EP1029936B1 - Alliage de zinc permettant la réalisation de pièces de haute qualité - Google Patents
Alliage de zinc permettant la réalisation de pièces de haute qualité Download PDFInfo
- Publication number
- EP1029936B1 EP1029936B1 EP19990403171 EP99403171A EP1029936B1 EP 1029936 B1 EP1029936 B1 EP 1029936B1 EP 19990403171 EP19990403171 EP 19990403171 EP 99403171 A EP99403171 A EP 99403171A EP 1029936 B1 EP1029936 B1 EP 1029936B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloys
- alloy
- zinc
- parts
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001297 Zn alloy Inorganic materials 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 75
- 239000000956 alloy Substances 0.000 claims description 75
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 23
- 239000011701 zinc Substances 0.000 claims description 20
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 229910052725 zinc Inorganic materials 0.000 claims description 17
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 5
- 238000004512 die casting Methods 0.000 claims 3
- 239000010949 copper Substances 0.000 description 23
- 238000002347 injection Methods 0.000 description 22
- 239000007924 injection Substances 0.000 description 22
- 230000007547 defect Effects 0.000 description 20
- 239000007787 solid Substances 0.000 description 10
- 238000007711 solidification Methods 0.000 description 10
- 230000008023 solidification Effects 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- 238000005498 polishing Methods 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 229910000842 Zamak Inorganic materials 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 235000011837 pasties Nutrition 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910000783 Zamak 2 Inorganic materials 0.000 description 1
- 229910000779 Zamak 3 Inorganic materials 0.000 description 1
- 229910000781 Zamak 5 Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/02—Hot chamber machines, i.e. with heated press chamber in which metal is melted
- B22D17/04—Plunger machines
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/02—Alloys based on zinc with copper as the next major constituent
Definitions
- the present invention relates to zinc-based alloys allowing to make high quality foundry parts.
- compositions of these alloys are defined by the NF EN standards 1774 "Zinc and zinc alloys - Foundry alloys - ingots and liquid” and by standards EN 12844 "Zinc and zinc alloys - Castings - Specifications ”as well as the international standard ISO 301.
- the most widely used alloy is the Al alloy: 3.9-4.3%, Cu: 0.75-1.25%, Mg: 0.03-0.06%, remains of high purity zinc commonly called zamak 5. Its abbreviated designation according to standard NF EN 1774 is ZL5. The purity zinc to be used is defined in these standards, it corresponds to a zinc type Zl, purity 99.995% defined in standard NF EN 1179.
- This family of alloys is particularly suitable for applying a conventional pressure injection process in a hot chamber, the particularity is that part of its injection system is submerged in the molten alloy to be injected. It should be understood, however, that all other known methods can also be used.
- the hot chamber pressure injection process is commonly used to produce parts with high productivity of varying degrees of complexity, dedicated to multiple applications (luxury industry, hardware, automobile, building etc., this list not being exhaustive).
- the presence of aluminum is essential for limit the aggressiveness of zinc with respect to steel or cast iron parts components of the casting machine.
- the addition of aluminum thus allows injection of the parts by a hot chamber type process where the injection system is immersed in the molten alloy.
- magnesium at levels between 0.02% and 0.06% is recommended to avoid problems of intercrystalline corrosion of parts and to improve properties mechanical such as tensile strength, hardness and embrittlement at low temperature. Above 0.06%, it is known that the magnesium produces a decrease in impact flexural strength.
- a welding alloy is known from FR-A-2 093 821 with from 0.5 to 4.5% by weight of aluminum, from 0.1 to 4% by weight of copper, from 0.005 to 0.08% by weight weight of magnesium and the rest zinc.
- the appearance of the parts in such zinc alloys are of high quality.
- the coated parts or very frequently have surface defects. Two faults frequent and particularly critical are called respectively porosity and cold drops.
- the porosities appear as small holes in the surface of the coated part and are attributable to the foundry stage when the stage subsequent coating is perfectly controlled and does not generate its specific defects (stings or scrapes for example).
- the quality of the appearance parts injected in zamak and then coated is judged by a visual examination which rejects any part showing defects surface defects called "appearance defects", these defects can be linked to one foundry and coating steps.
- Stolberger Zink has offered a lower grade alloy aluminum than ZL5, having the composition: AI: 2%, Cu: 1%, Mg: 0.03-0.06%, Be: 0.0005-0.0050%, zinc residue.
- AI 2%
- Cu 1%
- Mg 0.03-0.06%
- Be 0.0005-0.0050%
- zinc residue zinc residue.
- the results obtained with this alloy underlines the beneficial effect of beryllium on resistance to bending by impact and mention a qualitative improvement in appearance pieces.
- the tensile strength of this alloy is however reduced by 10-15% compared to that of ZL 5.
- Document BE-846.899 describes a family of Al alloys : 0.2-3%, Cu: 0.2-5%, and at least one of the following elements Mn: 0.3-3%, or Cr: 0.01-0.5%, or V: 0.01-0.5%, or Ni: 0.2-0.5%, zinc residue, presenting improved creep characteristics compared to ZL 5.
- the object of the present invention is to provide a family of alloys zinc, the surface quality of the parts injected as is, raw foundry, or ready to be coated, for example after polishing, in such alloys is significantly improved while retaining mechanical characteristics at least similar to those of ZL 5.
- these aims are achieved with a zinc alloy comprising in mass percentages: al 1.8-2.2% Cu 1.5-3.9% mg 0.02-0.06% the rest being made up of zinc, with the usual impurities inevitably present in the aforementioned metals.
- this family of alloys allows in particular improve the surface quality of the injected parts by reducing the number of porosities near the surface, porosities inherent in the conventional injection process (without using a vacuum mold), and by reducing the number of cold drops for parts sensitive to this default.
- the molten alloy is brought in due to the thrust of an injection piston 10 from a crucible 15 to a footprint 20 of a mold passing through an injection system.
- the mold cavity 20 can be evacuated or filled with a gas such only oxygen before injection, but the most common method employee uses a mold whose imprint 20 contains air.
- the alloy in liquid phase arrives at this imprint 20 via a nozzle intermediate 25 and a machine nozzle 30.
- the alloy is injected along a 60mm edge using a double tangential attack, the direction of injection being parallel to large sides of the room.
- the large surface that must have a nice appearance is that attack side. Its large size usually makes it difficult to obtain perfect surface quality.
- the parts produced then undergo a polishing removing a thickness of 20 to 40 ⁇ m of material to simulate polishing industrially in the usual way before a final coating.
- the polished surface of each piece is then observed using an optical microscope (Olympus, reference PMG3) with which detected surface defects with a span greater than 50 ⁇ m.
- the ZL5 and the family of alloys according to the invention were injected under various conditions defined by an experimental design.
- the composition of the alloys used is given in the following table: Alloy al% en masse Cu% en masse mg% en masse Zn en masse ZL 5 4 1 0.04 Rest # 1 2.2 1.75 0.04 Rest # 2 2.1 2.90 0.04 Rest # 3 2.1 3.90 0.04 Rest # 4 2.1 0.95 0.04 Rest
- Alloys 1 to 3 have an aluminum content close to 2% in mass, a magnesium content of 0.04%.
- the copper content of these alloys 1 to 3 are respectively 1.75%, 2.90% and 3.90% by mass.
- Alloy No. 4 which has a low copper content of 0.95%, corresponds to an alloy of the type proposed by Stolberger Zink, to the difference that that of Stolberger Zinc contained Beryllium.
- a mass content of Magnesium between 0.02 and 0.06%, and preferably between 0.03 and 0.06%.
- Time post-pressure is, in known manner, the total time during which the piston 10 exerts pressure on the alloy.
- the cooling time is the time between the injection and the opening of the mold.
- Tensile test pieces were cut from the part described above and mechanical tests were carried out with an Instron tensile machine, at a speed of 2 mm / min at 20 ° C. (the test pieces having a length I 0 of 40mm).
- the alloys according to the invention have a number of defects reduced by half for the contents of Cu by mass of 1.75% and 2.90% and a number of defects reduced by a third for a grade of Cu by mass of 3.9%.
- the alloys according to the invention provide a particularly advantageous surface finish for the contents in Cu between 1.7% and 3.5% by weight with a number of defects significantly lower than 55, even more advantageous for the contents of Cu ranging from 2.0 to 3.1% by weight with a number of defects particularly reduced, significantly lower than 50 as in the case of alloy n ° 2 presented here.
- the Cu concentration range is optimal for Cu between 2.5 and 3% by weight, for which the number of defects is minimal, close to 47.
- the tensile strength and hardness of ZL 5 are retained and even improved with the alloys according to the invention. Indeed, the measured tensile strengths are equal to the resistance of 290 MPa ZL5 except for the 3.9% copper alloy for which the resistance in traction is improved, to 297 MPa.
- the inventors have found that the tensile strength becomes again very low for a Cu content of less than 1% at a content of Aluminum of around 2% as illustrated by the case of alloy 4 which has no resistance than 260 MPa. Hardness, measured by the Vickers method well known, is better for alloys 1 to 3 according to the invention than for alloys ZL5 and n ° 4, the hardness being particularly high for the alloy with 3.9% Cu.
- FIG. 3 shows for each of the alloys 1, 2 and 3, and for ZL5 this enthalpy as a function of temperature.
- the temperature in ° C is plotted on the abscissa and the enthalpy H of transformation into MJ / m 3 on the ordinate.
- the lower dotted line 50 corresponds to ZL5
- the lines 51, 52 and 53 are respectively the enthalpy lines of alloys 1, 2 and 3.
- the line of ZL5 shows a sharp increase in the value of the enthalpy at 380 °, while the enthalpies of the alloys of the invention gradually grow over a wide temperature range from about 380 ° C to about 400 ° C.
- a 2D finite element model representing a section of the part previous perpendicular to the direction of injection and compound quadratic elements with 4 knots was carried out in order to simulate the filling of the part using a known software called Ansys.
- Figures 4 and 5 thus represent the solid fraction within the alloy according to the point where one is between the heart of the part and its area.
- Figures 4 and 5 thus show on the abscissa the distance d to the core of the part in mm, the value 0 corresponding to the heart of the part and the value 1.25 on the surface of the room.
- FIG. 4 shows the distribution of the solid fraction in an injected part, made of ZL 5 alloy, during solidification, three times solidification time, i.e. 0.5s, 1s and 2s after injection, these three solidification times corresponding respectively to traces 61, 62 and 63.
- the solid fraction profile has been represented in two parts conforming to example 1, respectively of alloy n ° 1 and n ° 3 according to the invention, both at 2.8 seconds of solidification time.
- the layout for alloy # 1 is referenced 71 and the layout for alloy n ° 3 is referenced 73.
- the solid fraction In the case of ZL5 at 2 seconds after injection, the solid fraction is close to 0.3 over a wide area from the heart of the room to about one quarter of its half-width, then suddenly passes around 1. At on the contrary, in the case of alloys 1 to 3 of the invention, the solid fraction to 2.8 seconds has a slow growing profile between the heart and workpiece surface, ranging from approximately 0.5-0.6 in the core to approximately 0.6-0.7 in area.
- ZL 5 therefore has a surface skin of around 200 ⁇ m completely solidified (100% solid fraction) and a rather fluid core (F substantially equal to 0.3), and the family of alloys of the invention has a homogeneous whole where solid phase and liquid phase coexist on the surface and at heart, this set being qualified as a “pasty zone” at F substantially equal to 0.5.
- microstructures of injected parts shown in Figures 6; 7, 8 and 9 the microstructure well known in section of the injected ZL 5 represented in FIG. 6 presents a skin near the surface of about 200 ⁇ m with dendrites and then a homogeneous equiaxed zone, whereas the parts injected in alloys n ° 1, 2 and 3 shown respectively in Figures 7, 8 and 9 have a structure homogeneous at the heart (bottom of the photograph) and near the surface (top of photography).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
Al | 1.8-2.2% |
Cu | 1.5-3.9% |
Mg | 0.02-0.06 % |
- la figure 1 représente un dispositif d'injection d'une machine d'injection sous pression à chambre chaude connue en elle-même;
- la figure 2 est un tracé représentant pour une pièce de l'invention un nombre de défauts en fonction de sa teneur en cuivre ;
- la figure 3 représente l'évolution d'enthalpie de transformation en fonction de la température pour le ZL5 et trois alliages selon l'invention ;
- la figure 4 représente des profils de fraction solide d'une pièce en alliage ZL5 à des temps de solidification différents.
- la figure 5 représente des profils de fraction solide d'une pièce en alliages selon l'invention ;
- les figures 6 à 9 représentent des coupes de pièces injectées respectivement en ZL5 et en trois alliages selon l'invention.
Alliage | Al% en masse | Cu% en masse | Mg% en masse | Zn en masse |
ZL 5 | 4 | 1 | 0,04 | Reste |
N° 1 | 2,2 | 1,75 | 0,04 | Reste |
N° 2 | 2,1 | 2,90 | 0,04 | Reste |
N° 3 | 2,1 | 3,90 | 0,04 | Reste |
N° 4 | 2,1 | 0,95 | 0,04 | Reste |
Tempture de coulée °C | Vitesse du piston en 1ère phase m/s | Vitesse à l'attaque en 2nde phase m/s | Tempture du moule °C | Temps de post-pressions | Temps de refroidissement s | |
ZL5 | 430 | 0,03-0,06 | 38 - 47 | 150 - 180 | 1,5 - 2,5 | 2 - 3,5 |
Alliage n° 1 | 450 | 0,03-0,06 | 38 - 47 | 150 - 180 | 1,5 - 2,5 | 2 - 3,5 |
Alliage n° 2 | 450 | 0,03-0,06 | 38 - 47 | 150 - 180 | 1,5 - 2,5 | 2 - 3,5 |
Alliage n° 3 | 450 | 0,03-0,06 | 38 - 47 | 150 - 180 | 1,5 - 2,5 | 2 - 3,5 |
Alliage | Nombre moyen de défauts > 50 µm sur une surface de 50x50 mm2 après polissage | Résistance à la traction MPa | Dureté Vickers (force 10 kg) |
ZL 5 | Base : 100 | 290 | 102 |
N° 1 | 56 | 290 | 107 |
N° 2 | 47 | 290 | 112 |
N° 3 | 80 | 297 | 126 |
N° 4 | - | 260 | 102 |
Claims (7)
- Alliage de zinc comprenant en pourcentages massiques :
Al 1.8-2.2% Cu 1.5-3.9% Mg 0.02-0.06 % - Alliage de zinc selon la revendication 1, comprenant en pourcentages massiques
Al 1.8-2.2% Cu 1.7-3.5% Mg 0.02-0.06% - Alliage de zinc selon la revendication 2 comprenant en pourcentages massiques :
Al 1.8-2.2% Cu 2.0-3.1% Mg 0.02-0.06% - Alliage de zinc selon la revendication 3 comprenant en pourcentages massiques
Al 1.8-2.2% Cu 2.5-3.0% Mg 0.02-0.06% - Un procédé de fabrication de pièces en fonderie sous pression chambre chaude avec un alliage selon l'une des revendications 1 à 4.
- Pièce réalisée en fonderie sous préssion chambre chaude avec un alliage conforme à l'une des revendications 1 à 4.
- Pièce d'aspect réalisé en fonderie sous pression chambre chaude avec un alliage conforme à l'une des revendications 1 à 4.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9815904A FR2787470B1 (fr) | 1998-12-16 | 1998-12-16 | Alliage de zinc permettant la realisation de pieces de haute qualite |
FR9815904 | 1998-12-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1029936A1 EP1029936A1 (fr) | 2000-08-23 |
EP1029936B1 true EP1029936B1 (fr) | 2003-03-26 |
Family
ID=9534052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19990403171 Expired - Lifetime EP1029936B1 (fr) | 1998-12-16 | 1999-12-16 | Alliage de zinc permettant la réalisation de pièces de haute qualité |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1029936B1 (fr) |
DE (1) | DE69906245D1 (fr) |
FR (1) | FR2787470B1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104073686B (zh) * | 2014-06-17 | 2016-08-24 | 宁波博威合金材料股份有限公司 | 一种可铆接的变形低铜合金材料及其应用 |
CN111549257B (zh) * | 2020-06-03 | 2021-02-23 | 佛山市桂源锌合金材料有限公司 | 一种成本较低且抗拉强度较好的锌合金及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2899304A (en) * | 1959-08-11 | Highly wear-resistant zinc base alloy | ||
GB462052A (en) * | 1935-06-21 | 1937-02-22 | Apex Smelting Company | Improvements in zinc base alloys |
US2467956A (en) * | 1947-09-09 | 1949-04-19 | Maurice Perlin | Zinc base alloy |
SU212782A1 (ru) * | 1966-02-14 | 1968-02-29 | Связка для абразивного инструмента | |
US3733687A (en) * | 1970-05-30 | 1973-05-22 | Senju Metal Industry Co | Method of soldering an aluminum metal to an aluminum or another metal |
FR2102861A5 (en) * | 1970-08-26 | 1972-04-07 | Nisso Smelting Co Ltd | Compression - resistant zinc alloys - contg aluminium, copper, magnes beryllium, titanium optionally silver |
-
1998
- 1998-12-16 FR FR9815904A patent/FR2787470B1/fr not_active Expired - Fee Related
-
1999
- 1999-12-16 EP EP19990403171 patent/EP1029936B1/fr not_active Expired - Lifetime
- 1999-12-16 DE DE69906245T patent/DE69906245D1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
FR2787470B1 (fr) | 2002-01-25 |
DE69906245D1 (de) | 2003-04-30 |
EP1029936A1 (fr) | 2000-08-23 |
FR2787470A1 (fr) | 2000-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghanavati et al. | Additive manufacturing of thin-walled SS316L-IN718 functionally graded materials by direct laser metal deposition | |
EP3622095B1 (fr) | Piece en alliage d'aluminium et son procédé de fabrication | |
EP3850118B1 (fr) | Superalliages a base de nickel | |
EP3077141B1 (fr) | Procédée de fabrication d'une pièce par fusion sélective de poudre | |
EP0886683B1 (fr) | Alliage thixotrope aluminium-silicium-cuivre pour mise en forme a l'etat semi-solide | |
CA2820768A1 (fr) | Produits epais en alliage 7xxx et procede de fabrication | |
FR2738258A1 (fr) | Piece coulee en alliage d'aluminium a haute resistance et a haute tenacite fabriquee au moyen d'un procede de coulee a haute pression et procede pour sa fabrication | |
FR2742165A1 (fr) | Procede de fabrication de bandes minces en alliage d'aluminium a haute resistance et formabilite | |
WO2021064320A1 (fr) | Toles de precision en alliage d'aluminium | |
FR2543578A1 (fr) | Production d'articles metalliques par deformation superplastique | |
FR3019561A1 (fr) | Traitement thermique d'un alliage a base d'aluminure de titane | |
CA2071222C (fr) | Methode d'obtention de culasses moulees composites | |
FR2472618A1 (fr) | Barre coulee en alliage d'aluminium pour produits travailles presentant des proprietes mecaniques et une " travaillabilite " ameliorees, et procede de fabrication | |
EP1187691B1 (fr) | Procede de coulee continue entre cylindres de bandes d'acier inoxydable ferritique exemptes de microcriques | |
US20230366064A1 (en) | A platinum alloy composition | |
EP1029936B1 (fr) | Alliage de zinc permettant la réalisation de pièces de haute qualité | |
FR2808536A1 (fr) | Procede de production d'une billette semi-fondue en alliage d'aluminium pour une utilisation comme unite de transport | |
FR2805828A1 (fr) | Alliage a base d'aluminium contenant du bore et son procede de fabrication | |
EP0472478A1 (fr) | Procédé d'obtention par moulage de pièces bimatériaux | |
FR3082763A1 (fr) | Procede de fabrication d une piece en alliage d aluminium | |
CA1106265A (fr) | Procede de traitement thermique et de trempe des pieces forgees | |
CA2244145C (fr) | Masse d'alliage metallique pour formage a l'etat semi-solide | |
CA2027974A1 (fr) | Perfectionnement au procede de moulage a mousse perdue et sous pression controlee de pieces metalliques | |
EP1447456A1 (fr) | Alliage d'or dopé | |
FR2732038A1 (fr) | Alliage intermetallique a base d'aluminiure de titane pour la fonderie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010219 |
|
AKX | Designation fees paid |
Free format text: DE ES FR GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20011228 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: METALEUROP S.A. |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): DE ES FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20030326 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030326 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69906245 Country of ref document: DE Date of ref document: 20030430 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030627 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20030326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030930 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20031230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |