EP1023533B1 - Method for controlling an electromechanical actuating device - Google Patents

Method for controlling an electromechanical actuating device Download PDF

Info

Publication number
EP1023533B1
EP1023533B1 EP98952541A EP98952541A EP1023533B1 EP 1023533 B1 EP1023533 B1 EP 1023533B1 EP 98952541 A EP98952541 A EP 98952541A EP 98952541 A EP98952541 A EP 98952541A EP 1023533 B1 EP1023533 B1 EP 1023533B1
Authority
EP
European Patent Office
Prior art keywords
coil
value
current
time period
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98952541A
Other languages
German (de)
French (fr)
Other versions
EP1023533A1 (en
Inventor
Achim Koch
Hanspeter Zink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1023533A1 publication Critical patent/EP1023533A1/en
Application granted granted Critical
Publication of EP1023533B1 publication Critical patent/EP1023533B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0007Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using electrical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2031Control of the current by means of delays or monostable multivibrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2037Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for preventing bouncing of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2079Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit having several coils acting on the same anchor

Definitions

  • the invention relates to a method for controlling an electromechanical Actuators according to the preamble of the claim 1. It relates in particular to an actuator for controlling an internal combustion engine.
  • a known actuator (DE 195 26 683 A1) has an actuator, which is designed as a gas exchange valve and one Actuator.
  • the actuator has two electromagnets, between which each against the force of a restoring means holding an armature plate by switching off the coil current Electromagnets and switching on the coil current at the trap Electromagnet can be moved.
  • the coil current each of the catching electromagnets is set to a predetermined one Catch value constant over a specified period of time held and then by a two-point controller with hysteresis regulates a hold value until the coil current is switched off becomes.
  • the object of the invention is a method for control to create an actuator that the sound generation at Meeting of an anchor plate on an electromagnet reduced.
  • the object is achieved by the features of patent claim 1.
  • the solution is characterized in that during the Braking value is specified as the setpoint for the current by the current is causing a braking field that is a force generated that directed opposite to the acceleration force that acts on the anchor plate.
  • the acceleration force is caused by the tension of the springs.
  • the impact speed of the anchor plate is determined by the braking field reduced.
  • the solution also has the advantage that wear on the actuator is reduced.
  • the Time period T2 from the speed and a load size or from a speed of the anchor plate or the braking value depends on speed and load size or speed the anchor plate. This enables a targeted, asymmetrical adjustment of the rest position of the anchor plate, without the sound radiation when operating the actuator is increased. This is particularly useful when the actuator is an exhaust valve, as this is against the exhaust gas pressure in the Cylinder must be opened.
  • An actuator 1 ( Figure 1) comprises an actuator 11 and an actuator 12, for example as a gas exchange valve and a shaft 121 and a plate 122 Has.
  • the actuator 11 has a housing 111 in which a first and a second electromagnet are arranged.
  • the first Electromagnet has a first core 112, in which in a annular groove a first coil 113 is embedded.
  • the second electromagnet has a second core 114, in which in a second coil 115 is embedded in a further annular groove is.
  • the first core 112 has a recess 116a that forms a guide for the shaft 121.
  • the second core 114 has a further recess 116, which is also used as a guide for the Shaft 121 serves.
  • An anchor plate 117 is in the housing 111 movable between the first core 112 and the second Core 114 arranged.
  • a first spring 118a and a second Spring 118b tension the anchor plate 117 into a predetermined one Rest position R before.
  • Actuator 1 is rigidly connected to a cylinder head 21.
  • An intake passage 22, an exhaust passage 22a and a cylinder with a piston 24 are assigned to the cylinder head 21.
  • the Piston 24 is connected to a crankshaft via a connecting rod 25 26 coupled.
  • a control device 3 is provided, the signals from sensors detected and control signals for the actuator 1 generated.
  • the sensors are a position transmitter 4, which has a position X the anchor plate 117 detects a first ammeter 5a, the detects the actual value I_AV1 of the current through the first coil 113, a second ammeter 5b, which has an actual value I_AV2 of Current detected by the second coil 115, a speed sensor 27, which detects the rotational speed N of the crankshaft 26, or a Load detection sensor 28, which is preferably an air mass meter or is a pressure sensor. In addition to the sensors mentioned there may also be other sensors.
  • a comparator device 7 which depends on the detected position X and predetermined threshold values K1, K2, K3, K4 generates a pulse signal.
  • the comparator device 7 has four analog threshold comparators, each at one of the threshold values K1, K2, K3, K4 their output signal to change. By logically linking the threshold comparators The pulse signal plotted in FIG. 5e then arises the comparator device.
  • the threshold values K1, K2, K3, K4 ( Figure 5d) are, for example, the following relative Distance values that are related to the distance of the contact surface the armature plate 117 in the first electromagnet and the contact surface of the anchor plate 117 in the second Electromagnets: K1 at 5%, K2 at 20%, K3 at 80% and K4 at 95%.
  • a timer 8 ( Figure 1), preferably as a so-called "CAPCOM" unit is formed, detects the pulse duration of the of the. Comparator device 7 generated pulse signal and directs the time periods T_C2, T_O2 assigned to the pulse durations as digital data to the control device 3.
  • the time period T_C2 is a measure of the average speed of the anchor plate between the threshold values K3 and K4.
  • the same as determined by the timer 8 Duration T_O2 is a measure of the first approximation average speed of the anchor plate 117 between the Thresholds K2 and K1.
  • a circuit arrangement (FIG. 2) of the driver 6a, 6b has a first transistor 61 whose base connection is connected to an output of the control device 3 and to which the voltage signal U S11 is present. Furthermore, the circuit arrangement has a second transistor 62, the base connection of which is connected to the control device 3 and to which the voltage signal U S21 is present. The circuit arrangement also has a first diode 63, a second diode 64 and a capacitor 65.
  • the first transistor 61 becomes conductive from the collector to the emitter. If a high voltage level is additionally present at the base transistor on the second transistor 62, the second transistor 62 also becomes conductive.
  • the supply voltage U V then drops approximately at the first coil 113.
  • the current I_AV1 through the coil 113 then increases until the entire supply voltage U V across the internal resistance of the first coil 113 drops. If a low voltage level is subsequently specified at the base-side connection of the first transistor 61, the transistor 61 blocks and the diode 63 becomes conductive as a freewheeling diode.
  • the current I_AV1 through the coil then decreases.
  • both the voltage level of the voltage signal U S11 and the voltage level of the voltage signal U S21 are switched from high to low, both the first diode 63 and the second diode 64 become conductive and the current through the first coil 113 is driven by the charge of the capacitor 75 is reduced considerably faster than if freewheeling is only effected via the first diode 63. This ensures a very rapid reduction in the current I_AV1 through the first coil 113.
  • the circuit arrangement of driver 6b is analogous to the circuit arrangement shown in FIG. 2. The only difference is that the voltage signal U S12 is present at the base connection of the first transistor 61 and the voltage signal U S22 is applied to the base connection of the second transistor 62, and that the emitter of the first transistor 61 and the collector of the second transistor 62 are electrically conductive are connected to the second coil 115.
  • FIG. 3 shows a block diagram of the control device 3 for Controlling the electromechanical actuator 1.
  • a catch value I_F1 is determined from a map and depending on the speed N and the air mass flow MAF. The values of the map are on an engine test bench or determined by simulations so that heat losses in the respective Coil are low.
  • the difference of the setpoint is in a summing point S1 T_C2 * and the actual time period T_C2 calculated.
  • the Setpoint T_C2 * is fixed. But it can alternatively also from a map dependent on at least one of the Sensors detected size can be determined.
  • a block B2 comprises an integrator that depends on the difference of the setpoint T_C2 * and the actual time period T_C2 a correction value calculated with the catch value in the summing point S2 I_F is corrected.
  • a hold value I_H is dependent on the Determine speed N and the air mass flow MAF from a map.
  • a braking value is converted from a map depending on the speed N and the mass air flow MAF and / or depending on the integral about the deviation of the Setpoint T_O2 * and the actual time period T_O2 are determined.
  • the setpoint T_O2 * is fixed. But he can alternatively, depending on at least one map a size detected by the sensors.
  • the time period T2 becomes a map depending on the speed N and the mass air flow MAF and / or the integral of the difference between the setpoint T_O2 * and the actual time period T_O2 determined.
  • block B6 it is determined whether the catch value I_F1, the Hold value I_H, the braking value I_B or a zero value I_N (e.g. zero amps) as the setpoint I_SP1 of the current for a controller B7 is specified.
  • the controlled variable of controller B7 is the Current through the first coil 113. The function of block B6 is described below with reference to FIG. 4.
  • the difference between the setpoint I_SP1 determined in block B6 and the actual value I_AV1 of the current through the first coil 113 is the control difference of the controller B7 designed as a two-point controller with hysteresis.
  • the manipulated variables of the controller B7 are the voltage signals U S11 and U S21 .
  • FIG. 3 shows the block diagram as an example for the calculation of the control signals for the first coil 113.
  • the control signals for the second coil that is to say the voltage signals U S12 , U S22, are calculated analogously, only the time periods T_C2, T_C2 * are to be replaced by the time periods T_O2, T_O2 *.
  • the output variable of block B6 is then the setpoint I_SP2 of the current through the second coil 115, a controller B8, which has the same structure as the controller B7 has the current through the second coil 115 as a controlled variable and has the voltage signals U S12 and U S22 .
  • FIG. 4 shows the state diagram of block B6 as an example for the calculation of the setpoint I_SP1 of the current through the first coil 113.
  • a first state Z1 is the start from which the transition to a state Z2 occurs when the condition E1 is fulfilled; that a setpoint X_SP is the same as position X. a closed position C of the anchor plate 117.
  • condition Z2 is the setpoint I_SP1 the catch value I_F.
  • a transition from state Z1 to state Z3 takes place if a condition E2 is fulfilled, namely that the setpoint X_SP of position X is equal to an open position O.
  • the setpoint I_SP1 is equal to the zero value IN.
  • a transition from state Z2 to state Z4 takes place if the length of time dt has increased since entering state Z2 is as a time period T0.
  • the period T0 is either predefined or determined by recognizing the impact the anchor plate on the first electromagnet.
  • the setpoint I_SP1 of the current through the first coil 113 the holding value I_H.
  • the transition from the state Z4 takes place in a state Z5 if a condition E4, that the Soliwert X_SP the position X of the anchor plate 117 die Open position O is fulfilled.
  • the setpoint I_SP1 of the current through the first coil 113 the zero value I_N.
  • a transition from the state Z5 takes place in a state Z6 if the condition E5, that the length of time dt has increased since entering state Z5 is fulfilled as a time period T1.
  • the time period is T1 predefined so that a transition from the state Z5 to the state Z6 occurs at the earliest when the anchor plate 117 begins to move away from the first electromagnet.
  • the setpoint I_SP1 of the current through the first coil 113 the braking value I_B.
  • the condition E6 for one Transition from state Z6 to state Z3 is that the The time dt since the state Z6 was taken is greater than the period T2.
  • the setpoint is I_SP1 of the current through the first coil 113 is the zero value I_N.
  • the Condition E7 for the transition from state Z3 to state Z2 is that the setpoint X_SP is the position of the anchor plate is equal to the closed position C.
  • the state diagram of block B6 for determining the setpoint I_SP2 corresponds to the current through the second coil 115 the state diagram of Figure 4 with the difference that in each case the closed position C through the open position O and is to be replaced the other way round and that the setpoint I_SP1 by the setpoint I_SP2 has to be replaced.
  • FIG. 5a shows the voltage signal U S11 and the voltage signal U S12 (shown in dotted lines) plotted over time t.
  • FIG. 5b shows the voltage signal U S21 and the voltage signal U S22 (shown in dotted lines) plotted over time t.
  • FIG. 5c shows the assigned time profile of the actual value I_AV1 of the current through the first coil 113, and the Time course of the actual value I_AV2 (shown in dotted lines) the current through the second coil 115.
  • FIG. 5d shows the assigned position X of the anchor plate 117 plotted over time t.
  • the setpoint value of the current through the first coil 113 is the hold value I_H.
  • the holding value I_H is predetermined such that the force on the armature plate 117 caused by the current through the first coil 113 is sufficient to hold the armature plate in contact with the first electromagnet and, on the other hand, only slight heat losses occur.
  • the zero value I_N is specified as the setpoint I_SP1 of the current through the first coil 113 for the time period T1.
  • both the voltage signal U S11 and the voltage signal U S21 are set to a low level, so that the actual value I_AV1 of the current through the first coil drops very quickly to the zero value I_N.
  • the braking value I_B is specified as the desired value of the current through the first coil 113 at a time t 2, namely for the time period T2.
  • the rest position R can be predetermined asymmetrically to the contact surfaces of the anchor plate on the two electromagnets. This is advantageous if the actuator is designed as an exhaust valve, since the exhaust valve must be moved against the high internal cylinder pressure during the transition from the closed position C to the open position O.
  • the time period T1 is preferably chosen so that the anchor plate is still close to the closed position at time t 2 (for example, it has only covered 3% of the distance between the closed and the open position). A very good braking effect on the anchor plate is achieved.
  • the zero value I_N is again specified as the setpoint I_SP1 of the current through the first coil.
  • the setpoint I_SP1 of the current through the first coil is given the catch value I_F, specifically for the period T0.
  • the catch value I_F is specified as the setpoint I_SP2 of the current through the second coil 115.
  • the time t 3 can also be in time after the time t 4 .
  • the associated course of position X of the anchor plate shows that after time t 1 the anchor plate first remains in the closed position C and then moves with increasing speed in the direction of the open position O until the acceleration of anchor plate 117 is reduced from time t 2 and the anchor plate reaches the open position O at time t 5 .
  • the invention is not based on the described embodiment limited.
  • the process can be run as a program by a Microprocessor are processed. But it can also do the same by a logic circuit or by an analog circuit arrangement will be realized.
  • the catch value I_F and / or the Hold value I_H and / or brake value I_B can also be fixed be preset values.
  • the controller can also be designed, for example, as a single-point controller with a timing element or as a pulse width modulation controller.
  • a particularly low sound radiation from the control device is achieved if the catch value I_F is additionally reduced, specifically for a period of time that depends on the difference between the setpoint T_C2 *, T_O2 * and the actual period T_C2, T_O2.
  • the catch value is, for example, eight amperes, the hold value three amperes and the braking value ten amperes.

Abstract

An actuating device has an actuating element (12) and an actuating drive (11). Said actuating drive has at least one electromagnet with a coil (113), a moveable retaining plate (117) and at least one spring (118a, 118b) which prestresses the retaining plate into a predetermined neutral position (R). The coil generates a retarding field whilst the retaining plate moves away from the coil for a predetermined period of time (T2).

Description

Die Erfindung betrifft ein Verfahren zum Steuern eines elektromechanischen Steligeräts gemäß Oberbegriff des Patentanspruchs 1. Sie betrifft insbesondere ein Stellgerät zum Steuern einer Brennkraftmaschine.The invention relates to a method for controlling an electromechanical Actuators according to the preamble of the claim 1. It relates in particular to an actuator for controlling an internal combustion engine.

Ein bekanntes Stellgerät (DE 195 26 683 A1) hat ein Stellglied, das als Gaswechselventil ausgebildet ist und einen Stellantrieb. Der Stellantrieb weist zwei Elektromagnete auf, zwischen denen jeweils gegen die Kraft eines Rückstellmittels eine Ankerplatte durch Abschalten des Spulenstroms am haltenden Elektromagneten und Einschalten des Spulenstroms am fangenden Elektromagneten bewegt werden kann. Der Spulenstrom des jeweils fangenden Elektromagneten wird auf einen vorgegebenen Fangwert während einer vorgegebenen Zeitdauer konstant gehalten und dann von einem Zweipunktregler mit Hysterese auf einen Haltewert geregelt bis der Spulenstrom abgeschaltet wird.A known actuator (DE 195 26 683 A1) has an actuator, which is designed as a gas exchange valve and one Actuator. The actuator has two electromagnets, between which each against the force of a restoring means holding an armature plate by switching off the coil current Electromagnets and switching on the coil current at the trap Electromagnet can be moved. The coil current each of the catching electromagnets is set to a predetermined one Catch value constant over a specified period of time held and then by a two-point controller with hysteresis regulates a hold value until the coil current is switched off becomes.

Fertigungsstreuungen und Abweichungen von der vorgegebenen Anordnung der Bauteile des Stellantriebs, insbesondere der Rückstellmittel, bewirken, daß die durch die Rückstellmittel vorgegebene Ruheposition nicht symmetrisch zu den Auflageflächen an den Elektromagneten ist. So kann es zu einem starken Aufprall der Ankerplatte auf einen Elektromagneten kommen, wenn die Ankerplatte von dem einem Elektromagneten zu dem anderer. bewegt wird. Der Aufprall erzeugt ein lautes Geräusch.Production variations and deviations from the specified Arrangement of the components of the actuator, in particular the Reset means cause by the reset means specified rest position not symmetrical to the contact surfaces on the electromagnet. So it can become a strong one Impact of the anchor plate on an electromagnet, when the armature plate moves from one electromagnet to another. is moved. The impact creates a loud noise.

Immer strengere gesetzliche Grenzwerte zur Schallabstrahlung eines Kraftfahrzeugs und Anforderungen nach einer leise laufenden Brennkraftmaschine setzen für eine Serientauglichkeit des Steligeräts zwingend voraus, daß die Schallerzeugung durch das Stellgerät gering ist.Ever stricter legal limits for sound radiation of a motor vehicle and requirements for a quiet running Set the internal combustion engine for series suitability of the control unit is mandatory that the sound generation is low due to the actuator.

Die Aufgabe der Erfindung ist es, ein Verfahren zum Steuern eines Stellgeräts zu schaffen, das die Schallerzeugung beim Aurtreffen einer Ankerplatte auf einen Elektromagneten verringert.The object of the invention is a method for control to create an actuator that the sound generation at Meeting of an anchor plate on an electromagnet reduced.

Die Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Die Lösung zeichnet sich dadurch aus, daß während der Bremswert als Sollwert für den Strom vorgegeben ist, durch den Strom ein Bremsfeld hervorgerufen wird, das eine Kraft erzeugt, die entgegengesetzt zu der Beschleunigungskraft gerichtet ist, die auf die Ankerplatte wirkt. Die Beschleunigungskraft wird hervorgerufen durch die Spannung der Federn. Durch das Bremsfeld wird die Aufprall-Geschwindigkeit der Ankerplatte reduziert. Die Lösung hat außerdem den Vorteil, daß ein Verschleiß des Stellantriebs verringert ist.The object is achieved by the features of patent claim 1. The solution is characterized in that during the Braking value is specified as the setpoint for the current by the current is causing a braking field that is a force generated that directed opposite to the acceleration force that acts on the anchor plate. The acceleration force is caused by the tension of the springs. The impact speed of the anchor plate is determined by the braking field reduced. The solution also has the advantage that wear on the actuator is reduced.

In vorteilhaften Ausgestaltungen der Erfindung hängt die Zeitdauer T2 ab von der Drehzahl und einer Lastgröße oder von einer Geschwindigkeit der Ankerplatte oder der Bremswert hängt ab von der Drehzahl und der Lastgröße oder der Geschwindigkeit der Ankerplatte. Dies ermöglicht ein gezieltes, unsymmetrisches Verstellen der Ruheposition der Ankerplatte, ohne daß beim Betrieb des Stellgeräts die Schallabstrahlung erhöht wird. Dies ist besonders zweckmäßig, wenn das Stellglied ein Auslaßventil ist, da dies gegen den Abgasdruck im Zylinder geöffnet werden muß.In advantageous embodiments of the invention, the Time period T2 from the speed and a load size or from a speed of the anchor plate or the braking value depends on speed and load size or speed the anchor plate. This enables a targeted, asymmetrical adjustment of the rest position of the anchor plate, without the sound radiation when operating the actuator is increased. This is particularly useful when the actuator is an exhaust valve, as this is against the exhaust gas pressure in the Cylinder must be opened.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Further advantageous embodiments of the invention are in marked the subclaims.

Ausführungsbeispiele der Erfindung sind anhand der schematischen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Anordnung eines Stellgeräts in einer Brennkraftmaschine,
Figur 2
eine Schaltungsanordnung des Treibers für das Stellgerät,
Figur 3
ein Blockschaltbild einer Steuereinrichtung zum Steuern des Stellgeräts,
Figur 4
ein Zustandsdiagramm des Blocks B6 der Steuereinrichtung,
Figur 5a-e
den zeitlichen Verlauf der Steuerspannungen, des Stroms durch die erste und zweite Spule, der Position der Ankerplatte und eines Ausgangssignals einer Komparatoreinrichtung 7.
Embodiments of the invention are explained in more detail with reference to the schematic drawings. Show it:
Figure 1
an arrangement of an actuator in an internal combustion engine,
Figure 2
a circuit arrangement of the driver for the actuator,
Figure 3
2 shows a block diagram of a control device for controlling the control device,
Figure 4
a state diagram of block B6 of the control device,
Figure 5a-e
the time course of the control voltages, the current through the first and second coil, the position of the armature plate and an output signal of a comparator device 7.

Elemente gleicher Konstruktion und Funktion sind figurenübergreifend mit den gleichen Bezugszeichen versehen.Elements of the same construction and function are common to all figures provided with the same reference numerals.

Ein Stellgerät 1 (Figur 1) umfaßt einen Stellantrieb 11 und ein Stellglied 12, das beispielsweise als Gaswechselventil ausgebildet ist und einen Schaft 121 und einen Teller 122 hat. Der Stellantrieb 11 hat ein Gehäuse 111, in dem ein erster und ein zweiter Elektromagnet angeordnet sind. Der erste Elektromagnet hat einen ersten Kern 112, in den in einer ringförmigen Nut eine erste Spule 113 eingebettet ist. Der zweite Elektromagnet hat einen zweiten Kern 114, in den in einer weiteren ringförmigen Nut eine zweite Spule 115 eingebettet ist. Der erste Kern 112 hat eine Ausnehmung 116a, die eine Führung für den Schaft 121 bildet. Der zweite Kern 114 hat eine weitere Ausnehmung 116, die auch als Führung des Schafts 121 dient. Eine Ankerplatte 117 ist in dem Gehäuse 111 beweglich zwischen dem ersten Kern 112 und dem zweiten Kern 114 angeordnet. Eine erste Feder 118a und eine zweite Feder 118b spannen die Ankerplatte 117 in eine vorgegebene Ruheposition R vor. An actuator 1 (Figure 1) comprises an actuator 11 and an actuator 12, for example as a gas exchange valve and a shaft 121 and a plate 122 Has. The actuator 11 has a housing 111 in which a first and a second electromagnet are arranged. The first Electromagnet has a first core 112, in which in a annular groove a first coil 113 is embedded. The second electromagnet has a second core 114, in which in a second coil 115 is embedded in a further annular groove is. The first core 112 has a recess 116a that forms a guide for the shaft 121. The second core 114 has a further recess 116, which is also used as a guide for the Shaft 121 serves. An anchor plate 117 is in the housing 111 movable between the first core 112 and the second Core 114 arranged. A first spring 118a and a second Spring 118b tension the anchor plate 117 into a predetermined one Rest position R before.

Das Stellgerät 1 ist mit einem Zylinderkopf 21 starr verbunden. Ein Ansaugkanal 22, ein Abgaskanal 22a und ein Zylinder mit einem Kolben 24 sind dem Zylinderkopf 21 zugeordnet. Der Kolben 24 ist über eine Pleuelstange 25 mit einer Kurbelwelle 26 gekoppelt.Actuator 1 is rigidly connected to a cylinder head 21. An intake passage 22, an exhaust passage 22a and a cylinder with a piston 24 are assigned to the cylinder head 21. The Piston 24 is connected to a crankshaft via a connecting rod 25 26 coupled.

Eine Steuereinrichtung 3 ist vorgesehen, die Signale von Sensoren erfaßt und Stellsignale für das Stellgerät 1 erzeugt. Die Sensoren sind ein Positionsgeber 4, der eine Position X der Ankerplatte 117 erfaßt, ein erster Strommesser 5a, der den Istwert I_AV1 des Stroms durch die erste Spule 113 erfaßt, ein zweiter Strommesser 5b, der einen Istwert I_AV2 des Stroms durch die zweite Spule 115 erfaßt, ein Drehzahlgeber 27, der die Drehzahl N der Kurbelwelle 26 erfaßt, oder ein Lasterfassungssensor 28, der vorzugsweise ein Luftmassenmesser oder ein Drucksensor ist. Neben den erwähnten Sensoren können auch weitere Sensoren vorhanden sein.A control device 3 is provided, the signals from sensors detected and control signals for the actuator 1 generated. The sensors are a position transmitter 4, which has a position X the anchor plate 117 detects a first ammeter 5a, the detects the actual value I_AV1 of the current through the first coil 113, a second ammeter 5b, which has an actual value I_AV2 of Current detected by the second coil 115, a speed sensor 27, which detects the rotational speed N of the crankshaft 26, or a Load detection sensor 28, which is preferably an air mass meter or is a pressure sensor. In addition to the sensors mentioned there may also be other sensors.

Eine Komparatoreinrichtung 7 ist vorgesehen, die abhängig von der erfaßten Position X und vorgegebenen Schwellenwerten K1, K2, K3, K4 ein Pulssignal erzeugt. Die Komparatoreinrichtung 7 hat vier analoge Schwellenwertvergleicher, die jeweils bei einem der Schwellenwerte K1, K2, K3, K4 ihr Ausgangssignal ändern. Durch eine logische Verknüpfung der Schwellenwertvergleicher entsteht dann das in der Figur 5e aufgetragene Pulssignal der Komparatoreinrichtung. Die Schwellenwerte K1, K2, K3, K4 (Figur 5d) liegen beispielsweise bei folgenden relativen Abstandswerten, die bezogen sind auf den Abstand der Anlagefläche der Ankerplatte 117 bei dem ersten Elektromagneten und der Anlagefläche der Ankerplatte 117 bei dem zweiten Elektromagneten: K1 bei 5%, K2 bei 20%, K3 bei 80% und K4 bei 95%. A comparator device 7 is provided which depends on the detected position X and predetermined threshold values K1, K2, K3, K4 generates a pulse signal. The comparator device 7 has four analog threshold comparators, each at one of the threshold values K1, K2, K3, K4 their output signal to change. By logically linking the threshold comparators The pulse signal plotted in FIG. 5e then arises the comparator device. The threshold values K1, K2, K3, K4 (Figure 5d) are, for example, the following relative Distance values that are related to the distance of the contact surface the armature plate 117 in the first electromagnet and the contact surface of the anchor plate 117 in the second Electromagnets: K1 at 5%, K2 at 20%, K3 at 80% and K4 at 95%.

Ein Zeitglied 8 (Figur 1), das vorzugsweise als sogenannte "CAPCOM" -Einheit ausgebildet ist, erfaßt die Pulsdauer des von der. Komparatoreinrichtung 7 erzeugten Pulssignals und leitet die den Pulsdauern zugeordneten Zeitdauern T_C2, T_O2 als digitale Daten an die Steuereinrichtung 3 weiter.A timer 8 (Figure 1), preferably as a so-called "CAPCOM" unit is formed, detects the pulse duration of the of the. Comparator device 7 generated pulse signal and directs the time periods T_C2, T_O2 assigned to the pulse durations as digital data to the control device 3.

In erster Näherung ist die Zeitdauer T_C2 ein Maß für die mittlere Geschwindigkeit der Ankerplatte zwischen den Schwellenwerten K3 und K4. Die ebenso von dem Zeitglied 8 ermittelte Zeitdauer T_O2 ist in erster Näherung ein Maß für die mittlere Geschwindigkeit der Ankerplatte 117 zwischen den Schwellenwerten K2 und K1.In a first approximation, the time period T_C2 is a measure of the average speed of the anchor plate between the threshold values K3 and K4. The same as determined by the timer 8 Duration T_O2 is a measure of the first approximation average speed of the anchor plate 117 between the Thresholds K2 and K1.

Treiber 6a, 6b sind vorgesehen, die die Stellsignale der Steuereinrichtung 3 verstärken. Eine Schaltungsanordnung (Figur 2) des Treibers 6a, 6b hat einen ersten Transistor 61 dessen Basisanschluß mit einem Ausgang der Steuereinrichtung 3 verbunden ist und an dem das Spannungssignal US11 anliegt. Ferner hat die Schaltungsanordnung einen zweiten Transistor 62, dessen Basisanschluß mit der Steuereinrichtung 3 verbunden ist und an dem das Spannungssignal US21 anliegt. Die Schaltungsanordnung weist ferner eine erste Diode 63, eine zweite Diode 64 und einen Kondensator 65 auf.Drivers 6a, 6b are provided which amplify the control signals of the control device 3. A circuit arrangement (FIG. 2) of the driver 6a, 6b has a first transistor 61 whose base connection is connected to an output of the control device 3 and to which the voltage signal U S11 is present. Furthermore, the circuit arrangement has a second transistor 62, the base connection of which is connected to the control device 3 and to which the voltage signal U S21 is present. The circuit arrangement also has a first diode 63, a second diode 64 and a capacitor 65.

Liegt an dem basisseitigen Anschluß des ersten Transistors 61 ein hoher Spannungspegel an, so wird der erste Transistor 61 vom Kollektor zum Ermitter leitend. Liegt zusätzlich am zweiten Transistor 62 an dem basisseitigen Anschluß ein hoher Spannungspegel an, so wird auch der zweite Transistor 62 leitend. An der ersten Spule 113 fällt dann annäherungsweise die Versorgungsspannung UV ab. Der Strom I_AV1 durch die Spule 113 steigt dann an, bis die gesamte Versorgungsspannung UV an dem Innenwiderstand der ersten Spule 113 abfällt. Wird anschließend am basisseitigen Anschluß des ersten Transistors 61 ein niedriger Spannungspegel vorgegeben, so sperrt der Transistor 61 und die Diode 63 wird als Freilaufdiode leitend. Der Strom I_AV1 durch die Spule nimmt dann ab. Durch das Hoch- und Niedrigsetzen des Spannungspegels des Spannungssignals US11 erfolgt eine Zweipunktregelung des Stroms I_AV1 durch die Spule.If a high voltage level is present at the base-side connection of the first transistor 61, the first transistor 61 becomes conductive from the collector to the emitter. If a high voltage level is additionally present at the base transistor on the second transistor 62, the second transistor 62 also becomes conductive. The supply voltage U V then drops approximately at the first coil 113. The current I_AV1 through the coil 113 then increases until the entire supply voltage U V across the internal resistance of the first coil 113 drops. If a low voltage level is subsequently specified at the base-side connection of the first transistor 61, the transistor 61 blocks and the diode 63 becomes conductive as a freewheeling diode. The current I_AV1 through the coil then decreases. By setting the voltage level of the voltage signal U S11 high and low, a two-point control of the current I_AV1 through the coil takes place.

Wird sowohl der Spannungspegel des Spannungsignales US11 als auch der Spannungspegel des Spannungssignals US21 von hoch auf niedrig geschaltet, so werden sowohl die erste Diode 63 als auch die zweite Diode 64 leitend und der Strom durch die erste Spule 113 wird, getrieben durch die Ladung des Kondensators 75, wesentlich schneller verringert, als wenn ein Freilauf lediglich über die erste Diode 63 erfolgt. Dadurch ist ein sehr schnelles Reduzieren des Stroms I_AV1 durch die erste Spule 113 gewährleistet.If both the voltage level of the voltage signal U S11 and the voltage level of the voltage signal U S21 are switched from high to low, both the first diode 63 and the second diode 64 become conductive and the current through the first coil 113 is driven by the charge of the capacitor 75 is reduced considerably faster than if freewheeling is only effected via the first diode 63. This ensures a very rapid reduction in the current I_AV1 through the first coil 113.

Die Schaltungsanordnung des Treibers 6b ist analog zu der in Figur 2 dargestellten Schaltungsanordnung. Sie unterscheidet sich lediglich darin, daß an dem basisseitigen Anschluß des ersten Transistors 61 das Spannungssignal US12 anliegt und an dem Basisanschluß des zweiten Transistors 62 das Spannungssignal US22 anliegt und daß der Emitter des ersten Transistors 61 und der Kollektor des zweiten Transistors 62 elektrisch leitend verbunden sind mit der zweiten Spule 115.The circuit arrangement of driver 6b is analogous to the circuit arrangement shown in FIG. 2. The only difference is that the voltage signal U S12 is present at the base connection of the first transistor 61 and the voltage signal U S22 is applied to the base connection of the second transistor 62, and that the emitter of the first transistor 61 and the collector of the second transistor 62 are electrically conductive are connected to the second coil 115.

Figur 3 zeigt ein Blockschaltbild der Steuereinrichtung 3 zum Steuern des elektromechanischen Stellgeräts 1. In einem Block B1 wird ein Fangwert I_F1 aus einem Kennfeld ermittelt und zwar abhängig von der Drehzahl N und dem Luftmassenstrom MAF. Die Werte des Kennfelds sind an einem Motorprüfstand oder durch Simulationen so ermittelt, daß Wärmeverluste in der jeweiligen Spule gering sind.Figure 3 shows a block diagram of the control device 3 for Controlling the electromechanical actuator 1. In one block B1, a catch value I_F1 is determined from a map and depending on the speed N and the air mass flow MAF. The values of the map are on an engine test bench or determined by simulations so that heat losses in the respective Coil are low.

In einer Summierstelle S1 wird die Differenz des Sollwertes T_C2* und der tatsächlichen Zeitdauer T_C2 berechnet. Der Sollwert T_C2* ist fest vorgegeben. Er kann aber alternativ auch aus einem Kennfeld abhängig von mindestens einer von den Sensoren erfaßten Größe ermittelt werden. Ein Block B2 umfaßt einen Integrator, der abhängig von der Differenz des Sollwertes T_C2* und der tatsächlichen Zeitdauer T_C2 einen Korrekturwert berechnet, mit der in der Summierstelle S2 der Fangwert I_F korrigiert wird. Dadurch werden Einflüsse durch Fertigungsstreuung und Alterung des Stellgeräts berücksichtigt.The difference of the setpoint is in a summing point S1 T_C2 * and the actual time period T_C2 calculated. The Setpoint T_C2 * is fixed. But it can alternatively also from a map dependent on at least one of the Sensors detected size can be determined. A block B2 comprises an integrator that depends on the difference of the setpoint T_C2 * and the actual time period T_C2 a correction value calculated with the catch value in the summing point S2 I_F is corrected. As a result, influences from manufacturing spread and aging of the actuator is taken into account.

In einem Block B3 wird ein Haltewert I_H abhängig von der Drehzahl N und dem Luftmassenstrom MAF aus einem Kennfeld ermitteit. In einem Block B4 wird ein Bremswert aus einem Kennfeld abhängig von der Drehzahl N und dem Luftmassenstrom MAF und/oder abhängig von dem Integral über die Abweichung des Sollwertes T_O2* und der tatsächlichen Zeitdauer T_O2 ermittelt. Der Sollwert T_O2* ist fest vorgegeben. Er kann aber alternativ auch aus einem Kennfeld abhängig von mindestens einer von den Sensoren erfaßten Größe ermittelt werden.In a block B3, a hold value I_H is dependent on the Determine speed N and the air mass flow MAF from a map. In a block B4, a braking value is converted from a map depending on the speed N and the mass air flow MAF and / or depending on the integral about the deviation of the Setpoint T_O2 * and the actual time period T_O2 are determined. The setpoint T_O2 * is fixed. But he can alternatively, depending on at least one map a size detected by the sensors.

In einem Block B5 wird die Zeitdauer T2 aus einem Kennfeld abhängig von der Drehzahl N und dem Luftmassenstrom MAF und/oder dem Integral der Differenz des Sollwertes T_O2* und der tatsächlichen Zeitdauer T_O2 ermittelt.In a block B5, the time period T2 becomes a map depending on the speed N and the mass air flow MAF and / or the integral of the difference between the setpoint T_O2 * and the actual time period T_O2 determined.

In einem Block B6 wird ermittelt, ob der Fangwert I_F1, der Haltewert I_H, der Bremswert I_B oder ein Nullwert I_N (z. B. null Ampere) als Sollwert I_SP1 des Stroms für einen Regler B7 vorgegeben wird. Die Regelgröße des Reglers B7 ist der Strom durch die erste Spule 113. Die Funktion des Blocks B6 wird weiter unten anhand der Figur 4 beschrieben.In block B6 it is determined whether the catch value I_F1, the Hold value I_H, the braking value I_B or a zero value I_N (e.g. zero amps) as the setpoint I_SP1 of the current for a controller B7 is specified. The controlled variable of controller B7 is the Current through the first coil 113. The function of block B6 is described below with reference to FIG. 4.

Die Differenz des in dem Block B6 ermittelten Sollwertes I_SP1 und des Istwertes I_AV1 des Stroms durch die erste Spule 113 ist die Regeldifferenz des als Zweipunktregler mit Hysterese ausgebildeten Reglers B7. Die Stellgrößen des Reglers B7 sind die Spannungssignale US11 und US21.The difference between the setpoint I_SP1 determined in block B6 and the actual value I_AV1 of the current through the first coil 113 is the control difference of the controller B7 designed as a two-point controller with hysteresis. The manipulated variables of the controller B7 are the voltage signals U S11 and U S21 .

In der Figur 3 ist das Blockschaltbild beispielhaft für die Berechnung der Stellsignale für die erste Spule 113 dargestellt. Die Berechnung der Stellsignale für die zweite Spule, also der Spannungssignale US12, US22 erfolgt analog, lediglich die Zeitdauern T_C2, T_C2* sind jeweils durch die Zeitdauern T_O2, T_O2* zu ersetzen. Die Ausgangsgröße des Blocks B6 ist dann der Sollwert I_SP2 des Stroms durch die zweite Spule 115, ein Regler B8, der im Aufbau gleich ist wie der Regler B7 hat als Regelgröße den Strom durch die zweite Spule 115 und hat als Stellgrößen die Spannungssignale US12 und US22.FIG. 3 shows the block diagram as an example for the calculation of the control signals for the first coil 113. The control signals for the second coil, that is to say the voltage signals U S12 , U S22, are calculated analogously, only the time periods T_C2, T_C2 * are to be replaced by the time periods T_O2, T_O2 *. The output variable of block B6 is then the setpoint I_SP2 of the current through the second coil 115, a controller B8, which has the same structure as the controller B7 has the current through the second coil 115 as a controlled variable and has the voltage signals U S12 and U S22 .

Figur 4 zeigt das Zustandsdiagramm des Blocks B6 beispielhaft für die Berechnung des Sollwertes I_SP1 des Stroms durch die erste Spule 113. Ein erster Zustand Z1 ist der Start, von dem der Übergang in einem Zustand Z2 erfolgt, wenn die Bedingung E1 erfüllt ist; daß ein Sollwert X_SP der Position X gleich einer Schließposition C der Ankerplatte 117 ist. In dem Zustand Z2 ist der Sollwert I_SP1 der Fangwert I_F.FIG. 4 shows the state diagram of block B6 as an example for the calculation of the setpoint I_SP1 of the current through the first coil 113. A first state Z1 is the start from which the transition to a state Z2 occurs when the condition E1 is fulfilled; that a setpoint X_SP is the same as position X. a closed position C of the anchor plate 117. In that condition Z2 is the setpoint I_SP1 the catch value I_F.

Aus dem Zustand Z1 erfolgt ein Ubergang in einen Zustand Z3 falls eine Bedingung E2 erfüllt ist und zwar, daß der Sollwert X_SP der Position X gleich einer Offenposition O ist. In dem Zustand Z3 ist der Sollwert I_SP1 gleich dem Nullwert I_N.A transition from state Z1 to state Z3 takes place if a condition E2 is fulfilled, namely that the setpoint X_SP of position X is equal to an open position O. In the state Z3, the setpoint I_SP1 is equal to the zero value IN.

Ein Übergang aus dem Zustand Z2 in einen Zustand Z4 erfolgt, wenn die Zeitdauer dt seit der Einnahme des Zustandes Z2 größer ist, als eine Zeitdauer T0. Die Zeitdauer T0 ist entweder fest vorgegeben oder bestimmt durch das Erkennen des Auftreffens der Ankerplatte auf den ersten Elektromagneten. A transition from state Z2 to state Z4 takes place if the length of time dt has increased since entering state Z2 is as a time period T0. The period T0 is either predefined or determined by recognizing the impact the anchor plate on the first electromagnet.

In dem Zustand Z4 ist der Sollwert I_SP1 des Stroms durch die erste Spule 113 der Haltewert I_H. Der Übergang aus dem Zustand Z4 in einen Zustand Z5 erfolgt, wenn eine Bedingung E4, daß der Soliwert X_SP der Position X der Ankerplatte 117 die Offenposition O ist, erfüllt ist.In the state Z4, the setpoint I_SP1 of the current through the first coil 113 the holding value I_H. The transition from the state Z4 takes place in a state Z5 if a condition E4, that the Soliwert X_SP the position X of the anchor plate 117 die Open position O is fulfilled.

In dem Zustand Z5 ist der Sollwert I_SP1 des Stroms durch die erste Spule 113 der Nullwert I_N. Ein Übergang von dem Zustand Z5 in einen Zustand Z6 erfolgt, wenn die Bedingung E5, daß die Zeitdauer dt seit der Einnahme des Zustands Z5 größer ist als eine Zeitdauer T1, erfüllt ist. Die Zeitdauer T1 ist so vorgegeben, daß ein Übergang von dem Zustand Z5 in den Zustand Z6 frühestens dann erfolgt, wenn die Ankerplatte 117 beginnt, sich von dem ersten Elektromagneten wegzubewegen.In the state Z5, the setpoint I_SP1 of the current through the first coil 113 the zero value I_N. A transition from the state Z5 takes place in a state Z6 if the condition E5, that the length of time dt has increased since entering state Z5 is fulfilled as a time period T1. The time period is T1 predefined so that a transition from the state Z5 to the state Z6 occurs at the earliest when the anchor plate 117 begins to move away from the first electromagnet.

In dem Zustand Z6 ist der Sollwert I_SP1 des Stroms durch die erste Spule 113 der Bremswert I_B. Die Bedingung E6 für einen Übergang von dem Zustand Z6 in den Zustand Z3 ist, daß die Zeitdauer dt seit der Einnahme des Zustands Z6 größer ist als die Zeitdauer T2. In dem Zustand Z3 ist der Sollwert I_SP1 des Stroms durch die erste Spule 113 der Nullwert I_N. Die Bedingung E7 für den Übergang von dem Zustand Z3 in den Zustand Z2 ist, daß der Sollwert X_SP der Position der Ankerplatte gleich der Schließposition C ist.In the state Z6, the setpoint I_SP1 of the current through the first coil 113 the braking value I_B. The condition E6 for one Transition from state Z6 to state Z3 is that the The time dt since the state Z6 was taken is greater than the period T2. In the state Z3, the setpoint is I_SP1 of the current through the first coil 113 is the zero value I_N. The Condition E7 for the transition from state Z3 to state Z2 is that the setpoint X_SP is the position of the anchor plate is equal to the closed position C.

Das Zustandsdiagramm des Blocks B6 zum Ermitteln des Sollwertes I_SP2 des Stroms durch die zweite Spule 115 entspricht dem Zustandsdiagramm gemäß Figur 4 mit dem Unterschied, daß jeweils die Schließposition C durch die Offenposition O und umgekehrt zu ersetzen ist und daß der Sollwert I_SP1 durch den Sollwert I_SP2 zu ersetzen ist.The state diagram of block B6 for determining the setpoint I_SP2 corresponds to the current through the second coil 115 the state diagram of Figure 4 with the difference that in each case the closed position C through the open position O and is to be replaced the other way round and that the setpoint I_SP1 by the setpoint I_SP2 has to be replaced.

Figur 5a zeigt das Spannungssignal US11 und das Spannungssignal US12 (gepunktet dargestellt) aufgetragen über die Zeit t. FIG. 5a shows the voltage signal U S11 and the voltage signal U S12 (shown in dotted lines) plotted over time t.

Figur 5b zeigt das Spannungssignal US21 und das Spannungssignal US22 (punktiert dargestellt) aufgetragen über die Zeit t.FIG. 5b shows the voltage signal U S21 and the voltage signal U S22 (shown in dotted lines) plotted over time t.

Figur 5c zeigt den zugeordneten zeitlichen Verlauf des Istwertes I_AV1 des Stroms durch die erste Spule 113, und den zeitlichen Verlauf des Istwertes I_AV2 (punktiert dargestellt) des Stroms durch die zweite Spule 115.FIG. 5c shows the assigned time profile of the actual value I_AV1 of the current through the first coil 113, and the Time course of the actual value I_AV2 (shown in dotted lines) the current through the second coil 115.

Figur 5d zeigt die zugeordnete Position X der Ankerplatte 117 aufgetragen über die Zeit t.FIG. 5d shows the assigned position X of the anchor plate 117 plotted over time t.

Bis zu einem Zeitpunkt t1 ist der Sollwert des Stroms durch die erste Spule 113 der Haltewert I_H. Der Haltewert I_H ist derart vorgegeben, daß die durch den Strom durch die erste Spuie 113 hervorgerufene Kraft auf die Ankerplatte 117 ausreicht, um die Ankerplatte in Anlage mit dem ersten Elektromagneten zu halten und andererseits nur geringe Wärmeverluste auftreten.Up to a point in time t 1 , the setpoint value of the current through the first coil 113 is the hold value I_H. The holding value I_H is predetermined such that the force on the armature plate 117 caused by the current through the first coil 113 is sufficient to hold the armature plate in contact with the first electromagnet and, on the other hand, only slight heat losses occur.

An einem Zeitpunkt t1 ist für die Zeitdauer T1 der Nullwert I_N als Sollwert I_SP1 des Stroms durch die erste Spule 113 vorgegeben. Zu dem Zeitpunkt t1 werden sowohl das Spannungssignal US11 als auch das Spannungssignal US21 auf einen niedrigen Pegel gesetzt, so daß der Istwert I_AV1 des Stroms durch die erste Spule sehr schnell auf den Nullwert I_N abfällt. Nach Ablauf der Zeitdauer T1 ab dem Zeitpunkt t1 wird zu einem Zeitpunkt t2 der Bremswert I_B als Sollwert des Stroms durch die erste Spule 113 vorgegeben und zwar für die Zeitdauer T2. Wenn die Zeitdauer T2 abhängt von der Drehzahl und der Lastersatzgröße, vorzugsweise dem Luftmassenstrom, kann die Ruheposition R unsymmetrisch zu den Anlageflächen der Ankerplatte an den beiden Elektromagneten vorgegeben werden. Dies ist vorteilhaft, wenn das Stellglied als Auslaßventil ausgebildet ist, da daß Auslaßventil während des Übergangs von der Schließposition C in die Offenposition O gegen den hohen Zylinderinnendruck bewegt werden muß. Die Zeitdauer T1 ist vorzugsweise so gewählt, daß sich die Ankerplatte zum Zeitpunkt t2 noch nahe der Schließposition befindet (z.B. erst 3 % des Weges zwischen der Schließ- und der Offenposition zurückgelegt hat). So wird eine sehr gute Bremswirkung auf die Ankerplatte erreicht.At a point in time t 1 , the zero value I_N is specified as the setpoint I_SP1 of the current through the first coil 113 for the time period T1. At time t 1 , both the voltage signal U S11 and the voltage signal U S21 are set to a low level, so that the actual value I_AV1 of the current through the first coil drops very quickly to the zero value I_N. After the time period T1 has elapsed from the time t 1 , the braking value I_B is specified as the desired value of the current through the first coil 113 at a time t 2, namely for the time period T2. If the time period T2 depends on the speed and the load replacement size, preferably the air mass flow, the rest position R can be predetermined asymmetrically to the contact surfaces of the anchor plate on the two electromagnets. This is advantageous if the actuator is designed as an exhaust valve, since the exhaust valve must be moved against the high internal cylinder pressure during the transition from the closed position C to the open position O. The time period T1 is preferably chosen so that the anchor plate is still close to the closed position at time t 2 (for example, it has only covered 3% of the distance between the closed and the open position). A very good braking effect on the anchor plate is achieved.

Ab einem Zeitpunkt t4 wird als Sollwert I_SP1 des Stroms durch die erste Spule wieder der Nullwert I_N vorgegeben. Ab dem Zeitpunkt t8 wird der Sollwert I_SP1 des Stroms durch die erste Spule der Fangwert I_F vorgegeben und zwar für die Zeitdauer T0.From a time t 4 , the zero value I_N is again specified as the setpoint I_SP1 of the current through the first coil. From the time t 8 , the setpoint I_SP1 of the current through the first coil is given the catch value I_F, specifically for the period T0.

Zu einem Zeitpunkt t3 wird als Sollwert I_SP2 des Stroms durch die zweite Spule 115 der Fangwert I_F vorgegeben. Der Zeitpunkt t3 kann auch zeitlich nach dem Zeitpunkt t4 liegen.At a point in time t 3 , the catch value I_F is specified as the setpoint I_SP2 of the current through the second coil 115. The time t 3 can also be in time after the time t 4 .

Der zugehörige Verlauf der Position X der Ankerplatte zeigt, daß nach dem Zeitpunkt t1 die Ankerplatte zuerst in der Schließposition C bleibt und dann mit zunehmender Geschwindigkeit sich in Richtung der Offenposition O bewegt, bis ab dem Zeitpunkt t2 die Beschleunigung der Ankerplatte 117 verringert wird und die Ankerplatte zum Zeitpunkt t5 die Offenposition O erreicht.The associated course of position X of the anchor plate shows that after time t 1 the anchor plate first remains in the closed position C and then moves with increasing speed in the direction of the open position O until the acceleration of anchor plate 117 is reduced from time t 2 and the anchor plate reaches the open position O at time t 5 .

Die Erfindung ist nicht auf das beschriebene Ausführungsbeispiel beschränkt. Das Verfahren kann als Programm von einem Mikroprozessor abgearbeitet werden. Es kann aber ebenso auch durch eine Logikschaltung oder durch eine Analogschaltungsanordnung realisiert werden. Der Fangwert I_F und/ oder der Haltewert I_H und /oder der Bremswert I_B können auch fest vorgegebene Werte sein. The invention is not based on the described embodiment limited. The process can be run as a program by a Microprocessor are processed. But it can also do the same by a logic circuit or by an analog circuit arrangement will be realized. The catch value I_F and / or the Hold value I_H and / or brake value I_B can also be fixed be preset values.

Der Regler kann beispielsweise auch als ein Einpunktregler mit einem Zeitglied oder als ein Pulsweicenmodulations-Regler ausgebildet sein. Eine besonders niedrige Schallabstrahlung des Stellgeräts wird erreicht, wenn zusätzlich der Fangwert I_F reduziert wird und zwar für eine Zeitdauer, die abhängt von der Differenz des Sollwertes T_C2*, T_O2* und der tatsächlichen Zeitdauer T_C2, T_O2.
Der Fangwert hat beispielsweise den Wert acht Ampere, der Haltewert drei Ampere und der Bremswert zehn Ampere.
The controller can also be designed, for example, as a single-point controller with a timing element or as a pulse width modulation controller. A particularly low sound radiation from the control device is achieved if the catch value I_F is additionally reduced, specifically for a period of time that depends on the difference between the setpoint T_C2 *, T_O2 * and the actual period T_C2, T_O2.
The catch value is, for example, eight amperes, the hold value three amperes and the braking value ten amperes.

Claims (8)

  1. Method for controlling an electromechanical actuator, which has an actuating element (12) and an actuating drive (11), which has:
    a first electromagnet with a first coil (113), and a second electromagnet with a second coil (115), and
    a first and a second spring (118a, 118b), which prestress the armature plate (117) to a predetermined rest position (R), with the actuating drive (12) having an associated regulator (B7, B8) for each coil, the controlled variable of which regulator (B7, B8) is the current through the respective coil (113, 115), comprising the following successive steps:
    a hold value (I_H) is preset as a nominal value of the current through either the first or the second coil (113, 115) until a time (t1) at which the armature plate (117) is resting against the first or second electromagnet,
    a null value (I_N) is preset as the nominal value for a time period (T1),
    a braking value (I_B) is preset as the nominal value for the current through the same coil for the further time period (T2), in which the armature moves away from the first or the second electromagnet, and
    the null value (I_N) is preset as the nominal value.
  2. Method according to Claim 1, characterized in that a position sensor (4) is provided for detecting the position (X) of the armature plate (117), and in that the time period (T1) is dependent on the position (X).
  3. Method according to one of Claims 1 or 2, characterized in that the further time period (T2) is dependent on the rotation speed (N) and on a load variable.
  4. Method according to one of Claims 1 to 3, characterized in that the braking value (I_B) is dependent on the rotation speed (N) and the load variable.
  5. Method according to one of Claims 3 or 4, characterized in that the load variable is the air mass flow (MAF).
  6. Method according to one of the preceding claims, characterized in that the further time period (T2) is dependent on the speed of the armature plate (117).
  7. Method according to one of the preceding claims, characterized in that the braking value (I_B) is dependent on the speed of the armature plate (117).
  8. Method according to one of Claims 6 or 7, characterized in that the speed of the armature plate (117) is approximated by the time period (T_02, T_C2) which the armature plate (117) requires to move from a first threshold value (K2, K3) of the position (X) to a second threshold value (K1, K4) of the position (X).
EP98952541A 1997-10-15 1998-09-02 Method for controlling an electromechanical actuating device Expired - Lifetime EP1023533B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19745536A DE19745536C1 (en) 1997-10-15 1997-10-15 Method for controlling an electromechanical actuator
DE19745536 1997-10-15
PCT/DE1998/002599 WO1999019615A1 (en) 1997-10-15 1998-09-02 Method for controlling an electromechanical actuating device

Publications (2)

Publication Number Publication Date
EP1023533A1 EP1023533A1 (en) 2000-08-02
EP1023533B1 true EP1023533B1 (en) 2002-06-05

Family

ID=7845606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98952541A Expired - Lifetime EP1023533B1 (en) 1997-10-15 1998-09-02 Method for controlling an electromechanical actuating device

Country Status (5)

Country Link
US (1) US6483689B1 (en)
EP (1) EP1023533B1 (en)
JP (1) JP2001520494A (en)
DE (2) DE19745536C1 (en)
WO (1) WO1999019615A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002322C1 (en) * 2000-01-20 2001-08-30 Siemens Ag Method for controlling an actuator
JP3974575B2 (en) 2000-12-20 2007-09-12 シーメンス ヴィディーオー オートモーティヴ コーポレイション Air fuel module
DE10140432B4 (en) * 2001-08-17 2010-02-11 GM Global Technology Operations, Inc., Detroit Method and device for noise and vibration reduction on a solenoid valve
DE10315584B4 (en) * 2003-04-05 2015-01-08 Mahle Filtersysteme Gmbh Method for actuating an electromagnetic actuating device and device for carrying it out
FR2884349B1 (en) * 2005-04-06 2007-05-18 Moving Magnet Tech Mmt BITABLE POLARIZED ELECTROMAGNETIC ACTUATOR WITH QUICK ACTUATION
US7984706B2 (en) * 2007-12-03 2011-07-26 Continental Automotive Systems Us, Inc. Control method for closed loop operation with adaptive wave form of an engine fuel injector oil or fuel control valve
JP4587133B2 (en) * 2008-06-04 2010-11-24 株式会社デンソー Fuel supply device
GB2470211B (en) * 2009-05-14 2013-07-31 Gm Global Tech Operations Inc Hysteresis-type electronic controlling device for fuel injectors and associated method
DE102010022536A1 (en) * 2010-06-02 2011-12-08 Continental Automotive Gmbh Method and device for controlling a valve
DE102011075269B4 (en) * 2011-05-04 2014-03-06 Continental Automotive Gmbh Method and device for controlling a valve
JP5639970B2 (en) * 2011-08-03 2014-12-10 日立オートモティブシステムズ株式会社 Control method for electromagnetic valve, control method for electromagnetic suction valve of high-pressure fuel supply pump, and control device for electromagnetic drive mechanism of electromagnetic suction valve

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1538224A (en) 1975-02-25 1979-01-10 Cav Ltd Fuel supply systems for internal combustion engines
DE3609599A1 (en) * 1986-03-21 1987-09-24 Bosch Gmbh Robert METHOD FOR CONTROLLING THE DEACTIVATION TIME OF ELECTROMAGNETIC DEVICES, ESPECIALLY ELECTROMAGNETIC VALVES IN INTERNAL COMBUSTION ENGINES
JPH0621531B2 (en) * 1988-12-28 1994-03-23 いすゞ自動車株式会社 Control device for electromagnetically driven valve
JP2606740B2 (en) * 1989-05-01 1997-05-07 株式会社いすゞセラミックス研究所 Valve stepping drive
JPH07322044A (en) 1994-05-30 1995-12-08 Nec Corp Facsimile equipment with automatic dialling function
JPH07332044A (en) * 1994-06-07 1995-12-19 Honda Motor Co Ltd Operation position detector in solenoid driving device for engine valve
DE4433209C2 (en) * 1994-09-17 2000-02-03 Mtu Friedrichshafen Gmbh Device for the detection of the armature impact time when a solenoid valve is de-energized
DE4434684A1 (en) * 1994-09-28 1996-04-04 Fev Motorentech Gmbh & Co Kg Electromagnetic circuit armature movement control method e.g. for IC engine positioning element
JP3315275B2 (en) 1994-11-04 2002-08-19 本田技研工業株式会社 Control device for opposed two solenoid type solenoid valve
GB9422742D0 (en) 1994-11-11 1995-01-04 Lucas Ind Plc Drive circuit
JP3683300B2 (en) * 1995-01-27 2005-08-17 本田技研工業株式会社 Control device for internal combustion engine
DE19526683A1 (en) * 1995-07-21 1997-01-23 Fev Motorentech Gmbh & Co Kg Detecting striking of armature on electromagnetically actuated positioning device e.g. for gas exchange valves in IC engine
DE19735375C2 (en) * 1997-08-14 2002-04-04 Siemens Ag Solenoid valve, in particular for intake and exhaust valves of internal combustion engines

Also Published As

Publication number Publication date
DE19745536C1 (en) 1999-05-27
DE59804352D1 (en) 2002-07-11
EP1023533A1 (en) 2000-08-02
JP2001520494A (en) 2001-10-30
WO1999019615A1 (en) 1999-04-22
US6483689B1 (en) 2002-11-19

Similar Documents

Publication Publication Date Title
EP0986703B1 (en) Device for controlling an electromechanical setting device
DE69821194T2 (en) Device and method for controlling an electromagnetic valve
EP1023533B1 (en) Method for controlling an electromechanical actuating device
EP1108120B1 (en) Device for controlling a regulator
DE69821900T2 (en) Electronic control of the impact of an anchor in an electromagnetic actuator
DE102015206729A1 (en) Controlling a fuel injection solenoid valve
DE102004058971B4 (en) Method for controlling a piezoelectric actuator and control unit for controlling a piezoelectric actuator
EP1042767A1 (en) Device for controlling an electromechanical regulator
DE10046269B4 (en) Ansaugluftflussratensteuergerät
DE10248097A1 (en) Control method for an electromagnetic valve actuator
DE19610210A1 (en) Control method and device for IC engine throttle positioning element
WO1998057080A1 (en) Method and device for controlling an electromechanical adjustment device
EP1019624B1 (en) Method for controlling an electro mechanical regulating device
DE102004054776B3 (en) Method for calibrating a displacement sensor of a rotary actuator device for controlling a gas exchange valve of an internal combustion engine
DE19834213B4 (en) Method for controlling an electromechanical actuating device
EP1212761B1 (en) Method for controlling an electromechanical actuator
DE4340372A1 (en) Recognition of idling condition of IC engine
DE10002322C1 (en) Method for controlling an actuator
DE10340975A1 (en) Method for control of adjustment member, e.g. for piezoactor driven fuel injection valve, in which reference stroke of fuel injection valve can be attained by engagement of piezoactor by reference charge
EP1090209B1 (en) Method for starting an electromechanical regulating device especially designed for controlling the charge cycle in an internal combustion engine
DE102015207274A1 (en) Method for noise-reducing control of switchable valves, in particular injection valves of an internal combustion engine of a motor vehicle
DE19849036C2 (en) Method and device for regulating an electromechanical actuator
DE102017209692A1 (en) A method for determining an injection start delay time at a fuel injector
DE102016203645A1 (en) Method for controlling a solenoid valve
DE19714409A1 (en) Electromagnetic control device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20011024

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59804352

Country of ref document: DE

Date of ref document: 20020711

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020814

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080912

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080918

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080919

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090902

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090902