JPH0317236A - Manufacture of foamed metal - Google Patents

Manufacture of foamed metal

Info

Publication number
JPH0317236A
JPH0317236A JP1149418A JP14941889A JPH0317236A JP H0317236 A JPH0317236 A JP H0317236A JP 1149418 A JP1149418 A JP 1149418A JP 14941889 A JP14941889 A JP 14941889A JP H0317236 A JPH0317236 A JP H0317236A
Authority
JP
Japan
Prior art keywords
gas
molten metal
metal
pressure
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1149418A
Other languages
Japanese (ja)
Inventor
Eiju Matsuno
英寿 松野
Yoshiteru Kikuchi
良輝 菊地
Toshio Takaoka
利夫 高岡
Yoshihiko Kawai
河井 良彦
Shinichi Nishioka
信一 西岡
Tsutomu Usui
碓井 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1149418A priority Critical patent/JPH0317236A/en
Publication of JPH0317236A publication Critical patent/JPH0317236A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • C22C1/083Foaming process in molten metal other than by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture the formed metal in which fine gas bubbles are uniformly dispersed over the whole of the metal with high productivity by dissolving a soluble gas into a molten metal, rapidly reducing the pressure to generate gas bubbles and solidifying them in a formed state. CONSTITUTION:A soluble gas (such as an H2 gas and an N2 gas) is dissolved into a molten metal 1 by bubbling and is abundantly incorporated. Next, the pressure in the atmosphere is rapidly reduced and the dissolved gas components are generated as fine gas bubbles over the whole area of the molten metal 1. In the above state, e.g. cooled copper plates 2 are charged into the molten metal 1, which is rapidly solidified as formed and the solidified zone X is discharged as a foamed metal. Furthermore, for regulating the foaming rate to about >=0.8, the atmospheric pressure Pa in a furnace in the treatment at the time of reducing pressure to the equilibrium gas partial pressure Px of the soluble gas components dissolved in the molten metal 1 is controlled by the condition shown in the inequality of Px-Pa>=0.1 (atm). In this way, the foamed metal in a uniform foaming state can easily be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,内部に空隙を有する発泡金属の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a metal foam having voids inside.

〔従来の技術〕[Conventional technology]

発泡アルミニウム等、金属全体に細かなガスの泡が均一
に分散した発泡金属は,軽量剛性、不燃性、吸音性を生
かした建築材料、Wn撃吸収性,軽量性を生かした自動
車用衝撃吸収材科、軽量剛性を生かしてサンドインチパ
ネル芯材に用いられたコンテナ材料などに用いられる。
Foamed metals, such as foamed aluminum, in which fine gas bubbles are uniformly dispersed throughout the metal, can be used as construction materials that take advantage of their lightweight rigidity, nonflammability, and sound-absorbing properties, and as shock absorbing materials for automobiles that take advantage of their WN impact absorption and lightness. Due to its light weight and rigidity, it is used in container materials such as the core material of sand inch panels.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来このような発泡金属1よ,溶融金属中に発泡剤を混
合させながらこれを発泡させ、製造されているが、該発
泡剤を均一に分散させることが難しく、生産性の点で問
題があった。
Conventionally, such foamed metal 1 has been manufactured by mixing a foaming agent into molten metal and foaming it, but it is difficult to uniformly disperse the foaming agent, which poses problems in terms of productivity. Ta.

本発明は以上の問題に鑑み創案されたもので、均一分散
の難しい上記の混合作業を行なわずに、簡単に均一な発
泡状態が得られる新たな方法を提供せんとするものであ
る。
The present invention was devised in view of the above problems, and it is an object of the present invention to provide a new method by which a uniform foamed state can be easily obtained without performing the above-mentioned mixing operation, which is difficult to achieve uniform dispersion.

〔問題点を解決するための手段〕[Means for solving problems]

そのため本発明は、溶融金属に、これに可溶なガスを溶
解せしめ、その後急速に減圧して該溶融金属中にガス気
泡を生成させ,この発泡状態のまま溶融金属を凝固せし
めることを基本的特徴としている. 上記本発明の構成を第1図(a) (b) (e)の例
に沿って詳述すれば次のようになる。最初に同図(a)
に示されるように、溶融金属(1)に、これに可溶なガ
ス(溶鋼であれば例えばH2ガスやN2ガス)をパブリ
ングして溶解せしめる。この時加圧雰囲気下で行なえば
該ガスは多量に溶け込むことになる.次に、雰囲気を真
空状態にする等、急速に減圧すれば、同図(b)に示さ
れるように先程溶解せしめられたガス成分が微細なガス
気泡となって溶融金属(1)全域に現れる.この状態の
まま、例えば同図(C)に示されるように、銅板(2)
 (2)等熱伝導率の高いものを冷却して該溶融金属(
1)中に装入せしめれば、その間にある溶融金属(1)
が発泡状態のまま急激に冷却され、凝固することになる
Therefore, the basic principle of the present invention is to dissolve a soluble gas in the molten metal, then rapidly reduce the pressure to generate gas bubbles in the molten metal, and solidify the molten metal in this foamed state. It is a feature. The configuration of the present invention will be described in detail below using the examples shown in FIGS. 1(a), 1(b), and 1e. First, the same figure (a)
As shown in , a gas soluble in the molten metal (1) (for example, H2 gas or N2 gas in the case of molten steel) is bubbled into the molten metal (1) to dissolve it. If this is done under a pressurized atmosphere, a large amount of the gas will dissolve. Next, if the atmosphere is rapidly reduced in pressure, such as by making it into a vacuum state, the previously dissolved gas components will appear throughout the molten metal (1) as fine gas bubbles, as shown in Figure (b). .. In this state, for example, as shown in the same figure (C), the copper plate (2)
(2) The molten metal (
1) If the molten metal is charged into the molten metal (1)
The foam is rapidly cooled and solidified while still in a foamed state.

そしてこの凝固した部分Xを発泡金属として取り出すも
のである。
This solidified portion X is then taken out as a foamed metal.

又本発明者等は後述する実施例の実験を行ない、上記の
方法の実施に当り、発泡金属として一般的に要求される
発泡率Hが0.8以上となるようにするための減圧処理
条件を明らかにし、それを第2発明として提案する。即
ち. 713融金属中に溶けている可溶ガス或分(X)
の平衡ガス分圧Pxに対し、減圧時に処理する炉内の雰
囲気圧力Paを下式に示される条件で制御することを特
徴としている. Px−Pa  ≧O.  l  (at+i)〔実施例
〕 以下本発明の具体的実施例につき説明する。
In addition, the present inventors conducted experiments in the Examples described below, and in carrying out the above method, reduced pressure treatment conditions were determined so that the foaming ratio H, which is generally required for foamed metals, would be 0.8 or more. We will clarify this and propose it as the second invention. That is. 713 Soluble gas dissolved in molten metal (X)
It is characterized by controlling the atmospheric pressure Pa in the furnace during pressure reduction with respect to the equilibrium gas partial pressure Px under the conditions shown in the following equation. Px-Pa≧O. l (at+i) [Example] Specific examples of the present invention will be described below.

まずN2ガス雰囲気下でlkgのFa系溶湯を溶製し、
真空溶解炉内で急速に減圧した.この減圧は溶湯中のN
2ガス戒分の平衡ガス分圧Pxに対し炉内の雰囲気圧力
Paをそれ以下に下げ、(Px−Pa)の平均を0.2
atmとした。この時溶湯全域に微細なN2ガス気泡が
多量に発生し、発泡状態となる。この発泡した状態を確
認した後,その中に冷却した2枚の銅板を装入して該銅
板間の溶湯を凝固せしめ、これを発泡金属として得た.
この金属の一部を採取してその発泡率Hを測定したとこ
ろ、0.82であった。
First, 1 kg of Fa-based molten metal is melted in an N2 gas atmosphere,
The pressure was rapidly reduced in the vacuum melting furnace. This reduced pressure is due to the N in the molten metal.
The atmospheric pressure Pa in the furnace is lowered to below the equilibrium gas partial pressure Px of the two gases, and the average of (Px-Pa) is 0.2.
It was called ATM. At this time, a large amount of fine N2 gas bubbles are generated throughout the molten metal, resulting in a foaming state. After confirming this foamed state, two cooled copper plates were inserted into it, and the molten metal between the copper plates was solidified to obtain a foamed metal.
When a part of this metal was sampled and its foaming rate H was measured, it was found to be 0.82.

以上の実験を行なっている最中に本発明者等は、次の様
な事項が重要であることに気が付いた.即ち、発泡状態
から冷却作業を開始して溶湯が凝固するまでの間,発生
した気泡がメタルを持ち上げている状態を維持しておか
ねばならないが、そのためにはある量以上のガス発生量
が必要となるというものである. そこで本発明者等は、ガス気泡発生量に関わりのある炉
内雰囲気圧力Paと、発泡金属の発泡率Hの関係を調べ
る実験を更に行ない、第2図に示す結果を得た.同図は
溶湯中のN2ガス成分の平衡ガス分圧Pxに対し炉内雰
囲気圧力Paをそれ以下に下げた場合に,該溶湯の発泡
率Hがどの程度になるかをグラフにしたものである.尚
、このX軸座標は、前記平衡ガス分圧Pxと炉内雰囲気
圧力Paとの差(Px−Pa)に関し、減圧処理中にお
けるその平均を採ったものである。又発泡率Hは第3図
に示されるように発泡前の浴面高さh0から発泡後の浴
面高さhエがどの程度増えたかh2を調べ、次式のよう
にして求めている。
While conducting the above experiments, the inventors realized that the following matters were important. In other words, from the time the cooling operation starts from the foaming state until the molten metal solidifies, it is necessary to maintain the state in which the generated bubbles lift the metal, but in order to do this, a certain amount of gas generation is required. This means that Therefore, the present inventors further conducted an experiment to examine the relationship between the furnace atmosphere pressure Pa, which is related to the amount of gas bubbles generated, and the foaming rate H of the foamed metal, and obtained the results shown in FIG. 2. This figure is a graph showing how much the foaming rate H of the molten metal becomes when the furnace atmosphere pressure Pa is lowered to a value lower than the equilibrium gas partial pressure Px of the N2 gas component in the molten metal. .. Note that this X-axis coordinate is the average of the difference (Px-Pa) between the equilibrium gas partial pressure Px and the furnace atmosphere pressure Pa during the pressure reduction process. As shown in FIG. 3, the foaming rate H is determined by determining how much h2 the bath surface height after foaming has increased from the bath surface height h0 before foaming, and using the following equation.

同図から明らかなように、平均(Px−Pa)が0.1
stm以上である時に、発泡率Hが0.8以上となるこ
とがわかる.従って凝固後に発泡金属として得るために
は、少なくともPx−Paが0.1atm以上になるよ
うに炉内雰囲気圧力Paを制御する必要がある。
As is clear from the figure, the average (Px-Pa) is 0.1
It can be seen that when the foaming rate H is 0.8 or more when the foaming rate is 0.8 or more. Therefore, in order to obtain a foamed metal after solidification, it is necessary to control the furnace atmospheric pressure Pa so that Px-Pa is at least 0.1 atm or more.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明法によれば,発泡剤の混合等
という作業を行なわずに.溶融金属中に均一な発泡状態
を得ることができ、発泡金属の生産性を容易に高めるこ
とができるウ
As detailed above, according to the method of the present invention, there is no need to perform operations such as mixing a blowing agent. It is possible to obtain a uniform foamed state in molten metal and easily increase the productivity of foamed metal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b) (c)は本発明法の工程説明図
、第2図は発泡率Hと平均(Px−Pa)の相関関係を
示すグラフ図、 第3図は発泡率Hの求め方 を説明する説明図である. 図中(1)は溶融金属、 (2)は銅板を各示す。 第 1 図 Qasパブソング
Figure 1 (a), (b), and (c) are process explanatory diagrams of the method of the present invention, Figure 2 is a graph showing the correlation between the foaming rate H and the average (Px-Pa), and Figure 3 is a graph showing the correlation between the foaming rate H and the average (Px-Pa). It is an explanatory diagram explaining how to find. In the figure, (1) shows the molten metal, and (2) shows the copper plate. Figure 1 Qas pub song

Claims (1)

【特許請求の範囲】 1、溶融金属に、これに可溶なガスを溶解せしめ、その
後急速に減圧して該溶融金属中にガス気泡を生成させ、
この発泡状態のまま溶融金属を凝固せしめることを特徴
とする発泡金属の製造方法。 2、溶融金属に、これに可溶なガスを溶解せしめ、その
後急速に減圧して該溶融金属中にガス気泡を生成させ、
この発泡状態のまま溶融金属を凝固せしめる発泡金属の
製造方法において、得られる金属の発泡率を0.8以上
とした場合、溶融金属中に溶けている可溶ガス成分〔X
〕の平衡ガス分圧Pxに対し、減圧時に処理する炉内の
雰囲気圧力Paを下式に示される条件で制御することを
特徴とする発泡金属の製造方法。 Px−Pa≧0.1(atm)
[Claims] 1. Dissolving a gas soluble in the molten metal, and then rapidly reducing the pressure to generate gas bubbles in the molten metal,
A method for producing a foamed metal characterized by solidifying the molten metal in this foamed state. 2. Dissolving a gas soluble in the molten metal, and then rapidly reducing the pressure to generate gas bubbles in the molten metal;
In this method for producing foamed metal in which the molten metal is solidified in the foamed state, when the foaming ratio of the resulting metal is set to 0.8 or more, the soluble gas component [X
] A method for producing a foamed metal, which comprises controlling the atmospheric pressure Pa in the furnace during depressurization with respect to the equilibrium gas partial pressure Px under the conditions expressed by the following formula. Px-Pa≧0.1 (atm)
JP1149418A 1989-06-14 1989-06-14 Manufacture of foamed metal Pending JPH0317236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1149418A JPH0317236A (en) 1989-06-14 1989-06-14 Manufacture of foamed metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1149418A JPH0317236A (en) 1989-06-14 1989-06-14 Manufacture of foamed metal

Publications (1)

Publication Number Publication Date
JPH0317236A true JPH0317236A (en) 1991-01-25

Family

ID=15474680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1149418A Pending JPH0317236A (en) 1989-06-14 1989-06-14 Manufacture of foamed metal

Country Status (1)

Country Link
JP (1) JPH0317236A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290650A (en) * 1992-04-07 1993-11-05 Japan Aviation Electron Ind Ltd Manufacture of conductor for electronic part
DE19907855C1 (en) * 1999-02-24 2000-09-21 Goldschmidt Ag Th Manufacture of metal foams
WO2001004367A1 (en) * 1999-07-09 2001-01-18 Hideo Nakajima Production method for porous metal body
DE10104338A1 (en) * 2001-02-01 2002-08-08 Goldschmidt Ag Th Production of flat, metallic integral foams
DE10163489A1 (en) * 2001-12-21 2003-07-03 Goldschmidt Ag Th Production of flat metal integral foam components comprises applying a metal melt onto a flat substrate which is brought into contact with a foaming agent so that a metal foam structure develops on the substrate
US6874562B2 (en) 2001-06-07 2005-04-05 Goldschmidt Ag Process for producing metal/metal foam composite components
US6896029B2 (en) * 2002-09-09 2005-05-24 Huette Klein-Reichenbach Gesellschaft M.B.H. Process and device for manufacturing free-flowing metal foam
US6915834B2 (en) 2001-02-01 2005-07-12 Goldschmidt Ag Process for producing metal foam and metal body produced using this process
US6942716B2 (en) 2001-05-19 2005-09-13 Goldschmidt Gmbh Production of metal forms
KR100913434B1 (en) * 2007-09-13 2009-08-21 한국생산기술연구원 Method of manufacturing for pore controlled Foam Metal
CN102499182A (en) * 2011-10-19 2012-06-20 武汉市疾病预防控制中心 Integral type mosquito raising device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510110B2 (en) * 1992-04-07 1996-06-26 日本航空電子工業株式会社 Method for manufacturing conductor for electronic component
JPH05290650A (en) * 1992-04-07 1993-11-05 Japan Aviation Electron Ind Ltd Manufacture of conductor for electronic part
DE19907855C1 (en) * 1999-02-24 2000-09-21 Goldschmidt Ag Th Manufacture of metal foams
US6444007B1 (en) 1999-02-24 2002-09-03 Goldschmidt Ag Production of metal foams
US7073558B1 (en) * 1999-07-09 2006-07-11 Hideo Nakajima Production method for porous metal body
WO2001004367A1 (en) * 1999-07-09 2001-01-18 Hideo Nakajima Production method for porous metal body
DE10104338A1 (en) * 2001-02-01 2002-08-08 Goldschmidt Ag Th Production of flat, metallic integral foams
US6659162B2 (en) 2001-02-01 2003-12-09 Goldschmidt Ag Production of large-area metallic integral foams
US6915834B2 (en) 2001-02-01 2005-07-12 Goldschmidt Ag Process for producing metal foam and metal body produced using this process
US6942716B2 (en) 2001-05-19 2005-09-13 Goldschmidt Gmbh Production of metal forms
US6874562B2 (en) 2001-06-07 2005-04-05 Goldschmidt Ag Process for producing metal/metal foam composite components
DE10163489A1 (en) * 2001-12-21 2003-07-03 Goldschmidt Ag Th Production of flat metal integral foam components comprises applying a metal melt onto a flat substrate which is brought into contact with a foaming agent so that a metal foam structure develops on the substrate
DE10163489B4 (en) * 2001-12-21 2010-08-19 Evonik Goldschmidt Gmbh Flat, metallic integral foam
US6896029B2 (en) * 2002-09-09 2005-05-24 Huette Klein-Reichenbach Gesellschaft M.B.H. Process and device for manufacturing free-flowing metal foam
US7144636B2 (en) 2002-09-09 2006-12-05 Huette Klein-Reichenbach Gesellschaft M.B.H. Process and device for manufacturing free-flowing metal foam
US7959852B2 (en) * 2002-09-09 2011-06-14 Hütte Klein-Reichenbach Gesellschaft M.B.H. Process and device for manufacturing free-flowing metal foam
KR100913434B1 (en) * 2007-09-13 2009-08-21 한국생산기술연구원 Method of manufacturing for pore controlled Foam Metal
CN102499182A (en) * 2011-10-19 2012-06-20 武汉市疾病预防控制中心 Integral type mosquito raising device

Similar Documents

Publication Publication Date Title
JP2635817B2 (en) Manufacturing method of metal foam reinforced with particles
KR101184464B1 (en) Method for manufacturing titanium alloy wire with enhanced properties
JPH0317236A (en) Manufacture of foamed metal
DE19907855C1 (en) Manufacture of metal foams
CN114574739B (en) 3D printing aluminum-lithium alloy and application thereof
JPH051339A (en) Method for producing aluminum-lithium alloy by atmospheric dissolution
WO2005118895A1 (en) Method for recycling lightweight metal parts
US3744546A (en) Oxygen flushing pressure die-casting method
JPH0890152A (en) Production of high strength aluminum alloy casting
JPH07204812A (en) Continuous casting method
US7354549B2 (en) Cast iron member manufacturing method
JPH0623484A (en) Production of billet for thixocasting
JPH05269561A (en) Method for continuously casting steel
JPH1043850A (en) Continuous casting method of steel
JPH0780597A (en) Casting method for aluminum alloy casting by lost foam pattern
CN115896551A (en) Aluminum-scandium-zirconium intermediate alloy and preparation method thereof
JPH05123829A (en) Treatment of molten steel
JPH04309451A (en) Method for casting under application of pressurization
JP3329305B2 (en) Continuous casting method of round billet slab
JP2663231B2 (en) Prevention method of agglomeration of alumina in low carbon molten steel
Chadwick Casting practice and cast metal quality in the UK
JP3030596B2 (en) Continuous casting method
JPH01313180A (en) Production of composite material of al metal
KR20210043920A (en) Small diameter rod-typed aluminum alloy casting material and method of manufacturing the same
KR20100099539A (en) Method for producing formed metal having a near-net shape