-09-06 1990-11-27 Alcan International Limited Method of producing lightweight foamed metal
    DE4101630A1 (en) * 1990-06-08 1991-12-12 Fraunhofer Ges Forschung METHOD FOR PRODUCING FOAMABLE METAL BODIES AND USE THEREOF
    CA2109957C (en) * 1991-05-31 1998-12-15 Harry Sang Process and apparatus for producing shaped slabs of particle stabilized foamed metal
    US5213612A (en) * 1991-10-17 1993-05-25 General Electric Company Method of forming porous bodies of molybdenum or tungsten
    DE4206303C1 (en) * 1992-02-28 1993-06-17 Mepura Metallpulver Ges.M.B.H., Ranshofen, At
    CH686413A5 (en) * 1992-06-09 1996-03-29 Matec Holding Ag A process for the production of molded parts and application thereof.
    DE19651197C2 (en) * 1995-12-15 1999-10-28 Susan Dietzschold Material for producing porous metal bodies
    JP3352584B2 (en) * 1996-03-11 2002-12-03 神鋼鋼線工業株式会社 Manufacturing method of metal foam
    DE19734394C2 (en) * 1996-08-13 2003-06-18 Friedrich Wilhelm Bessel Inst Method and device for producing metal foam
    AT408076B (en) * 1996-10-07 2001-08-27 Mepura Metallpulver METHOD FOR THE PRODUCTION OF FOAM METAL OR FOAM / METAL COMPOSITE MOLDED BODIES, SYSTEM FOR THE PRODUCTION AND USE THEREOF
    EP0884123B1 (en) * 1997-06-10 2003-03-26 Goldschmidt AG Foamable metal body

    Also Published As

    Publication number Publication date
    EP1031393A1 (en) 2000-08-30
    US6444007B1 (en) 2002-09-03
    NO20000848L (en) 2000-08-25
    CA2298348C (en) 2008-06-17
    ATE258477T1 (en) 2004-02-15
    NO20000848D0 (en) 2000-02-21
    DE50005107D1 (en) 2004-03-04
    DE19907855C1 (en) 2000-09-21
    CA2298348A1 (en) 2000-08-24

    Similar Documents

    Publication Publication Date Title
    EP1031393B1 (en) Preparation of metal foams
    EP1397223B1 (en) Production of metal foams
    DE3783919T2 (en) METHOD FOR PRODUCING COMPOSITES FROM METAL AND A SECOND PHASE, AND ITEMS PRODUCED BY THIS METHOD.
    EP1392875B1 (en) Method for producing metal/metal foam composite elements
    DE69006359T2 (en) METHOD FOR PRODUCING A DISPERSION-FASTENED METAL FOAM AND METHOD FOR PRODUCING IT.
    EP1915226B1 (en) Process for the powder metallurgy production of metal foam and of parts made from metal foam
    US6659162B2 (en) Production of large-area metallic integral foams
    EP1356131B1 (en) Method for the production of metallic foam and metal bodies produced according to said method
    EP2044230B1 (en) Method for the production of metal foams
    DE19813176C2 (en) Process for the production of composite parts
    WO2004063406A2 (en) Method for producing metal foam bodies
    WO2019053184A1 (en) Method for foaming metal in a liquid bath
    DE10163489B4 (en) Flat, metallic integral foam
    DE19810979C2 (en) Aluminum alloy for the production of aluminum foam bodies using a powder with nucleating additives
    DE10215086A1 (en) Production of an expandable metal body comprises compacting a mixture containing a metal and a gas-splitting expanding agent to form a semi-finished product
    WO2005118895A1 (en) Method for recycling lightweight metal parts
    US3758291A (en) Method for producing metal alloy foams
    DE10104340A1 (en) Process for the production of metal foam and metal body produced thereafter
    EP1482062B1 (en) Foam casting method and pressure-tight closable die for the production of cast articles
    JP2007162052A (en) Stock for foam metal and its production method
    WO2003069002A1 (en) Expandable metal body, method for the production thereof and its use

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000218

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT DE FR GB IT NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Free format text: AT DE FR GB IT NL

    17Q First examination report despatched

    Effective date: 20030411

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT DE FR GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 50005107

    Country of ref document: DE

    Date of ref document: 20040304

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040407

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041029

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Ref country code: FR

    Ref legal event code: CJ

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: SD

    Effective date: 20100223

    Ref country code: NL

    Ref legal event code: TD

    Effective date: 20100223

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100223

    Year of fee payment: 11

    Ref country code: FR

    Payment date: 20100226

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20100219

    Year of fee payment: 11

    Ref country code: GB

    Payment date: 20100218

    Year of fee payment: 11

    Ref country code: AT

    Payment date: 20100212

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20100215

    Year of fee payment: 11

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20110901

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20110211

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20111102

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110211

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110901

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110211

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50005107

    Country of ref document: DE

    Effective date: 20110901

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110211

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110901