EP1025452A1 - System de guidage de camera - Google Patents

System de guidage de camera

Info

Publication number
EP1025452A1
EP1025452A1 EP97944674A EP97944674A EP1025452A1 EP 1025452 A1 EP1025452 A1 EP 1025452A1 EP 97944674 A EP97944674 A EP 97944674A EP 97944674 A EP97944674 A EP 97944674A EP 1025452 A1 EP1025452 A1 EP 1025452A1
Authority
EP
European Patent Office
Prior art keywords
information processing
targets
attitude
camera
processing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97944674A
Other languages
German (de)
English (en)
Inventor
Karl Osen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wells & Vernes Investments Ltd
Original Assignee
Wells & Vernes Investments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wells & Vernes Investments Ltd filed Critical Wells & Vernes Investments Ltd
Publication of EP1025452A1 publication Critical patent/EP1025452A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude

Definitions

  • the present in ention relates to a camera guidance system as described in the preamble to re ⁇ end ⁇ cat ⁇ on 1
  • GPS svstems Global Positioning Svstems
  • IMUs inertial measurement units
  • the attitude of a target, camera, platform or relay station more generally called an object, equipped with only a GNSS receiver and an IMU can be determined provided that this object moves with sufficient speed on any path the three-dimensional space speed must simply be sufficient to allow proper operation of the MU, but need not be predetermined, nor is the trajectory of the object such svstem is functionally comparable to a svstem attitude determination comprising several GNSS receivers, but the same receiver is used here to measure several different positions in three-dimensional space While the position measurements by this receiver are made at time intervals, the IMU is used
  • IMU measurements are vitiated by errors known as de ⁇ ve errors, but these errors can be easily corrected by adapting the duration of the intervals separating two GNSS measurements to the required precision These GNSS measurements, more precise, allow these errors to be controlled expires at the end of each interval
  • the trajectory of the objects or vehicles is not arbitrary, but is insc ⁇ te within known and listed limits, such as for example the track of a racing circuit
  • the limits of the track and its three-dimensional topography comprising for example altitude variations, crossing of passes, bridges, and more particularly tunnels, can be pre-recorded by the information processing movens From then on, the position and the attitude of a vehicle or object fitted simply with an IMU, and moving within such known and pre-recorded limits, can be determined by correlation of the three-dimensional accelerations and rotations recorded by the IMU
  • This correlation process has moreover, sufficient information to also calculate the deviation errors of the accelerometers of the IMU and its gyroscopes II is simply t necessary to obtain really precise results, that the vehicle or object approaches from time to time the trajectory limits, like the edge of the track in the aforementioned case More precisely, when the vehicle or object grazes the edge of the track caused by the change of surface are immediately detected by
  • the initialization of the system can be facilitated and made faster if the means for processing the information is supplied with additional indicia of orientation, for example by signals emitted by a photoelectric cell arranged on the trajectory
  • additional indicia of orientation for example by signals emitted by a photoelectric cell arranged on the trajectory
  • the location of the cell is recorded in the memories of the information processing means, and the signals , emitted by the cell each time a vehicle or object passes in front of this cell, then allow the system to follow with ce ⁇ itude the evolution of the position of the vehicle or object
  • wheel rotation sensors or bodies direction are arranged on the objects to provide the movens of information processing with additional data.
  • the GNSS satellites can be replaced by pseudo-satellites, commonly known recently as "pseudolites", which are mounted in the immediate vicinity of the ceiling of the room.
  • pseudolites have functions comparable to GNSS satellites and can effectively provide platforms and cameras with the data necessary for taking pictures of targets, via information processing means
  • the cameras are at least two in number, and the information processing means have the capacity to analyze the filmed images.
  • This capacity allows the system to operate without having to the need, for the objects, to constantly provide data for the calculation of their position and attitude by the information processing means
  • the information processing means analyze the images filmed by this camera, the position of which is known by the information processing means It is then possible to recognize one or more targets by image analysis and undertake an estimation of their position in the plane considered, even if these c ibles do not directly transmit information about their position or movement.
  • This estimate can be refined in a similar way by one or more other cameras, closer to the targets, the position of which is also known by the information processing means. Thanks to such image analysis capabilities, the system can work even with non-cooperating targets, i.e. targets that do not directly reveal their position.
  • GNSS pseudolites in an indoor sports event or demonstration.
  • Sources of electromagnetic signals are arranged on the pseudolites, themselves fixed in the immediate vicinity of the room ceiling, for example in the manner of ceiling lights.
  • the distance separating these various sources electromagnetic signals from receivers, or points of reception or transmitters of these signals is measured and used as a basis for calculations of information processing movens, aimed at determining the position of these receivers or reception points
  • the speed of the signals concerned is close to the speed of light, and the distance traveled by a signal is evaluated using the time taken by this signal to travel the distance from the source or a transmitter to a receiver or point.
  • FIG. 1 represents a target filmed by a camera on its platform
  • FIG. 2 shows an embodiment with at least two cameras and non-cooperating targets
  • the system represented in FIG. 1 comprises a target 8, equipped with a receiver
  • This assembly comprising the platform 7 moves on a t ⁇ -dimensional trajectory
  • Platform 7 is equipped with a GNSS receiver and an IMU (not shown)
  • the IMU Simultaneously with these position measurements by GNSS, the IMU also records the accelerations undergone by the platform, and also measures the position of points 3, 4 and
  • Information processing movens use these position measurements (which must be at least six in number) to calculate the precise position and attitude of platform 7, i.e. its Euler angles by relative to the fixed reference 2
  • the position of the target 8 is determined by its GNSS receiver
  • the information processing movens then deduce from the position of the target 8, as well as from the position and attitude of the platform 7, the camera pointing angles relative to the platform, as well as the zoom data of this camera, to keep the target 8 in the field of the camera at all times with the desired focus
  • FIG. 2 represents the concrete case of a car race filmed by at least two cameras
  • One of these cameras is on board an aircraft 9 flying over the racing circuit, which in the present case does not include tunnels
  • the processing means information include capabilities for analyzing the images filmed by this camera and estimate the position of targets 10 and 1 1, which are two competitors of the race They provide the second camera 12 with elements of guidance to the most suitable target, for example 10, but which can be chosen according to criteria known per se, for example from the request PCT / IB94 / 0043 1
  • the second camera 12 also provides images capable of processing by the abovementioned scanning capabilities, which makes it possible to refine the position location of the selected target 10, and allow a satisfactory framing of this camera
  • the shots taken are commercially exploitable, particularly when the camera is located at a location considered too dangerous to risk the life of a cameraman, such as for example in the immediate vicinity of the runway. It is conceivable that the two cameras, thanks to the capabilities analysis of images associated with these cameras, help each other in monitoring the chosen target 10 assumed to be non-cooperative

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

Un système de guidage de caméras fait appel à un récepteur GNSS (Global Navigation Satellite System), à une unité de mesure inertielle, ainsi qu'à d'autres capteurs aidant à déterminer la position et l'assiette d'objets et en particulier des cibles à filmer.

Description

Svsteme de guidage de caméra
La présente in ention concerne un svsteme de guidage de caméra tel que décrit dans le préambule de la re\ endιcatιon 1
11 est connu des svstemes de guidage de caméras tel que le svsteme décrit dans la demande PCT/IB94/00431. du m me déposant dans laquelle une forme particulière de réalisation tait appel a des svstemes GPS (Global Positioning Svstems) dans le but d acquérir les données de position d'une cible celte cible etani \ ιsee par une caméra montée sur une plateforme, exprimées dans un svsteme de coordonnées lie a celte plateforme
L usage a montre que dans certains cas. une pluralité de récepteurs GPS, ou plus généralement de svstemes GNSS (Global Navigation Satellite Svstem), ces svstemes incluant les GPS classiques et d'autres svstemes de tvpe GPS pouvait présenter des inconvénients lies a une certaine lourdeur En effet, lorsque l'assiette d'un υbtet est déterminée par un ensemble de par exemple trois récepteurs GNSS situes sur cet objet le traitement des données émises par ces récepteurs GNSS nécessite une grande puissance de calcul, en même temps que la configuration a trois récepteurs GNSS par objet confère au svsteme une rigidité défavorable La demande précitée décrit sommairement l'utilisation complémentaire de svstemes de navigation ineπielle constitues par exemple d'unités de mesure ineπielle ou I U ( Inertial Measurement L nit") constitues chacune de trois accelerometres et de trois gvroscopes ces derniers mesurant les \ itesses angulaires qui complementent l'action des récepteurs GNSS notamment dans le cas ou de aises conditions de réception affectent négativement et pour une courte durée la réception des signaux GNSS
Il a ete découvert qu une utilisation judicieuse de ces unîtes de mesure inertielle abreviees ci-apres IMUs, pouvait contribuer a simplifier le fonctionnement du svsteme de guidage de caméras dans les cas ou les objets, c-a-d la ou les cibles, la ou les plateformes ou la ou les stations-relais se déplacent avec une ceπaine vitesse dans l'espace a trois dimensions le problème év oque plus haut est résolu par les movens αecπts dans la partie caractérisante de la revendication 1 L assiette d'une cible, d'une caméra, plateforme ou station-relais, appelé plus généralement objet, équipe de seulement un récepteur GNSS et un IMU peut être déterminée a condition que cet objet se déplace avec une vitesse suffisante sur un trajet quelconque de l'espace tridimensionnel La vitesse doit simplement être suffisante pour permettre un bon fonctionnement de l' MU, mais n'a pas besoin d'être prédéfinie, pas plus que la trajectoire de l'objet Un tel svsteme est fonctionnellement comparable a un svsteme de détermination d'assiette comprenant plusieurs récepteurs GNSS, mais le même récepteur est ici utilise pour mesurer plusieurs positions différentes dans l'espace tridimensionnel Alors que les mesures de position par ce récepteur sont faites a des intervalles de temps, l'IMU est utilise pour mesurer avec précision l'évolution relative de la position de l'objet entre les mesures de position par ce récepteur GNSS Ceci permet le calcul de l'orientation du repère de coordonnées lie a l'objet par rapport au repère de coordonnées GNSS lie au sol, c'est-a-dire la détermination des angles d'Euler du repère de coordonnées lie a l'objet mobile par rapport au repère de coordonnées lie au sol, autrement dit de l'assiette précise de l'objet
Les mesures de l'IMU sont entachées d'erreurs dites erreurs de deπve, mais ces erreurs peuvent être facilement corrigées en adaptant la durée des intervalles séparant deux mesures GNSS a la précision requise Ces mesures GNSS, plus précises, permettent de maîtπser ces erreurs de deπve a la fin de chaque intervalle
Dans une forme particulière de réalisation de l'invention, la trajectoire des objets ou véhicules n'est pas quelconque, mais est inscπte dans des limites connues et répertoriées, comme par exemple la piste d'un circuit automobile de compétition Dans un tel cas, les limites de la piste et sa topographie tridimensionnelle, comprenant par exemple des vaπations d'altitude, des franchissements de cols, ponts, et plus spécialement tunnels, peuvent être pre-enregistrees par les movens de traitement d'informations Des lors, la position et l'assiette d'un vehicuie ou objet équipe simplement d'une IMU, et se déplaçant dans de telles limites connues et pre- enregistrees, peuvent être déterminées par corrélation des accélérations tridimensionnelles et des rotations enregistrées par l'IMU Ce processus de corrélation dispose par ailleurs de suffisamment d'informations pour également calculer les erreurs de deπve des accelerometres de l'IMU et de ses gyroscopes II est simplement nécessaire pour obtenir des résultats vraiment précis, que le véhicule ou objet s approche de temps a autre des limites de trajectoire, comme le bord de la piste dans le cas précité Plus précisément, lorsque le véhicule ou objet frôle le bord de la piste les secousses provoquées par le changement de revêtement sont immédiatement decelees par l'IMU et utilisées par les movens de traitement d'informations pour rafraîchir le repérage de la limite de piste C'est ainsi qu une configuration constituée par seulement une IMU par véhicule ou objet, sans récepteur GNSS, peut être suffisante dans un tel cas ou le parcours est connu et répertorie Toujours dans le cas d'une course automobile, on sait que la performance des svstemes GNSS se dégrade lorsque le parcours des véhicules comprend des tunnels, ou plus généralement des paπies se prêtant a des réverbérations de signaux ou présentant des caractéristiques de 'multipath ' C'est le cas avec des bâtiments de grande hauteur ou des ponts Les données transmises par l'IMU sont alors essentielles pour le repérage continu de l'objet par les movens de traitement de l'information
Dans une forme particulière de réalisation de l'invention, s'appliquant au cas précèdent ou la trajectoire des objets ou véhicules est inscrite dans des limites connues, l'initialisation du système peut être facilitée et rendue plus rapide si les moyens de traitement de l'information est approvisionnée en indices complémentaires d'oπentation, par exemple par des signaux émis par une cellule photo-electπque disposée sur la trajectoire L'emplacement de la cellule est enregistrée dans les mémoires des moyens de traitement de l'information, et les signaux , émis par la cellule chaque fois qu'un véhicule ou objet donne passe devant cette cellule, permettent alors au svsteme de suivre avec ceπitude l'évolution de la position du véhicule ou objet
Dans une forme paπiculiere de réalisation de l'invention, s'appliquant paπicuherement aux cas ou les objets doivent pouvoir évoluer a basse vitesse ou même s'arrêter sans compromettre l'efficacité du système, des capteurs de rotation de roue ou d'organes de direction sont disposes sur les objets pour fournir aux movens de traitement de l'information des données supplémentaires Par contre. lors d'évolutions a grande vitesse ces capteurs sont desactives, ou leur données sont ignorées parce que les dérapages fréquents des roues introduisent des erreurs aléatoires et donc difficiles a corrmer Dans une forme paπiculiere de réalisation de l'invention, s'appliquant en particulier au fonctionnement en milieu confine comme les spoπs ou compétitions de salle, les satellites GNSS peuvent être remplaces par des pseudo-satellites, communément appelés depuis peu "pseudolites", qui sont montes a proximité immédiate du plafond de la salle Ces pseudolites ont des fonctionnalités comparables aux satellites GNSS et peuvent efficacement fournir aux plateformes et caméras les données nécessaires a la prise de vue sur les cibles, par l'intermédiaire des moyens de traitement d'informations
Dans une forme particulière de réalisation de l'invention, les caméras sont au moins au nombre de deux, et les moyens de traitement d'informations ont la capacité d'analyser les images filmées Cette capacité permet au système de fonctionner en s' affranchissant de la nécessite, pour les objets, de fournir constamment des données pour le calcul de leur position et assiette par les moyens de traitement d'informations En particulier et a titre d'exemple, lorsque les cibles se déplacent sur un trajet compπs essentiellement dans un plan, c' est-a-dire sur deux dimensions et non plus trois, l'une des caméras peut être positionnée assez loin de ce plan Les moyens de traitement d'informations analysent les images filmées par cette caméra, dont la position est connue par les moyens de traitement d'informations II est alors possible de reconnaître une ou plusieurs cibles par analyse d'images et entreprendre une estimation de leur position dans le plan considère, même si ces cibles n'émettent pas directement d'informations sur leur position ou leur déplacement. Cette estimation peut être affinée de façon similaire par une ou plusieurs autres caméras, plus proches des cibles, dont la position est également connue par les moyens de traitement d'informations. On peut grâce a de telles capacités d'analyse d'image faire fonctionner le système même avec des cibles non coopérantes, c'est-à-dire ne révélant pas directement leur position
On va maintenant expliquer de façon plus détaillée le fonctionnement particulier des pseudolites GNSS dans une manifestation ou événement sportif en salle. Des sources de signaux électromagnétiques sont disposes sur les pseudolites, eux-même fixes a proximité immédiate du plafond de la salle, par exemple a la manière de plafonniers Lors de mesures d'assiette et de position par pseudolites GNSS, la distance séparant ces diverses sources de signaux électromagnétiques de récepteurs, ou points de réception ou transmetteurs de ces signaux est mesurée et sert de base aux calculs des movens de traitement de l'information, visant a déterminer la position de ces récepteurs ou points de réception
La vitesse des signaux concernes est proche de la vitesse de la lumière, et la distance parcourue par un signal est évaluée a l'aide du temps mis par ce signal pour parcourir la distance de la source ou d'un transmetteur a un récepteur ou point de réception En pratique, on s'assure d'une certaine redondance dans les mesures Ceci permet d'améliorer la précision des mesures par des calculs de moyennes, et éventuellement d'éliminer les mesures erronnees par des tests de plausibilite connus en soi Dans certains cas, notamment pour des applications en salle impliquant des distances courtes entre les sources, transmetteurs et récepteurs, on peut utiliser d'autres technologies que les ondes électromagnétiques pour mesurer les distances Les ultrasons peuvent constituer une première alternative Une autre possibilité est d'utiliser des capteurs a déroulement de fil, tels que decπts par exemple dans la demande de brevet suisse nσ \996 .253 8 /3 € du même déposant, déposée le 17 octobre 1996 Un tel capteur a déroulement de fil est constitue d'un tambour, d'un fil mince enroule sur ce tambour, dont l'axe de rotation est muni d'un ressort de rappel et relie a un capteur d'angle Au fur et a mesure que le fil est tire par l'objet dont on veut mesurer le déplacement, le tambour tourne d'un certain angle, angle qui est mesure par le capteur et fournit une mesure du déplacement Lorsque la force qui éloignait l'objet diminue, le ressort de rappel maintient le fil tendu De tels capteurs a déroulement de fil présentent des caracteπstiques de précision remarquables et tout-a- fait satisfaisantes pour les besoins de la présente invention Un exemple en est donne dans la brochure PT-001-B de la Société Space ^ge Control, 38850 20th Street East, Palmdale. Californie
Le fonctionnement du svsteme va maintenant être decπt par référence au dessin ci- annexe, dans lequel
- la figure 1 représente une cible filmée par une caméra sur sa plateforme et
- la figure 2 représente une forme de réalisation avec au moins deux caméras et des cibles non coopérantes
Le svsteme représente a la figure 1 comprend une cible 8, équipée d'un récepteur
GNSS filmée par un ensemble constitue d'une caméra et d'une plateforme 7 Cet ensemble comprenant la plateforme 7 se déplace sur une trajectoire tπ-dimensionnelle
1 La plateforme 7 est équipée d'un récepteur GNSS et d'un IMU (non représentes)
Pendant son mouvement, au moins trois positions 3, 4 et 5 sur la trajectoire sont mesurées par rapport au repère 2 de coordonnées GNSS
Simultanément avec ces mesures de positions par GNSS, l'IMU enregistre lui aussi les accélérations subies par la plateforme, et mesure lui aussi la position des points 3, 4 et
5 par rapport au repère înertiel 6
Les movens de traitement d'informations utilisent ces mesures de position (qui doivent être au nombre de six au minimum) pour calculer la position et l'assiette précises de la plateforme 7, c'est-a-dire ses angles d'Euler par rapport au repère fixe 2 La position de la cible 8 est déterminée par son récepteur GNSS
Les movens de traitement d'informations déduisent alors de la position de la cible 8, ainsi que de la position et assiette de la plateforme 7, les angles de pointage de la caméra par rapport a la plateforme, ainsi que les données de zoom de cette caméra, pour garder en tout temps la cible 8 dans le champ de la caméra avec la mise au point voulue
La figure 2 représente le cas concret d'une course automobile filmée par au moins deux caméras L'une de ces caméras est embarquée dans un avion 9 survolant le circuit de course, qui dans le cas présent ne comprend pas de tunnels Les moyens de traitement d'informations (non représentes) comprennent des capacités d'analyse des images filmées par cette caméra et effectuent une estimation de la position des cibles 10 et 1 1 , qui sont deux concurrents de la course Ils fournissent a la seconde caméra 12 des éléments de guidage vers la cible la plus appropπee, par exemple 10, mais qui peut être choisie selon des critères connus en soi par exemple de la demande PCT/IB94/0043 1 La seconde caméra 12 fournit elle aussi des images susceptibles de traitement par les capacités d'anayse précitées, ce qui permet d'affiner le repérage de position de la cible choisie 10, et de permettre un cadrage satisfaisant de cette caméra
Les prises de vues effectuées sont commercialement exploitables, particulièrement lorsque la caméra est située a un emplacement considère comme trop dangereux pour risquer la vie d'un cameraman, comme par exemple a proximité immédiate de la piste On conçoit que les deux caméras, grâce aux capacités d'analyse d'images associées a ces caméras, s'entraident dans le suivi de la cible choisie 10 supposée non coopérante

Claims

Revendications
1 Système de guidage de caméra, comprenant une pluralité d'objets pouvant être une ou plusieurs cibles, une ou plusieurs caméras supportées par une ou plusieurs plateformes, ainsi qu'une ou plusieurs stations-relais, ce système permettant d'acquérir des signaux vidéo d'au moins une desdites cibles, au moyen d'au moins une des dites caméras supportée par une desdites plateformes, ces signaux vidéo étant transmis par les stations-relais vers une station de réception, ces objets se déplaçant avec une certaine vitesse dans un espace à trois dimensions, et l'un au moins de ces objets étant équipe d'un récepteur GNSS et d'un IMU permettant le pointage automatique de la ou des caméras vers la ou les cibles grâce à des moyens de traitement d'informations en provenance des objets, caractérisé en ce que plusieurs mesures de position sont effectuées par l'ensemble constitué d'un GNSS et d'un IMU, ces mesures étant effectuées à des intervalles de temps et permettant de calculer d'une part la position de l'objet et d'autre part les angles d'Euler déterminant l'orientation et l'assiette de l'objet
2. Système selon revendication 1, dans lequel l'intervalle de temps séparant deux mesures par le récepteur GNSS est adapté en fonction des erreurs de dérive de l'IMU tels que constatées par le système de traitement d'informations.
3 Système selon revendications 1 ou 2, dans lequel la trajectoire de certains des objets est comprise dans des limites connues et stockées dans les moyens de traitement d'informations, permettant le calcul de position et d'assiette sans utiliser un récepteur GNSS.
4. Système selon revendication 3, caractérisé en ce que les cibles sont les concurrents d'une course automobile et en ce que son initialisation est rendu plus rapide par l'approvisionnement des moyens de traitement d'informations en indices complémentaires d'oπentation
5 Système selon revendication 4, caractérise en ce que des capteurs de rotation de roues ou d'organes de direction des concurrents de la course automobile fournissent des données supplémentaires aux moyens de traitement d'informations
6 Système selon revendication 1 , 2 ou 3, dans lequel l'objet est équipe de moyens de mesure de pression barometπque ou altimetπque, permettant aux moyens de traitement d'informations de mieux calculer la position et l'assiette de l'objet
7 Système selon revendications 1 , 2, 3 ou 6, dans lequel l'objet est équipe d'un magnetometre capable de mesurer l'oπentation du champ magnétique terrestre par rapport a l'objet, permettant aux moyens de traitement d'informations de mieux calculer la position et l'assiette de l'objet
8. Système selon revendications 1 et 3, dans lequel les moyens de traitement d'informations ont des capacités d'analyse d'images, et dans lequel les cibles se déplacent dans un espace essentiellement plan tel que vu par une ou plusieurs caméras en position éloignée, permettant ainsi la détermination de la position et de l'assiette de cibles non coopérantes
9 Système selon revendication 8, dans lequel les cibles sont les concurrents d'une course automobile, et dans lequel au moins une caméra en position éloignée est embarquée dans un aéronef survolant la course et interagit avec au moins une autre caméra pour le repérage et le suivi de cibles non coopérantes
10 Système selon revendication 1, dans lequel la position et l'attitude d'un objet sont calculés a l'aide de au moins six mesures de distances entre au moins trois points situes sur l'objet et au moins trois autres points ayant des positions connues, ces distances étant mesurées par des capteurs à déroulement de fil, et/ou des ultrasons, et/ou des signaux électromagnétiques
EP97944674A 1996-10-25 1997-10-24 System de guidage de camera Withdrawn EP1025452A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH263296 1996-10-25
PCT/CH1997/000405 WO1998019176A1 (fr) 1996-10-25 1997-10-24 System de guidage de camera

Publications (1)

Publication Number Publication Date
EP1025452A1 true EP1025452A1 (fr) 2000-08-09

Family

ID=4238134

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97944674A Withdrawn EP1025452A1 (fr) 1996-10-25 1997-10-24 System de guidage de camera

Country Status (2)

Country Link
EP (1) EP1025452A1 (fr)
WO (1) WO1998019176A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3105840B2 (ja) * 1997-09-04 2000-11-06 康 廣澤 地球情報供給システム
FR2794524A1 (fr) * 1999-06-07 2000-12-08 Jean Christophe Comar Dispositif d'encodage numerique passif des mouvements d'une camera par l'intermediaire d'une centrale a inertie
NO312268B1 (no) * 1999-08-09 2002-04-15 Sport Tech As Fremgangsmåte og system for å tilveiebringe informasjon
EP1168830A1 (fr) * 2000-06-30 2002-01-02 Wells & Verne Investments Ltd Système de prise de vues supporté par ordinateur
FR2905470A1 (fr) * 2006-09-06 2008-03-07 France Telecom Systeme et procede de localisation d'une cible dans une image,unite centrale,programme et support pour ce systeme
CN103186546A (zh) * 2011-12-28 2013-07-03 象山县供电局 一种三维空间场景拟合加密优化技术

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5193064A (en) * 1990-10-09 1993-03-09 General Dynamics Corporation, Space Systems Division Method and apparatus of integrating Global Positioning System and Inertial Navigation System without using accelerometers
JPH04369492A (ja) * 1991-06-18 1992-12-22 Pioneer Electron Corp Gps測位装置
FR2693329B1 (fr) * 1992-07-06 1994-09-09 Sfp Procédé et système de pointage de deux antennes l'une en direction de l'autre.
US5406489A (en) * 1992-07-10 1995-04-11 Unisys Corporation Instrument for measuring an aircraft's roll, pitch, and heading by matching position changes along two sets of axes
US5374933A (en) * 1993-01-05 1994-12-20 Zexel Corporation Position correction method for vehicle navigation system
EP0660131A1 (fr) * 1993-12-23 1995-06-28 Karl Osen Système de guidage de caméra

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9819176A1 *

Also Published As

Publication number Publication date
WO1998019176A1 (fr) 1998-05-07

Similar Documents

Publication Publication Date Title
US11448770B2 (en) Methods and systems for detecting signal spoofing
TW201829978A (zh) 於視覺慣性量距中使用全球定位系統速度之系統及方法
US6650360B1 (en) Camera guidance system
EP3047304B1 (fr) Procédé et appareil pour la détermination d'un désalignement entre un dispositif et une cuve au moyen d'une accélération/décélération
EP0148704B1 (fr) Système de surveillance par avion sans pilote permettant la localisation d'objectif
CN111854740B (zh) 能够在交通工具中进行航位推算的惯性导航系统
WO2007010116A1 (fr) Procede et dispositif pour determiner la position au sol d'un mobile, en particulier d'un avion sur un aeroport
US10026311B2 (en) Method and apparatus for determining direction of the beginning of vehicle movement
EP2932182B1 (fr) Procede de geo localisation precise d'un capteur d'images embarque a bord d'un aeronef
EP1025452A1 (fr) System de guidage de camera
US20100085467A1 (en) Image pickup device capable of providing gps coordinates of subject to be shot and method for detecting gps coordinates thereof
JP2022545327A (ja) 反射したgnss信号に対する感度を高めること
JP2013148524A (ja) 測位システム
FR3081220A1 (fr) Procede d'harmonisation de deux unites de mesure inertielle l'une avec l'autre et systeme de navigation mettant en œuvre ce procede
CA2306432A1 (fr) System de guidage de camera
US10830906B2 (en) Method of adaptive weighting adjustment positioning
US20160216112A1 (en) Method and apparatus for determination of misalignment between device and vessel using radius of rotation
EP3918278A1 (fr) Procede de localisation
WO2004083767A2 (fr) Dispositif de visee ou de pointage
CN1276062A (zh) 摄像机引导系统
FR2939191A1 (fr) Dispositif et procede d'assistance au guidage d'un pieton en difficulte de perception visuelle, telle qu'une personne aveugle
JP2014235022A (ja) ナビゲーション装置およびナビゲーション方法
WO2023083879A1 (fr) Procede de navigation hybride inertielle/stellaire a indicateur de performance d'harmonisation
CN219225359U (zh) 一种无人机通讯系统
EP3330731B1 (fr) Procede et systeme de geolocalisation collaborative

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20011227

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030917