JPH05123829A - Treatment of molten steel - Google Patents

Treatment of molten steel

Info

Publication number
JPH05123829A
JPH05123829A JP28892991A JP28892991A JPH05123829A JP H05123829 A JPH05123829 A JP H05123829A JP 28892991 A JP28892991 A JP 28892991A JP 28892991 A JP28892991 A JP 28892991A JP H05123829 A JPH05123829 A JP H05123829A
Authority
JP
Japan
Prior art keywords
molten steel
steel
silicon dioxide
molten
dioxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28892991A
Other languages
Japanese (ja)
Inventor
Masayuki Nakada
正之 中田
Kentaro Mori
健太郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP28892991A priority Critical patent/JPH05123829A/en
Publication of JPH05123829A publication Critical patent/JPH05123829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To absorb and remove nucleation site in molten steel by repeating cooling and heating operations, between the temp. at lower than the solidus of a steel and the temp. exceeding the liquidus and injecting glassy silicon dioxide together with inert gas into the molten steel. CONSTITUTION:The molten steel 8 is charged into a vessel 1 for molten metal coating the inner surface with glassy silicon dioxide 4 and the glassy silicon dioxide powder is injected together with the stream of inert gas from a nozzle 6. After this molten steel 8 is cooled at the lower temp. than the solidus, the molten steel is heated to the temp. exceeding the liquidus. After there coolings and heatings are repeated to become the aimed degree of undercooling, a stopper 2 is lifted to cast the molten steel 8 into a mold. The injected silicon dioxide powder is dispersed into the molten steel 8 and the nucleation site is absorbed and removed to obtain a casting having little micro segregation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶鋼を過冷却する方法
に関する。
FIELD OF THE INVENTION The present invention relates to a method for supercooling molten steel.

【0002】[0002]

【従来の技術】過冷却下で凝固させた溶鋼は、急速凝固
するために、ミクロ偏析が軽減されることや凝固組織が
微細化した鋼塊になることが知られている。
2. Description of the Related Art It is known that molten steel solidified under supercooling is rapidly solidified, so that microsegregation is reduced and a solidified structure becomes a fine ingot.

【0003】このような処理によって良好な溶鋼を製造
する方法がある。例えば、特開平1−127147号公
報には、次のような方法が提案されている。
There is a method for producing good molten steel by such treatment. For example, Japanese Patent Application Laid-Open No. 1-127147 proposes the following method.

【0004】図3はこの方法に用いる装置の説明図であ
る。1は耐火物製の溶湯用容器、2は溶湯用容器1の排
出孔を塞ぐためのストッパー、3は鋳型であり、10は
溶鋼、11は鋳塊を示す。そして、溶湯用容器1の内面
及びストッパー2の外面はガラス質の二酸化硅素4がコ
ーティングされている。又、溶湯用容器1の外周には高
周波誘導加熱コイル5が備えられており、これによっ
て、溶湯用容器1内の溶鋼10を加熱できるようになっ
ている。
FIG. 3 is an explanatory view of an apparatus used in this method. Reference numeral 1 is a refractory container for molten metal, 2 is a stopper for closing the discharge hole of the container 1 for molten metal, 3 is a mold, 10 is molten steel, and 11 is an ingot. The inner surface of the molten metal container 1 and the outer surface of the stopper 2 are coated with vitreous silicon dioxide 4. Further, a high frequency induction heating coil 5 is provided on the outer periphery of the molten metal container 1 so that the molten steel 10 in the molten metal container 1 can be heated.

【0005】上記のような装置を使用して溶鋼の処理を
行う場合、溶湯用容器1内に溶鋼10を入れた後、ガラ
ス質の二酸化硅素粉末を添加して湯面を覆い、冷却及び
加熱操作の繰り返しを行う。この冷却及び加熱操作が繰
り返されると、溶鋼中から凝固核発生の起点となる介在
物(以下、核発生サイトと言う)が除去され、溶鋼が過
冷却される度合(溶鋼の過冷却度)が大きくなる。十分
に過冷却された溶鋼10を鋳型3に鋳込むことによっ
て、ミクロ偏析が非常に少ない良好な鋳塊11が得られ
る。
When the molten steel is treated by using the apparatus as described above, after the molten steel 10 is put in the molten metal container 1, glassy silicon dioxide powder is added to cover the molten metal surface for cooling and heating. Repeat the operation. When this cooling and heating operation is repeated, the inclusions (hereinafter referred to as nucleation sites) that are the starting points of solidification nucleation are removed from the molten steel, and the degree to which the molten steel is supercooled (the degree of supercooling of molten steel) is growing. By casting the sufficiently supercooled molten steel 10 in the mold 3, a good ingot 11 with very little microsegregation can be obtained.

【0006】この際、溶湯用容器1の内面及びストッパ
ー2の外面はガラス質の二酸化硅素4がコーティングさ
れているので、溶鋼10は溶湯用容器1などの耐火物と
は接触しない状態で処理される。このため、核発生サイ
トが上記耐火物から持ち込まれなくなるので、溶鋼10
は過冷却され易くなる。又、上記ガラス質の二酸化硅素
4は溶鋼10中の介在物を吸収する作用をもなし、溶鋼
10を一層過冷却され易い状態にする。
At this time, since the vitreous silicon dioxide 4 is coated on the inner surface of the molten metal container 1 and the outer surface of the stopper 2, the molten steel 10 is treated without coming into contact with the refractory material such as the molten metal container 1. It For this reason, the nucleation site is not brought in from the refractory, so that the molten steel 10
Is easily overcooled. Further, the vitreous silicon dioxide 4 also has a function of absorbing inclusions in the molten steel 10 and makes the molten steel 10 more easily overcooled.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記従来の方
法は、溶鋼を多量に処理する大型の装置への適用が困難
であると言う問題がある。
However, the above-mentioned conventional method has a problem that it is difficult to apply it to a large-scale apparatus for treating a large amount of molten steel.

【0008】前述のように、溶湯用容器1などの内面に
コーティングされているガラス質の二酸化硅素4は、溶
鋼中への核発生サイトの混入は防止する作用はなしてい
るが、溶湯容器1の規模が大きくなると、溶鋼10中の
介在物を吸収する作用は不十分になる。即ち、溶湯容器
1の規模が大きくなると、上記ガラス質の二酸化硅素4
と溶鋼が接触する度合が非常に小さくなり、介在物を吸
着は徐々にしか行われない。
As described above, the vitreous silicon dioxide 4 coated on the inner surface of the molten metal container 1 has the function of preventing the nucleation site from being mixed into the molten steel. As the scale increases, the action of absorbing inclusions in the molten steel 10 becomes insufficient. That is, when the scale of the molten metal container 1 becomes large, the above glassy silicon dioxide 4
The degree of contact between the molten steel and molten steel becomes very small, and the inclusions are adsorbed only gradually.

【0009】このため、過冷却度を大きくして良好な溶
鋼を得るには、溶鋼の冷却及び加熱操作を数多く繰り返
して実施しなければならず、処理に長時間を要する。
Therefore, in order to increase the degree of supercooling and obtain good molten steel, it is necessary to repeatedly perform the cooling and heating operations of the molten steel, and it takes a long time for the treatment.

【0010】本発明は、溶鋼の過冷却度を大きくするた
めの冷却及び加熱操作の繰り返し回数を減らすことがで
きと共に、大型の処理装置にも適用できる溶鋼の処理方
法を提供することを目的とする。
An object of the present invention is to provide a method for treating molten steel which can reduce the number of repetitions of cooling and heating operations for increasing the degree of supercooling of molten steel and can be applied to a large-sized treatment apparatus. To do.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、第一の発明においては、内面がガラス質の二酸化
硅素でコーティングされた溶湯用容器に溶鋼を入れ、こ
の溶鋼を冷却してその鋼の固相線よりも低い温度の溶鋼
にし、次いでこの冷却された溶鋼を加熱してその鋼の液
相線を超える温度の溶鋼にする冷却及び加熱操作を繰り
返す溶鋼の処理方法において、溶湯用容器内の溶鋼中へ
不活性ガスと共にガラス質の二酸化硅素粉末を吹き込
む。
In order to achieve the above object, in the first invention, molten steel is placed in a vessel for molten metal whose inner surface is coated with vitreous silicon dioxide, and the molten steel is cooled. In the method for treating molten steel, which comprises repeating cooling and heating operations to make molten steel at a temperature lower than the solidus line of the steel, and then heating the cooled molten steel to make it at a temperature above the liquidus line of the steel, The vitreous silicon dioxide powder is blown into the molten steel in the container together with the inert gas.

【0012】又、第二の発明においては、内面がガラス
質の二酸化硅素でコーティングされた溶湯用容器に鋼塊
を入れ、この鋼塊を加熱してその鋼の液相線を超える温
度の溶鋼にし、次いでこの溶鋼を冷却してその鋼の固相
線よりも低い温度の溶鋼にする加熱操作及び冷却操作を
繰り返し、溶湯用容器内の溶鋼中へ不活性ガスと共にガ
ラス質の二酸化硅素の粉末を吹き込む。
Further, in the second invention, a steel ingot is placed in a molten metal container whose inner surface is coated with glassy silicon dioxide, and the steel ingot is heated to have a temperature above the liquidus line of the molten steel. Then, the heating operation and the cooling operation of cooling the molten steel to a molten steel at a temperature lower than the solidus of the steel are repeated, and the vitreous silicon dioxide powder is mixed with the inert gas into the molten steel in the molten metal container. Blow in.

【0013】[0013]

【作用】図6は鋳塊のミクロ偏析のピーク値と鋳造前溶
鋼の過冷却度との関係を示した図である。この図におい
て、実線はPの値、点線はCの値を示す。この図のよう
に、溶鋼の過冷却度を大きくすれば、ミクロ偏析が少な
い良好な鋳造品が得られる。そこで、本発明において
は、ミクロ偏析が少ない鋳造品ができる溶鋼を容易に得
るための処理方法を確立したものである。
FIG. 6 is a diagram showing the relationship between the peak value of microsegregation of the ingot and the degree of supercooling of the molten steel before casting. In this figure, the solid line shows the value of P and the dotted line shows the value of C. As shown in this figure, if the degree of supercooling of the molten steel is increased, a good cast product with less microsegregation can be obtained. Therefore, the present invention has established a treatment method for easily obtaining molten steel capable of forming a cast product with less microsegregation.

【0014】溶鋼中へガラス質の二酸化硅素粉末を吹き
込むと、この二酸化硅素粉末が溶鋼中に分散し、両者の
接触面積は飛躍的に増大する。又、上記二酸化硅素粉末
は不活性ガスと共に吹き込まれるので、溶鋼が攪拌さ
れ、上記両者の接触は一層良好な状態になる。そして、
吹き込まれた上記二酸化硅素粉末は溶鋼中の核発生サイ
トを効率よく吸着して除去するので、多数回の加熱操作
及び冷却操作の繰り返しをしなくても、溶鋼の過冷却度
を大きくすることができる。
When glassy silicon dioxide powder is blown into the molten steel, the silicon dioxide powder is dispersed in the molten steel, and the contact area between them is dramatically increased. Further, since the above-mentioned silicon dioxide powder is blown together with the inert gas, the molten steel is agitated and the contact between the two becomes even better. And
The blown silicon dioxide powder efficiently adsorbs and removes nucleation sites in the molten steel, so that it is possible to increase the degree of supercooling of the molten steel without repeating the heating operation and the cooling operation many times. it can.

【0015】[0015]

【実施例】図1は本発明を実施するための装置の一実施
例の説明図である。図1において、図3における溶湯用
容器の説明と重複する部分については同一の符号を付し
説明を省略する。本実施例においては、溶湯用容器1の
底部にガス吹き込みノズル6が備えられている。このガ
ス吹き込みノズル6には、アルゴンなどの不活性ガスに
よってガラス質の二酸化硅素の粉末を気流輸送するため
の配管7が接続されており、ガス吹き込みノズル6から
溶鋼10中に不活性ガスと共にガラス質の二酸化硅素粉
末8を吹き込むようになっている。9は溶鋼の温度測定
器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an illustration of an embodiment of an apparatus for carrying out the present invention. In FIG. 1, parts that are the same as the description of the molten metal container in FIG. 3 are given the same reference numerals and description thereof is omitted. In this embodiment, a gas injection nozzle 6 is provided at the bottom of the molten metal container 1. The gas blowing nozzle 6 is connected to a pipe 7 for air-flowing the vitreous silicon dioxide powder by an inert gas such as argon, and the gas blowing nozzle 6 is introduced into the molten steel 10 together with the inert gas. A high quality silicon dioxide powder 8 is blown in. 9 is a molten steel temperature measuring instrument.

【0016】図2は本発明によって処理した溶鋼を鋳造
する状態の説明図である。図2において、図1及び図3
と同一の構成部分については同一の符号を付し説明を省
略する。
FIG. 2 is an explanatory view of a state in which molten steel treated according to the present invention is cast. 2, FIG. 1 and FIG.
The same components as those in FIG.

【0017】本発明の方法によって良好な溶鋼を得るた
めの処理操作を説明する。溶鋼を出発原料とした場合に
は、次のように処理する。溶湯用容器1内に溶鋼を入
れ、ガラス質の二酸化硅素粉末を添加して湯面を覆った
後、ガス吹き込みノズル6から不活性ガスの気流に乗せ
てガラス質の二酸化硅素粉末を吹き込む。この溶鋼をそ
のまま放冷して冷却し、固相線よりも低い温度に過冷却
された溶鋼にする。次いで、高周波誘導加熱コイル5に
通電して過冷却された溶鋼を加熱し、液相線よりも高い
温度の溶鋼にする。更に、この溶鋼を再び放冷して冷却
し、固相線よりも低い温度に過冷却する。そして、溶鋼
が目標の過冷却度になるまで、上述の冷却・加熱操作を
繰り返す。
The processing operation for obtaining a good molten steel by the method of the present invention will be described. When molten steel is used as the starting material, it is processed as follows. Molten steel is put in the container 1 for molten metal, glassy silicon dioxide powder is added to cover the surface of the molten metal, and then the glassy silicon dioxide powder is blown from the gas blowing nozzle 6 onto an inert gas stream. This molten steel is allowed to cool and cooled as it is to be supercooled to a temperature lower than the solidus. Next, the high-frequency induction heating coil 5 is energized to heat the supercooled molten steel to make it a temperature higher than the liquidus. Further, the molten steel is allowed to cool again and cooled, and is supercooled to a temperature lower than the solidus. Then, the above cooling / heating operation is repeated until the molten steel reaches the target degree of supercooling.

【0018】又、出発原料が鋼塊の場合には、次のよう
に処理する。溶湯用容器1内に鋼塊を入れ、高周波誘導
加熱コイル5に通電して加熱し、液相線よりも高い温度
の溶鋼にする。この溶鋼にガラス質の二酸化硅素粉末を
添加して湯面を覆った後、ガス吹き込みノズル6から不
活性ガスの気流に乗せてガラス質の二酸化硅素粉末を吹
き込む。そして、この溶鋼をそのまま放冷して冷却し、
固相線よりも低い温度に過冷却された溶鋼にする。以後
は、上述の溶鋼を出発原料とした場合と同様の操作を行
う。
When the starting raw material is a steel ingot, the following treatment is performed. A steel ingot is placed in the molten metal container 1 and the high frequency induction heating coil 5 is energized to heat it to obtain molten steel having a temperature higher than the liquidus line. After the glassy silicon dioxide powder is added to this molten steel to cover the surface of the molten metal, the glassy silicon dioxide powder is blown from the gas blowing nozzle 6 while being put on the stream of the inert gas. Then, this molten steel is allowed to cool and cooled,
The molten steel is supercooled to a temperature lower than the solidus. After that, the same operation as in the case of using the molten steel as a starting material is performed.

【0019】そして、上記何れの場合においても、溶鋼
が目標の過冷却度になった段階で、ストッパー2を上げ
て溶鋼を鋳型3に鋳込む。
In any of the above cases, when the molten steel reaches the target degree of supercooling, the stopper 2 is raised and the molten steel is cast into the mold 3.

【0020】なお、上記二酸化硅素粉末の吹き込みは、
次に記す3方法が適宜採用される。 溶湯用容器1内に溶鋼を入れた段階又は溶鋼が生成
した段階だけ吹き込む。
In addition, the blowing of the above-mentioned silicon dioxide powder is
The following three methods are appropriately adopted. It is blown only at the stage where molten steel is put into the molten metal container 1 or the stage where molten steel is produced.

【0021】 溶湯用容器1内に溶鋼を入れた段階又
は溶鋼が生成した段階から最後の過冷却を行うまでの間
連続的に吹き込む。
Bubbling is continuously performed from the stage where molten steel is placed in the molten metal container 1 or the stage where molten steel is produced until the last supercooling is performed.

【0022】 溶湯用容器1内に溶鋼を入れた段階又
は溶鋼が生成した段階たけ吹き込み、その後は不活性ガ
スだけを吹き込んで溶鋼の攪拌を行う。
The molten steel is poured into the molten metal container 1 at the stage where the molten steel is put in or at the stage where the molten steel is produced, and then only the inert gas is blown to stir the molten steel.

【0023】(実施例1)図1の構成による溶湯用容器
1に表1に示す成分を有するクロム鋼1000kgを入
れ、高周波誘導加熱コイル5に通電して溶解した。次い
で、この溶鋼に、約25μm以下のガラス質の二酸化硅
素の粉末80kgをアルゴンガスと共に5分間吹き込ん
だ。その後、上述のようにして、冷却−加熱−冷却の操
作(合わせて、2サイクルの加熱・冷却操作)を行って
過冷却度が約140℃の溶鋼を得た。そして、この溶鋼
を鋳型に鋳込んで鋳塊にした。この溶鋼の加熱・冷却に
よる温度変化の経過は図4に示す。
(Example 1) 1000 kg of chromium steel having the components shown in Table 1 was placed in a molten metal container 1 having the structure shown in FIG. 1, and a high frequency induction heating coil 5 was energized and melted. Next, 80 kg of glassy silicon dioxide powder having a size of about 25 μm or less was blown into this molten steel for 5 minutes together with argon gas. Thereafter, the cooling-heating-cooling operation (totally two heating / cooling operations) was performed as described above to obtain molten steel having a degree of supercooling of about 140 ° C. Then, this molten steel was cast into a mold to form an ingot. The course of temperature change due to heating / cooling of the molten steel is shown in FIG.

【0024】[0024]

【表1】 [Table 1]

【0025】(従来例1)ガラス質の二酸化硅素の粉末
を吹き込まずに、他の操作は実施例1と同様にして加熱
・冷却操作を行った。加熱・冷却操作は4サイクル行
い、過冷却度が約140℃の溶鋼を得た。この溶鋼の加
熱・冷却による温度変化の経過も図4に示す。
(Prior Art Example 1) Heating and cooling operations were carried out in the same manner as in Example 1 except that glassy silicon dioxide powder was not blown in. The heating / cooling operation was performed for 4 cycles to obtain molten steel having a supercooling degree of about 140 ° C. The change in temperature due to heating / cooling of the molten steel is also shown in FIG.

【0026】(実施例2)図1の構成による溶湯用容器
1に、表1に示す成分で、1550℃の溶鋼1000k
gを入れた後、この溶鋼をそのまま放冷して冷却した。
次いで、この溶鋼の温度が約1500℃になった時点
で、溶鋼中に約25μm以下のガラス質の二酸化硅素の
粉末80kgをアルゴンガスと共に5分間吹き込んだ。
その後は実施例1の場合と同様にして、冷却−加熱−冷
却の操作(1.5サイクルの加熱・冷却操作)を行い、
過冷却度が140℃の溶鋼を得た。この加熱・冷却によ
る溶鋼の温度変化の経過は図5に示す。
(Embodiment 2) In a molten metal container 1 having the structure shown in FIG.
After adding g, the molten steel was allowed to cool and cooled.
Next, when the temperature of the molten steel reached about 1500 ° C., 80 kg of vitreous silicon dioxide powder having a size of about 25 μm or less was blown into the molten steel together with argon gas for 5 minutes.
After that, in the same manner as in Example 1, cooling-heating-cooling operation (1.5 cycles of heating / cooling operation) was performed,
A molten steel having a supercooling degree of 140 ° C. was obtained. The course of the temperature change of the molten steel due to this heating / cooling is shown in FIG.

【0027】(従来例2)ガラス質の二酸化硅素の粉末
を吹き込まずに、他の操作は実施例1と同様にして加熱
・冷却操作を行った。加熱・冷却操作は3.5サイクル
行い、過冷却度が約140℃の溶鋼を得た。この溶鋼の
加熱・冷却による温度変化の経過も図5に示す。
(Conventional Example 2) The heating and cooling operations were performed in the same manner as in Example 1 except that the vitreous silicon dioxide powder was not blown in. The heating / cooling operation was performed for 3.5 cycles to obtain molten steel having a supercooling degree of about 140 ° C. The change in temperature due to heating / cooling of the molten steel is also shown in FIG.

【0028】上記各実施例及び各比較例における溶鋼の
温度変化の経過を示した図4及び図5について説明する
と、実線のAが実施例、点線のBが従来例の結果であ
る。又、c1 は実施例において溶鋼を鋳込んだ点、c2
は従来例において溶鋼を鋳込んだ点である。そして、T
L はこの鋼の液相線(1494℃)、TS は固相線(1
473℃)を示し、ΔTは溶鋼の過冷却度を示す。
Referring to FIGS. 4 and 5 showing the changes in temperature of molten steel in each of the examples and the comparative examples, the solid line A shows the result of the example and the dotted line B shows the result of the conventional example. Further, c 1 is a point where molten steel is cast in the embodiment, c 2
Is the point where molten steel was cast in the conventional example. And T
L is the liquidus of this steel (1494 ° C), T S is the solidus (1
473 ° C.) and ΔT indicates the degree of supercooling of molten steel.

【0029】図4及び図5の結果に基づき、目標の過冷
却度に到達するまでの過程について、上記各実施例と各
従来例との比較をする。最終の過冷却度ΔTは何れも約
140℃であるが、この過冷却度ΔTの溶鋼を得るため
に、実施例1、2では、それぞれ2サイクル、1.5サ
イクルの加熱・冷却操作を実施しただけであるのに対
し、従来例1、2では、それぞれ4サイクル、3.5サ
イクルの実施が必要であった。
Based on the results of FIG. 4 and FIG. 5, the processes of reaching the target degree of supercooling will be compared with each of the above embodiments and each of the conventional examples. The final degree of supercooling ΔT is about 140 ° C., but in order to obtain molten steel having the degree of supercooling ΔT, heating and cooling operations of 2 cycles and 1.5 cycles are performed in Examples 1 and 2, respectively. In contrast, in Conventional Examples 1 and 2, it was necessary to carry out 4 cycles and 3.5 cycles, respectively.

【0030】[0030]

【発明の効果】本発明は、内面がガラス質の二酸化硅素
でコーティングされた溶湯用容器内の溶鋼中へ不活性ガ
スと共にガラス質の二酸化硅素粉末を吹き込んで、加熱
・冷却操作を繰り返す溶鋼の処理方法であり、吹き込ま
れた二酸化硅素粉末が溶鋼中に分散して両者の接触面積
が飛躍的に増大するので、溶鋼中の核発生サイトを効率
よく吸収して除去することができる。
INDUSTRIAL APPLICABILITY According to the present invention, a glassy silicon dioxide powder is blown together with an inert gas into molten steel in a molten metal container whose inner surface is coated with glassy silicon dioxide, and heating and cooling operations are repeated. This is a treatment method, and the blown silicon dioxide powder is dispersed in the molten steel and the contact area between them is dramatically increased, so that the nucleation sites in the molten steel can be efficiently absorbed and removed.

【0031】従って、本発明によれば、多数回の加熱・
冷却操作を繰り返すことなく溶鋼の過冷却度を大きくす
ることができ、ミクロ偏析が少ない良好な鋳造品ができ
る溶鋼が得られると共に、大型装置でも短時間で処理す
ることができる。
Therefore, according to the present invention, heating and
The degree of supercooling of the molten steel can be increased without repeating the cooling operation, a molten steel capable of forming a good cast product with less microsegregation can be obtained, and can be processed in a short time even with a large apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための装置の一実施例の説明
図である。
FIG. 1 is an illustration of an embodiment of an apparatus for carrying out the present invention.

【図2】本発明によって処理した溶鋼を鋳造する状態の
説明図である。
FIG. 2 is an explanatory view of a state in which molten steel treated according to the present invention is cast.

【図3】従来の方法に用いる装置の説明図である。FIG. 3 is an explanatory diagram of an apparatus used in a conventional method.

【図4】溶塊を出発原料とした場合における実施例及び
従来例おける加熱・冷却による溶鋼の温度変化の経過を
示す図である。
FIG. 4 is a diagram showing changes in temperature of molten steel due to heating / cooling in Examples and Conventional Examples in the case of using molten ingot as a starting material.

【図5】溶鋼を出発原料とした場合における実施例及び
従来例おける加熱・冷却による溶鋼の温度変化の経過を
示す図である。
FIG. 5 is a diagram showing changes in temperature of molten steel due to heating / cooling in Examples and Conventional Examples when molten steel is used as a starting material.

【図6】鋳塊のミクロ偏析のピーク値と鋳造前溶鋼の過
冷却度との関係を示した図である。
FIG. 6 is a diagram showing a relationship between a peak value of microsegregation of an ingot and a supercooling degree of molten steel before casting.

【符号の説明】[Explanation of symbols]

1 溶湯用容器 2 ストッパー 3 鋳型 4 コーティングされたガラス質の二酸化硅素 5 高周波誘導加熱コイル 6 ガス吹き込みノズル 8 吹き込まれた二酸化硅素粉末 10 溶鋼 11 鋳塊 1 Molten Metal Container 2 Stopper 3 Template 4 Coated Glassy Silicon Dioxide 5 High Frequency Induction Heating Coil 6 Gas Blowing Nozzle 8 Blown Silicon Dioxide Powder 10 Molten Steel 11 Ingot

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B22D 41/01 7819−4E 41/02 A 7819−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location B22D 41/01 7819-4E 41/02 A 7819-4E

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内面がガラス質の二酸化硅素でコーティ
ングされた溶湯用容器に溶鋼を入れ、この溶鋼を冷却し
てその鋼の固相線よりも低い温度の溶鋼にし、次いでこ
の冷却された溶鋼を加熱してその鋼の液相線を超える温
度の溶鋼にする冷却及び加熱操作を繰り返す溶鋼の処理
方法において、前記溶湯用容器内の溶鋼中へ不活性ガス
と共にガラス質の二酸化硅素粉末を吹き込むことを特徴
とする溶鋼の処理方法。
1. A molten steel having an inner surface coated with vitreous silicon dioxide, is charged with molten steel, the molten steel is cooled to a temperature lower than the solidus of the steel, and the cooled molten steel is then cooled. In the method for treating molten steel, in which cooling and heating operations are repeated to heat the molten steel to a temperature above the liquidus of the steel, a glassy silicon dioxide powder is blown into the molten steel in the molten metal container together with an inert gas. A method for treating molten steel, characterized in that
【請求項2】 内面がガラス質の二酸化硅素でコーティ
ングされた溶湯用容器に鋼塊を入れ、この鋼塊を加熱し
てその鋼の液相線を超える温度の溶鋼にし、次いでこの
溶鋼を冷却してその鋼の固相線よりも低い温度の溶鋼に
する加熱操作及び冷却操作を繰り返し、前記溶湯用容器
内の溶鋼中へ不活性ガスと共にガラス質の二酸化硅素の
粉末を吹き込むことを特徴とする溶鋼の処理方法。
2. A steel ingot is placed in a molten metal vessel having an inner surface coated with glassy silicon dioxide, the steel ingot is heated to a molten steel having a temperature above the liquidus line of the steel, and then the molten steel is cooled. Then, the heating operation and the cooling operation for making molten steel at a temperature lower than the solidus of the steel are repeated, and a glassy silicon dioxide powder is blown into the molten steel in the molten metal container together with an inert gas. Method for processing molten steel.
JP28892991A 1991-11-05 1991-11-05 Treatment of molten steel Pending JPH05123829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28892991A JPH05123829A (en) 1991-11-05 1991-11-05 Treatment of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28892991A JPH05123829A (en) 1991-11-05 1991-11-05 Treatment of molten steel

Publications (1)

Publication Number Publication Date
JPH05123829A true JPH05123829A (en) 1993-05-21

Family

ID=17736637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28892991A Pending JPH05123829A (en) 1991-11-05 1991-11-05 Treatment of molten steel

Country Status (1)

Country Link
JP (1) JPH05123829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525192A (en) * 2006-02-02 2009-07-09 ナショナル サイエンス アンド テクノロジー ディベロープメント エイジェンシー Method for preparing a metal structure suitable for semi-molten metal processing
JP2013141699A (en) * 2012-01-12 2013-07-22 Nippon Steel & Sumitomo Metal Corp Method for generating bubble in molten steel
CN115138812A (en) * 2022-07-05 2022-10-04 上海大学 Method and device for improving quality of casting blank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525192A (en) * 2006-02-02 2009-07-09 ナショナル サイエンス アンド テクノロジー ディベロープメント エイジェンシー Method for preparing a metal structure suitable for semi-molten metal processing
JP2013141699A (en) * 2012-01-12 2013-07-22 Nippon Steel & Sumitomo Metal Corp Method for generating bubble in molten steel
CN115138812A (en) * 2022-07-05 2022-10-04 上海大学 Method and device for improving quality of casting blank

Similar Documents

Publication Publication Date Title
KR100683365B1 (en) Semi-solid concentration processing of metallic alloys
US5094288A (en) Method of making an essentially void-free, cast silicon and aluminum product
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JPH05123829A (en) Treatment of molten steel
CN109355555B (en) Pouring process for preventing shrinkage porosity of inner pouring gate of thick and large casting
JPH0559483A (en) Manufacture of amorphous alloy thin strip for commercial frequency band transformer
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
JPH06246425A (en) Method for casting large sealed steel ingot
JPH06218524A (en) Method for casting molten steel refined in vacuum induction melting furnace
JPH05123828A (en) Method for casting steel ingot
JPH10195586A (en) Fe-c-si alloy casting and its casting method
RU2101129C1 (en) Method of manufacture of cast metal articles
RU2022686C1 (en) Method to produce ingots of damask steel
JP2002059247A (en) Method for continuously casting molten steel and continuously cast slab
US1092663A (en) Process of manufacturing metal bodies.
JP2001252747A (en) Method for treating molten steel excellent in quality characteristic
JPH0542352A (en) Raw material for die-casting iron series alloy containing carbon and method for producing it and method for using it
JPH0623484A (en) Production of billet for thixocasting
JP2004009065A (en) Method for producing hydrogen-storage alloy
JPS6050853B2 (en) Alloy melting and refining method and its casting method
JPS62118954A (en) Continuous casting method
US3063831A (en) Method of making titaniumcontaining alloys
JPH059642A (en) Molybdenum material having good workability and production thereof
JP2974517B2 (en) Lost wax precision casting method and lost wax precision casting apparatus by levitation melting of metal
JPS56122662A (en) Preventing method of casting crack of antiferromagnetic chromium invar alloy ingot