EP1025925B1 - Method and device for forming of metals - Google Patents

Method and device for forming of metals Download PDF

Info

Publication number
EP1025925B1
EP1025925B1 EP99810499A EP99810499A EP1025925B1 EP 1025925 B1 EP1025925 B1 EP 1025925B1 EP 99810499 A EP99810499 A EP 99810499A EP 99810499 A EP99810499 A EP 99810499A EP 1025925 B1 EP1025925 B1 EP 1025925B1
Authority
EP
European Patent Office
Prior art keywords
compressive deformation
metal piece
hammer
space
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99810499A
Other languages
German (de)
French (fr)
Other versions
EP1025925A1 (en
Inventor
Walter Zeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP99810499A priority Critical patent/EP1025925B1/en
Application filed by Individual filed Critical Individual
Priority to ES99810499T priority patent/ES2178366T3/en
Priority to PT99810499T priority patent/PT1025925E/en
Priority to DE59901178T priority patent/DE59901178D1/en
Priority to AT99810499T priority patent/ATE215855T1/en
Priority to KR1020017009700A priority patent/KR20010101918A/en
Priority to CN00803335A priority patent/CN1338978A/en
Priority to JP2000597080A priority patent/JP2002536182A/en
Priority to AU20900/00A priority patent/AU754548B2/en
Priority to CZ20012614A priority patent/CZ20012614A3/en
Priority to BR0007963-4A priority patent/BR0007963A/en
Priority to MXPA01007798A priority patent/MXPA01007798A/en
Priority to PCT/CH2000/000052 priority patent/WO2000045976A1/en
Priority to HU0105356A priority patent/HUP0105356A3/en
Priority to PL00349096A priority patent/PL349096A1/en
Priority to CA002361521A priority patent/CA2361521A1/en
Publication of EP1025925A1 publication Critical patent/EP1025925A1/en
Application granted granted Critical
Publication of EP1025925B1 publication Critical patent/EP1025925B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/12Shaping end portions of hollow articles

Definitions

  • the present invention relates to a Process for processing a metal part by upsetting as well as an upsetting device.
  • thickenings are usually performed in such a way that a pipe or a metal profile with the greatest wall thickness and the thickness by targeted forging or hammering out at the desired points is reduced.
  • This forging out or hammering out starting from the thickest profiles is a complex process, especially when the percentage of thickening is only small compared to the rest of the tube or profile.
  • Various Attempts to thicken profiles by direct upsetting failed so far failed. Attempts to thicken pipes or rods often caused the Spread or fold profiles sideways in the initial phase of upsetting, where there are throws and thrusts. In the further becomes a non-homogeneous, crystalline structure of the formed material achieved what is undesirable in terms of stability. Thereby arise in Profile also wrinkles like an elephant's trunk.
  • the present invention accordingly relates to the upsetting method as defined in claim 1 and the upsetting device as defined in claim 10.
  • the method according to the invention is referred to as "stutter upsetting". It is important that the acting thrust is initiated in this way that they only come into play in the stowage area and only serve to transport materials.
  • the material to be reshaped Before the actual upsetting process, the material to be reshaped must be pre-tensioned with the appropriate hydraulic pressure so that the stuttering pulses are properly applied.
  • the prestress is preferably located in an area just before the transition to the plastic area. The material is therefore still in the elastic phase in the prestressed state.
  • the pretension is maintained throughout the upsetting process, ie the metal part to be processed remains under pretension between the individual pulses.
  • the tensioned material in particular in the case of larger profiles, is advantageously preheated to just before the flow state.
  • the energy to be supplied and the frequency are determined according to Brillouin (first Brillouin zone). Preheating is preferably carried out locally in the stuffer box by means of microwaves.
  • the pressure pulse can now be applied to the pre-tensioned and preheated material, whereby the tensioned material is made to flow. Because the material becomes soft, the pressure piston can move forward and the pressure decreases; the material can recrystallize. The bias of the material is maintained between the individual pressure pulses. This can be done by using a hydraulic system for the application of force that includes two hydraulic pumps, namely a preload pump for the preload pressure, for example at 40 bar (4 • 10 6 Pa) and a smaller pulse pump for a pressure up to 700 bar (7 • 10 7 Pa).
  • the pipes of these pumps to the piston must be provided with a check valve.
  • a hydraulic system is preferably used to exert a pressure pulse on the compression hammer.
  • the impulse is transmitted from the hydraulic or stuttering piston to the compression hammer.
  • the stuttering piston is moved with oil to the material to be compressed, then the pressure increases in such a way that the tensioned oil in the workpiece causes the desired preload.
  • the lines between pumps and stuttering pistons are inelastic and designed to be reflection-free for the pulse frequency.
  • the pressure pulses are modulated onto the preloaded oil, for example with a frequency-controlled piston control, so that an undamped transmission of the pulse from the hydraulic piston to the compression hammer can take place (compressibility of the hydraulic oil approx. 10 -6 ).
  • the time of upsetting is determined according to Hooke's law, this defines the first half period of the stuttering frequency. For the second half is only to check whether the time available for recrystallization enough. With this method, the stuttering frequency is always on that Material matched. After the last relaxation of the material in the compression area the material is still in the Hooke range, i.e. pre-tensioned. It care must be taken to ensure that the material is removed by pulling the compression hammer away can relax in the compression area, otherwise unwanted thickening next to the upsetting area.
  • FIG. 1 shows a stutter upsetting device 1, which is intended to compress a pipe 2 at one end, forming a larger one Wall thickness.
  • a mandrel 3 Inserted into the tube 2 is a mandrel 3, which serves the Keep the profile of the pipe by preventing material from entering the profile can dodge.
  • the tube is held by the clamping device 4, which exerts a counter pressure on the mandrel 3.
  • the clamping device exercises pressure all around the pipe. This will avoid material can evade in an uncontrolled manner.
  • the pipe 2 to be compressed protrudes further into the Die 5 into it, which is provided with a cooling coil 6, which by a Cooling medium 14 is fed. This causes the high pressures emerging temperatures, if necessary, dissipated.
  • the cathedral 3 protrudes partly into the die 5 through the pipe 2 to be compressed.
  • a bore 9 is provided, which serves as a guide for the extension 8 of the upsetting hammer 7.
  • This Extension defines, together with the die, the compression space 13, in which the material of the pipe can spread during the upsetting process.
  • the Pressure or the required impulses on the compression hammer 7 are by the stuttering piston 10 exercised. This is operated hydraulically, 11 of which Hydraulic line represents and 12 the chamber for the expanding hydraulic oil.
  • the upsetting hammer 7 is on the end face of the die 5 Pipe attached. Then the pipe to be compressed is prestressed so far that the material is still in the elastic range (Hooke's range) located.
  • the hydraulic oil also has an elastic lower pressure range has the advantage here that not only the one to be machined Metal part, but also the hydraulic oil is preloaded. While the upsetting process is therefore in an area in which it has practically no elasticity.
  • FIG. 2 shows the same stutter upsetting device as in FIG. 1, however after the upsetting process.
  • the reference numerals have the same Meaning as in Figure 1.
  • the stuttering piston 10 has moved to the right compared to Figure 1. This made the Stuttering piston 10 is driven into the die 5, the compression hammer facing part of the pipe to be compressed and the The compression space according to FIG. 1 now through the entire compressed part 15 of the to be compressed tube 2 is filled.
  • FIG. 3 shows an alternative embodiment of a stutter upsetting device to carry out the method according to the present invention.
  • the Device 20 is a head upsetting device.
  • the device serves a metal rod or to pinch metal wire at one end to form a head.
  • Metal wire (not shown) is inserted into the bore 21 of the clamping device 22 inserted until one end into the hemispherical recess 23 of the Stauchhammer 24 protrudes until it stops.
  • the upsetting hammer 24 can exert a pressure on the workpiece through the piston 25, whereby at Compression process, which takes place in the same way as described above, that Material in the die 26 and the hemispherical recess 23 in the compression hammer 24 can dodge.
  • the piston 25 is actuated hydraulically. details the clamping device and also the hydraulic system are on this Figure not shown, since they are obvious to a person skilled in the art.
  • FIG. 4 shows a typical arrangement of hydraulic pumps 31, 32 on the piston 10 ( Figures 1 and 2) or 25 ( Figure 3), the pressure on one Compression hammer (not shown) exercises.
  • the larger hydraulic pump 32 serves to maintain a permanent preload pressure during the Upsetting process, e.g. 40 bar.
  • the smaller pump 31 is used to exercise periodic pulse pressure, with a higher pressure, e.g. of 700 bar, the sufficient for the transition from Hookeschen to plastic Area is.
  • the lines 34, 35 from the pumps 31, 32 to the piston are provided with check valves 36, 37.
  • check valves 36, 37 For better clarity are small diagrams 38, 39 with a schematic above the pump symbols Indication of the pressure curve shown.
  • FIG. 5 shows a pressure / displacement diagram a for an upsetting process according to the present invention.
  • h represents Hooke's range and A the leader point.
  • FIG. 6 shows a pressure / time diagram b for a compression process of Steel according to the present invention.
  • the pulsating one is clearly visible Pressure curve during the impulses.
  • area h the material is hooked Prestressed area until prestressing point A.
  • a first impulse is exerted on the material to be formed, whereby the first peak of the curve arises.
  • the piston can move further to the front and the pressure subsides until the preload, whereby the material can recrystallize.
  • the recrystallization phase is represented by the area r.
  • FIG. 7 shows important details of an upsetting device which are similar is constructed, like the upsetting device according to FIG. 1, in one opposite Figure 1 enlarged scale.
  • the same parts are the same in FIG Provide reference numerals, as in Figure 1.
  • the generally designated 4 Clamping device consists of several hydraulic cylinders on clamping jaws 16 act.
  • Figures 1 and 7 only two in the longitudinal direction of the Rohres 2 adjacent sets, distributed around the circumference of the jaws represented by hydraulic cylinders. In practice, however, there are preferably three or more sets of hydraulic cylinders are provided. It has been shown that good forming results are achieved when the clamping force in the Near the end of the tube 2 to be formed is high and towards opposite end of the tube 2 down and then increases again.
  • the upsetting device is immediately before the upsetting process shown.
  • the compression space 13 is in this embodiment by the Contact surface 17 of the upsetting hammer, the extension 8 of the upsetting hammer 7, the end face 29 of the mandrel 3 and of course the die 5 are limited.
  • the Compression hammer 7 lies with its contact surface 17 on the end face of the to be formed Tube 2. Put simply, the cross hatched End region of the tube 2 through the forming process in the direction of the arrows 18 moved into the stowage space 13. So that the from the hammer 7 on the Tube transmitted force is actually directed against the compression space 13,
  • the contact surface 17 of the upsetting hammer does not run at right angles to the longitudinal axis of the tube 2, but is plate-like slightly towards the tube 2 inclined. If it is important that the finished tube 2 is one of the Shape of the contact surface 17 has a different end face, for example is exactly right-angled, this is done in a further operation by means of a further upsetting hammer brought into its final form.
  • FIG. 8 shows an embodiment of the upsetting device according to the invention shown for upsetting a tube 2 in an area between the ends of which are formed.
  • the left half of the device according to the figure 8 essentially corresponds to the right half of FIG. 7.
  • a bottom 27 is additionally visible, on which the tube 2 is in contact.
  • the upsetting hammer 7 is graduated in two stages here. The first stage is formed by a contact surface 17, which to Start of the forming process the compression force on the pipe 2 to be formed transfers.
  • both the upsetting hammer 7 and the mandrel 3 and / or its bore 9 is formed almost arbitrarily, for example several times graded, can be to give the compression space 13 a desired shape. It is only necessary to ensure that the hammer 7 and mandrel 3 are so are designed in such a way that they move apart again after shaping can be damaged without damaging the molded workpiece.
  • the stutter upsetting device the parts to be formed are rotationally symmetrical. But it is within the scope of the present invention easily possible, not rotationally symmetrical Form profiles or tubes or on rotationally symmetrical ones Profiles or pipes to form non-rotationally symmetrical areas. Two Examples of this are shown in FIGS. 10 and 11.
  • Figure 10 shows a device similar to Figure 7 to produce a non-rotationally symmetrical thickening at the end of a Tube 2.
  • the limit of the compression space 13 on the side of the mandrel 3 Surface 29 ' is not perpendicular to the longitudinal axis of the in this embodiment Tube 2 aligned.
  • the jaws 16 and the die 5 are asymmetrical.
  • Figure 11 shows a device similar to Figure 8 to produce a non-rotationally symmetrical thickening between the Ends of a pipe.
  • it is the compression space 13 on the side of the upsetting hammer 7 delimiting surface 28 'which is not rectangular is aligned with the longitudinal axis of the tube 2.
  • the jaws 16 of the further clamping device 4 and the die 5 asymmetrical.
  • the frequency with which the compression hammer pulsates is for everyone To determine the workpiece empirically. It is believed that the best results can be achieved if in the area of the tube 2 to be formed between the contact surface 17 of the upsetting hammer 7 and a virtual reflection wall a standing wave arises in the area of paragraph 19. It is therefore advantageous if the pulse frequency is adjustable and preferably even is changeable during the forming process.
  • the aforementioned pulse pump 31 can be a conventional piston pump his. However, a rotating pulse generator is more effective.
  • Figure 12 shows a schematic cross section through a possible embodiment of a of such pulse generator 40.
  • a central rotor 41 has one in its center Longitudinal bore 42, which has a rotary seal with a high pressure of For example, 700 bar can be applied.
  • the rotor is on its cylindrical surface for the purpose of minimizing wear with a layer 43 of, for example Ceramic coated and surrounded by a stator 44.
  • radial Channels 45 in the rotor conduct the high pressure outwards from the longitudinal bore 42.
  • Radial channels 46 are also provided in the stator 44, which during the Briefly communicate rotation of the rotor with its channels 45.
  • each channel 46 of the stator 44 has a check valve 47 on.
  • the check valve 47 from a ball with a cylindrical extension, the is guided in the bore of a radial connecting line 48.
  • the ball and the extension is pierced to the flow of the pressure medium through the connecting line 48 in an outer annular chamber 49, in which the prestressing pressure is 40 bar, for example.
  • This leader pressure it is also which the ball of the check valve 47 against its seat presses as long as channels 45 and 46 are not connected.
  • All check valves 47 are held in a valve ring 50.
  • other known check valves can also be used, whose valve body is, for example, a cone and, for example, by a Spring is pressed against its seat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Revetment (AREA)
  • Jigs For Machine Tools (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

The deforming process involves clamping the metal part (2) in a clamping device (4) to form a forging cavity (13) in the swage (5) with the part clamped to take forging forces directly; applying a forging hammer (7) to force metal into the forging cavity, exerting pressure on the hammer so that the mechanical stress is within the Hooke elastic region, applying a pulse with the hammer so that the metal passes into the flowing region and repeating the last two stages.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Bearbeitung eines Metallteiles durch Stauchen sowie eine Stauchvorrichtung.The present invention relates to a Process for processing a metal part by upsetting as well as an upsetting device.

Gemäss dem Stand der Technik werden Verdickungen in der Regel in solcher Weise durchgeführt, dass ein Rohr oder ein Metallprofil mit der grössten Wandstärke vorgelegt wird und die Dicke durch gezieltes Ausschmieden oder Aushämmern an den gewünschten Stellen reduziert wird. Dieses Ausschmieden oder Aushämmern, ausgehend von den dicksten Profilen, stellt ein aufwendiges Verfahren dar, insbesondere dann, wenn der Anteil der Verdikkung im Vergleich zum übrigen Anteil des Rohres bzw. Profils nur klein ist. Verschiedene Versuche, Profile durch direktes Stauchen zu verdicken, schlugen bisher fehl. Versuche, Rohre oder Stangen zu verdicken, bewirkten oft, dass die Profile schon in der Anfangsphase des Stauchens seitlich ausbreiten oder knikken, wobei es zu Überwerfungen und Überschiebungen kommt. Im Weiteren wird dadurch eine nichthomogene, kristalline Struktur des umgeformten Materials erreicht, was bezüglich der Stabilität unerwünscht ist. Dabei entstehen im Profil auch Runzeln wie bei einem Elefantenrüssel.According to the prior art, thickenings are usually performed in such a way that a pipe or a metal profile with the greatest wall thickness and the thickness by targeted forging or hammering out at the desired points is reduced. This forging out or hammering out starting from the thickest profiles is a complex process, especially when the percentage of thickening is only small compared to the rest of the tube or profile. Various Attempts to thicken profiles by direct upsetting failed so far failed. Attempts to thicken pipes or rods often caused the Spread or fold profiles sideways in the initial phase of upsetting, where there are throws and thrusts. In the further becomes a non-homogeneous, crystalline structure of the formed material achieved what is undesirable in terms of stability. Thereby arise in Profile also wrinkles like an elephant's trunk.

Es wurde versucht, das Phänomen der Faltenbildung zu lösen, indem verschiedene Gesenkstufen mit unterschiedlicher Gestalt eingelegt wurden, was ein recht aufwendiges Verfahren darstellt.An attempt was made to solve the phenomenon of wrinkling by different die levels with different shapes were inserted, which is a fairly complex process.

Es ist demzufolge Aufgabe der vorliegenden Erfindung, ein Metallbearbeitungsverfahren zur Verfügung zu stellen, durch welches Verdickungen in Rohren, Stangen oder anderen Profilen schnell und wirtschaftlich hergestellt werden können.It is therefore an object of the present invention to provide a metal working method to make available through which thickenings in Pipes, rods or other profiles manufactured quickly and economically can be.

Es wurde nun gefunden, dass gezielt gewünschte Stellen in Rohren, Stangen oder anderen Profilen durch Stauchen verdickt werden können, wenn das zu stauchende Werkstück im Hookeschen Bereich vorgespannt und das Werkstück mit einem Stauchhammer pulsierend bearbeitet wird. Durch den Impuls des Stauchhammers wird das Material des Werkstückes vom Hookeschen Bereich während kurzer Zeit in den plastischen Bereich übergeführt. Der Impuls bewirkt, dass das Material in der Stauchzone zum Fliessen gebracht wird, dadurch wird der Stauchraum ein wenig ausgefüllt, der Stauchhammer folgt der Bewegung, der Druck fällt, wodurch das Werkstück wiederum in den kristallinen Zustand zurückkehrt, jedoch noch immer unter Vorspannung steht. Anschliessend werden weitere periodische Stauchimpulse auf das Werkstück abgegeben, wobei jeweils wiederum ein Übergang in den plastischen Bereich und eine Rekristallisation stattfindet. Durch diese Vorgehensweise konnte ein homogenes, verdicktes Profil mit homogener Struktur erhalten werden.It has now been found that specifically desired locations in pipes, Rods or other profiles can be thickened by upsetting if the workpiece to be compressed is pre-tensioned in the Hookes area and that Work piece is pulsed with a compression hammer. Through the impulse the material of the workpiece is hookeschen The area was transferred to the plastic area for a short time. The impulse causes the material in the compression zone to flow, thereby the compression space is filled a little, the compression hammer follows Movement, the pressure drops, causing the workpiece to turn into the crystalline Condition returns, but is still under tension. Subsequently additional periodic upsetting impulses are given to the workpiece, where again a transition into the plastic area and one Recrystallization takes place. With this procedure, a homogeneous, thickened profile with a homogeneous structure can be obtained.

Gegenstand der vorliegenden Erfindung ist demzufolge das Stauchverfahren gemäss der Definition im Patentanspruch 1 und die Stauchvorrichtung gemäss der Definition im Patentanspruch 10.The present invention accordingly relates to the upsetting method as defined in claim 1 and the upsetting device as defined in claim 10.

Das erfindungsgemässe Verfahren wird als "Stotterstauchen" bezeichnet. Dabei ist es wichtig, dass die wirkenden Schubkräfte so eingeleitet werden, dass sie ausschliesslich im Stauchraum zum Tragen kommen und ausschliesslich dem Materialtransport dienen.The method according to the invention is referred to as "stutter upsetting". It is important that the acting thrust is initiated in this way that they only come into play in the stowage area and only serve to transport materials.

Hierzu ist es erforderlich, dass das zu stauchende Profil im Stauchraum frei ist und das restliche Profil so gehalten wird, dass die Stauchkräfte ausserhalb des Stauchraumes egalisiert oder unwirksam gegen die Wände neutralisiert werden. Durch die herrschenden Druckverhältnisse wird das Material erhöhten Temperaturen ausgesetzt. Die dabei eingebrachte Energie muss im Raum des Klemmens deshalb entsprechend abgeführt werden, damit die Übergangszone nicht mitfliesst und sich das Material nicht unkontrolliert ausweiten kann.For this it is necessary that the profile to be compressed in The compression space is free and the remaining profile is held so that the compression forces equalized outside the storage space or ineffective against the Walls are neutralized. Due to the prevailing pressure conditions exposed to elevated temperatures. The energy brought in must therefore be removed accordingly in the clamping area, so that the transition zone does not flow and the material does not become uncontrolled can expand.

Vor dem eigentlichen Stauchvorgang muss das umzuformende Material mit entsprechendem hydraulischen Druck vorgespannt werden, damit die Stotterpulse richtig zum Tragen kommen. Die Vorspannung befindet sich vorzugsweise in einem Bereich, der sich knapp vor dem Übergang in den plastischen Bereich befindet. Das Material befindet sich somit im vorgespannten Zustand immer noch in der elastischen Phase. Durch geeignete Massnahmen wird die Vorspannung während dem gesamten Stauchvorgang aufrechterhalten, d.h., der zu bearbeitende Metallteil bleibt zwischen den einzelnen Impulsen unter Vorspannung. Vorteilhafterweise wird das gespannte Material, insbesondere bei grösseren Profilen, bis knapp vor den Fliesszustand vorgewärmt. Die zuzuführende Energie und die Frequenz werden nach Brillouin (erste Brillouinzone) bestimmt. Vorzugsweise erfolgt die Vorwärmung lokal im Stauchraum durch Mikrowellen. Bei dünnen Profilen kann auf das Vorwärmen verzichtet werden. Der Druckpuls kann nun auf das vorgespannte und vorgewärmte Material angewandt werden, wobei das gespannte Material zum Fliessen gebracht wird. Dadurch, dass das Material weich wird, kann der Druckkolben nach vorne weichen und der Druck lässt nach; das Material kann rekristallisieren. Die Vorspannung des Materials wird zwischen den einzelnen Druckimpulsen aufrechterhalten. Dies kann dadurch geschehen, indem für die Krafteinwirkung ein Hydrauliksystem zum Einsatz gelangt, das zwei hydraulische Pumpen umfasst, nämlich eine Vorspannpumpe für den Vorspann-Druck beispielsweise bei 40 bar (4•106 Pa) und eine kleinere Impulspumpe für einen Druck bis 700 bar (7• 107 Pa). Die Rohrleitungen dieser Pumpen zum Kolben ("Stotterkolben") müssen mit einem Rückschlagventil versehen sein.Before the actual upsetting process, the material to be reshaped must be pre-tensioned with the appropriate hydraulic pressure so that the stuttering pulses are properly applied. The prestress is preferably located in an area just before the transition to the plastic area. The material is therefore still in the elastic phase in the prestressed state. By means of suitable measures, the pretension is maintained throughout the upsetting process, ie the metal part to be processed remains under pretension between the individual pulses. The tensioned material, in particular in the case of larger profiles, is advantageously preheated to just before the flow state. The energy to be supplied and the frequency are determined according to Brillouin (first Brillouin zone). Preheating is preferably carried out locally in the stuffer box by means of microwaves. Preheating is not necessary for thin profiles. The pressure pulse can now be applied to the pre-tensioned and preheated material, whereby the tensioned material is made to flow. Because the material becomes soft, the pressure piston can move forward and the pressure decreases; the material can recrystallize. The bias of the material is maintained between the individual pressure pulses. This can be done by using a hydraulic system for the application of force that includes two hydraulic pumps, namely a preload pump for the preload pressure, for example at 40 bar (4 • 10 6 Pa) and a smaller pulse pump for a pressure up to 700 bar (7 • 10 7 Pa). The pipes of these pumps to the piston ("stuttering piston") must be provided with a check valve.

Für die Ausübung eines Druckimpulses auf den Stauchhammer wird vorzugsweise ein hydraulisches System verwendet. Dabei wird der Impuls vom Hydraulik- oder Stotterkolben auf den Stauchhammer übertragen. Der Stotterkolben wird mit Öl bis an das zu stauchende Material bewegt, dann erhöht sich der Druck derart, dass das gespannte Öl im Werkstück die gewollte Vorspannung hervorruft. Die Leitungen zwischen Pumpen und Stotterkolben sind unelastisch und für die Pulsfrequenz reflexionsfrei auszulegen. Auf das vorgespannte Öl werden die Druckimpulse beispielsweise mit einer frequenzgesteuerten Kolbensteuerung aufmoduliert, damit eine ungedämpfte Übertragung des Pulses vom Hydraulikkolben auf den Stauchhammer stattfinden kann (Kompressibiliät des Hydrauliköls ca. 10-6).A hydraulic system is preferably used to exert a pressure pulse on the compression hammer. The impulse is transmitted from the hydraulic or stuttering piston to the compression hammer. The stuttering piston is moved with oil to the material to be compressed, then the pressure increases in such a way that the tensioned oil in the workpiece causes the desired preload. The lines between pumps and stuttering pistons are inelastic and designed to be reflection-free for the pulse frequency. The pressure pulses are modulated onto the preloaded oil, for example with a frequency-controlled piston control, so that an undamped transmission of the pulse from the hydraulic piston to the compression hammer can take place (compressibility of the hydraulic oil approx. 10 -6 ).

Die Zeit des Stauchens wird nach dem Hookeschen Gesetz bestimmt, damit ist die erste Halbperiode der Stotterfrequenz festgelegt. Für die zweite Halbzeit ist lediglich zu kontrollieren, ob die vorhandene Zeit für die Rekristallisation reicht. Mit dieser Methode ist die Stotterfrequenz immer auf das Material abgestimmt. Nach dem letzten Entspannen des Materials im Stauchbereich ist das Material immer noch im Hookeschen Bereich, also vorgespannt. Es ist darauf zu achten, dass sich das Material durch Wegziehen des Stauchhammers im Stauchbereich entspannen kann, da sonst ungewollte Verdickungen neben dem Stauchbereich auftreten können.The time of upsetting is determined according to Hooke's law, this defines the first half period of the stuttering frequency. For the second half is only to check whether the time available for recrystallization enough. With this method, the stuttering frequency is always on that Material matched. After the last relaxation of the material in the compression area the material is still in the Hooke range, i.e. pre-tensioned. It care must be taken to ensure that the material is removed by pulling the compression hammer away can relax in the compression area, otherwise unwanted thickening next to the upsetting area.

Anschliessend wird die Erfindung anhand der beiliegenden Zeichnungen näher erläutert. Es zeigt:

Figur 1
eine Schnittzeichnung einer Stauchvorrichtung für die Durchführung des erfindungsgemässen Verfahrens: Zustand vor dem Stauchvorgang,
Figur 2
die gleiche Stauchvorrichtung wie in Figur 1, jedoch nach dem Stauchvorgang,
Figur 3
eine alternative Ausführungsform einer Stauchvorrichtung, nämlich eines Kopfstauchgerätes für die Durchführung des erfindungsgemässen Verfahrens, angewandt auf ein anderes Material bzw. Produkt,
Figur 4
eine Anordnung von Hydraulikpumpen am Stotterkolben,
Figur 5
ein Druck/Weg-Diagramm des Stauchvorgangs,
Figur 6
ein Druck/Zeit-Diagramm des erfindungsgemässen Verfahrens,
Figur 7
einen vergrösserten Ausschnitt einer Stauchvorrichtung ähnlich Figur 1,
Figur 8
eine andere Ausführungsart einer Stauchvorrichtung, die zum Stauchen eines Hohlprofiles in einem Bereich zwischen dessen Enden ausgebildet ist,
Figur 9
die Einzelheit D der Figuren 7 und 8 in einem vergrösserten Massstab,
Figur 10
in einer Darstellung ähnlich Figur 7 eine Vorrichtung zum Herstellen einer nicht rotationssymmetrischen Verdickung am Ende eines Rohres,
Figur 11
in einer Darstellung ähnlich Figur 8 eine Vorrichtung zum Herstellen einer nicht rotationssymmetrischen Verdickung zwischen den Enden eines Rohres und
Figur 12
einen schematischen Querschnitt durch einen Pulserzeuger.
The invention is then explained in more detail with reference to the accompanying drawings. It shows:
Figure 1
1 shows a sectional drawing of an upsetting device for carrying out the method according to the invention: state before the upsetting process,
Figure 2
the same upsetting device as in FIG. 1, but after the upsetting process,
Figure 3
an alternative embodiment of an upsetting device, namely a head upsetting device for carrying out the method according to the invention, applied to another material or product,
Figure 4
an arrangement of hydraulic pumps on the stuttering piston,
Figure 5
a pressure / displacement diagram of the upsetting process,
Figure 6
2 shows a pressure / time diagram of the method according to the invention,
Figure 7
2 shows an enlarged section of an upsetting device similar to FIG. 1,
Figure 8
another embodiment of an upsetting device which is designed for upsetting a hollow profile in a region between the ends thereof,
Figure 9
the detail D of Figures 7 and 8 on an enlarged scale,
Figure 10
7 shows a device similar to FIG. 7 for producing a non-rotationally symmetrical thickening at the end of a tube,
Figure 11
in a representation similar to Figure 8, a device for producing a non-rotationally symmetrical thickening between the ends of a tube and
Figure 12
a schematic cross section through a pulse generator.

Figur 1 zeigt eine Stotterstauchvorrichtung 1, welche bestimmt ist, um ein Rohr 2 am einen Ende zu stauchen, unter Bildung einer grösseren Wandstärke. Eingefügt in das Rohr 2 ist ein Dorn 3, welcher dazu dient, das Profil des Rohres zu halten, indem verhindert wird, dass Material ins Profilinnere ausweichen kann. Das Rohr wird durch die Klemmvorrichtung 4 gehalten, welche einen Gegendruck auf den Dorn 3 ausübt. Die Klemmvorrichtung übt allseitig um das Rohr einen Druck aus. Dadurch wird vermieden, dass Material unkontrolliert ausweichen kann. Weiter ragt das zu stauchende Rohr 2 in das Gesenk 5 hinein, welches mit einer Kühlwendel 6 versehen ist, die durch ein Kühlmedium 14 gespiesen wird. Dadurch werden die durch die hohen Drücke entstehenden Temperaturen, soweit erforderlich, abgeführt. Der Dom 3 ragt durch das zu stauchende Rohr 2 teilweise in das Gesenk 5 hinein. An dem in das Gesenk hineindringenden Ende des Doms 3 ist eine Bohrung 9 vorgesehen, welche als Führung für den Fortsatz 8 des Stauchhammers 7 dient. Dieser Fortsatz definiert, zusammen mit dem Gesenk, den Stauchraum 13, in welchen sich das Material des Rohrs während dem Stauchvorgang ausbreiten kann. Der Druck bzw. die erforderlichen Impulse auf den Stauchhammer 7 werden durch den Stotterkolben 10 ausgeübt. Dieser wird hydraulisch betrieben, wobei 11 die Hydraulikleitung darstellt und 12 die Kammer für das sich ausdehnende Hydrauliköl. Bevor der Stauchvorgang beginnen kann, wird das zu stauchende Rohr mit dem eingesetzten Dom 3 in die gewünschte Position in die Klemmvorrichtung 4 gebracht und die Klemmvorrichtung wird soweit erforderlich angezogen. Der Stauchhammer 7 wird auf die Stirnseite des sich im Gesenk 5 befindlichen Rohrs angesetzt. Alsdann wird das zu stauchende Rohr soweit vorgespannt, dass sich das Material noch im elastischen Bereich (Hookeschen Bereich) befindet.FIG. 1 shows a stutter upsetting device 1, which is intended to compress a pipe 2 at one end, forming a larger one Wall thickness. Inserted into the tube 2 is a mandrel 3, which serves the Keep the profile of the pipe by preventing material from entering the profile can dodge. The tube is held by the clamping device 4, which exerts a counter pressure on the mandrel 3. The clamping device exercises pressure all around the pipe. This will avoid material can evade in an uncontrolled manner. The pipe 2 to be compressed protrudes further into the Die 5 into it, which is provided with a cooling coil 6, which by a Cooling medium 14 is fed. This causes the high pressures emerging temperatures, if necessary, dissipated. The cathedral 3 protrudes partly into the die 5 through the pipe 2 to be compressed. On the in the die penetrating end of the dome 3, a bore 9 is provided, which serves as a guide for the extension 8 of the upsetting hammer 7. This Extension defines, together with the die, the compression space 13, in which the material of the pipe can spread during the upsetting process. The Pressure or the required impulses on the compression hammer 7 are by the stuttering piston 10 exercised. This is operated hydraulically, 11 of which Hydraulic line represents and 12 the chamber for the expanding hydraulic oil. Before the upsetting process can begin, the one to be upsetted Pipe with the inserted dome 3 in the desired position in the clamping device 4 brought and the clamping device is tightened as necessary. The upsetting hammer 7 is on the end face of the die 5 Pipe attached. Then the pipe to be compressed is prestressed so far that the material is still in the elastic range (Hooke's range) located.

Da das Hydrauliköl ebenfalls einen elastischen unteren Druckbereich aufweist, besitzt die Vorspannung hier den Vorteil, dass nicht nur der zu bearbeitende Metallteil, sondern auch das Hydrauliköl vorgespannt wird. Während dem Stauchvorgang befindet es sich somit in einem Bereich, in welchem es praktisch keine Elastizität aufweist.Because the hydraulic oil also has an elastic lower pressure range has the advantage here that not only the one to be machined Metal part, but also the hydraulic oil is preloaded. While the upsetting process is therefore in an area in which it has practically no elasticity.

Figur 2 zeigt dieselbe Stotterstauchvorrichtung wie in Figur 1, jedoch nach abgeschlossenem Stauchvorgang. Die Bezugszeichen haben dieselbe Bedeutung wie in Figur 1. In dieser Figur ist ersichtlich, dass sich der Stotterkolben 10 im Vergleich zu Figur 1 nach rechts bewegt hat. Dadurch wurde der Stotterkolben 10 in das Gesenk 5 hineingetrieben, wobei der dem Stauchhammer zugewandte Teil des zu stauchenden Rohres gestaucht ist und der Stauchraum gemäss Figur 1 nun durch den gesamten gestauchten Teil 15 des zu stauchenden Rohrs 2 ausgefüllt ist.FIG. 2 shows the same stutter upsetting device as in FIG. 1, however after the upsetting process. The reference numerals have the same Meaning as in Figure 1. In this figure it can be seen that the stuttering piston 10 has moved to the right compared to Figure 1. This made the Stuttering piston 10 is driven into the die 5, the compression hammer facing part of the pipe to be compressed and the The compression space according to FIG. 1 now through the entire compressed part 15 of the to be compressed tube 2 is filled.

Figur 3 zeigt eine alternative Ausführungsform eines Stotterstauchgerätes zur Durchführung des Verfahrens gemäss der vorliegenden Erfindung. Das Gerät 20 ist ein Kopfstauchgerät. Die Vorrichtung dient dazu, einen Metallstab oder Metalldraht an einem Ende unter Bildung eines Kopfes zu stauchen. Ein Metalldraht (nicht dargestellt) wird in die Bohrung 21 der Klemmvorrichtung 22 eingeführt, bis das eine Ende in die halbkugelförmige Vertiefung 23 des Stauchhammers 24 bis zum Anschlag hineinragt. Der Stauchhammer 24 kann durch den Kolben 25 einen Druck auf das Werkstück ausüben, wobei beim Stauchvorgang, der in gleicher Weise wie oben beschrieben stattfindet, das Material in das Gesenk 26 und die halbkugelförmige Vertiefung 23 im Stauchhammer 24 ausweichen kann. Der Kolben 25 wird hydraulisch betätigt. Einzelheiten der Klemmvorrichtung und auch des Hydrauliksystems sind auf dieser Figur nicht abgebildet, da sie für den Fachmann offensichtlich sind.Figure 3 shows an alternative embodiment of a stutter upsetting device to carry out the method according to the present invention. The Device 20 is a head upsetting device. The device serves a metal rod or to pinch metal wire at one end to form a head. On Metal wire (not shown) is inserted into the bore 21 of the clamping device 22 inserted until one end into the hemispherical recess 23 of the Stauchhammer 24 protrudes until it stops. The upsetting hammer 24 can exert a pressure on the workpiece through the piston 25, whereby at Compression process, which takes place in the same way as described above, that Material in the die 26 and the hemispherical recess 23 in the compression hammer 24 can dodge. The piston 25 is actuated hydraulically. details the clamping device and also the hydraulic system are on this Figure not shown, since they are obvious to a person skilled in the art.

Figur 4 zeigt eine typische Anordnung von Hydraulikpumpen 31, 32 an den Kolben 10 (Figur 1 und 2) bzw. 25 (Figur 3), der Druck auf einen Stauchhammer (nicht dargestellt) ausübt. Die grössere Hydraulikpumpe 32 dient zur Aufrechterhaltung eines permanenten Vorspanndruckes während des Stauchvorganges, z.B. 40 bar. Die kleinere Pumpe 31 dient der Ausübung von periodischen Impulsdrucken, mit einem höheren Druck, z.B. von 700 bar, der ausreichend für den Übergang des Materials vom Hookeschen in den plastischen Bereich ist. Die Leitungen 34, 35 von den Pumpen 31, 32 zum Kolben sind mit Rückschlagventilen 36, 37 versehen. Zur besseren Anschaulichkeit sind oberhalb der Pumpensymbole kleine Diagramme 38, 39 mit einer schematischen Angabe des Druckverlaufes dargestellt.FIG. 4 shows a typical arrangement of hydraulic pumps 31, 32 on the piston 10 (Figures 1 and 2) or 25 (Figure 3), the pressure on one Compression hammer (not shown) exercises. The larger hydraulic pump 32 serves to maintain a permanent preload pressure during the Upsetting process, e.g. 40 bar. The smaller pump 31 is used to exercise periodic pulse pressure, with a higher pressure, e.g. of 700 bar, the sufficient for the transition from Hookeschen to plastic Area is. The lines 34, 35 from the pumps 31, 32 to the piston are provided with check valves 36, 37. For better clarity are small diagrams 38, 39 with a schematic above the pump symbols Indication of the pressure curve shown.

Figur 5 zeigt ein Druck/Weg-Diagramm a für einen Stauchprozess gemäss der vorliegenden Erfindung. h stellt den Hookeschen Bereich und A den Vorspannpunkt dar.FIG. 5 shows a pressure / displacement diagram a for an upsetting process according to the present invention. h represents Hooke's range and A the leader point.

Figur 6 zeigt ein Druck/Zeit-Diagramm b für einen Stauchprozess von Stahl gemäss der vorliegenden Erfindung. Deutlich sichtbar ist der pulsierende Druckverlauf während der Impulse. Im Bereich h wird das Material im Hookeschen Bereich vorgespannt, bis zum Vorspannpunkt A. Sobald dieser Punkt erreicht wird, wird ein erster Impuls auf das umzuformende Material ausgeübt, wobei der erste Peak der Kurve entsteht. Während diesem Impuls geht das umzuformende Material vom elastischen Bereich in den fliessenden Bereich f über, in welchem eine Umformung stattfindet, da das Material zum. Fliessen gebracht wird. Der Kolben kann dabei weiter nach vome weichen und der Druck lässt nach bis zum Vorspanndruck, wobei das Material rekristallisieren kann. Die Rekristallisationsphase wird durch den Bereich r dargestellt. Anschliessend wird erneut ein Impuls auf das umzuformende Material abgegeben, bis zur Spitze des zweiten Peaks. Dabei passiert das gleiche wie beim ersten Peak: Der Druckkolben kann weiter nach vome weichen, wobei das Material in den plastischen Bereich übergeht, was eine Umformung zulässt. Anschliessend lässt der Druck wieder nach, wobei eine erneute Rekristallisation des Materials ermöglicht wird. Dieser Vorgang wird solange wiederholt, bis die gewünschte Umformung erzielt ist. Auf dem Diagramm ist weiter der Druckunterschied Δ Druck angegeben, dies ist eine materialabhängige Konstante, die berechnet oder anderweitig ermittelt werden muss. FIG. 6 shows a pressure / time diagram b for a compression process of Steel according to the present invention. The pulsating one is clearly visible Pressure curve during the impulses. In area h the material is hooked Prestressed area until prestressing point A. As soon as this point a first impulse is exerted on the material to be formed, whereby the first peak of the curve arises. This is possible during this impulse Material to be formed from the elastic area into the flowing area f about in which a transformation takes place, since the material for. Flow brought. The piston can move further to the front and the pressure subsides until the preload, whereby the material can recrystallize. The recrystallization phase is represented by the area r. Subsequently another impulse is given to the material to be formed, right up to the tip of the second peak. The same thing happens as for the first peak: The Plunger can move further to the front, with the material in the plastic Area merges, which allows a reshaping. Then the Pressure again, whereby recrystallization of the material enables becomes. This process is repeated until the desired forming is achieved. The pressure difference Δ pressure is also on the diagram specified, this is a material dependent constant that is calculated or otherwise must be determined.

Figur 7 zeigt wichtige Einzelheiten einer Stauchvorrichtung, die ähnlich aufgebaut ist, wie die Stauchvorrichtung gemäss Figur 1, in einem gegenüber Figur 1 vergrösserten Massstab. Gleiche Teile sind in Figur 7 mit gleichen Bezugszahlen versehen, wie in Figur 1. Die allgemein mit 4 bezeichnete Klemmvorrichtung besteht aus mehreren Hydraulikzylindern, die auf Klemmbacken 16 einwirken. In den Figuren 1 und 7 sind nur zwei in Längsrichtung des Rohres 2 nebeneinander liegende, am Umfang der Klemmbacken verteilte Sätze von Hydraulikzylindern dargestellt. In der Praxis sind aber vorzugsweise drei oder mehr Sätze von Hydraulikzylindern vorgesehen. Es hat sich nämlich gezeigt, dass gute Umformresultate erreicht werden, wenn die Klemmkraft in der Nähe des umzuformenden Endes des Rohres 2 hoch ist und in Richtung zum entgegengesetzten Ende des Rohres 2 hin ab- und dann wieder zunimmt. Durch einen solchen Klemmkraftverlauf wird ungewolltes Fliessen des Werkstoffes des Rohres 2 im Klemmbereich vermieden. Deshalb weisen die in Längsrichtung des umzuformenden Rohres hintereinander liegenden Hydraulikzylinder der Ausführungsart nach Figur 7, im Gegensatz zur Ausführungsart gemäss Figur 1, separate Zuleitungen für das Druckmedium auf. Diese Zuleitungen sind in Figur 7 nicht dargestellt. Durch diese separaten Zuleitungen ist es möglich, benachbarte Hydraulikzylinder mit unterschiedlichem Druck zu versorgen, um den oben beschriebenen Klemmkraftverlauf zu erreichen. Um die durch die Klemmvorrichtung 4 auf das Rohr 2 ausgeübte Haltekraft weiter zu verbessern, sind die mit dem Rohr 2 in Kontakt tretenden Flächen der Klemmbacken 16 mit einer reibungserhöhenden Beschichtung, insbesondere aus Wolframkarbid, versehen und mindestens die mit den Klemmbacken 16 in Kontakt tretenden Flächenbereiche des Rohres 2 sind aufgerauht.Figure 7 shows important details of an upsetting device which are similar is constructed, like the upsetting device according to FIG. 1, in one opposite Figure 1 enlarged scale. The same parts are the same in FIG Provide reference numerals, as in Figure 1. The generally designated 4 Clamping device consists of several hydraulic cylinders on clamping jaws 16 act. In Figures 1 and 7, only two in the longitudinal direction of the Rohres 2 adjacent sets, distributed around the circumference of the jaws represented by hydraulic cylinders. In practice, however, there are preferably three or more sets of hydraulic cylinders are provided. It has been shown that good forming results are achieved when the clamping force in the Near the end of the tube 2 to be formed is high and towards opposite end of the tube 2 down and then increases again. Such a course of clamping force causes undesired flow of the material of the tube 2 avoided in the clamping area. Therefore, the in Longitudinal direction of the pipe to be formed hydraulic cylinders one behind the other the embodiment of Figure 7, in contrast to the embodiment according to Figure 1, separate supply lines for the pressure medium. These leads are not shown in Figure 7. Through these separate leads it is possible to supply neighboring hydraulic cylinders with different pressure, to achieve the clamping force curve described above. To the holding force exerted on the pipe 2 by the clamping device 4 continues to increase improve, are the surfaces of the clamping jaws coming into contact with the tube 2 16 with a friction-increasing coating, in particular from Tungsten carbide, and at least those with the jaws 16 in Contacting surface areas of the tube 2 are roughened.

Eine weitere Massnahme zur Erhöhung der der Umformkraft in Längsrichtung des Werkstückes entgegengerichteten Haltekraft besteht in einem kleinen, umlaufenden Absatz 19, der zwischen dem Gesenk 5 und den Klemmbacken 16 vorgesehen ist. Der Absatz 19 ist in Figur 9 gezeigt, welche in einem vergrösserten Massstab den in den Figuren 7 und 8 mit D bezeichneten Ausschnitt darstellt. An diesem Absatz 19 bildet sich während des Umformvorganges eine kleine Aufstauchung des Werkstoffes des Rohres 2, wodurch das Rohr 2 in Längsrichtung auch formschlüssig gehalten ist. Another measure to increase the forming force in Holding force directed in the longitudinal direction of the workpiece consists in a small, circumferential paragraph 19 between the die 5 and the Clamping jaws 16 is provided. Paragraph 19 is shown in Figure 9, which in an enlarged scale that designated D in Figures 7 and 8 Represents cutout. This paragraph 19 is formed during the forming process a small upsetting of the material of the tube 2, which the Tube 2 is also held positively in the longitudinal direction.

In Figur 7 ist die Stauchvorrichtung unmittelbar vor dem Stauchvorgang dargestellt. Der Stauchraum 13 ist bei dieser Ausführungsart durch die Kontaktfläche 17 des Stauchhammers, den Fortsatz 8 des Stauchhammers 7, die Stirnfläche 29 des Dornes 3 und natürlich das Gesenk 5 begrenzt. Der Stauchhammer 7 liegt mit seiner Kontaktfläche 17 an der Stirnfläche des umzuformenden Rohres 2 an. Vereinfacht gesagt wird der kreuzweise schraffierte Endbereich des Rohres 2 durch den Umformvorgang in Richtung der Pfeile 18 in den Stauchraum 13 verschoben. Damit die vom Stauchhammer 7 auf das Rohr übertragene Kraft tatsächlich gegen den Stauchraum 13 gerichtet wird, verläuft die Kontaktfläche 17 des Stauchhammers nicht rechtwinklig zur Längsachse des Rohres 2, sondern ist tellerartig leicht in Richtung zum Rohr 2 hin geneigt. Falls es wichtig ist, dass das fertig umgeformte Rohr 2 eine von der Gestalt der Kontaktfläche 17 abweichende Stirnfläche hat, die beispielsweise genau rechtwinklig ist, wird diese in einem weiteren Arbeitsgang mittels eines weiteren Stauchhammers in ihre endgültige Form gebracht.In Figure 7, the upsetting device is immediately before the upsetting process shown. The compression space 13 is in this embodiment by the Contact surface 17 of the upsetting hammer, the extension 8 of the upsetting hammer 7, the end face 29 of the mandrel 3 and of course the die 5 are limited. The Compression hammer 7 lies with its contact surface 17 on the end face of the to be formed Tube 2. Put simply, the cross hatched End region of the tube 2 through the forming process in the direction of the arrows 18 moved into the stowage space 13. So that the from the hammer 7 on the Tube transmitted force is actually directed against the compression space 13, The contact surface 17 of the upsetting hammer does not run at right angles to the longitudinal axis of the tube 2, but is plate-like slightly towards the tube 2 inclined. If it is important that the finished tube 2 is one of the Shape of the contact surface 17 has a different end face, for example is exactly right-angled, this is done in a further operation by means of a further upsetting hammer brought into its final form.

In Figur 8 ist eine Ausführungsart der erfindungsgemässen Stauchvorrichtung dargestellt, die zum Stauchen eines Rohres 2 in einem Bereich zwischen dessen Enden ausgebildet ist. Die linke Hälfte der Vorrichtung nach Figur 8 entspricht im wesentlichen der rechten Hälfte der Figur 7. Ganz links in Figur 8 ist zusätzlich noch ein Boden 27 sichtbar, an dem das Rohr 2 ansteht. Auf der rechten Seite des Gesenkes 5 ist eine weitere Klemmvorrichtung 4 vorhanden, die das Ende des Rohres 2 festhält. Der Stauchhammer 7 ist hier zweifach abgestuft. Die erste Stufe wird durch eine Kontaktfläche 17 gebildet, welche zu Beginn des Umformvorganges die Stauchkraft auf das umzuformende Rohr 2 überträgt. Da die Stauchkraft innerhalb der rechten Klemmvorrichtung 4 durch das Rohr 2 bis zum Stauchraum 13 übertragen werden muss und das Rohr sich in dieser Klemmvorrichtung entsprechend dem Grad der Umformung nach links gegen den Stauchraum 13 hin verschieben muss, ist es wichtig, dass die Klemmkraft der rechten Klemmvorrichtung 4 einstellbar ist. Die zweite Stufe, gebildet durch die leicht geneigte Fläche 28, begrenzt zusammen mit dem Fortsatz 8, der Stirnfläche 29 des Domes 3 und dem Gesenk 5 den Stauchraum 13. Sobald sich der Werkstoff an der Fläche 28 aufzustauchen beginnt, überträgt auch diese einen Teil der Stauchkraft auf das Rohr 2. Selbstverständlich ist es vorteilhaft, wenn auch die Flächen 28 und 29 so geneigt sind, dass ihre Normalen zum Stauchraum 13 hin gerichtet sind, wie dies weiter oben für die Kontaktfläche 17 beschrieben wurde.FIG. 8 shows an embodiment of the upsetting device according to the invention shown for upsetting a tube 2 in an area between the ends of which are formed. The left half of the device according to the figure 8 essentially corresponds to the right half of FIG. 7. Far left in FIG 8, a bottom 27 is additionally visible, on which the tube 2 is in contact. On the on the right side of the die 5 there is a further clamping device 4, which holds the end of the tube 2. The upsetting hammer 7 is graduated in two stages here. The first stage is formed by a contact surface 17, which to Start of the forming process the compression force on the pipe 2 to be formed transfers. Because the compression force within the right clamping device 4 by the pipe 2 must be transferred to the compression space 13 and the pipe itself in this clamping device according to the degree of deformation to the left against the storage space 13, it is important that the Clamping force of the right clamping device 4 is adjustable. The second stage formed by the slightly inclined surface 28, bounded together with the extension 8, the end face 29 of the dome 3 and the die 5 the compression space 13. As soon as the material on surface 28 begins to emerge, transfers also this part of the compressive force on the pipe 2. Of course it is advantageous if the surfaces 28 and 29 are inclined so that their normal are directed towards the compression space 13, as is the case above for the contact surface 17 has been described.

Es ist klar, dass sowohl der Stauchhammer 7 als auch der Dorn 3 und/oder dessen Bohrung 9 fast beliebig ausgebildet, beispielsweise mehrfach abgestuft, sein können, um dem Stauchraum 13 eine gewünschte Form zu geben. Es ist lediglich darauf zu achten, dass Stauchhammer 7 und Dorn 3 so gestaltet sind, dass sie nach der Formgebung auch wieder auseinander gefahren werden können, ohne dass dabei das geformte Werkstück beschädigt wird. Ferner sind in allen oben beschriebenen Ausführungsbeispielen der Stotterstauchvorrichtung die umzuformenden Teile rotationssymmetrisch. Es ist aber im Rahmen der vorliegenden Erfindung ohne weiteres möglich, nicht rotationssymmetrische Profile oder Rohre umzuformen oder an rotationssymmetrischen Profilen oder Rohren nicht rotationssymmetrische Bereiche zu formen. Zwei Beispiele dafür sind in den Figuren 10 und 11 dargestellt.It is clear that both the upsetting hammer 7 and the mandrel 3 and / or its bore 9 is formed almost arbitrarily, for example several times graded, can be to give the compression space 13 a desired shape. It is only necessary to ensure that the hammer 7 and mandrel 3 are so are designed in such a way that they move apart again after shaping can be damaged without damaging the molded workpiece. Furthermore, in all the exemplary embodiments described above, the stutter upsetting device the parts to be formed are rotationally symmetrical. But it is within the scope of the present invention easily possible, not rotationally symmetrical Form profiles or tubes or on rotationally symmetrical ones Profiles or pipes to form non-rotationally symmetrical areas. Two Examples of this are shown in FIGS. 10 and 11.

Figur 10 zeigt in einer Darstellung ähnlich Figur 7 eine Vorrichtung zum Herstellen einer nicht rotationssymmetrischen Verdickung am Ende eines Rohres 2. Die den Stauchraum 13 auf der Seite des Dornes 3 begrenzende Fläche 29' ist bei dieser Ausführungsart nicht rechtwinklig zur Längsachse des Rohres 2 ausgerichtet. Wie man auf der Zeichnung deutlich erkennt, sind dementsprechend auch die Klemmbacken 16 und das Gesenk 5 asymmetrisch ausgebildet.Figure 10 shows a device similar to Figure 7 to produce a non-rotationally symmetrical thickening at the end of a Tube 2. The limit of the compression space 13 on the side of the mandrel 3 Surface 29 'is not perpendicular to the longitudinal axis of the in this embodiment Tube 2 aligned. As you can clearly see on the drawing, are accordingly the jaws 16 and the die 5 are asymmetrical.

Figur 11 zeigt in einer Darstellung ähnlich Figur 8 eine Vorrichtung zum Herstellen einer nicht rotationssymmetrischen Verdickung zwischen den Enden eines Rohres. Bei dieser Ausführungsart ist es die den Stauchraum 13 auf der Seite des Stauchhammers 7 begrenzende Fläche 28', die nicht rechtwinklig zur Längsachse des Rohres 2 ausgerichtet ist. Dementsprechend sind die Klemmbacken 16 der weiteren Klemmvorrichtung 4 und das Gesenk 5 asymmetrisch ausgebildet.Figure 11 shows a device similar to Figure 8 to produce a non-rotationally symmetrical thickening between the Ends of a pipe. In this embodiment it is the compression space 13 on the side of the upsetting hammer 7 delimiting surface 28 'which is not rectangular is aligned with the longitudinal axis of the tube 2. Are accordingly the jaws 16 of the further clamping device 4 and the die 5 asymmetrical.

Die Frequenz, mit welcher der Stauchhammer pulsiert, ist für jedes Werkstück empirisch zu ermitteln. Es wird vermutet, dass die besten Resultate dann erreicht werden, wenn im umzuformenden Bereich des Rohres 2 zwischen der Kontaktfläche 17 des Stauchhammers 7 und einer virtuellen Reflexionswand im Bereich des Absatzes 19 eine stehende Welle entsteht. Es ist deshalb vorteilhaft, wenn die Pulsfrequenz einstellbar und vorzugsweise sogar während des Umformvorganges veränderbar ist.The frequency with which the compression hammer pulsates is for everyone To determine the workpiece empirically. It is believed that the best results can be achieved if in the area of the tube 2 to be formed between the contact surface 17 of the upsetting hammer 7 and a virtual reflection wall a standing wave arises in the area of paragraph 19. It is therefore advantageous if the pulse frequency is adjustable and preferably even is changeable during the forming process.

Die erwähnte Impulspumpe 31 kann eine herkömmliche Kolbenpumpe sein. Wirkungsvoller ist aber ein rotierender Pulserzeuger. Figur 12 zeigt einen schematischen Querschnitt durch eine mögliche Ausführungsart eines solchen Pulserzeugers 40. Ein zentraler Rotor 41 weist in seiner Mitte eine Längsbohrung 42 auf, die über eine Drehdichtung mit einem hohen Druck von beispielsweise 700 bar beaufschlagbar ist. Der Rotor ist an seiner Zylindermantelfläche zwecks Minimierung von Verschleiss mit einer Schicht 43 aus beispielsweise Keramik überzogen und von einem Stator 44 umgeben. Radiale Kanäle 45 im Rotor leiten den hohen Druck von der Längsbohrung 42 nach aussen. Auch im Stator 44 sind radiale Kanäle 46 vorgesehen, die während der Drehung des Rotors jeweils kurzzeitig mit dessen Kanälen 45 kommunizieren. An seinem radial äusseren Ende weist jeder Kanal 46 des Stators 44 ein Rückschlagventil 47 auf. Gemäss dem vorliegenden Ausführungsbeispiel besteht das Rückschlagventil 47 aus einer Kugel mit einem zylindrischen Fortsatz, der in der Bohrung einer radialen Verbindungsleitung 48 geführt ist. Die Kugel und der Fortsatz sind durchbohrt, um den Fluss des Druckmittels durch die Verbindungsleitung 48 in eine äussere Ringkammer 49 zu gewährleisten, in welcher der Vorspann-Druck von beispielsweise bei 40 bar herrscht. Dieser Vorspann-Druck ist es auch, welcher die Kugel des Rückschlagventils 47 gegen ihren Sitz drückt, solange die Kanäle 45 und 46 nicht miteinander in Verbindung stehen. Alle Rückschlagventile 47 sind in einem Ventilring 50 gehalten. Selbstverständlich können aber auch andere, bekannte Rückschlagventile eingesetzt werden, deren Ventilkörper beispielsweise ein Kegel ist und beispielsweise durch eine Feder gegen seinen Sitz gepresst wird. Jedesmal, wenn eine Strömungsverbindung zwischen einem Rotorkanal 45 und einem Statorkanal 46 zustande kommt, entsteht im letzteren ein Druckimpuls. Diese Druckimpulse erreichen besonders steile Flanken, wenn die Kanäle im Übergangsbereich zwischen Rotor und Stator einen durch gerade Linien begrenzten Querschnitt aufweisen, also beispielsweise rechteckig sind. Im gezeigten Beispiel kommen alle vier Rotorkanäle gleichzeitig mit den vier Statorkanälen in Verbindung. Dadurch ist eine symmetrische Belastung gewährleistet und die durch die Kanäle fliessenden Druckmittelmengen summieren sich. Es sind aber auch Ausführungsarten denkbar, bei denen die Anzahl und Anordnung der Kanäle so getroffen ist, dass die Verbindungen nacheinander zustande kommen. Mit einer solchen Anordnung lassen sich bereits bei niedrigen Drehzahlen des Rotors hohe Pulsfrequenzen erzielen.The aforementioned pulse pump 31 can be a conventional piston pump his. However, a rotating pulse generator is more effective. Figure 12 shows a schematic cross section through a possible embodiment of a of such pulse generator 40. A central rotor 41 has one in its center Longitudinal bore 42, which has a rotary seal with a high pressure of For example, 700 bar can be applied. The rotor is on its cylindrical surface for the purpose of minimizing wear with a layer 43 of, for example Ceramic coated and surrounded by a stator 44. radial Channels 45 in the rotor conduct the high pressure outwards from the longitudinal bore 42. Radial channels 46 are also provided in the stator 44, which during the Briefly communicate rotation of the rotor with its channels 45. At its radially outer end, each channel 46 of the stator 44 has a check valve 47 on. According to the present embodiment the check valve 47 from a ball with a cylindrical extension, the is guided in the bore of a radial connecting line 48. The ball and the extension is pierced to the flow of the pressure medium through the connecting line 48 in an outer annular chamber 49, in which the prestressing pressure is 40 bar, for example. This leader pressure it is also which the ball of the check valve 47 against its seat presses as long as channels 45 and 46 are not connected. All check valves 47 are held in a valve ring 50. Of course other known check valves can also be used, whose valve body is, for example, a cone and, for example, by a Spring is pressed against its seat. Every time a flow connection between a rotor channel 45 and a stator channel 46 comes, a pressure pulse arises in the latter. Reach these pressure pulses particularly steep flanks if the channels in the transition area between Rotor and stator have a cross section delimited by straight lines, are, for example, rectangular. In the example shown, all four come Rotor channels connected to the four stator channels simultaneously. This is ensures a symmetrical load and those flowing through the channels Pressure fluid quantities add up. But they are also types conceivable in which the number and arrangement of the channels is such that the connections are made one after the other. With such an arrangement high pulse frequencies can be achieved even at low rotor speeds achieve.

Claims (20)

  1. Method of working a metal piece by compressive deformation in a compressive deformation device, containing a damping device (4), a die (5) and a compressive deformation hammer (7), characterised by the following steps of the method:
    a) damping the metal piece (2) in a clamping device (4) with formation of a deformation space (13) in the die (5), the piece (2) being clamped outside the deformation space (13) in such a way that the compressive deformation forces are absorbed directly by the surrounding environment,
    b) applying a compressive deformation hammer (7) to the metal piece (2) in such a way that when a force is exerted thereon, the material of the metal piece (2) is able to penetrate into the deformation space (13),
    c) prestressing the clamped metal piece (2) by exerting a pressure on the compressive deformation hammer (7) in such a way that the mechanical stress lies within the elastic (Hooke) range,
    d) exerting an impulse on the metal piece (2) by means of the compressive deformation hammer (7), the material of the metal piece (2) undergoing a transition from the elastic range into the yielding range, by means of which material is able to escape into the deformation space (13), the compressive deformation hammer (7) is able to move forwards, the pressure on the material decreases to the prestressing pressure, and the material is able to return again to the elastic range, and
    e) repeating periodically steps c) and d) until the compressive deformation action has been completed.
  2. Method according to claim 1, characterised in that the metal piece (2) is a pipe, a section or a rod.
  3. Method according to claim 1 or 2, characterised in that the metal piece (2) is made of iron, copper, aluminium or alloys thereof.
  4. Method according to one of the claims 1 to 3, characterised in that the compressive deformation hammer is operated by means of a hydraulic system, the impulse being generated through a reciprocating pump (31) and being transmitted to the compressive deformation hammer (7) via a hydraulic piston (10).
  5. Method according to claim 4, characterised in that the hydraulic oil in the hydraulic system is prestressed so that the prestressing force is achieved in the workpiece and an attenuation of the impulse is avoided.
  6. Method according to one of the claims 1 to 5, characterised in that the metal piece (2) is heated locally in the deformation space (13) through microwaves before it passes into the yielding state so that recrystallization is ensured.
  7. Method according to one of the claims 1 to 6, characterised in that the excess heat generated through the generation of pressure is dissipated through cooling.
  8. Method according to one of the claims 2 to 7, characterised in that the metal piece (2) is a pipe or a hollow section, a pin (3) or a precisely fitting insert being placed in the hollow space where no compressive deformation is supposed to take place.
  9. Method according to one of the claims 1 to 8, characterised in that at least one portion of the surface of the metal piece (2) is roughened prior to damping in the compressive deformation device.
  10. Compressive deformation device for working a metal piece, containing a clamping device (4) and a die (5), which accept the metal piece (2) with formation of a deformation space (13), a compressive deformation hammer (7) and means (10, 25) of exerting a thrust force upon the compressive deformation hammer (7), characterised by pulsation means (31, 40) by means of which force impulses are able to be superimposed upon the thrust force periodically in the same direction.
  11. Compressive deformation device according to claim 10, characterised in that the damping device (4) has a plurality of power sources disposed behind one another in the longitudinal direction of the workpiece the damping force of which sources, exerted upon the metal piece, is individually adjustable.
  12. Compressive deformation device according to claim 10 or 11, characterised in that the clamping device (4) has clamping jaws (16) whose surfaces coming into contact with the workpiece are provided with a friction-increasing coating, in particular of tungsten carbide.
  13. Compressive deformation device according to claim 12, characterised in that the clamping jaws (16) project on the side of the compressive deformation hammer (7) slightly further inwardly than the adjacent die (5), so that an encircling shoulder is formed on which the workpiece is compressively deformed during working so that the holding force, brought about through the damping effect and directed in a way opposing the reforming force in the longitudinal direction of the workpiece, is strengthened through form closure.
  14. Compressive deformation device according to one of the claims 10 to 13, characterised in that the contact surface (17) on the face of the compressive deformation hammer which transmits the reforming force to the metal piece (2) to be reformed is inclined in such a way that its normal line (18) is directed toward the deformation space (13) into which the working material is to penetrate.
  15. Compressive deformation device according to one of the claims 10 to 13 for working a metal piece between its ends, characterised by a further clamping device (4), which is disposed on the side of the deformation space (13) opposite the first damping device (4).
  16. Compressive deformation device according to claim 15, characterised in that the compressive deformation hammer (7) has at least two steps, a first step being formed by a contact surface (17) with which at least part of the reforming force is transmitted onto the face of the metal piece (2), and a second step being formed by a surface (28) delimiting the deformation space (13).
  17. Compressive deformation device according to one of the claims 10 to 16, characterised in that the deformation space (13) is not designed rotationally symmetrical.
  18. Compressive deformation device according to one of the claims 10 to 17, characterised in that the means of exerting a thrust force upon the compressive deformation hammer (7) consist of a piston (10, 25) able to be pressurised with a hydraulic fluid.
  19. Compressive deformation device according to one of the claims 10 to 18, characterised in that the pulsation means contain switching means (45, 46) which connect periodically a hydraulic fluid from a pressure source with higher pressure to the hydraulic fluid bringing about the thrust.
  20. Compressive deformation device according to one of the claims 10 to 19, characterised in that the pulsation means comprise a rotor (41) with a space (42) able to be pressurised with a first pressure by means of a hydraulic fluid, characterised in that at least one radial channel (45) is connected to the space (42), characterised in that the rotor is surrounded by a stator (44) in which at least one radial channel (46) is provided which is connected to a space (49) able to be pressurised with a second pressure by means of a hydraulic fluid, and characterised in that the channels (45, 46) are disposed in such a way that they communicate periodically with one another during rotation of the rotor.
EP99810499A 1999-02-02 1999-06-07 Method and device for forming of metals Expired - Lifetime EP1025925B1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
ES99810499T ES2178366T3 (en) 1999-02-02 1999-06-07 PROCEDURE AND DEVICE TO FORM METALS.
PT99810499T PT1025925E (en) 1999-02-02 1999-06-07 METHOD AND DEVICE FOR TRANSFORMING METALS
DE59901178T DE59901178D1 (en) 1999-02-02 1999-06-07 Method and device for forming metals
AT99810499T ATE215855T1 (en) 1999-02-02 1999-06-07 METHOD AND DEVICE FOR FORMING METALS
EP99810499A EP1025925B1 (en) 1999-02-02 1999-06-07 Method and device for forming of metals
CA002361521A CA2361521A1 (en) 1999-02-02 2000-02-01 Method and device for forming metals
JP2000597080A JP2002536182A (en) 1999-02-02 2000-02-01 Metal deformation method and apparatus
AU20900/00A AU754548B2 (en) 1999-02-02 2000-02-01 Method and device for forming metals
KR1020017009700A KR20010101918A (en) 1999-02-02 2000-02-01 Method and device for forming metals
BR0007963-4A BR0007963A (en) 1999-02-02 2000-02-01 Method and device for metal transformation
MXPA01007798A MXPA01007798A (en) 1999-02-02 2000-02-01 Method and device for forming metals.
PCT/CH2000/000052 WO2000045976A1 (en) 1999-02-02 2000-02-01 Method and device for forming metals
HU0105356A HUP0105356A3 (en) 1999-02-02 2000-02-01 Method and device for forming metals
PL00349096A PL349096A1 (en) 1999-02-02 2000-02-01 Method and device for forming metals
CN00803335A CN1338978A (en) 1999-02-02 2000-02-01 Method and device for forming metals
CZ20012614A CZ20012614A3 (en) 1999-02-02 2000-02-01 Process and apparatus for forming metals

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP99810086 1999-02-02
EP99810086 1999-02-02
EP99810464 1999-05-27
EP99810464 1999-05-27
EP99810499A EP1025925B1 (en) 1999-02-02 1999-06-07 Method and device for forming of metals

Publications (2)

Publication Number Publication Date
EP1025925A1 EP1025925A1 (en) 2000-08-09
EP1025925B1 true EP1025925B1 (en) 2002-04-10

Family

ID=27240244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99810499A Expired - Lifetime EP1025925B1 (en) 1999-02-02 1999-06-07 Method and device for forming of metals

Country Status (16)

Country Link
EP (1) EP1025925B1 (en)
JP (1) JP2002536182A (en)
KR (1) KR20010101918A (en)
CN (1) CN1338978A (en)
AT (1) ATE215855T1 (en)
AU (1) AU754548B2 (en)
BR (1) BR0007963A (en)
CA (1) CA2361521A1 (en)
CZ (1) CZ20012614A3 (en)
DE (1) DE59901178D1 (en)
ES (1) ES2178366T3 (en)
HU (1) HUP0105356A3 (en)
MX (1) MXPA01007798A (en)
PL (1) PL349096A1 (en)
PT (1) PT1025925E (en)
WO (1) WO2000045976A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536962B2 (en) * 2001-07-13 2010-09-01 アイシン精機株式会社 Method for increasing the thickness of a boss part of a workpiece and a thickness increasing device used therefor
FR2882282B1 (en) * 2005-02-21 2008-10-17 Snecma Moteurs Sa METHOD FOR CORROCING A METAL LOPIN, SHAPED FOR IMPLEMENTING THE METHOD AND ASSEMBLY OF A SHIRT AND A COVER FOR IMPLEMENTING THE METHOD
CH703639B1 (en) * 2010-08-24 2014-04-15 Hatebur Umformmaschinen Ag A method for forming a leading end portion of a rod material.
CN103272981B (en) * 2013-06-17 2015-03-25 南通普蒙盛机械制造有限公司 Bidirectional parting continuous forging system of forming die of pipe end upsetting device
CN103537596B (en) * 2013-08-23 2015-08-19 遵义市飞宇电子有限公司 The thick device of a kind of rod-like piece local pier
EP3059028A1 (en) 2015-02-20 2016-08-24 Siemens Aktiengesellschaft Cast iron part with a metallic functional area
CN107520397A (en) * 2017-10-17 2017-12-29 广州小出钢管有限公司 A kind of technique of automobile chassis ultra-thin tube forging forming
CN114733991A (en) * 2022-04-01 2022-07-12 苏州富力诚精密部件有限公司 Height shaping and adjusting clamp for cold-heading thin-wall sleeve part
CN117380882B (en) * 2023-12-04 2024-03-19 山西瑞德机械制造股份有限公司 Forging process for large-diameter tube plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072034A (en) * 1972-05-09 1978-02-07 National Research Development Corporation Method and apparatus for forming material by forcing through a die orifice
US4045254A (en) * 1974-12-30 1977-08-30 Mitsubishi Jukogyo Kabushiki Kaisha Method for toughening treatment of metallic material
DE4437395A1 (en) * 1994-10-19 1996-05-02 Werdau Fahrzeugwerk Method for upsetting pipe ends and device for carrying out the method
DE19701021A1 (en) * 1996-01-30 1998-07-16 Microtechnica Gmbh Parting tool for jammed extrusion die

Also Published As

Publication number Publication date
DE59901178D1 (en) 2002-05-16
CZ20012614A3 (en) 2002-03-13
WO2000045976A1 (en) 2000-08-10
EP1025925A1 (en) 2000-08-09
JP2002536182A (en) 2002-10-29
KR20010101918A (en) 2001-11-15
HUP0105356A2 (en) 2002-04-29
PT1025925E (en) 2002-09-30
AU754548B2 (en) 2002-11-21
CN1338978A (en) 2002-03-06
BR0007963A (en) 2001-11-06
CA2361521A1 (en) 2000-08-10
PL349096A1 (en) 2002-07-01
ES2178366T3 (en) 2002-12-16
HUP0105356A3 (en) 2002-05-28
MXPA01007798A (en) 2003-06-04
ATE215855T1 (en) 2002-04-15
AU2090000A (en) 2000-08-25

Similar Documents

Publication Publication Date Title
EP0787047B1 (en) Process for heading pipe ends and device for implementing it
DE3009656C2 (en) Method for manufacturing a camshaft
DE69817947T2 (en) Device for hydroforming a metal tube
DE10031989B4 (en) Method and device for producing press fittings made of steel, in particular stainless steel
EP1025925B1 (en) Method and device for forming of metals
DE202008001100U1 (en) Rohraufweitvorrichtung
DE10340070A1 (en) Common rail for diesel engines
DE2818671C3 (en)
EP1320433A1 (en) Method for producing a hollow shaft, in particular a camshaft and a camshaft produced according to said method
DE102005036419B4 (en) Device for producing bulged hollow profiles, in particular gas generator housings for airbag devices
EP1024913B1 (en) Method and device for producing a shaft from a tubular workpiece
WO2009043530A2 (en) Method for producing pipe-in-pipe systems
DE2554609C2 (en) Method and device for manufacturing control heads for bicycles
DE2225035A1 (en) Process for the manufacture of pipes
DE19751413C2 (en) Method and device for reducing wall friction in the hydroforming process
EP0922510A1 (en) Method and device for forming a tube in a tube plate
DE102006035082A1 (en) Method and device for producing a shaft-hub connection
DE102008062850B4 (en) Method for producing a deep-drawn part and a method for controlling a deep-drawing device and a deep-drawing device
EP3737514B1 (en) Process and device for manufacturing hollow, internally cooled valves
DE102017110096B4 (en) Method and device for producing a sleeve-shaped passage
DE2932055A1 (en) METHOD AND DEVICE FOR POSITIONING AND EXPANDING TUBES
DE932787C (en) Process for the production of a cylindrical tube with a circular inner cross-section and variable wall thickness
DE10049048C1 (en) Method, for shaping to shape end of hollow shaft, involves positioning element in hollow shaft, using medium to generate pressure and expand shaft and die to push element to connect it to shaft
EP0892689B1 (en) Process for increasing the wall thickness in hollow sections
DE4317091A1 (en) Method of increasing the strength of a crankshaft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010206

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AXX Extension fees paid

Free format text: SI PAYMENT 20010206

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010828

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 20010206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020410

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020410

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020410

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020410

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020410

REF Corresponds to:

Ref document number: 215855

Country of ref document: AT

Date of ref document: 20020415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59901178

Country of ref document: DE

Date of ref document: 20020516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020607

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020607

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020607

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020710

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020710

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020822

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020710

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2178366

Country of ref document: ES

Kind code of ref document: T3

BERE Be: lapsed

Owner name: *ZELLER WALTER

Effective date: 20020630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030101

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030113

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030607

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040517

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020607