EP1031258B1 - Interface pour dispositif de commande d'ampoule - Google Patents

Interface pour dispositif de commande d'ampoule Download PDF

Info

Publication number
EP1031258B1
EP1031258B1 EP98952717A EP98952717A EP1031258B1 EP 1031258 B1 EP1031258 B1 EP 1031258B1 EP 98952717 A EP98952717 A EP 98952717A EP 98952717 A EP98952717 A EP 98952717A EP 1031258 B1 EP1031258 B1 EP 1031258B1
Authority
EP
European Patent Office
Prior art keywords
interface appliance
circuit
interface
output circuit
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98952717A
Other languages
German (de)
English (en)
Other versions
EP1031258A1 (fr
Inventor
Martin Ammann
Michael BÖHNEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonicatco GmbH and Co KG
Original Assignee
Tridonicatco GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonicatco GmbH and Co KG filed Critical Tridonicatco GmbH and Co KG
Publication of EP1031258A1 publication Critical patent/EP1031258A1/fr
Application granted granted Critical
Publication of EP1031258B1 publication Critical patent/EP1031258B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations

Definitions

  • the present invention relates to an interface device for a lamp operating device according to the preamble of claim 1 and an electronic ballast for gas discharge lamps or an electronic transformer for halogen lamps with a corresponding interface device.
  • the electronic ballast shown in FIG. 3 schematically shows the structure of a known electronic ballast for operating a gas discharge lamp 10, control signals a for dimming the electronic ballast or the gas discharge lamp 10 connected to it being supplied to the electronic ballast via an interface 1.
  • the electronic ballast shown in FIG. 3 comprises a rectifier 4 and an inverter 5, in the load circuit of which the gas discharge lamp 10 is arranged.
  • the rectifier 4 converts that from a supply voltage source, e.g. a mains voltage source, alternating voltage supplied into a rectified intermediate circuit voltage, which is fed to the inverter 5.
  • the inverter 5 typically comprises two controllable switches (not shown) connected in series, e.g.
  • MOS field effect transistors which are alternately driven by the rectified intermediate circuit voltage, so that one of the switches is always on when the other switch is off.
  • An output connection of the inverter 5 is connected on the one hand to the connection point between these two alternately controlled switches and on the other hand to a series resonance circuit consisting of a coil 6 and a capacitor 7, the capacitor 7 of the series resonance circuit being connected in parallel with the gas discharge lamp 10 via a coupling capacitor 8.
  • the alternating activation of the switches of the inverter 5 generates a clocked, ie “chopped”, high-frequency AC voltage on the output side of the inverter 5, which serves as the operating voltage for the gas discharge lamp 10.
  • the output frequency of the inverter 5 is shifted into the vicinity of the resonance frequency of the series resonant circuit with the coil 6 and the capacitor 7, so that a voltage surge occurs on the capacitor 7, which ultimately leads to the ignition of the gas discharge lamp 10.
  • a heating transformer can be provided with a primary winding 9A and secondary windings 9B and 9C, the primary winding 9A being connected to the series resonant circuit, while the secondary windings 9B and 9C are each connected to one of the lamp filaments are connected in parallel.
  • the secondary windings 9B and 9C By connecting the secondary windings 9B and 9C to the.
  • Lamp filaments of the gas discharge lamp 10 it is possible to supply the lamp filaments with energy even when the gas discharge lamp 10 is in the ignited mode.
  • the interface 1 of the lamp operating device shown in FIG. 3 is designed as an analog 1-10V interface.
  • the external control signals received by the interface 1 are fed directly to a control unit 2 of the electronic ballast via an appropriately designed input transformer of the interface 1, the control unit 2 e.g. controls a bridge driver 3 of the inverter 5.
  • the interface automatically sets a minimum dimmer corresponding to 1V, for example, so that control voltages ⁇ 1V have no direct influence on the dimming process, since they are regarded as a 1V control voltage.
  • Another interface device for controlling a lamp is known from DE 33 45 559 A1. This is connected via lines to several remotely located switches, control pulses for operating the lamp being generated by the interface device depending on the position of these switches.
  • an interface to a serial data bus can also be used, the corresponding control commands then being transmitted in digital form.
  • WO 97/06655 also describes an electronic ballast for operating a lamp, in which an interface device is used. This is designed in such a way that it is able to distinguish different methods for transmitting dimming commands via a modification of the supply voltage and accordingly to generate control signals for the lamp. In this way, a very flexible use of the electronic ballast is made possible.
  • Dimming control signals are received and transmitted.
  • the control unit 2 controls, for example, the bridge driver 3 in such a way that it changes the frequency or the duty cycle of the alternating voltage supplied by the inverter 5 by switching the on and off times of the two to a full or half bridge interconnected inverter switch of the inverter 5 can be varied accordingly.
  • the known interface 1 shown in FIG. 3 is not able to receive switch-on and / or switch-off commands and to forward it accordingly to the electronic ballast, ie the electronic ballast cannot be switched on and / or off via the interface 1. Rather, with the conventional interface 1, it is necessary to switch the lamp operating device on and off via the mains cable. However, this requires the use of additional relays, since the high starting currents must be taken into account, especially when switching on via the mains cable. This results in a significantly higher wiring and installation effort, whereby the individual relays must also be dimensioned accordingly to ensure reliable switching on and off.
  • the article "Smart Power IC Simplifies Dimmer Circuit" by Helmuth Lemmo, Electronics 24/1996, p. 106/107 describes a leading edge circuit for dimming a lamp.
  • External control signals can be supplied to the circuit, for example via an optocoupler, according to which the brightness of the lamp is changed.
  • the possibility of switching the lamp on and off the switching on taking place when the amplitude of the control signal exceeds a first limit value.
  • a second limit value which does not necessarily have to be identical to the first limit value
  • the lamp is switched off again.
  • This phase control circuit thus offers the possibility of switching a lamp on and off and dimming by means of a single control signal.
  • a disadvantage is that the circuit continuously consumes current even when the lamp is switched off in order to monitor the external control signal and to switch on the lamp when a dimming signal arrives.
  • the present invention is therefore based on the object of providing an interface device for a lamp operating device, which enables the electronic ballast to be switched on and / or off more easily without any major circuit outlay. At the same time, the power consumption of the interface device should be as low as possible.
  • the subclaims describe advantageous embodiments of the interface according to the invention, which in turn enable an improved function of the interface according to the invention and also ensure that the lamp operating device controlled by the interface can be reliably switched on and dimmed depending on an external control signal present at the interface.
  • the interface according to the invention is preferably used in an electronic ballast for gas discharge lamps or in an electronic transformer for halogen incandescent lamps.
  • the interface device is designed in such a way that it evaluates a received control signal and, depending on the received control signal, in particular depending on its amplitude, controls the operation of a lamp operating device connected to the interface device.
  • the control signals received are not simply transferred or forwarded to the electronics of the lamp operating device, but the interface evaluates the control signal present.
  • the interface either converts the control signal into corresponding dimming information for the lamp operating device or causes the lamp operating device to be switched on or off.
  • the interface according to the invention is also designed and connected in such a way that it is supplied with energy from the control voltage of the external control signal present at the interface during the start of the lamp operating device connected to it or during a standby mode, the interface, for example, a current of maximum 2 mA is supplied. In this way, the stand-by losses can be kept very low, since the interface or its electronic components are only supplied with power from corresponding internal power supply means when changing from stand-by mode to operating mode.
  • the amplitude of the received control signal is evaluated in particular by the interface device according to the invention, the interface device causing the connected lamp operating device to be switched off if the amplitude of the received control signal is below a predetermined amplitude limit value.
  • the interface device according to the invention is advantageously designed as a 0-10V interface, the interface switching off, for example, the inverter of the lamp operating device connected to it when there is a control signal with an amplitude of less than 1V.
  • an internal control unit is used to apply control signals with an amplitude less than 1V always set a minimum core value for the lamp operating device or the gas discharge lamp connected to it.
  • the control voltage of the external control signal present is advantageously evaluated with the aid of a microcontroller, which generates corresponding dimming target information as a function of the external control signal present, the microcontroller, for example, preferably converting the analog control signals into pulse-width-modulated signals or into digital control words which correspond to the dimming target information.
  • the dimming curve can be adapted to the sensitivity of the human eye.
  • the human eye is not linearly sensitive. This non-linearity is approximately logarithmic.
  • the use of a linear dimming curve for a desired brightness would not produce a corresponding linear brightness sensation in the human eye. For example, starting from a given brightness, the human impression of brightness is doubled by multiplying the electrical light output.
  • the microcontroller can be designed in such a way that it converts the external control signal or the Dinunsteli values contained therein according to a logarithmic dimming into the pulse-width-modulated dimming target information, which is finally output on the output side by the interface and in a lamp operating device connected to the interface for dimming the in turn connected to it Lamp can be used.
  • the pulse-width-modulated signal of the microcontroller can advantageously be further processed both analog and digital.
  • the interface according to the invention can be connected both to lamp operating devices with externally controlled or positively controlled inverter switches (which are controlled, for example, with the aid of an ASIC as a control unit), and to lamp operating devices with self-controlled or freely oscillating inverter switches (which are controlled by control transformers).
  • the interface 1 shown in FIG. 1 essentially consists of an input circuit 20, a control circuit 30, an output circuit 40 and a power supply circuit 50.
  • the input circuit 20 is connected directly to the output circuit 40 via a controllable switch 60.
  • the input circuit 20 comprises connections A, B which receive external control signals a. These external control signals a can be, in particular, analog dimming signals.
  • a diode 21 serves as input-side protection of the subsequent circuit components against voltage and incorrect polarity.
  • the input circuit 20 comprises two resistors 22 and 23 and a capacitor 24, so that these components serve as a voltage divider and low-pass filter for the A / D converter of a microcontroller 31 present in the control circuit 30. In this way, a low-resistance input resistance for the microcontroller and a low-pass behavior are achieved, which improves interference suppression.
  • the control circuit 30 comprises - as has already been mentioned - the microcontroller 31 as an essential component. Diodes 32 and 33 and a capacitor 34 are used to generate a stable supply voltage for the microcontroller 31. To operate the microcontroller 31 there are resistors 35, 37 and 38 and a capacitor 36 is connected to the microcontroller 31 as shown in FIG. 1.
  • the output circuit comprises an optocoupler 41 and output connections C, D, the output signal of the optocoupler 41 being fed to the output connections C D via a resistor 42.
  • the actual electronics of a lamp operating device, in particular an electronic ballast, are connected to the connections C, D of the output circuit 40, so that - as shown in FIG. 3 - the output circuit 40 has, for example, a control unit 2 of the electronic ballast for controlling the inverter 5 of the electronic ballast is connected.
  • the power supply circuit 50 serves as an energy source for the entire interface 1 and in particular for the microcontroller 31.
  • the power supply circuit 50 has input connections E, F to which an input voltage is applied.
  • the input voltage can in particular be an internal supply voltage of the electronics of an electronic ballast connected to the output circuit 40, such as an inverter voltage, or the (AC) voltage for controlling the half-bridge of the inverter.
  • This input voltage is fed via a capacitor 51 to an insulation transformer 52 with a primary winding 52A and two secondary windings 52B, 52C.
  • the actual supply voltage -V B or + V B occurs at the output connections of the secondary windings 52B, 52C and is provided via diodes 56 or 53 at output connections G, H of the power supply circuit 50.
  • the capacitors 57 and 58 serve as buffers for the voltage supply.
  • the resistors 54, 55 and 59 in cooperation with the resistor 42 of the output circuit 40 ensure that the voltage -V B is delayed in relation to the voltage + V B , in order to ensure correct timing of the start-up phase To ensure power supply.
  • the supply voltage + V B is applied to an input connection I of the control circuit 30 and serves as the actual supply voltage for the microcontroller 31.
  • the supply voltage -V B is at the controllable switch 60 shown in FIG. 1 applied, wherein according to this embodiment, the controllable switch 60 is designed as an n-channel junction field effect transistor.
  • the function of the interface shown in Fig. 1 is as follows, starting from the assumption that interface 1, i.e. The microcontroller 31 has not yet been activated and the lamp operating device connected to the output connections C, D of the output circuit 40 has not yet been switched on.
  • a (control) voltage ie a control signal a
  • a current flows into the optocoupler 41 via the junction field-effect transistor 60, since in the initial state, the supply circuit 50 does not yet generate a supply voltage -V B and thus the junction field effect transistor 60 is initially conductive.
  • neither the supply voltage -V B nor the supply voltage + V B occurs at the output connections G, H of the power supply circuit 50 since, due to the switched-off state of the electronics of the lamp operating device, there is no input voltage at the input connections E, F of the power supply circuit 50.
  • the interface 1 is supplied solely with energy from the control voltage of the control signal a, the interface 1 being supplied with a current of at most 2 mA, for example.
  • the interface according to the invention is designed in such a way that the interface 1 only in the operating case, i.e. after activation of the power supply circuit 50 and the microcontroller 31, is supplied with current from the isolation transformer 52 of the power supply circuit 50. This enables standby losses to be kept very low.
  • the junction field effect transistor 60 is conductive during this switch-on or start-up phase, so that the input circuit 20 is switched through and connected to the output circuit 40 or its optocoupler 41 via a current-limiting resistor 61. Due to the current thus supplied to the optocoupler 41, a signal is generated on the output side of the optocoupler 41, which signal is fed on the output side via the connections C, D analogously to FIG. 3 to a control unit or a bridge driver of the inverter of the lamp operating device connected to the output circuit 40, so that the inverter can swing as a result of this signal.
  • an input voltage occurs at the input connections E, F of the power supply circuit 50, so that the current or voltage supply of the interface 1 or, of the Microcontrollers 31 can run up.
  • the supply voltage + V B builds up faster than the supply voltage -V B due to the resistors 54, 55 59 and 42. This has the effect that the supply voltage + V B has already been supplied to the microcontroller 31 via the connections H and I, and the microcontroller 31 is already supplied with a stable supply voltage and has run up when the supply voltage -V B at the output connection G of the power supply circuit 50 occurs, which leads to the blocking of the junction field effect transistor 60.
  • the microcontroller 31 When the supply voltage + V B is applied to the control circuit 30, the microcontroller 31 is activated and, depending on the control signals a present, generates corresponding dimming setpoint information which is supplied to the optocoupler 41 as the aforementioned control signals b, the microcontroller 31 depending on the dimming setpoint information b Control signal a generated in the form of a pulse width modulated signal.
  • These pulse-width modulated signals b are fed via the optocoupler 41 and the output connections C, D to the output circuit 40 of the electronics of the electronic ballast connected to it, so that, as shown for example in FIG.
  • a corresponding control unit 2 depends on the pulse-width-modulated dimming information b
  • Bridge driver 3 of the inverter 5 in the electronic ballast can be activated accordingly in order to dim a gas discharge lamp 10 connected to the electronic ballast in accordance with the control signal a or the pulse-width-modulated dimming setpoint signal b by changing the frequency or duty cycle of the inverter 5.
  • the interface 1 shown in FIG. 1 is designed, for example, as a 0-10 V interface.
  • the interface 1 is designed such that it not only generates dimming setpoint signals b as a function of externally applied control signals a, but also enables the electronic ballast connected to the connections C, D to be switched on and / or off via the interface itself.
  • the switching on of the electronic ballast is selectively preferably determined by the output circuit 40, the optocoupler 41 being dimensioned and designed such that it only signals for input voltages greater than 1 V to the output connections C, D forwards.
  • the microcontroller 31 After switching on the electronic ballast and thus activating the microcontroller 31 via the power supply circuit 50, the microcontroller 31 continuously monitors the amplitude of the control signal a via its input connection AN2 and only generates corresponding dimming setpoint information b at its output connection AN0 if the amplitude of the control signal a is sufficient is great. Obviously, 1 volt could be used as the limit value. However, in order to compensate for environmental influences or voltage fluctuations, the microcontroller 31 causes the lamp operating device connected to the connections C, D to be switched off taking into account a hysteresis, so that, for example, a voltage of 0.4-0.5 V is used as the limit value for switching off the lamp operating device can.
  • the control signal a is evaluated as a function of the software programming of the microcontroller 31.
  • the shutdown of the operating device connected to the connections C, D can be brought about, for example, by the microcontroller 31 by the fact that if the amplitude of the control signal a drops below that previously described Amplitude limit value no more dimming setpoint information b are generated at the output AN0 of the microcontroller 31, so that accordingly no signals are transmitted to the electronic ballast via the optocoupler 41, which is accordingly interpreted by the control unit 2 of the electronic ballast shown in FIG. 3 as a shutdown command can.
  • the microcontroller 31 immediately sends a correspondingly coded pulse-width-modulated command via the optocoupler 41 to the control unit 2 of the electronic ballast.
  • a lamp operating device connected to the connections C, D can be switched almost without power via the interface 1 according to the invention, so that in addition to the usual dimming, the lamp operating device can also be switched on and off via the interface 1 is possible.
  • the interface 1 is in particular designed such that the lamp operating device depends on the amplitude of the control signal a present at the interface 1 is either dimmed or switched on or off.
  • FIG. 2 shows a second exemplary embodiment of the interface according to the invention, corresponding components being provided with the same reference numerals.
  • the power supply circuit 50 has a simplified structure and generates a supply voltage + V B only at the output connection H as a function of an input voltage present at the input connections E, F via the isolation transformer 52 and the diodes 53, 56. Furthermore, instead of the n-channel junction field effect transistor 60 shown in FIG. 1, the npn bipolar transistor 60 is connected to the optocoupler 41 of the output circuit 40, but the optocoupler 41 is connected directly to the input circuit 20, ie without the interposition of a switch.
  • the bipolar transistor 60 is driven on the input side by the microcontroller 31, which in turn generates corresponding dimming setpoint value information b in pulse-width-modulated form at its output AN1 as a function of the control signal a and supplies it to the base of the bipolar transistor 60 via the resistor 38.
  • the startup of the interface or the power supply circuit 50 takes place analogously to the circuit shown in FIG. 1, ie when a voltage a occurs at the input connections A, B, a current flows directly from the input circuit 20 into the optocoupler 41, which generates a signal on the output side , which is fed via the connections C, D to a lamp operating device connected to it and thus brings about the switching on of the lamp operating device.
  • the input voltage branched off from the lamp operating device at the connections E, F consequently leads to the generation of the supply voltage + V B on the output side, which enables the microcontroller 31 to start up.
  • the microcontroller 31 As soon as the microcontroller 31 has started up, it generates a corresponding pulse-width-modulated dimming signal b depending on the control signal a present at its input connection AN2, which corresponds to the desired setpoint for the dimming of the lamp operating device connected to the connections C, D or the lamp connected to it.
  • the signal b With the occurrence of the signal b at the base of the bipolar transistor 60, the potential present at the collector of the bipolar transistor 60 is continuously pulled to ground, so that only the dimming setpoint information b is supplied to the optocoupler 41 and thus the connection between the output circuit 40 and the input circuit 20 is deactivated or made ineffective.
  • two additional diodes 62 and 63 are shown in broken lines in FIG.
  • One diode 62 is connected in series with the resistor 61, while the other diode 63 is connected on the one hand to the supply voltage + V B and on the other hand to the diode 62.
  • the optocoupler 41 is supplied by the supply voltage + V B as soon as it has built up.
  • the optocoupler 41 thus switches through even with a small interface input voltage, so that a lamp operating device connected to the connections C and D can be reliably switched off even with small input voltages.
  • the standard high-voltage strength of 1500 V between the control circuit and the network side is ensured with the aid of the insulation transformer 52 and the optocoupler 41.
  • the microcontroller 31 can be programmed such that it determines the corresponding dimming setpoint value information b for the electronic ballast as a function of a logarithmic dimming curve depending on the amplitude of the control signal applied to it on the input side, in order to adapt the dimming to the actual human eye sensitivity ,
  • the interface according to the present invention can be used in an electronic ballast for gas discharge lamps.
  • Use in an electronic transformer for halogen incandescent lamps is also possible, the electronic transformer likewise having an inverter supplied with a rectified voltage, which generates a high-frequency AC voltage.
  • an electrical transformer does not have a series resonance circuit, but rather an output transformer which is connected between the inverter and at least one halogen incandescent lamp to be controlled. The AC voltage generated by the inverter is thus present at the primary winding of the output transformer, while at least one halogen incandescent lamp is connected to the secondary winding (s) of the output transformer.

Landscapes

  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Claims (19)

  1. Interface (1) pour un dispositif de commande d'ampoule, comportant un circuit de réception (20) pour la réception d'un signal analogique externe de commande (a) du dispositif de commande d'ampoule, et
    un circuit d'émission (40) pour l'émission d'informations de consigne de commande (b) correspondant au signal de commande (a) pour le dispositif de commande d'ampoule pouvant s'y raccorder,
    ainsi qu'un circuit de commande (30), qui est conçu de telle sorte qu'il analyse le signal analogique externe de commande (a) reçu par le circuit de réception (20) et enclenche le dispositif de commande d'ampoule pouvant être raccordé au circuit d'émission (40) si l'amplitude du signal de commande (a) reçu dépasse une première valeur limite d'amplitude et déconnecte le dispositif de commande d'ampoule si l'amplitude du signal de commande (a) reçu passe au-dessous d'une deuxième valeur limite d'amplitude,
    caractérisée par
    un circuit d'alimentation électrique (50), qui convertit une tension interne, qui lui est appliquée, du dispositif de commande d'ampoule relié au circuit d'émission (40) en une tension de service (+VB) pour l'interface (1), un interrupteur (60) contrôlable étant connecté entre le circuit de réception (20) et le circuit d'émission (40), de sorte que, dans un mode d'attente, avant génération de la tension de service (+VB) suffisante, le circuit d'émission (40) soit alimenté en énergie à partir du signal de commande (a) appliqué au circuit de réception (20), l'interrupteur (60) contrôlable étant commandé par une deuxième tension de service (-VB), générée par le circuit d'alimentation électrique (50), de manière à ce que l'interrupteur (60) soit ouvert en présence d'une deuxième tension de service (-VB) suffisante.
  2. Interface selon la revendication 1, caractérisée en ce que la première valeur limite d'amplitude est supérieure à la deuxième valeur limite d'amplitude.
  3. Interface selon la revendication 2, caractérisée en ce que les première et seconde valeurs limites d'amplitude sont respectivement approximativement 1V et 0,4-0,5V.
  4. Interface selon l'une quelconque des revendications précédentes, caractérisée par un appareil de commande (30,60) pour l'analyse du signal de commande reçu (a) et pour la conversion du signal de commande en informations de consigne de commande (b) pour le dispositif de commande d'ampoule pouvant être raccordé au moyen d'émission (40).
  5. Interface selon la revendication 4, caractérisée en ce que l'appareil de commande (30) comprorte un microcontrôleur (31).
  6. Interface selon la revendication 4 ou 5, caractérisée en ce que l'appareil de commande (30) est conçu de telle sorte qu'il peut analyser des signaux analogiques de commande (a) et les convertir en informations de consigne de commande (b).
  7. Interface selon l'une quelconque des revendications 4 à 6, caractérisée en ce que les informations de consigne de commande (b) générées par l'appareil de commande (30) comprennent des valeurs de consigne de variation de lumière pour le dispositif de commande d'ampoule pouvant être raccordé au moyen d'émission (40).
  8. Interface selon la revendication 7, caractérisée en ce que l'appareil de commande (30) convertit le signal (a) reçu en fonction de son amplitude en valeurs de consigne de variation de lumière (b) selon une courbe caractéristique logarithmique.
  9. Interface selon l'une quelconque des revendications 4 à 8, caractérisée en ce que l'appareil de commande (30) génère les informations de consigne de commande (b) sous forme d'un signal modulé en largeur d'impulsions ou d'un mot de commande numérique.
  10. Interface selon l'une quelconque des revendications 4 à 9, caractérisée en ce que le circuit de réception (20) est relié au circuit d'émission (40), l'interface (1) désactivant la liaison entre le circuit de réception (20) et le circuit d'émission (40) après la génération d'une tension de service (+VB) suffisante pour l'appareil de commande (30).
  11. Dispositif de commande selon la revendication 1, caractérisé en ce que le circuit d'alimentation électrique (50) comporte un circuit de temporisation (54, 55, 59) pour générer la deuxième tension de service (-VB) avec une temporisation par rapport à la première tension de service (+VB) appliquée aux moyens de commande (30).
  12. Interface selon la revendication 10, caractérisée en ce qu'un interrupteur (60) commandé par l'appareil de commande (30) est couplé avec un point de liaison entre le circuit de réception (20) et le circuit d'émission (40), de sorte que, après activation de l'appareil de commande (30) suite à la présence de la tension de service (+VB) suffisante, les informations de consigne de commande (b) de l'appareil de commande (30) sont amenées au circuit d'émission (40) par l'intermédiaire de l'interrupteur (60).
  13. Interface selon l'une quelconque des revendications 1 à 3 et l'une quelconque des revendications 4 à 12, caractérisée en ce que le circuit de commande comprend l'appareil de commande (30), la deuxième valeur limite d'amplitude étant définie par l'appareil de commande (30).
  14. Interface selon la revendication 13, caractérisée en ce que l'appareil de commande (30) ne génère les informations de consigne de commande (b) qu'aussi longtemps que l'amplitude du signal de commande (a) reçu dépasse la seconde valeur limite d'amplitude.
  15. Interface selon l'une quelconque des revendications 1 à 3 ou l'une quelconque des revendications 13 et 14, caractérisée en ce que le circuit de commande comprend le circuit d'émission (40), la première valeur limite d'amplitude étant définie par le circuit d'émission (40).
  16. Interface selon la revendication 15, caractérisée en ce que le circuit d'émission(40) ne transmet à sa sortie les informations présentes sur son entrée que si l'amplitude du signal d'information présent sur son entrée dépasse la première valeur limite d'amplitude.
  17. Interface selon l'une quelconque des revendications précédentes, caractérisée en ce que le circuit d'émission (40) comporte un optocoupleur (41).
  18. Utilisation d'une interface selon l'une quelconque des revendications précédentes dans un ballast électronique pour une lampe à décharge de gaz (10), le ballast électronique comportant :
    un onduleur (5) alimenté par une tension continue pour générer une tension alternative,
    un circuit résonant série (6, 7), qui est commandé par la tension alternative générée par l'onduleur (5) et auquel on peut connecter au moins une lampe à décharge gazeuse (10), et
    une unité de commande (2) pour le contrôle de l'onduleur (5),
    le circuit d'émission (40) de l'interface (1) étant relié à l'unité de commande (2), de sorte que l'unité de commande (2) contrôle le fonctionnement de l'onduleur (5) en fonction des informations de consigne de commande (b) mises à disposition au circuit d'émission (40) de l'interface (1) et active et/ou désactive l'onduleur (5).
  19. Utilisation d'une interface (1) selon l'une quelconque des revendications 1 à 18 dans un transformateur électronique pour une lampe à halogène (10), le transformateur électronique comportant :
    un onduleur (5) alimenté par une tension continue pour générer une tension alternative,
    un transformateur de sortie, dont l'enroulement primaire reçoit la tension alternative générée par l'onduleur, le transformateur de sortie, présentant au moins un enroulement secondaire auquel on peut connecter une lampe à halogène, et
    une unité de commande (2) pour le contrôle de l'onduleur (5),
    le circuit d'émission (40) de l'interface (1) étant relié à l'unité de commande (2), de sorte que l'unité de commande (2) contrôle le fonctionnement de l'onduleur (5) en fonction des informations de consigne de commande (b) mises à disposition au circuit d'émission (40) de l'interface (1) et active et/ou désactive l'onduleur (5).
EP98952717A 1997-10-30 1998-10-19 Interface pour dispositif de commande d'ampoule Expired - Lifetime EP1031258B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19748007A DE19748007A1 (de) 1997-10-30 1997-10-30 Schnittstelle für ein Lampenbetriebsgerät
DE19748007 1997-10-30
PCT/EP1998/006612 WO1999023858A1 (fr) 1997-10-30 1998-10-19 Interface pour dispositif de commande d'ampoule

Publications (2)

Publication Number Publication Date
EP1031258A1 EP1031258A1 (fr) 2000-08-30
EP1031258B1 true EP1031258B1 (fr) 2003-01-29

Family

ID=7847143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98952717A Expired - Lifetime EP1031258B1 (fr) 1997-10-30 1998-10-19 Interface pour dispositif de commande d'ampoule

Country Status (6)

Country Link
EP (1) EP1031258B1 (fr)
AT (1) ATE232041T1 (fr)
AU (1) AU1030699A (fr)
DE (2) DE19748007A1 (fr)
WO (1) WO1999023858A1 (fr)
ZA (1) ZA989827B (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333605B1 (en) 1999-11-02 2001-12-25 Energy Savings, Inc. Light modulating electronic ballast
DE10329876B4 (de) * 2003-07-02 2016-06-02 Tridonic Gmbh & Co Kg Schnittstelle für ein Lampenbetriebsgerät mit niedrigen Standby-Verlusten und Verfahren zur Ansteuerung eines Lampenbetriebsgeräts über eine derartige Schnittstelle
US7619539B2 (en) 2004-02-13 2009-11-17 Lutron Electronics Co., Inc. Multiple-input electronic ballast with processor
DE102004050655A1 (de) 2004-10-18 2006-06-01 Volkswagen Ag Fahrzeug-Beleuchtungsvorrichtung und Verfahren zum Steuern einer Fahrzeug-Beleuchtungsvorrichtung
US7369060B2 (en) 2004-12-14 2008-05-06 Lutron Electronics Co., Inc. Distributed intelligence ballast system and extended lighting control protocol
DE102005018774A1 (de) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Einstellbare digitale Leuchtmittelleistungsregelung
US7446488B1 (en) * 2007-08-29 2008-11-04 Osram Sylvania Metal halide lamp ballast controlled by remote enable switched bias supply
US7932682B2 (en) 2008-06-30 2011-04-26 Osram Sylvania, Inc. Internal power supply for a ballast
DE102010036444B4 (de) * 2010-07-16 2012-03-22 Vossloh-Schwabe Deutschland Gmbh Verfahren und Vorrichtung zum Dimmen eines Leuchtmittels mithilfe eines Mikrocontrollers
DE102010043613A1 (de) 2010-11-09 2012-05-10 Tridonic Gmbh & Co. Kg Störsichere Leuchtmittelsteuerung
DE102019208960A1 (de) * 2019-06-19 2020-12-24 Ellenberger & Poensgen Gmbh Verfahren zum Betrieb eines Dimmers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3345559A1 (de) * 1983-12-16 1985-06-20 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Dimmung einer leuchtstofflampe und vorschaltgeraet mit einer einrichtung zum dimmen
DE4039161C2 (de) * 1990-12-07 2001-05-31 Zumtobel Ag Dornbirn System zur Steuerung der Helligkeit und des Betriebsverhaltens von Leuchtstofflampen
US5691605A (en) * 1995-03-31 1997-11-25 Philips Electronics North America Electronic ballast with interface circuitry for multiple dimming inputs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEMMO, HELMUT: "Smartpower IC vereinfacht Dimmerschaltung", ELEKTRONIK, vol. 1996, no. 24, 1996, DE, pages 106 - 107 *

Also Published As

Publication number Publication date
WO1999023858A1 (fr) 1999-05-14
DE19748007A1 (de) 1999-05-12
DE59807092D1 (de) 2003-03-06
ATE232041T1 (de) 2003-02-15
ZA989827B (en) 1999-05-04
EP1031258A1 (fr) 2000-08-30
AU1030699A (en) 1999-05-24

Similar Documents

Publication Publication Date Title
EP1772040B1 (fr) Circuit d'interface destine a la transmission de signaux numeriques
EP1872630B1 (fr) Chauffage intelligent par convertisseur a transfert indirect
EP1782225B1 (fr) Procede pour controler des transmissions d'une interface bidirectionnelle
DE102011100002B4 (de) Vorrichtung zur Steuerung eines Beleuchtungsgeräts
EP1031258B1 (fr) Interface pour dispositif de commande d'ampoule
EP0644709B1 (fr) Dispositif pour démarrer et alimenter une lampe à décharge sur une automobile
EP0957662A1 (fr) Circuit pour alimenter des lampes électriques
EP1872629B1 (fr) Protection de la branche emettrice d'un dispositif interface
EP2837265B1 (fr) Transducteur pour un moyen d'éclairage, convertisseur del et procédé pour faire fonctionner un transducteur résonant llc
EP0588273B1 (fr) Procédé pour varier l'intensité lumineuse et dimmer pour mettre en oeuvre ce procédé
EP2564506B1 (fr) Circuit d'interface et procédé pour influencer la pente d'un signal d'excitation
DE102007013758B4 (de) Busfähiges Betriebsgerät für Leuchtmittel mit temperaturkompensiertem Sendezweig, Verfahren zur Temperaturkompensation des Übertragungsverhaltens eines Optokopplers und Steuereinheit zur Durchführung des Verfahrens
DE102016105739B4 (de) Vorrichtung mit galvanischer Trennung von einem Kommunikationsbus für mehrere Kommunikationsstandards und entsprechendes Verfahren zur Datenübertragung über eine solche Vorrichtung
EP1061779B1 (fr) Ballast électronique et procédé pour alimenter une ou plusieurs lampes fluorescentes
EP1882399A1 (fr) Ballast electronique destine a une lampe a decharge gazeuse basse pression comportant un microcontroleur
EP0230930B1 (fr) Alimentation à découpage pour appareil à commande à distance
DE102020102530A1 (de) Elektronische Zweidraht-Heimautomationssteuerungsvorrichtung
WO2007025967A1 (fr) Circuit de commande destine a faire fonctionner un transformateur electronique
EP2127492A1 (fr) Interface pour signaux numériques et signaux de tension de secteur, avec source électrique constante commutable
WO2013152370A1 (fr) Transducteur pour un moyen d'éclairage, convertisseur del et procédé de fonctionnement d'un transducteur résonnant llc
WO1998017081A2 (fr) Starter de lampe a decharge a courant continu et appareil de protection a courant continu pour lampe a decharge
DE202019106587U1 (de) Vorrichtung zur Steuerung eines Beleuchtungsgeräts
EP1860925A1 (fr) Appareil de montage de lampe électronique à connexion à chaud
DE3217730A1 (de) Anordnung zum abgeben einer stufenlos einstellbaren steuerspannung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010316

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRIDONICATCO GMBH & CO. KG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

REF Corresponds to:

Ref document number: 59807092

Country of ref document: DE

Date of ref document: 20030306

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20031024

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031027

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141230

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59807092

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503