EP1023533A1 - Method for controlling an electromechanical actuating device - Google Patents

Method for controlling an electromechanical actuating device

Info

Publication number
EP1023533A1
EP1023533A1 EP98952541A EP98952541A EP1023533A1 EP 1023533 A1 EP1023533 A1 EP 1023533A1 EP 98952541 A EP98952541 A EP 98952541A EP 98952541 A EP98952541 A EP 98952541A EP 1023533 A1 EP1023533 A1 EP 1023533A1
Authority
EP
European Patent Office
Prior art keywords
coil
value
setpoint
anchor plate
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98952541A
Other languages
German (de)
French (fr)
Other versions
EP1023533B1 (en
Inventor
Achim Koch
Hanspeter Zink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1023533A1 publication Critical patent/EP1023533A1/en
Application granted granted Critical
Publication of EP1023533B1 publication Critical patent/EP1023533B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0007Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using electrical feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0253Fully variable control of valve lift and timing using camless actuation systems such as hydraulic, pneumatic or electromagnetic actuators, e.g. solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2024Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit the control switching a load after time-on and time-off pulses
    • F02D2041/2027Control of the current by pulse width modulation or duty cycle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2031Control of the current by means of delays or monostable multivibrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2037Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit for preventing bouncing of the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2079Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements the circuit having several coils acting on the same anchor

Definitions

  • the invention relates to a method for controlling an electromechanical control device according to the preamble of claim 1. It relates in particular to a control device for controlling an internal combustion engine.
  • An open actuator (DE 195 26 683 AI) has an actuator, which is designed as a gas exchange valve, and an actuator.
  • the actuator has two electromagnets, between which an armature plate can be moved against the force of a restoring means by switching off the coil current on the holding electromagnet and switching on the coil current on the capturing electromagnet.
  • the coil current of the respective catching electromagnet is kept constant at a predetermined catch value for a predetermined period of time and then regulated by a two-point controller with hysteresis to a hold value until the coil current is switched on.
  • the object of the invention is to provide a method for controlling an actuating device which reduces the sound generation when an armature plate strikes an electromagnet.
  • the object is achieved by the features of patent claim 1.
  • the solution is characterized in that while the braking value is specified as the setpoint for the current, the current causes a braking field which generates a force which is directed counter to the acceleration force which acts on the armature plate.
  • the acceleration force is caused by the tension of the springs.
  • the impact speed of the anchor plate is reduced by the braking field.
  • the solution also has the advantage that wear on the actuator is reduced.
  • Time period T2 depends on the speed and a load size or a speed of the anchor plate or the braking value depends on the speed and the load size or speed of the anchor plate. This enables a targeted, asymmetrical adjustment of the rest position of the anchor plate without the sound radiation being increased during operation of the actuating device. This is particularly useful if the actuator is an exhaust valve, since this must be opened against the exhaust gas pressure in the cylinder.
  • FIG. 1 shows an arrangement of an actuator in an internal combustion engine
  • FIG. 2 shows a circuit arrangement of the driver for the control device
  • FIG. 3 shows a block diagram of a control device for controlling the control device
  • FIG. 4 shows a state diagram of block B6 of the control device
  • FIG. 5a-e shows the time course of the control voltages, the current through the first and second coil, the position of the armature plate and an output signal of a comparator device 7.
  • An actuator 1 (FIG. 1) comprises an actuator 11 and an actuator 12, which is designed, for example, as a gas exchange valve and has a shaft 121 and a plate 122.
  • the actuator 11 has a housing 111 in which a first and a second electromagnet are arranged.
  • the first electromagnet has a first core 112, in which a first coil 113 is embedded in an annular groove.
  • the second electromagnet has a second core 114, in which a second coil 115 is embedded in a further annular groove.
  • the first core 112 has a recess 116a, which forms a guide for the shaft 121.
  • the second core 114 has a further recess 116, which also serves as a guide for the shaft 121.
  • An anchor plate 117 is movably arranged in the housing 111 between the first core 112 and the second core 114.
  • a first spring 118a and a second spring 118b bias the anchor plate 117 into a predetermined rest position t on R.
  • the actuator 1 is rigidly connected to a cylinder head 21.
  • An intake duct 22, an exhaust duct 22a and a cylinder with a piston 24 are assigned to the cylinder head 21.
  • the piston 24 is coupled to a crankshaft 26 via a connecting rod 25.
  • a control device 3 which detects signals from sensors and generates control signals for the control device 1.
  • the sensors are a position sensor 4, which detects a position X of the armature plate 117, a first ammeter 5a, which detects the actual value I_AV1 of the current through the first coil 113, a second ammeter 5b, which detects an actual value I_AV2 of the current through the second coil 115 detects a speed sensor 27, which detects the speed N of the crankshaft 26, or a load detection sensor 28, which is preferably an air mass meter or a pressure sensor.
  • other sensors can also be present.
  • a comparator device 7 which generates a pulse signal depending on the detected position X and predetermined threshold values K1, K2, K3, K4.
  • the comparator device 7 has four analog threshold value comparators, each of which changes its output signal at one of the threshold values K1, K2, K3, K4.
  • the pulse signal of the comparator device which is plotted in FIG. 5e, then arises through a logical combination of the threshold value comparators.
  • the threshold values K1, K2, K3, K4 (FIG.
  • a timing element 8 (FIG. 1), which is preferably designed as a so-called “CAPCOM” unit, detects the pulse duration of the pulse signal generated by the comparator device 7 and forwards the time durations T_C2, T_02 assigned to the pulse durations to the control device 3 as digital data.
  • the time period T_C2 is a measure of the average speed of the anchor plate between the threshold values K3 and K4.
  • the time period T_02 also determined by the timer 8 is a measure of the average speed of the anchor plate 117 between the threshold values K2 and K1.
  • Drivers 6a, 6b are provided which amplify the control signals of the control device 3.
  • a circuit arrangement
  • FIG. 2 of the driver 6a, 6b has a first transistor 61 whose base connection is connected to an output of the control device 3 and to which the voltage signal U S n is present. Furthermore, the circuit arrangement has a second transistor 62, the base connection of which is connected to the control device 3 and to which the voltage signal U s2 ⁇ is present. The circuit arrangement also has a first diode 63, a second diode 64 and a capacitor 65.
  • the first transistor 61 becomes conductive from the collector to the emitter. If a high voltage level is additionally present at the second transistor 62 at the base-side connection, then the second transistor 62 also becomes conductive.
  • the supply voltage U v then drops approximately at the first coil 113.
  • the current I_AV1 through the coil 113 then increases until the entire supply voltage U v across the internal resistance of the first coil 113 drops. If a low voltage level is then specified at the base-side connection of the first transistor 61, the block Transistor 61 and the diooe 63 becomes conductive as a freewheeling diode.
  • the current I_AV1 through the coil then ate.
  • both the voltage level of the voltage signal Usn and the voltage level of the voltage signal U ⁇ 2 ⁇ are switched from high to low, both the first diode 63 and the second diode 64 become conductive and the current through the first coil 113 is driven by the charge of the capacitor 75, is reduced considerably more quickly than if e freewheeling takes place only via the first diode 63. This ensures a very rapid reduction in the current I_AV1 through the first coil 113.
  • the circuit arrangement of driver 6b is analogous to the circuit arrangement shown in FIG. 2. It differs only in that the voltage signal U S ⁇ 2 is present at the base-side connection of the first transistor 61 and the voltage signal U ⁇ 22 is applied to the base connection of the second transistor 62, and in that the emitter of the first transistor 61 and the collector of the second Transistors 62 are electrically conductively connected to the second coil 115.
  • FIG. 3 shows a block diagram of the control device 3 for controlling the electromechanical control device 1.
  • a catch value I_F1 is determined from a map, depending on the speed N and the air mass flow MAF. The values of the map are determined on an engine test stand or by simulations in such a way that heat losses m of the respective coil are low.
  • Em block B2 comprises an integrator which, depending on the difference between the setpoint T_C2 * and the actual time period T_C2, calculates a correction value with which the summing point S2 or the catch value I_F is corrected.
  • a hold value I_H is dependent on the
  • a braking value is determined from a characteristic field as a function of the speed N and the air mass flow MAF and / or as a function of the integral via the deviation of the target value T_02 * and the actual time period T_02.
  • the setpoint T_02 * is fixed. Alternatively, however, it can also be determined from a map depending on at least one variable detected by the sensors.
  • the time period T2 is determined from a map as a function of the speed N and the air mass flow MAF and / or the integral of the difference between the target value T_02 * and the actual time period T_02.
  • block B6 it is determined whether the catch value I_F1, the hold value I_H, the braking value I_B or a zero value I_N (eg zero amperes) is assigned as the setpoint I_SP1 of the current for a controller B7.
  • the controlled variable of the controller B7 is the current through the first coil 113. The function of the block B6 is described below with reference to FIG. 4.
  • the difference between the setpoint I_SP1 determined in block B6 and the actual value I_AV1 of the current through the first coil 113 is the control difference of the two-point controller with hy sterically trained regulator B7.
  • the block diagram is shown as an example for the calculation of the control signals for the first coil 113.
  • the control signals for the second coil ie the voltage signals U S ⁇ 2 , U s22, are calculated analogously, only the time periods T_C2, T_C2 * are to be replaced by the time periods T_02, T_02 *.
  • the output variable of block B6 is then the setpoint I_SP2 of the current through the second coil
  • em regulator B8 which is the same in construction as the regulator B7 nat as the controlled variable the current through the second coil 115 and has the voltage signals U ⁇ ⁇ 2 and U s22 as manipulated variables .
  • FIG. 4 shows the state diagram of block B6 as an example for the calculation of the setpoint I_SP1 of the current through the first coil 113.
  • the first state ZI is the start from which the transition takes place in a state Z2 when the condition E1 is fulfilled that em Setpoint X_SP of position X is equal to a closed position C of anchor plate 117.
  • the setpoint I_SP1 is the catch value I_F.
  • state ZI there is a transition to state Z3 if a condition E2 is fulfilled, specifically that the setpoint X_SP of position X is equal to an open position 0.
  • the setpoint I_SP1 is equal to the zero value I_N.
  • a transition from the state Z2 to a state Z4 takes place if the period dt since the state Z2 was taken is greater than a period T0.
  • the time period T0 is either fixed or determined by the detection of the impingement of the armature plate on the first electromagnet.
  • the setpoint I_SP1 of the current through the first coil 113 is the hold value I_H.
  • the transition from the state Z4 to a state Z5 takes place when a condition E4 that the setpoint X_SP of the position X of the anchor plate 117 is the open position 0 is fulfilled.
  • the setpoint I_SP1 of the current through the first coil 113 is the zero value I_N.
  • a transition from the state Z5 to a state Z6 takes place when the condition E5, in that the time period dt since the taking of the state Z5 is greater than a time period T1, is fulfilled.
  • the time period Tl is predetermined such that a transition from the state Z5 to the state Z6 occurs at the earliest when the armature plate 117 begins to move away from the first electromagnet.
  • the setpoint I_SP1 of the current through the first coil 113 is the braking value I_B.
  • the condition E6 for a transition from the state Z6 to the state Z3 is that the time period dt since the state Z6 was taken is greater than
  • the setpoint I_SP1 of the current through the first coil 113 is the zero value I_N.
  • the condition E7 for the transition from state Z3 to state Z2 is that the setpoint X_SP of the position of the anchor plate is equal to the closed position C.
  • the state diagram of block B6 for determining the setpoint I_SP2 of the current through the second coil 115 corresponds to the state diagram according to FIG. 4, with the difference that the closed position C by the open position 0 and
  • Figure 5a shows the voltage signal U ⁇ n and the voltage signal U ⁇ ⁇ 2 (shown in dotted lines) plotted over the Figure 5b shows the voltage signal U s2 ⁇ and the voltage signal Us22 (shown in dotted lines) plotted over time t.
  • FIG. 5c shows the assigned time profile of the actual value I_AV1 of the current through the first coil 113, and the time profile of the actual value I_AV2 (shown in dotted lines) of the current through the second coil 115.
  • FIG. 5d shows the assigned position X of the anchor plate 117 plotted against the time t.
  • the setpoint value of the current through the first coil 113 is the hold value I_H.
  • the holding value I_H is predetermined such that the force on the armature plate 117 caused by the current through the first coil 113 is sufficient to hold the armature plate in contact with the first electromagnet and, on the other hand, only slight heat losses occur.
  • the zero value I_N is specified as the setpoint I_SP1 of the current through the first coil 113 for the time period T1.
  • both the voltage signal U s n and the voltage signal U s2 ⁇ are set to a low level, so that the actual value I_AV1 of the current through the first coil drops very quickly to the zero value I_N.
  • the braking value I_B is specified as the desired value of the current through the first coil 113 at a time t 2 , for the time period T2.
  • the rest position R can be specified asymmetrically to the contact surfaces of the armature plate on the two electromagnets. This is advantageous if the actuator is used as an outlet valve is trained that the exhaust valve must be moved during the transition from the closed position C to the open position 0 against oen low cylinder pressure.
  • the time period Tl is preferably chosen so that the anchor plate at time t ; is still close to the closed position (e.g. has only covered 3% of the way between the closed and open positions). A very good braking effect on the anchor plate is achieved.
  • the first coil again specifies the zero value I_N as the setpoint I_SP1 of the current. From the time t 8 , the setpoint I_SP1 of the current through the first coil is given the catch value I_F, specifically for the period T0.
  • the catch value I_F is specified as the setpoint I_SP2 of the current through the second coil 115.
  • the time t 3 can also be in time after the time t 4 .
  • the associated course of the position X of the anchor plate shows that after the time ti the anchor plate first remains in the closed position C and then moves with increasing speed in the direction of the open position 0 until the acceleration of the anchor plate 117 decreases from time t 2 and the anchor plate reaches the open position 0 at time t 5 .
  • the invention is not limited to the exemplary embodiment described.
  • the method can be executed as a program by a microprocessor. However, it can also be implemented by a logic circuit or by an analog circuit arrangement.
  • the catch value I_F and / or the holding value I_H and / or the braking value I_B can also be fixed, predetermined values.
  • the controller can also be designed, for example, as a single-point controller with a timing element or as a pulse width modulation controller. A particularly low sound radiation from the actuator is achieved if the catch value I_F is additionally reduced, specifically for a period of time that depends on the difference between the setpoint T_C2 *, T_02 * and the actual period T_C2, T_02.
  • the catch value is, for example, eight amperes, the hold value three amperes and the braking value ten amperes.

Abstract

An actuating device has an actuating element (12) and an actuating drive (11). Said actuating drive has at least one electromagnet with a coil (113), a moveable retaining plate (117) and at least one spring (118a, 118b) which prestresses the retaining plate into a predetermined neutral position (R). The coil generates a retarding field whilst the retaining plate moves away from the coil for a predetermined period of time (T2).

Description

Beschreibungdescription
Verfanren zum Steuern eines elektromechanischen StellgeratsMethod for controlling an electromechanical actuator
Die Erfindung betrifft ein Verfanren zum Steuern eines elektromechanischen Stellgerats gemäß Oberbegriff des Patentanspruchs 1. Sie betrifft insbesondere ein Stellgerat zum Steuern einer Brennkraftmaschine.The invention relates to a method for controlling an electromechanical control device according to the preamble of claim 1. It relates in particular to a control device for controlling an internal combustion engine.
Ein oexanntes Stellgerat (DE 195 26 683 AI) hat ein Stellglied, aas als Gaswechselventil ausgecildet ist und einen Stellantrieb. Der Stellantrieb weist zwei Elektromagnete auf, zwischen denen jeweils gegen die Kraft eines Ruckstellmittels eine Ankerplatte durch Abschalten des Spulenstroms am haltenden Elektromagneten und Einschalten des Spulenstroms am fangenden Elektromagneten bewegt werden kann. Der Spulenstrom des jeweils fangenden Elektromagneten wird auf einen vorgegebenen Fangwert wahrend einer vorgegebenen Zeitdauer konstant gehalten und dann von einem Zweipunktregler mit Hysterese auf einen Haltewert geregelt bis der Spulenstrom aogeschaltet wird.An open actuator (DE 195 26 683 AI) has an actuator, which is designed as a gas exchange valve, and an actuator. The actuator has two electromagnets, between which an armature plate can be moved against the force of a restoring means by switching off the coil current on the holding electromagnet and switching on the coil current on the capturing electromagnet. The coil current of the respective catching electromagnet is kept constant at a predetermined catch value for a predetermined period of time and then regulated by a two-point controller with hysteresis to a hold value until the coil current is switched on.
Fertigungsstreuungen und Abweichungen von der vorgegebenen Anordnung der Bauteile des Stellantriebs, insbesondere der Ruckstellmittel, bewirken, daß die durch die Ruckstellmittel vorgegebene Ruheposition nicht symmetrisch zu den Auflageflachen an den Elektromagneten ist. So kann es zu einem starken Aufprall der Ankerplatte auf einen Elektromagneten kommen, wenn die Ankerplatte von dem einem Elektromagneten zu dem anderen bewegt w rd. Der Aufprall erzeugt ein lautes Geräusch.Production variations and deviations from the specified arrangement of the components of the actuator, in particular the restoring means, have the effect that the rest position specified by the restoring means is not symmetrical to the contact surfaces on the electromagnets. For example, the armature plate may collide strongly with an electromagnet if the armature plate is moved from one electromagnet to the other. The impact creates a loud noise.
Immer strengere gesetzliche Grenzwerte zur Schallabstrahlung eines Kraftfahrzeugs und Anforderungen nach einer leise lau- fenden Brennkraftmaschine setzen für eine Seπentauglichkeit oes Stellgerats zwingend voraus, daß die Schallerzeugung durch das Stellgerat gering ist.Ever stricter legal limits for sound radiation from a motor vehicle and requirements for a quietly running internal combustion engine are making it suitable for the sea oes control unit imperatively requires that the sound generation by the control unit is low.
Die Aufgabe der Erfindung ist es, ein Verfahren zum Steuern eines Stellgerats zu schaffen, das die Schallerzeugung beim Auftreffen einer Ankerplatte auf einen Elektromagneten verringert .The object of the invention is to provide a method for controlling an actuating device which reduces the sound generation when an armature plate strikes an electromagnet.
D e Aufgabe wird durch die Merkmale des Patentanspruchs 1 ge- lost. Die Losung zeichnet sich dadurch aus, daß wahrend der Bremswert als Sollwert für den Strom vorgegeben ist, durch den Strom ein Bremsfeld hervorgerufen wird, das eine Kraft erzeugt, die entgegengesetzt zu der Beschleunigungskraft gerichtet ist, die auf die Ankerplatte wirkt. Die Beschleuni- gungskraft wird hervorgerufen durch die Spannung der Federn. Durcn das Bremsfeld wird die Aufprall-Geschwindigkeit der Ankerplatte reduziert. Die Losung hat außerdem den Vorteil, daß ein Verschleiß des Stellantriebs verringert ist.The object is achieved by the features of patent claim 1. The solution is characterized in that while the braking value is specified as the setpoint for the current, the current causes a braking field which generates a force which is directed counter to the acceleration force which acts on the armature plate. The acceleration force is caused by the tension of the springs. The impact speed of the anchor plate is reduced by the braking field. The solution also has the advantage that wear on the actuator is reduced.
In vorteilhaften Ausgestaltungen der Erfindung hangt dieIn advantageous embodiments of the invention, the
Zeitdauer T2 ab von der Drehzahl und einer Lastgroße oder von einer Geschwindigkeit der Ankerplatte oder der Bremswert hangt ab von der Drehzahl und der Lastgroße oder der Geschwindigkeit der Ankerplatte. Dies ermöglicht ein gezieltes, unsymmetrisches Verstellen der Ruheposition der Ankerplatte, ohne daß beim Betrieb des Stellgerats die Schallabstrahlung erhöht wird. Dies ist besonders zweckmäßig, wenn das Stellglied ein Auslaßventil ist, da dies gegen den Abgasdruck im Zylinder geöffnet werden muß.Time period T2 depends on the speed and a load size or a speed of the anchor plate or the braking value depends on the speed and the load size or speed of the anchor plate. This enables a targeted, asymmetrical adjustment of the rest position of the anchor plate without the sound radiation being increased during operation of the actuating device. This is particularly useful if the actuator is an exhaust valve, since this must be opened against the exhaust gas pressure in the cylinder.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den ünteranspruchen gekennzeichnet.Further advantageous embodiments of the invention are characterized in the subordinate claims.
Ausfuhrungsbeispiele der Erfindung sind anhand der schemati- sehen Zeichnungen naher erläutert. Es zeigen: Figur 1 eine Anordnung eines Stellgerats in einer Brennkraftmaschine ,Exemplary embodiments of the invention are explained in more detail with reference to the schematic drawings. Show it: FIG. 1 shows an arrangement of an actuator in an internal combustion engine,
Figur 2 eine Schaltungsanordnung des Treibers für das Stell- gerat,FIG. 2 shows a circuit arrangement of the driver for the control device,
Figur 3 ein Blockschaltbild einer Steueremricntung zum Steuern des Stellgerats,FIG. 3 shows a block diagram of a control device for controlling the control device,
Figur 4 ein Zustandsdiagramm des Blocks B6 der Steuereinrichtung, Figur 5a-e den zeitlichen Verlauf der Steuerspannungen, des Stroms durch die erste und zweite Spule, der Position der Ankerplatte und eines Ausgangssignals einer Komparatoreinnchtung 7.4 shows a state diagram of block B6 of the control device, FIG. 5a-e shows the time course of the control voltages, the current through the first and second coil, the position of the armature plate and an output signal of a comparator device 7.
Elemente gleicher Konstruktion und Funktion sind figurenuber- greifend mit den gleichen Bezugszeichen versehen.Elements of the same construction and function are provided with the same reference symbols in all figures.
E n Stellgerat 1 (Figur 1) umfaßt einen Stellantrieb 11 und ein Stellglied 12, das beispielsweise als Gaswechselventil ausgebildet ist und einen Schaft 121 und einen Teller 122 hat. Der Stellantrieb 11 hat ein Gehäuse 111, in dem ein erster und ein zweiter Elektromagnet angeordnet sind. Der erste Elektromagnet hat einen ersten Kern 112, in den in einer ringförmigen Nut eine erste Spule 113 eingebettet ist. Der zweite Elektromagnet hat einen zweiten Kern 114, in den in einer weiteren ringförmigen Nut eine zweite Spule 115 eingebettet ist. Der erste Kern 112 hat eine Ausnehmung 116a, die eine Fuhrung für den Schaft 121 bildet. Der zweite Kern 114 hat eine weitere Ausnehmung 116, die auch als Fuhrung des Schafts 121 dient. Eine Ankerplatte 117 ist in dem Gehäuse 111 beweglich zwischen dem ersten Kern 112 und dem zweiten Kern 114 angeordnet. Eine erste Feder 118a und eine zweite Feder 118b spannen die Ankerplatte 117 in eine vorgegebene Ruheoos t on R vor. Das Stellgerat 1 ist mit einem Zylmoerκopf 21 starr verDun- den. Ein Ansaugkanal 22, ein Abgaskanal 22a und ein Z linder mit einem Kolben 24 sind dem Zylinderkopf 21 zugeordnet. Der Kolben 24 ist über eine Pleuelstange 25 mit einer Kurbelwelle 26 gekoppelt.An actuator 1 (FIG. 1) comprises an actuator 11 and an actuator 12, which is designed, for example, as a gas exchange valve and has a shaft 121 and a plate 122. The actuator 11 has a housing 111 in which a first and a second electromagnet are arranged. The first electromagnet has a first core 112, in which a first coil 113 is embedded in an annular groove. The second electromagnet has a second core 114, in which a second coil 115 is embedded in a further annular groove. The first core 112 has a recess 116a, which forms a guide for the shaft 121. The second core 114 has a further recess 116, which also serves as a guide for the shaft 121. An anchor plate 117 is movably arranged in the housing 111 between the first core 112 and the second core 114. A first spring 118a and a second spring 118b bias the anchor plate 117 into a predetermined rest position t on R. The actuator 1 is rigidly connected to a cylinder head 21. An intake duct 22, an exhaust duct 22a and a cylinder with a piston 24 are assigned to the cylinder head 21. The piston 24 is coupled to a crankshaft 26 via a connecting rod 25.
Eine Steuereinrichtung 3 ist vorgesehen, die Signale von Sensoren erfaßt und Stellsignale für das Stellgerat 1 erzeugt. Die Sensoren sind ein Positionsgeber 4, der eine Position X der Ankerplatte 117 erfaßt, ein erster Strommesser 5a, der den Istwert I_AV1 des Stroms durch die erste Spule 113 erfaßt, ein zweiter Strommesser 5b, der einen Istwert I_AV2 des Stroms durch die zweite Spule 115 erfaßt, ein Drehzahlgeber 27, der die Drehzahl N der Kurbelwelle 26 erfaßt, oder ein Lasterfassungssensor 28, der vorzugsweise ein Luftmassenmesser oder ein Drucksensor ist. Neben den erwähnten Sensoren können auch weitere Sensoren vorhanden sein.A control device 3 is provided which detects signals from sensors and generates control signals for the control device 1. The sensors are a position sensor 4, which detects a position X of the armature plate 117, a first ammeter 5a, which detects the actual value I_AV1 of the current through the first coil 113, a second ammeter 5b, which detects an actual value I_AV2 of the current through the second coil 115 detects a speed sensor 27, which detects the speed N of the crankshaft 26, or a load detection sensor 28, which is preferably an air mass meter or a pressure sensor. In addition to the sensors mentioned, other sensors can also be present.
Eine Komparatoremrichtung 7 ist vorgesehen, die abhangig von der erfaßten Position X und vorgegebenen Schwellenwerten Kl, K2, K3, K4 ein Pulssignal erzeugt. Die Komparatoremrichtung 7 hat vier analoge Schwellenwertvergleicher, die jeweils bei einem der Schwellenwerte Kl, K2, K3, K4 ihr Ausgangssignal andern. Durch eine logische Verknüpfung der Schwellenwertvergleicher entsteht dann das in der Figur 5e aufgetragene Puls- signal der Komparatoremrichtung. Die Schwellenwerte Kl, K2, K3, K4 (Figur 5d) liegen beispielsweise bei folgenden relativen Abstandswerten, die bezogen sind auf den Abstand der An- lageflache der Ankerplatte 117 bei dem ersten Elektromagneten und der Anlageflache der Ankerplatte 117 bei dem zweiten Elektromagneten: Kl bei 5%, K2 bei 20%, K3 bei 80% und K4 bei 95%. Ein Zeitglied 8 (Figur 1), das vorzugsweise als sogenannte „CAPCOM" -Einheit ausgebildet ist, erfaßt die Pulsdauer des von der Komparatoremrichtung 7 erzeugten Pulssignals und leitet die den Pulsdauern zugeordneten Zeitdauern T_C2, T_02 als digitale Daten an die Steuereinrichtung 3 weiter.A comparator device 7 is provided which generates a pulse signal depending on the detected position X and predetermined threshold values K1, K2, K3, K4. The comparator device 7 has four analog threshold value comparators, each of which changes its output signal at one of the threshold values K1, K2, K3, K4. The pulse signal of the comparator device, which is plotted in FIG. 5e, then arises through a logical combination of the threshold value comparators. The threshold values K1, K2, K3, K4 (FIG. 5d) are, for example, at the following relative distance values, which are based on the distance between the contact surface of the armature plate 117 for the first electromagnet and the contact surface of the armature plate 117 for the second electromagnet: Kl 5%, K2 at 20%, K3 at 80% and K4 at 95%. A timing element 8 (FIG. 1), which is preferably designed as a so-called “CAPCOM” unit, detects the pulse duration of the pulse signal generated by the comparator device 7 and forwards the time durations T_C2, T_02 assigned to the pulse durations to the control device 3 as digital data.
In erster Näherung ist die Zeitdauer T_C2 ein Maß für die mittlere Geschwindigkeit der Ankerplatte zwischen den Schwellenwerten K3 und K4. Die ebenso von dem Zeitglied 8 ermittel- te Zeitdauer T_02 ist in erster Näherung ein Maß für die mittlere Geschwindigkeit der Ankerplatte 117 zwischen den Schwellenwerten K2 und Kl.In a first approximation, the time period T_C2 is a measure of the average speed of the anchor plate between the threshold values K3 and K4. In a first approximation, the time period T_02 also determined by the timer 8 is a measure of the average speed of the anchor plate 117 between the threshold values K2 and K1.
Treiber 6a, 6b sind vorgesehen, die die Stellsignale der Steuereinrichtung 3 verstärken. Eine SchaltungsanordnungDrivers 6a, 6b are provided which amplify the control signals of the control device 3. A circuit arrangement
(Figur 2) des Treibers 6a, 6b hat einen ersten Transistor 61 dessen Basisanschluß mit einem Ausgang der Steuereinrichtung 3 verbunden ist und an dem das Spannungssignal USn anliegt. Ferner hat die Schaltungsanordnung einen zweiten Transistor 62, dessen Basisanschluß mit der Steuereinrichtung 3 verbunden ist und an dem das Spannungssignal Us2ι anliegt. Die Schaltungsanordnung weist ferner eine erste Diode 63, eine zweite Diode 64 und einen Kondensator 65 auf.(Figure 2) of the driver 6a, 6b has a first transistor 61 whose base connection is connected to an output of the control device 3 and to which the voltage signal U S n is present. Furthermore, the circuit arrangement has a second transistor 62, the base connection of which is connected to the control device 3 and to which the voltage signal U s2 ι is present. The circuit arrangement also has a first diode 63, a second diode 64 and a capacitor 65.
Liegt an dem basisseitigen Anschluß des ersten Transistors 61 ein hoher Spannungspegel an, so wird der erste Transistor 61 vom Kollektor zum Ermitter leitend. Liegt zusätzlich am zweiten Transistor 62 an dem basisseitigen Anschluß ein hoher Spannungspegel an, so wird auch der zweite Transistor 62 lei- tend. An der ersten Spule 113 fällt dann annäherungsweise die Versorgungsspannung Uv ab. Der Strom I_AV1 durch die Spule 113 steigt dann an, bis die gesamte Versorgungsspannung Uv an dem Innenwiderstand der ersten Spule 113 abfällt. Wird anschließend am basisseitigen Anschluß des ersten Transistors 61 ein niedriger Spannungspegel vorgegeben, so sperrt der Transistor 61 und die Diooe 63 wird als Freilaufdiode leitend. Der Strom I_AV1 durcn die Spule nimmt dann aß. Durch das nocn- und Niedrigsetzen des Spannungspegels des Span- nungssignals USn erfolgt eine Zweipunktregelung des Stroms I AVI durch die Spule.If a high voltage level is present at the base-side connection of the first transistor 61, the first transistor 61 becomes conductive from the collector to the emitter. If a high voltage level is additionally present at the second transistor 62 at the base-side connection, then the second transistor 62 also becomes conductive. The supply voltage U v then drops approximately at the first coil 113. The current I_AV1 through the coil 113 then increases until the entire supply voltage U v across the internal resistance of the first coil 113 drops. If a low voltage level is then specified at the base-side connection of the first transistor 61, the block Transistor 61 and the diooe 63 becomes conductive as a freewheeling diode. The current I_AV1 through the coil then ate. By setting the voltage level of the voltage signal U S noc and low, a two-point control of the current I AVI through the coil takes place.
Wird sowohl der Spannungspegel des Spannungsignales Usn als aucn der Spannungspegel des Spannungssignals UΞ2ι von hoch auf niedrig geschaltet, so werden sowohl die erste Diode 63 als auch die zweite Diode 64 leitend und der Strom durch die erste Spule 113 wird, getrieben durch die Ladung des Kondensators 75, wesentlich schneller verringert, als wenn e Freilauf lediglich über die erste Diode 63 erfolgt. Dadurch ist em sehr schnelles Reduzieren des Stroms I_AV1 durch die er- ste Spule 113 gewährleistet.If both the voltage level of the voltage signal Usn and the voltage level of the voltage signal U Ξ2 ι are switched from high to low, both the first diode 63 and the second diode 64 become conductive and the current through the first coil 113 is driven by the charge of the capacitor 75, is reduced considerably more quickly than if e freewheeling takes place only via the first diode 63. This ensures a very rapid reduction in the current I_AV1 through the first coil 113.
Die Schaltungsanordnung des Treibers 6b ist analog zu der in Figur 2 dargestellten Schaltungsanordnung. Sie unterscheidet sich lediglich darin, daß an dem basisseitigen Anschluß des ersten Transistors 61 das Spannungssignal USι2 anliegt und an dem Basisanschluß des zweiten Transistors 62 das Spannungs- signal UΞ22 anliegt und daß der Emitter des ersten Transistors 61 und der Kollektor des zweiten Transistors 62 elektrisch leitend verbunden sind mit der zweiten Spule 115.The circuit arrangement of driver 6b is analogous to the circuit arrangement shown in FIG. 2. It differs only in that the voltage signal U S ι 2 is present at the base-side connection of the first transistor 61 and the voltage signal U Ξ22 is applied to the base connection of the second transistor 62, and in that the emitter of the first transistor 61 and the collector of the second Transistors 62 are electrically conductively connected to the second coil 115.
Figur 3 zeigt em Blockschaltbild der Steuereinrichtung 3 zum Steuern des elektromechanischen Stellgerats 1. In einem Block Bl wird em Fangwert I_F1 aus einem Kennfeld ermittelt und zwar abhangig von der Drehzahl N und dem Luftmassenstrom MAF. Die Werte des Kennfelds sind an einem Motorprufstand oder durch Simulationen so ermittelt, daß Warmeverluste m der jeweiligen Spule gering sind.FIG. 3 shows a block diagram of the control device 3 for controlling the electromechanical control device 1. In a block B1, a catch value I_F1 is determined from a map, depending on the speed N and the air mass flow MAF. The values of the map are determined on an engine test stand or by simulations in such a way that heat losses m of the respective coil are low.
In einer Summierstelle Sl wird die Differenz des Sollwertes T C2* und der tatsachlichen Zeitdauer T C2 berechnet. Der Sollwert T_C2* ist fest vorgegeben. Er kann aßer alternativ aucn aus einem Kennfeld abhangig von mindestens einer von den Sensoren erfaßten Große ermittelt werden. Em Block B2 umfaßt einen Integrator, der abhangig von der Differenz des Sollwer- tes T_C2* und der tatsachlicnen Zeitdauer T_C2 einen Korrekturwert berechnet, mit der m der Summierstelle S2 oer Fangwert I_F korrigiert wird. Dadurch werden Einflüsse durch Fertigungsstreuung und Alterung des Stellgerats berücksichtigt.The difference between the setpoint T C2 * and the actual time period T C2 is calculated in a summing point S1. The Setpoint T_C2 * is fixed. Alternatively, it can also be determined from a map depending on at least one variable detected by the sensors. Em block B2 comprises an integrator which, depending on the difference between the setpoint T_C2 * and the actual time period T_C2, calculates a correction value with which the summing point S2 or the catch value I_F is corrected. As a result, influences due to production variation and aging of the actuator are taken into account.
In einem Block B3 wird em Haltewert I_H abhangig von derIn a block B3, a hold value I_H is dependent on the
Drenzahl N und dem Luftmassenstrom MAF aus einem Kennfeld ermittelt. In einem Block B4 wird em Bremswert aus einem Kenn- feld abhangig von der Drehzahl N und dem Luftmassenstrom MAF und/oder abhangig von dem Integral über die Abweichung des Sollwertes T_02* und der tatsächlichen Zeitdauer T_02 ermittelt. Der Sollwert T_02* ist fest vorgegeben. Er kann aber alternativ auch aus einem Kennfeld abhangig von mindestens einer von den Sensoren erfaßten Große ermittelt werden.Drenzahl N and the air mass flow MAF determined from a map. In a block B4, a braking value is determined from a characteristic field as a function of the speed N and the air mass flow MAF and / or as a function of the integral via the deviation of the target value T_02 * and the actual time period T_02. The setpoint T_02 * is fixed. Alternatively, however, it can also be determined from a map depending on at least one variable detected by the sensors.
In einem Block B5 wird die Zeitdauer T2 aus einem Kennfeld abhangig von der Drehzahl N und dem Luftmassenstrom MAF und/ooer dem Integral der Differenz des Sollwertes T_02* und der tatsachlichen Zeitdauer T_02 ermittelt.In a block B5, the time period T2 is determined from a map as a function of the speed N and the air mass flow MAF and / or the integral of the difference between the target value T_02 * and the actual time period T_02.
In einem Block B6 wird ermittelt, ob der Fangwert I_F1, der Haltewert I_H, der Bremswert I_B oder em Nullwert I_N (z. B. null Ampere) als Sollwert I_SP1 des Stroms für einen Regler B7 vergegeben wird. Die Regelgroße des Reglers B7 ist der Strom durch die erste Spule 113. Die Funktion des Blocks B6 wird weiter unten anhand der Figur 4 beschrieben.In block B6 it is determined whether the catch value I_F1, the hold value I_H, the braking value I_B or a zero value I_N (eg zero amperes) is assigned as the setpoint I_SP1 of the current for a controller B7. The controlled variable of the controller B7 is the current through the first coil 113. The function of the block B6 is described below with reference to FIG. 4.
Die Differenz des in dem Block B6 ermittelten Sollwertes I_SP1 und des Istwertes I_AV1 des Stroms durch die erste Spule 113 ist die Regeldifferenz des als Zweipunktregler mit Hy- sterese ausgebildeten Reglers B7. Die Stellgroßen des Reglers B7 s nd die Spannungssignale Usπ und Us2ι.The difference between the setpoint I_SP1 determined in block B6 and the actual value I_AV1 of the current through the first coil 113 is the control difference of the two-point controller with hy sterically trained regulator B7. The manipulated variables of the controller B7 and the voltage signals U s π and U s2 ι.
In oer Figur 3 ist das Blockschaltbild beispielhaft für die Berechnung der Stellsignale für die erste Spule 113 dargestellt. Die Berechnung der Stellsignale für die zweite Spule, also der Spannungssignale USι2, Us22 erfolgt analog, lediglich die Zeitdauern T_C2, T_C2* sind jeweils durch die Zeitdauern T_02, T_02* zu ersetzen. Die Ausgangsgroße des Blocks B6 ist dann der Sollwert I_SP2 des Stroms durch die zweite SpuleIn FIG. 3, the block diagram is shown as an example for the calculation of the control signals for the first coil 113. The control signals for the second coil, ie the voltage signals U S ι 2 , U s22, are calculated analogously, only the time periods T_C2, T_C2 * are to be replaced by the time periods T_02, T_02 *. The output variable of block B6 is then the setpoint I_SP2 of the current through the second coil
115, em Regler B8, der im Aufbau gleich ist wie der Regler B7 nat als Regelgroße den Strom durch die zweite Spule 115 und hat als Stellgroßen die Spannungssignale UΞι2 und Us22.115, em regulator B8, which is the same in construction as the regulator B7 nat as the controlled variable the current through the second coil 115 and has the voltage signals U Ξ ι 2 and U s22 as manipulated variables .
Figur 4 zeigt das Zustandsdiagramm des Blocks B6 beispielhaft für die Berechnung des Sollwertes I_SP1 des Stroms durch die erste Spule 113. Em erster Zustand ZI ist der Start, von dem der Übergang in einem Zustand Z2 erfolgt, wenn die Bedingung El erfüllt ist, daß em Sollwert X_SP der Position X gleich einer Schließposition C der Ankerplatte 117 ist. In dem Zustand Z2 ist der Sollwert I_SP1 der Fangwert I_F.FIG. 4 shows the state diagram of block B6 as an example for the calculation of the setpoint I_SP1 of the current through the first coil 113. The first state ZI is the start from which the transition takes place in a state Z2 when the condition E1 is fulfilled that em Setpoint X_SP of position X is equal to a closed position C of anchor plate 117. In the state Z2, the setpoint I_SP1 is the catch value I_F.
Aus dem Zustand ZI erfolgt ein Übergang in einen Zustand Z3 falls eine Bedingung E2 erfüllt ist und zwar, daß der Soll- wert X_SP der Position X gleich einer Offenposition 0 ist. In dem Zustand Z3 ist der Sollwert I_SP1 gleich dem Nullwert I_N.From state ZI there is a transition to state Z3 if a condition E2 is fulfilled, specifically that the setpoint X_SP of position X is equal to an open position 0. In state Z3, the setpoint I_SP1 is equal to the zero value I_N.
Em Übergang aus dem Zustand Z2 in einen Zustand Z4 erfolgt, wenn die Zeitdauer dt seit der Einnahme des Zustandes Z2 großer ist, als eine Zeitdauer T0. Die Zeitdauer T0 ist entweder fest vorgegeben oder bestimmt durch das Erkennen des Auftreffens der Ankerplatte auf den ersten Elektromagneten. In dem Zustand Z4 ist der Sollwert I_SP1 des Stroms durch die erste Spule 113 der Haltewert I_H. Der Übergang aus dem Zustand Z4 in einen Zustand Z5 erfolgt, wenn eine Bedingung E4, daß der Sollwert X_SP der Position X der Ankerplatte 117 die Offenposition 0 ist, erfüllt ist.A transition from the state Z2 to a state Z4 takes place if the period dt since the state Z2 was taken is greater than a period T0. The time period T0 is either fixed or determined by the detection of the impingement of the armature plate on the first electromagnet. In the state Z4, the setpoint I_SP1 of the current through the first coil 113 is the hold value I_H. The transition from the state Z4 to a state Z5 takes place when a condition E4 that the setpoint X_SP of the position X of the anchor plate 117 is the open position 0 is fulfilled.
In dem Zustand Z5 ist der Sollwert I_SP1 des Stroms durch die erste Spule 113 der Nullwert I_N. Em Übergang von dem Zustand Z5 in einen Zustand Z6 erfolgt, wenn die Bedingung E5, i n daß die Zeitdauer dt seit der Einnahme des Zustands Z5 großer ist als eine Zeitdauer Tl, erfüllt ist. Die Zeitdauer Tl ist so vorgegeben, daß em Übergang von dem Zustand Z5 in den Zustand Z6 frühestens dann erfolgt, wenn die Ankerplatte 117 beginnt, sich von dem ersten Elektromagneten wegzubewegen.In the state Z5, the setpoint I_SP1 of the current through the first coil 113 is the zero value I_N. A transition from the state Z5 to a state Z6 takes place when the condition E5, in that the time period dt since the taking of the state Z5 is greater than a time period T1, is fulfilled. The time period Tl is predetermined such that a transition from the state Z5 to the state Z6 occurs at the earliest when the armature plate 117 begins to move away from the first electromagnet.
1515
In dem Zustand Z6 ist der Sollwert I_SP1 des Stroms durch die erste Spule 113 der Bremswert I_B. Die Bedingung E6 für einen Übergang von dem Zustand Z6 m den Zustand Z3 ist, daß die Zeitdauer dt seit der Einnahme des Zustands Z6 großer ist alsIn the state Z6, the setpoint I_SP1 of the current through the first coil 113 is the braking value I_B. The condition E6 for a transition from the state Z6 to the state Z3 is that the time period dt since the state Z6 was taken is greater than
20 die Zeitdauer T2. In dem Zustand Z3 ist der Sollwert I_SP1 des Stroms durch die erste Spule 113 der Nullwert I_N. Die Bedingung E7 für den Übergang von dem Zustand Z3 in den Zustand Z2 ist, daß der Sollwert X_SP der Position der Ankerplatte gleich der Schließposition C ist.20 the time period T2. In the state Z3, the setpoint I_SP1 of the current through the first coil 113 is the zero value I_N. The condition E7 for the transition from state Z3 to state Z2 is that the setpoint X_SP of the position of the anchor plate is equal to the closed position C.
2525
Das Zustandsdiagramm des Blocks B6 zum Ermitteln des Sollwertes I_SP2 des Stroms durch die zweite Spule 115 entspricht dem Zustandsdiagramm gemäß Figur 4 mit dem Unterschied, daß jeweils die Schließposition C durch die Offenposition 0 undThe state diagram of block B6 for determining the setpoint I_SP2 of the current through the second coil 115 corresponds to the state diagram according to FIG. 4, with the difference that the closed position C by the open position 0 and
30 umgekehrt zu ersetzen ist und daß der Sollwert I_SP1 durch den Sollwert I_SP2 zu ersetzen ist.30 is to be replaced in reverse and that the setpoint I_SP1 is to be replaced by the setpoint I_SP2.
Figur 5a zeigt das Spannungssignal UΞn und das Spannungssignal UΞι2 (gepunktet dargestellt) aufgetragen über die Figur 5b zeigt das Spannungssignal Us2ι und das Spannungssignal Us22 (punktiert dargestellt) aufgetragen über die Zeit t.Figure 5a shows the voltage signal U Ξ n and the voltage signal U Ξ ι 2 (shown in dotted lines) plotted over the Figure 5b shows the voltage signal U s2 ι and the voltage signal Us22 (shown in dotted lines) plotted over time t.
Figur 5c zeigt den zugeordneten zeitlichen Verlauf des Istwertes I_AV1 des Stroms durch die erste Spule 113, und den zeitlichen Verlauf des Istwertes I_AV2 (punktiert dargestellt) des Stroms durch die zweite Spule 115.FIG. 5c shows the assigned time profile of the actual value I_AV1 of the current through the first coil 113, and the time profile of the actual value I_AV2 (shown in dotted lines) of the current through the second coil 115.
Figur 5d zeigt die zugeordnete Position X der Ankerplatte 117 aufgetragen über die Zeit t.FIG. 5d shows the assigned position X of the anchor plate 117 plotted against the time t.
Bis zu einem Zeitpunkt ti ist der Sollwert des Stroms durch die erste Spule 113 der Haltewert I_H. Der Haltewert I_H ist derart vorgegeben, daß die durch den Strom durch die erste Spule 113 hervorgerufene Kraft auf die Ankerplatte 117 ausreicht, um die Ankerplatte in Anlage mit dem ersten Elektromagneten zu halten und andererseits nur geringe Wärmeverluste auftreten.Up to a point in time ti, the setpoint value of the current through the first coil 113 is the hold value I_H. The holding value I_H is predetermined such that the force on the armature plate 117 caused by the current through the first coil 113 is sufficient to hold the armature plate in contact with the first electromagnet and, on the other hand, only slight heat losses occur.
An einem Zeitpunkt ti ist für die Zeitdauer Tl der Nullwert I_N als Sollwert I_SP1 des Stroms durch die erste Spule 113 vorgegeben. Zu dem Zeitpunkt tx werden sowohl das Spannungs- signal Usn als auch das Spannungssignal Us2ι auf einen niedrigen Pegel gesetzt, so daß der Istwert I_AV1 des Stroms durch die erste Spule sehr schnell auf den Nullwert I_N abfällt. Nach Ablauf der Zeitdauer Tl ab dem Zeitpunkt ti wird zu einem Zeitpunkt t2 der Bremswert I_B als Sollwert des Stroms durch die erste Spule 113 vorgegeben und zwar für die Zeitdauer T2. Wenn die Zeitdauer T2 abhängt von der Drehzahl und der Lastersatzgröße, vorzugsweise dem Luftmassenstrom, kann die Ruheposition R unsymmetrisch zu den Anlageflächen der Ankerplatte an den beiden Elektromagneten vorgegeben werden. Dies ist vorteilhaft, wenn das Stellglied als Auslaßventil ausgeßildet ist, da daß Auslaßventil wahrend des Übergangs von der Schließposition C in die Offenposition 0 gegen oen nohen Zylinderinnendruck bewegt werden muß. Die Zeitdauer Tl ist vorzugsweise so gewählt, daß sich die Ankerplatte zum Zeitpunkt t; noch nahe der Schließposition befindet (z.B. erst 3 % des Weges zwischen der Schließ- und der Offenposition zurucKgelegt hat) . So wird eine sehr gute Bremswirkung auf die Ankerplatte erreicht.At a point in time ti, the zero value I_N is specified as the setpoint I_SP1 of the current through the first coil 113 for the time period T1. At time t x , both the voltage signal U s n and the voltage signal U s2 ι are set to a low level, so that the actual value I_AV1 of the current through the first coil drops very quickly to the zero value I_N. After the time period Tl has elapsed from the time ti, the braking value I_B is specified as the desired value of the current through the first coil 113 at a time t 2 , for the time period T2. If the time period T2 depends on the speed and the load replacement size, preferably the air mass flow, the rest position R can be specified asymmetrically to the contact surfaces of the armature plate on the two electromagnets. This is advantageous if the actuator is used as an outlet valve is trained that the exhaust valve must be moved during the transition from the closed position C to the open position 0 against oen low cylinder pressure. The time period Tl is preferably chosen so that the anchor plate at time t ; is still close to the closed position (e.g. has only covered 3% of the way between the closed and open positions). A very good braking effect on the anchor plate is achieved.
Ab einem Zeitpunkt t4 wird als Sollwert I_SP1 des Stroms durcn die erste Spule wieder der Nullwert I_N vorgegeben. Ab dem Zeitpunkt t8 wird der Sollwert I_SP1 des Stroms durch die erste Spule der Fangwert I_F vorgegeben und zwar für die Zeitdauer T0.From a point in time t 4 , the first coil again specifies the zero value I_N as the setpoint I_SP1 of the current. From the time t 8 , the setpoint I_SP1 of the current through the first coil is given the catch value I_F, specifically for the period T0.
Zu einem Zeitpunkt t3 wird als Sollwert I_SP2 des Stroms durch die zweite Spule 115 der Fangwert I_F vorgegeben. Der Zeitpunkt t3 kann auch zeitlich nach dem Zeitpunkt t4 liegen.At a point in time t 3 , the catch value I_F is specified as the setpoint I_SP2 of the current through the second coil 115. The time t 3 can also be in time after the time t 4 .
Der zugehörige Verlauf der Position X der Ankerplatte zeigt, daß nach dem Zeitpunkt ti die Ankerplatte zuerst in der Schließposition C bleibt und dann mit zunehmender Geschwindigkeit sich in Richtung der Offenposition 0 bewegt, bis ab dem Zeitpunkt t2 die Beschleunigung der Ankerplatte 117 ver- rmgert wird und die Ankerplatte zum Zeitpunkt t5 die Offenposition 0 erreicht.The associated course of the position X of the anchor plate shows that after the time ti the anchor plate first remains in the closed position C and then moves with increasing speed in the direction of the open position 0 until the acceleration of the anchor plate 117 decreases from time t 2 and the anchor plate reaches the open position 0 at time t 5 .
Die Erfindung ist nicht auf das beschriebene Ausfuhrungsbei- spiel beschrankt. Das Verfahren kann als Programm von einem Mikroprozessor abgearbeitet werden. Es kann aber ebenso auch durch eine Logikschaltung oder durch eine Analogschaltungsan- ordnung realisiert werden. Der Fangwert I_F und/ oder der Haltewert I_H und /oder der Bremswert I_B können auch fest vorgegebene Werte sein. Der Regler kann beispielsweise auch als ein Einpunktregler mit einem Zeitglied oder als ein Pulsweitenmodulations-Regler ausgebildet sein. Eine besonders niedrige Schallabstrahlung des Stellgeräts wird erreicht, wenn zusätzlich der Fangwert I_F reduziert wird und zwar für eine Zeitdauer, die abhängt von der Differenz des Sollwertes T_C2*, T_02* und der tatsächlichen Zeitdauer T_C2, T_02.The invention is not limited to the exemplary embodiment described. The method can be executed as a program by a microprocessor. However, it can also be implemented by a logic circuit or by an analog circuit arrangement. The catch value I_F and / or the holding value I_H and / or the braking value I_B can also be fixed, predetermined values. The controller can also be designed, for example, as a single-point controller with a timing element or as a pulse width modulation controller. A particularly low sound radiation from the actuator is achieved if the catch value I_F is additionally reduced, specifically for a period of time that depends on the difference between the setpoint T_C2 *, T_02 * and the actual period T_C2, T_02.
Der Fangwert hat beispielsweise den Wert acht Ampere, der Haltewert drei Ampere und der Bremswert zehn Ampere. The catch value is, for example, eight amperes, the hold value three amperes and the braking value ten amperes.

Claims

Patentansprüche claims
1. Verfahren zum Steuern eines elektromechanischen Stellgeräts, das ein Stellglied (12) und einen Stellantrieb (11) hat, der aufweist:1. A method for controlling an electromechanical actuator, which has an actuator (12) and an actuator (11), which has:
- einen ersten Elektromagneten mit einer ersten Spule (113) und einen zweiten Elektromagneten mit einer zweiten Spule (115) , und- A first electromagnet with a first coil (113) and a second electromagnet with a second coil (115), and
- eine erste und eine zweite Feder (118a, 118b), die die An- kerplatte (117) in eine vorgegebene Ruheposition (R) vorspannen, wobei dem Stellantrieb (12) für jede Spule ein Regler (B7,B8) zugeordnet ist, dessen Regelgröße der Strom durch die jeweilige Spule (113,115) ist, mit folgenden aufeinander folgenden Schritten: - ein Haltewert (I_H) wird als Sollwert des Stroms durch entweder die erste oder zweite Spule (113,115) bis zu einem Zeitpunkt (tl) vorgegeben,- A first and a second spring (118a, 118b), which bias the anchor plate (117) into a predetermined rest position (R), the actuator (12) being assigned a controller (B7, B8) for each coil, the The controlled variable is the current through the respective coil (113, 115), with the following successive steps: a hold value (I_H) is specified as the setpoint value of the current through either the first or second coil (113, 115) up to a point in time (tl),
- ein Nullwert (I_N) wird als Sollwert für eine Zeitdauer (Tl) vorgegeben, - ein Bremswert (I_B) wird als Sollwert für die weitere Zeitdauer (T2) vorgegeben, und- A zero value (I_N) is specified as a setpoint for a period (Tl), - A braking value (I_B) is specified as a setpoint for the further period (T2), and
- der Nullwert (I_N) wird als Sollwert vorgegeben.- The zero value (I_N) is specified as the setpoint.
2. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß ein Postionsgeber (4) zum Erfassen der Position (X) der Ankerplatte (117) vorgesehen ist, und daß die Zeitdauer (Tl) abhängt von der Position (X) .2. The method according to claim 2, characterized in that a position transmitter (4) for detecting the position (X) of the anchor plate (117) is provided, and that the time period (Tl) depends on the position (X).
3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch ge- kennzeichnet, daß die weitere Zeitdauer (T2) abhängt von der Drehzahl (N) und einer Lastgröße.3. The method according to any one of claims 1 to 2, characterized in that the further time period (T2) depends on the speed (N) and a load size.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Bremswert (I_B) abhängt von der Dreh- zahl (N) und der Lastgröße. 4. The method according to any one of claims 1 to 3, characterized in that the braking value (I_B) depends on the speed (N) and the load size.
5. Verfanren nacn einem der Ansprüche 3 oder 4, daourcn gekennzeichnet, daß die Lastgroße der Luftmassenstrom (MAF)5. Verkanren nacn one of claims 3 or 4, daourcn characterized in that the load size of the air mass flow (MAF)
6. Verfahren nach einem der vohergehenden Ansprüche, dadurcn gekennzeichnet, daß die weitere Zeitdauer (T2) abhangt von der Geschwindigkeit der Ankerplatte (117) .6. The method according to any one of the preceding claims, characterized in that the further time period (T2) depends on the speed of the anchor plate (117).
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Bremswert (I_B) abhangt von der Geschwindigkeit der Ankerplatte (117).7. The method according to any one of the preceding claims, characterized in that the braking value (I_B) depends on the speed of the anchor plate (117).
8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch ge- kennzeichnet, daß die Geschwindigkeit der Ankerplatte (117) approximiert wird durch die Zeitdauer (T_02,T_C2), die die Ankerplatte (117) benotigt, um von einem ersten Schwellenwert (K2, K3) der Position (X) zu einem zweiten Schwellenwert (Kl, K4) der Position (X) zu gelangen. 8. The method according to any one of claims 6 or 7, characterized in that the speed of the anchor plate (117) is approximated by the time period (T_02, T_C2) which the anchor plate (117) requires in order to a first threshold value (K2 , K3) of position (X) to reach a second threshold value (K1, K4) of position (X).
EP98952541A 1997-10-15 1998-09-02 Method for controlling an electromechanical actuating device Expired - Lifetime EP1023533B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19745536A DE19745536C1 (en) 1997-10-15 1997-10-15 Method for controlling an electromechanical actuator
DE19745536 1997-10-15
PCT/DE1998/002599 WO1999019615A1 (en) 1997-10-15 1998-09-02 Method for controlling an electromechanical actuating device

Publications (2)

Publication Number Publication Date
EP1023533A1 true EP1023533A1 (en) 2000-08-02
EP1023533B1 EP1023533B1 (en) 2002-06-05

Family

ID=7845606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98952541A Expired - Lifetime EP1023533B1 (en) 1997-10-15 1998-09-02 Method for controlling an electromechanical actuating device

Country Status (5)

Country Link
US (1) US6483689B1 (en)
EP (1) EP1023533B1 (en)
JP (1) JP2001520494A (en)
DE (2) DE19745536C1 (en)
WO (1) WO1999019615A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002322C1 (en) * 2000-01-20 2001-08-30 Siemens Ag Method for controlling an actuator
US6631699B2 (en) 2000-12-20 2003-10-14 Siemens Vdo Automative Corporation Air fuel module
DE10140432B4 (en) * 2001-08-17 2010-02-11 GM Global Technology Operations, Inc., Detroit Method and device for noise and vibration reduction on a solenoid valve
DE10315584B4 (en) * 2003-04-05 2015-01-08 Mahle Filtersysteme Gmbh Method for actuating an electromagnetic actuating device and device for carrying it out
FR2884349B1 (en) * 2005-04-06 2007-05-18 Moving Magnet Tech Mmt BITABLE POLARIZED ELECTROMAGNETIC ACTUATOR WITH QUICK ACTUATION
US7984706B2 (en) * 2007-12-03 2011-07-26 Continental Automotive Systems Us, Inc. Control method for closed loop operation with adaptive wave form of an engine fuel injector oil or fuel control valve
JP4587133B2 (en) * 2008-06-04 2010-11-24 株式会社デンソー Fuel supply device
GB2470211B (en) * 2009-05-14 2013-07-31 Gm Global Tech Operations Inc Hysteresis-type electronic controlling device for fuel injectors and associated method
DE102010022536A1 (en) * 2010-06-02 2011-12-08 Continental Automotive Gmbh Method and device for controlling a valve
DE102011075269B4 (en) * 2011-05-04 2014-03-06 Continental Automotive Gmbh Method and device for controlling a valve
JP5639970B2 (en) * 2011-08-03 2014-12-10 日立オートモティブシステムズ株式会社 Control method for electromagnetic valve, control method for electromagnetic suction valve of high-pressure fuel supply pump, and control device for electromagnetic drive mechanism of electromagnetic suction valve

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1538224A (en) * 1975-02-25 1979-01-10 Cav Ltd Fuel supply systems for internal combustion engines
DE3609599A1 (en) * 1986-03-21 1987-09-24 Bosch Gmbh Robert METHOD FOR CONTROLLING THE DEACTIVATION TIME OF ELECTROMAGNETIC DEVICES, ESPECIALLY ELECTROMAGNETIC VALVES IN INTERNAL COMBUSTION ENGINES
JPH0621531B2 (en) * 1988-12-28 1994-03-23 いすゞ自動車株式会社 Control device for electromagnetically driven valve
JP2606740B2 (en) * 1989-05-01 1997-05-07 株式会社いすゞセラミックス研究所 Valve stepping drive
JPH07322044A (en) 1994-05-30 1995-12-08 Nec Corp Facsimile equipment with automatic dialling function
JPH07332044A (en) * 1994-06-07 1995-12-19 Honda Motor Co Ltd Operation position detector in solenoid driving device for engine valve
DE4433209C2 (en) * 1994-09-17 2000-02-03 Mtu Friedrichshafen Gmbh Device for the detection of the armature impact time when a solenoid valve is de-energized
DE4434684A1 (en) * 1994-09-28 1996-04-04 Fev Motorentech Gmbh & Co Kg Electromagnetic circuit armature movement control method e.g. for IC engine positioning element
JP3315275B2 (en) 1994-11-04 2002-08-19 本田技研工業株式会社 Control device for opposed two solenoid type solenoid valve
GB9422742D0 (en) * 1994-11-11 1995-01-04 Lucas Ind Plc Drive circuit
JP3683300B2 (en) * 1995-01-27 2005-08-17 本田技研工業株式会社 Control device for internal combustion engine
DE19526683A1 (en) * 1995-07-21 1997-01-23 Fev Motorentech Gmbh & Co Kg Detecting striking of armature on electromagnetically actuated positioning device e.g. for gas exchange valves in IC engine
DE19735375C2 (en) * 1997-08-14 2002-04-04 Siemens Ag Solenoid valve, in particular for intake and exhaust valves of internal combustion engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9919615A1 *

Also Published As

Publication number Publication date
EP1023533B1 (en) 2002-06-05
US6483689B1 (en) 2002-11-19
DE19745536C1 (en) 1999-05-27
JP2001520494A (en) 2001-10-30
DE59804352D1 (en) 2002-07-11
WO1999019615A1 (en) 1999-04-22

Similar Documents

Publication Publication Date Title
EP0986703B1 (en) Device for controlling an electromechanical setting device
EP1825124B1 (en) Method for controlling a piezoelectric actuator and control unit for controlling a piezoelectric actuator
DE112017003720B4 (en) Fuel injection device control device
EP1108120B1 (en) Device for controlling a regulator
DE102016224326A1 (en) Method for controlling an injector by means of an opening period
EP1023533B1 (en) Method for controlling an electromechanical actuating device
DE102015206729A1 (en) Controlling a fuel injection solenoid valve
DE19880737B4 (en) Method for monitoring the function of an electromagnetic actuator
EP1042767B1 (en) Device for controlling an electromechanical regulator
DE102011016895A1 (en) Method for determining wear state of electromagnetic actuator during its operation, involves determining magnetic flux and current flowing through coil, during operation of actuator in its initial, end or intermediate positions
DE10248097A1 (en) Control method for an electromagnetic valve actuator
DE102011007579B4 (en) Method for operating an injection valve
EP1019624B1 (en) Method for controlling an electro mechanical regulating device
EP0988483A1 (en) Method and device for controlling an electromechanical adjustment device
DE19860197A1 (en) Method for detecting misfires on a piston internal combustion engine
DE19834213B4 (en) Method for controlling an electromechanical actuating device
DE102015207274A1 (en) Method for noise-reducing control of switchable valves, in particular injection valves of an internal combustion engine of a motor vehicle
DE102014010635A1 (en) Method for operating an internal combustion engine and corresponding internal combustion engine
DE10002322C1 (en) Method for controlling an actuator
DE19849036C2 (en) Method and device for regulating an electromechanical actuator
EP1090209B1 (en) Method for starting an electromechanical regulating device especially designed for controlling the charge cycle in an internal combustion engine
DE102017219571A1 (en) Method for checking a magnetic actuator
DE102016203645A1 (en) Method for controlling a solenoid valve
DE19714409A1 (en) Electromagnetic control device
DE10259796B4 (en) Method for controlling an electromechanical actuator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20011024

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59804352

Country of ref document: DE

Date of ref document: 20020711

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020814

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080912

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080918

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080919

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090902

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090902