EP1016161A1 - Antenne orientable mecaniquement pour systeme de telecommunication et procede d'emission ou reception a l'aide d'une telle antenne - Google Patents

Antenne orientable mecaniquement pour systeme de telecommunication et procede d'emission ou reception a l'aide d'une telle antenne

Info

Publication number
EP1016161A1
EP1016161A1 EP98933719A EP98933719A EP1016161A1 EP 1016161 A1 EP1016161 A1 EP 1016161A1 EP 98933719 A EP98933719 A EP 98933719A EP 98933719 A EP98933719 A EP 98933719A EP 1016161 A1 EP1016161 A1 EP 1016161A1
Authority
EP
European Patent Office
Prior art keywords
antenna
zone
radiating elements
target
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98933719A
Other languages
German (de)
English (en)
Inventor
Frédéric Croq
Florence Dolmeta
Philippe Voisin
Didier Casasoprana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1016161A1 publication Critical patent/EP1016161A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/28Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix

Definitions

  • the present invention relates to an antenna for a telecommunications system, in particular by satellite.
  • antennas intended to receive signals from a mobile source or to transmit signals to a mobile receiver (or target).
  • a mobile receiver or target
  • active antennas made up of stationary radiating elements are used but the direction of the radiation diagram can be varied by varying the phase of the signals supplying the radiating elements. .
  • This technique does not make it possible to obtain satisfactory radiation patterns for large deflection angles, that is to say for directions deviating significantly from the mean direction of emission and / or reception.
  • the tracking of a source or a receiver can be carried out using a conventional antenna and motors controlling the movement of this antenna.
  • Neither of these two types of antennas makes it possible to correctly resolve the problem of communication between the antenna and a plurality of sources or receivers located in a large area, in particular a ground area, communication to remain confined in the zone despite the change of posi ⁇ of the antenna relative to the zone.
  • each satellite has groups of receive and transmit antennas, each group being dedicated to a given area.
  • the receiving antennas receive the signals from a station in the area and the transmitting antennas retransmit the received signals to another station in the same area.
  • the antennas of a group remain constantly oriented towards the area as long as it remains in the field of vision of the satellite.
  • a region of the earth is divided into n zones and when it travels over a region, each zone is assigned a group of transmit and receive antennas which remain constantly oriented towards this area.
  • the low altitude of the satellites minimizes the propagation times, which is favorable to communications of the interactive type, in particular for so-called "multimedia” applications.
  • the invention provides an antenna which can be mechanically orientated by means of motor means and which further comprises radiating elements controlled to modify the radiation diagram as a function of the relative orientation of the antenna relative to the area, source or target, in order to adapt this diagram to the form in which the antenna sees the target or source area.
  • an antenna on board the satellite sees the zone in the form of a circle when the satellite is at the nadir of the zone.
  • the antenna sees the area in elliptical form.
  • the radiating elements intended for transmission and the radiating elements intended for reception are located on the same panel displaceable by the same motor means.
  • the modification of the diagram is obtained by modification of the amplitudes of the signals supplied to the radiating elements.
  • the radiating elements are distributed over a surface having a shape which corresponds substantially to the desired radiation pattern for the most distant zones, sources or targets, that is to say the sources providing the weakest signal levels or the targets to which it is necessary to send maximum power.
  • the radiating elements are arranged to adapt to the most unfavorable case.
  • FIG. 1 is a diagram showing a telecommunication system between stations or land mobiles using a satellite system
  • FIG. 2 is a diagram illustrating a distribution of traffic in the context of the telecommunications system to which the invention applies
  • FIG. 3 is a diagram of a transmitting and receiving antenna, in accordance with the invention, mounted on board a satellite
  • Figure 4 is a diagram showing the control of a transmitting antenna of Figure 3
  • Figure 4a is a diagram of a radiating panel
  • Figure 5 is a diagram showing the control of a receiving antenna of the figure 3.
  • the example which will be described concerns a telecommunication system using a constellation of satellites with low orbit, approximately 1300 km above the surface 10 (FIG. 1) of the earth.
  • the system must establish communications between users 12, 14, 16 via one or more connection station (s) 20. It also establishes communications between users and service providers (not mon- very) connected at a connection station. These communications are carried out via a satellite 22.
  • the TXF signals of the satellite 22 to the users there are four types of signals, namely: the TXF signals of the satellite 22 to the users, the RXR signals from the users 12, 14, 16 to the satellite 22, the TXR signals from the satellite 22 to the connection station 20 and the RXF signals from the connection station to the satellite 22.
  • the suffix F means “forard” or to go (from the connection station to the user sator) and R means “return” or return (from the user to the connection station).
  • TX means "transmission”
  • RX means "reception”.
  • transmission and reception with respect to the satellite.
  • Each zone 26i has the shape of a circle with a diameter of about 700 km.
  • Each region 24 is delimited by a cone 70 centered on the satellite and an angle at the top determined by the altitude of the satellite. A region is thus the part of the earth visible from the satellite.
  • the apex angle is approximately 104 °.
  • the satellite comprises groups of transmit and receive antennas assigned to each zone 26. Each group is such that, when the satellite moves, this group remains pointed towards the same zone. In other words, the radiation pattern of each antenna always remains directed towards the same terrestrial area 26 ⁇ in principle as long as the satellite sees this area.
  • the antenna requirement is a maximum of 4n: four types of signals per zone.
  • the invention - provides, as will be seen below, that the total number of antennas is substantially less than 4n.
  • the satellite is used for communication between users and between users and the connection station within each zone 26 ⁇ .
  • the communication between zones is carried out using terrestrial means, for example using cables arranged between the connection stations of the various zones forming part of the same region or of different regions.
  • the number and arrangement of satellites are such that at any given moment, an area 26- ⁇ sees two or three satellites.
  • the traffic requirement is measured, for example, by the average amount of information that is transmitted per unit of time and per unit of area.
  • the traffic in part 28 of region 24 (FIG. 2) the traffic is light, while in another part 30 the traffic is heavy.
  • High traffic corresponds, for example, to urban areas of a developed country, while low traffic corresponds, for example, to rural or underdeveloped areas.
  • signal resources is meant a polarization characteristic and a carrier frequency band characteristic.
  • the polarization is either of the right circular type (P Q ) or of the left circular type (P Q ) and two separate bands of carrier frequencies are provided: ⁇ F ⁇ _ and ⁇ F 2 .
  • each zone is allocated all the resources A, B, C and D.
  • cha ⁇ area is assigned a single resource A, B, C or D.
  • the resource allocation signals is such that two adjacent areas do not contain identical resource .
  • the zones to which the same resource is assigned are separated by at least one zone where the resource is different.
  • zone 26 ⁇ o of resource A (right circular polarization signal PTJ and band ⁇ F ⁇ _) is separated from zone 26_ comprising the same resource, by zone 26 ⁇ to which resource B is assigned (right circular polarization Pp, but band ⁇ F 2 ).
  • the carrier frequency bands ⁇ Fi and ⁇ F 2 are either of the same extent, or of a different extent. For example if, in part 28, certain zones require more traffic than other zones, the carrier frequency band ⁇ F will be more important than the carrier frequency band ⁇ F ⁇ .
  • the antennas can be made in such a way that they can receive or transmit only signals with a right circular polarization Pp. It is thus possible to use simplified equipment.
  • the antenna systems must be capable of generating the two circular polarizations (right and left), without interference between the signals.
  • each antenna follows a zone and must carry out a scanning at an angle between 100 ° and 120 ° from the entry of the zone into the field of vision. from satellite to exit.
  • shape of the radiation pattern must vary during the movement of the satellite because, for the antenna, an area which is vertical to the satellite is seen without deformation, that is to say as a circle, but an area lying on the edge of a region, for example area 26 ⁇ or 26 2 , is seen in the form of an elongated ellipse of smaller dimensions .
  • active traffic areas are assigned to areas with low traffic, that is to say antennas which are electronically pointable and reconfigurable, and areas with heavy traffic are assigned steerable antennas mechanically and electronically reconfigurable.
  • all the zones are provided with antennas of the latter type.
  • FIG. 3 represents an antenna intended for areas with heavy traffic. It allows transmission and reception.
  • This antenna comprises a plate 72 housing two panels of radiating elements, respectively 74 and 76.
  • the panel 74 is intended for transmission while the panel 76 is intended for reception.
  • the support plate 72 which, in FIG. 3, is shown in the horizontal direction, is pivotable about a horizontal axis 78, parallel to the plane of the plate 72, thanks to a motor 80 called the elevation motor, the pivoting around the axis 78 effecting the elevation orientation.
  • Another motor 82 of vertical axis 84, is provided under the motor 80.
  • the rotation around the axis 84 allows orientation in azimuth.
  • the panel 74 of radiating elements intended for emission has a general elliptical shape with a long axis 86.
  • This elliptical shape corresponds to the shape in which the antenna sees an area close to the horizon, when this antenna is pointed towards this zone, that is to say when the vertical axis 88 of the plate 72 is directed towards the zone at the edge of the horizon.
  • the elliptical shape is adapted to the shape of an area to be covered corresponding to a pointing angle of approximately 50 ° while the maximum pointing angle is 54 °.
  • the axis 86 is perpendicular to the major axis of the ellipse under which an area is seen for such a pointing of 50 °.
  • the panel 76 intended for reception has, like the panel 74, the general shape of an ellipse of major axis 90, parallel to the major axis 86 of panel 74.
  • Panel 74 is intended for both TXF and TXR signals. Likewise, panel 76 is intended for RXF and RXR signals.
  • FIG. 4 is a diagram of a control circuit intended for the transmission panel 74.
  • three carrier frequency sub-bands intended for the TXF signals (transmission to the users) are provided and a single carrier frequency band for TXR signals (to the connection station).
  • three amplifiers 92, 94 and 96 are assigned to the TXF signals and an amplifier 98 is provided for the TXR signals.
  • the circuit of FIG. 4 is not limited to this distribution into three sub-bands for the TXF signals and a band for the TXR signals. Other distributions are possible such as two bands for THF signals and two bands for TXR signals.
  • the outputs of amplifiers 92 to 98 are applied to the inputs of a multiplexer 100 which delivers signals to the radiating elements of the panel 74 via a beam-forming circuit or network 102.
  • this network 102 adapts the radiation pattern to the position of the satellite with respect to the area to which the antenna is assigned.
  • the axis 88 is directed towards the corresponding zone, thanks to the azimuth motor 82 and to the elevation motor 80 (FIG. 3), and to this "mechanical" pointing direction corresponds an electronic control 102 of so as to adapt the beam to the relative position of the antenna and the area.
  • the beam is of circular section when the satellite is at the nadir of the area and it is of elliptical section when the area is at the edge of the horizon.
  • the circuit 102 comprises, in the example, q power distributors 104 ⁇ to 104g. These distributors are reconfigurable; they are also at low losses because they are located after amplifiers 92 to 98.
  • the power distributors 104i affect the amplitude of the signals supplied to the radiating elements of the panel 74 but not their phase. Indeed the radiating elements do not intervene for pointing; it is therefore not necessary to vary the phase of the signals applied to them.
  • the number q of power distributors is a sub-multiple of the number of elements. radiant elements.
  • the number of radiating elements is 64 or 80 while the number q is 16.
  • FIG. 4a shows an example of a panel of radiating elements arranged in an elongated shape. Each radiating element is represented by a circle 140. Inside each radiating element, a number or index has been indicated, from 1 to 16. The identical numbers correspond to an excitation of the same level of amplitude. Thus, for example, the four elements of index 1 in the center are all excited with the same amplitude. Furthermore, in this FIG.
  • FIG. 5 represents the circuit intended to exploit the signals received by the panel of radiating elements 76 assigned to reception.
  • This circuit includes filters 110, low noise amplifiers 112 of the variable attenuators 114 and variable dephasers 115.
  • the role of the attenuators 114 and the dephasers 115 is the same as that of the attenuators 104 of FIG. 4, namely adapt the radiation pattern to the relative position of the satellite with respect to the area.
  • the use of phase shifters at reception makes it possible to optimize the formation of the beam; it does not penalize the link budget because the phase shifters are located downstream of the low noise amplifiers 112.
  • the attenuators 114 are controlled as a function of the relative position of the satellite relative to the area. Furthermore, a passive combiner 116 performs the sum of the signals supplied by the attenuators 114.
  • the output signals from the combiner 116 are supplied to a multiplexer 120 which separates the RXF and RXR signals.
  • a multiplexer 120 which separates the RXF and RXR signals.
  • three bands of RXF signals and one band of RXR signals are provided in a similar manner to that which is provided in the example in FIG. 4.
  • the distribution between the bands for the RXF and RXR signals can be different.
  • the cables or electrical conductors pass through a rotating joint 130, 132 and that these cables are subjected to rotations corresponding to the adjustments in elevation and in azimuth.
  • the reconfiguration of the radiation diagram as a function of the elevation is ensured by a beam forming network based on ferrite or MMIC (monolithic integrated circuit for microwaves, "Monolithic Microwave Integrate Circuit” in English).
  • MMIC monolithic integrated circuit for microwaves, "Monolithic Microwave Integrate Circuit" in English.
  • a ferrite-based circuit is preferably used, such a circuit being better suited to the formation of beams with low losses after the power amplification.
  • This power amplification is carried out using SSPA amplifiers which have a low efficiency and therefore dissipate a large amount of heat.
  • this circuit It is therefore preferable to move this circuit away from the panel 72 which, in general, has few means of heat dissipation; this circuit is therefore installed under the panel 134 called "earth" ( Figure 3) always oriented towards the center of the earth and which has more significant heat dissipation means.
  • the beam forming network is, for reception, in MMIC technology. Low noise amplifiers are located near the radiating panel to minimize ohmic losses due to connections.
  • the mechanical pointing of the plate 72 is, compared to an electronic pointing, particularly advantageous because it it is not necessary to oversize the radiating element panels 74 and 76.
  • the absence of electronic pointing allows the best use of signal resources to form the beams over a large bandwidth.
  • the absence of electronic pointing results in the absence of frequency dispersion which is linked to the absence of phase slope for pointing.
  • the pitch of the array of radiating elements can be of the order of 0.9 ⁇ . This easily prevents the formation of network lobes. In addition, this distance between adjacent radiating elements facilitates the installation of the various control elements and limits coupling. Furthermore, for a given size of panels 74, 76, compared with an active antenna for which the pitch of the array is approximately 0.6 ⁇ , the number of radiating elements is reduced, which limits the checks and the cost.
  • the mechanical pointing of the panel on the useful area makes it possible to limit to ⁇ 12 ° the useful area of the elementary diagram in which the signals are emitted by a panel of radiating elements. In this way, in a zone, it is possible to correctly isolate the right circular polarization signals from the left circular polarization signals and, thus, to achieve a polarization isolation greater than 20 dB.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Relay Systems (AREA)

Abstract

L'invention est relative à une antenne pour un système de télécommunication. L'antenne est destinée à communiquer, en émission et en réception, avec une zone étendue, de position variable par rapport à l'antenne. Elle comprend des moteurs (80, 82) pour pointer l'antenne vers la zone, et des éléments rayonnants (74, 76) associés à des moyens de commandes pour modifier le diagramme de rayonnement en fonction de la position relative de l'antenne et de la zone. L'invention s'applique notamment à une antenne destinée à être installée à bord d'un satellite de télécommunication. Au cours du déplacement du satellite l'antenne peut rester constamment en communication avec une zone de la terre d'une étendue de l'ordre de plusieurs centaines de kilomètres.

Description

ANTENNE POUR SYSTEME DE TELEŒBSMONICATION ET PROCEDE D'EMISSION Ou RECEPTION À L'AIDE D'UNE TELLE ANTENNE
La présente invention est relative à une antenne pour un système de télécommunication, notamment par satellites.
Pour diverses applications on a souvent besoin d'antennes destinées à recevoir des signaux d'une source mobile ou à émettre des signaux vers un récepteur (ou cible) mobile. Pour réaliser de telles antennes d'émission et/ou de réception on utilise le plus souvent des antennes actives constituées d'éléments rayonnants immobiles mais dont on peut faire varier la direction du diagramme de rayonnement en faisant varier la phase des signaux alimentant les éléments rayonnants .
Cette technique ne permet pas d'obtenir des diagrammes de rayonnement satisfaisants pour les angles de dépointage importants, c'est-à-dire pour les directions s 'écartant de façon importante de la direction moyenne d'émission et/ou de réception. Par ailleurs, le suivi d'une source ou d'un récepteur peut être effectué à l'aide d'une antenne conventionnelle et de moteurs commandant le déplacement de cette antenne.
Aucun de ces deux types d' antennes ne permet de résoudre correctement le problème de la communication entre l'an- tenne et une pluralité de sources ou récepteurs se trouvant dans une zone étendue, notamment une zone au sol, la communication devant rester confinée dans la zone malgré le changement de posi¬ tion de l'antenne par rapport à la zone.
Ce problème se pose en particulier dans un système de télécommunication à réseau de satellites à orbite basse. Un tel système a déjà été proposé pour la communication à haut débit entre stations ou mobiles terrestres se trouvant dans une zone géographique déterminée d'une étendue de plusieurs centaines de kilomètres. Les satellites ont une altitude qui se situe entre 1000 et 1500 km. Dans ce système, chaque satellite comporte des groupes d'antennes de réception et d'émission, chaque groupe étant dédié à une zone donnée. Dans chaque groupe, les antennes de réception reçoivent les signaux provenant d'une station dans la zone et les antennes d'émission réémettent les signaux reçus vers une autre station dans la même zone. Les antennes d'un groupe restent constamment orientées vers la zone tant que celle-ci reste dans le champ de vision du satellite. Ainsi, pour un satellite, une région de la terre est divisée en n zones et quand il se déplace au-dessus d'une région, à chaque zone est affecté un groupe d'an- tennes d'émission et de réception qui restent constamment orientées vers cette zone.
De cette manière, pendant le déplacement- - par exemple d'une durée d'une vingtaine de minutes - du satellite au-dessus d'une région, un seul groupe d'antennes d'émission et de récep- tion étant affecté à la zone, on évite des commutations d'une antenne à une autre qui pourraient être dommageables à la rapidité ou la qualité de la communication.
Par ailleurs, la basse altitude des satellites minimise les temps de propagation, ce qui est favorable à des comunica- tions de type interactif, notamment pour des applications dites "multimédias" .
On comprend qu'avec ce système de télécommunication, il faut qu'une antenne destinée à une zone ne puisse être perturbée par les signaux provenant d'une autre zone ou qu'elle ne perturbe pas d'autres zones. Pour résoudre ce problème d'isolation entre zones étendues 1 ' invention prévoit une antenne orientable mécaniquement à l'aide de moyens moteurs et qui comprend, en outre, des éléments rayonnants commandés pour modifier le diagramme de rayonnement en fonction de l'orientation relative de l'antenne par rapport à la zone, source ou cible, afin d'adapter ce diagramme à la forme sous laquelle l'antenne voit la zone cible ou source.
Ainsi, dans le cas du système de télécommunication par satellites décrit ci-dessus, dans lequel les zones sont toutes circulaires, une antenne à bord du satellite voit la zone sous la forme d'un cercle quand le satellite est au nadir de la zone. Par contre quand le satellite s'éloigne de cette position l'antenne voit la zone sous forme elliptique. Les éléments rayonnants et leurs moyens de commande, qui permettent d'adapter le diagramme de rayonnement à la forme sous laquelle l'antenne voit la zone, empêchent ainsi que l'antenne reçoive des signaux d'autres zones ou n'émette des signaux vers des zones adjacentes.
De préférence, les éléments rayonnants destinés à l'émission et les éléments rayonnants destinés à la réception se trouvent sur un même panneau deplaçable par les mêmes moyens moteurs .
La modification du diagramme est obtenue par modification des amplitudes des signaux fournis aux éléments rayonnants. Par ailleurs, selon un mode de réalisation avantageux, les éléments rayonnants sont répartis selon une surface ayant une forme qui correspond sensiblement au diagramme de rayonnement désiré pour les zones, sources ou cibles les plus éloignées, c'est-à-dire les sources fournissant les niveaux de signaux les plus faibles ou les cibles vers lesquelles il est nécessaire d'envoyer un maximum de puissance. Autrement dit les éléments rayonnants sont agencés pour s'adapter au cas le plus défavorable.
D'autres caractéristiques et avantages de l'invention apparaîtront avec la description de certains de ses modes de réa- lisation, celle-ci étant effectuée en se référant aux dessins ci- annexés sur lesquels : la figure 1 est un schéma montrant un système de télécommunication entre stations ou mobiles terrestres faisant appel à un système de satellites, la figure 2 est un schéma illustrant une répartition de trafics dans le cadre du système de télécommunication auquel s ' applique 1 ' invention, la figure 3 est un schéma d'une d'antenne d'émission et de réception, conforme à l'invention, montée à bord d'un satellite, la figure 4 est un schéma montrant la commande d'une antenne d'émission de la figure 3, la figure 4a est un schéma de panneau rayonnant, et la figure 5 est un schéma montrant la commande d'une antenne de réception de la figure 3.
L'exemple que l'on va décrire concerne un système de télécommunication faisant appel à une constellation de satellites à orbite basse, environ 1300 Km au-dessus de la surface 10 (figure 1) de la terre.
Le système doit établir des communications entre des utilisateurs 12, 14, 16 par l'intermédiaire d'une ou plusieurs station(s) de connexion 20. Il établit également des communications entre utilisateurs et des fournisseurs de service (non mon- très) reliés à une station de connexion. Ces communications sont réalisées par l'intermédiaire d'un satellite 22.
Dans les communications entre, d'une part, les utilisateurs 12, 14, 16 et la station de connexion 20 et, d'autre part, le satellite 22, il existe quatre types de signaux, à savoir : les signaux TXF du satellite 22 vers les utilisateurs, les signaux RXR des utilisateurs 12, 14, 16 vers le satellite 22, les signaux TXR du satellite 22 vers la station de connexion 20 et les signaux RXF de la station de connexion vers le satellite 22. A toutes fins utiles, on indique ici que le suffixe F signifie "forard" ou aller (de la station de connexion vers l'utili- sateur) et R signifie "return" ou retour (de l'utilisateur vers la station de connexion) . Par ailleurs, de façon classique, TX signifie "émission" et RX signifie "réception" . Ici on définit l'émission et la réception par rapport au satellite. Dans le système, à chaque instant le satellite 22 voit une région 24 de la terre (figure 2) et cette région est divisée en zones 26^, 262-..26n. Dans un exemple, chaque région 24 comporte 36 zones (n = 36) .
Chaque zone 26i a la forme d'un cercle d'un diamètre d'environ 700 km. Chaque région 24 est délimitée par un cône 70 centré sur le satellite et d'un angle au sommet déterminé par l'altitude du satellite. Une région est ainsi la partie de la terre visible depuis le satellite. Quand l'altitude du satellite est de 1300 km, l'angle au sommet est de 104° environ. Le satellite comporte des groupes d'antennes d'émission et de réception affectés à chaque zone 26. Chaque groupe est tel que, lorsque le satellite se déplace, ce groupe reste pointé vers la même zone. Autrement dit le diagramme de rayonnement de chaque antenne reste toujours dirigé vers une même zone terrestre 26^ en principe tant que le satellite voit cette zone.
Le besoin en antennes est au maximum de 4n : quatre types de signaux par zone. Toutefois, l' invention - prévoit, comme on le verra plus loin, que le nombre total d'antennes est sensiblement inférieur à 4n. Le satellite sert à la communication entre utilisateurs et entre utilisateurs et la station de connexion à l'intérieur de chaque zone 26^. Par contre, la communication entre zones est effectuée à l'aide de moyens terrestres, par exemple à l'aide de câbles disposés entre les stations de connexion des diverses zones faisant partie d'une même région ou de régions différentes.
Le nombre et la disposition des satellites sont tels qu'a chaque instant, une zone 26-^ voit deux ou trois satellites.
De cette manière, quand une zone 26^ sort du champ de vision du satellite affecté aux communications dans cette zone il reste un satellite pour prendre le relais et la commutation d'un satellite à l'autre s'effectue de façon instantanée. Toutefois, une telle commutation intervient peu fréquemment, par exemple, toutes les vingt minutes environ, car une antenne reste toujours pointée vers une même zone. En pratique cette commutation se produit quand, pour la zone 26^ en question, l'élévation du satellite descend au-dessous de 10°.
Dans l'exemple auquel s'applique l'invention, on prévoit, dans une région 24, au moins deux catégories de zones correspondant à des besoins en trafic différents. Le besoin en tra- fie se mesure, par exemple, par la quantité moyenne d'informations qui est transmise par unité de temps et par unité de surface.
Ainsi, dans une partie 28 de la région 24 (figure 2) le trafic est peu intense, tandis que dans une autre partie 30 le trafic est intense. Un trafic intense correspond, par exemple, à des zones urbaines d'un pays développé, tandis qu'un trafic faible correspond, par exemple, à des zones rurales ou peu développées .
Dans la partie 30 à trafic intense à chaque zone on affecte l'ensemble des ressources A, B, C, D en signaux.
Par "ressources en signaux" on entend une caractéristique de polarisation et une caractéristique de bande de fréquences porteuses.
Dans l'exemple la polarisation est soit de type cir- culaire droit (PQ) , soit de type circulaire gauche (PQ) et on prévoit deux bandes séparées de fréquences porteuses : ΔFτ_ et ΔF2.
Comme on peut le voir sur la figure 2 : A signifie un signal de polarisation circulaire droite Pp, et une bande de fré- quences ΔF;L ; B signifie une polarisation circulaire droite PQ et une bande de fréquences ΔF2 ; C correspond à une polarisation circulaire gauche PQ et une bande de fréquences ΔF]_ et D à une polarisation circulaire gauche PQ et une bande de fréquences ΔF2.
Ainsi, dans la partie 30 à trafic intense, à chaque zone est affecté l'ensemble des ressources A, B, C et D. Par contre, dans la partie 28 de faible trafic, à cha¬ que zone est affectée une seule ressource A, B, C ou D. En outre, la répartition des ressources en signaux est telle que deux zones adjacentes ne contiennent pas des ressource identiques. Les zones auxquelles est affectée la même ressource sont séparées par au moins une zone où la ressource est différente. Ainsi, la zone 26ιo de ressource A (signal de polarisation circulaire droite PTJ et bande ΔFη_) est séparée de la zone 26_ comportant la même ressource, par la zone 26^ à laquelle est affectée la ressource B (polarisation circulaire droite Pp, mais bande de fréquences ΔF2).
Il est à noter que les bandes de fréquences porteuses ΔFi et ΔF2 sont soit de même étendue, soit d'une étendue différente. Par exemple si, dans la partie 28, certaines zones nécessitent un trafic plus important que d'autres zones, la bande de fréquences porteuses ΔF sera plus importante que la bande de fréquences porteuses ΔF^.
Cette séparation de la région 24 en zones à faible trafic et en zones à trafic intense permet, comme on le verra plus loin, d'optimiser les équipements à bord du satellite 22.
Dans une zone telle que celle de référence 26]_Q les antennes peuvent être réalisées de façon telle qu'elles puissent recevoir ou émettre seulement des signaux à polarisation circulaire droite Pp. On peut ainsi utiliser des équipements simpli- fiés. Par contre, dans les zones de la partie 30, les systèmes d'antenne doivent être capables d'engendrer les deux polarisations circulaires (droite et gauche) , sans interférence entre les signaux.
En ce qui concerne les contraintes pour les équipements à bord du satellite 22, on comprend que chaque antenne suit une zone et doit effectuer un balayage selon un angle compris entre 100° et 120° depuis l'entrée de la zone dans le champ de vision du satellite jusqu'à sa sortie. En outre, la forme du diagramme de rayonnement doit varier au cours du déplacement du satellite car, pour l'antenne, une zone qui se trouve à la verticale du satellite est vue sans déformation, c'est-à-dire comme un cercle, mais une zone se trouvant en bord de région, par exemple la zone 26χ ou 262, est vue sous la forme d'une ellipse allongée de plus faibles dimensions. Comme toutes les possibilités de comunica- tion doivent être conservées pour chaque zone au cours du déplacement du satellite dans la région, il est donc nécessaire d'agencer les antennes pour qu'elles effectuent le balayage nécessaire et contrôlent les diagrammes de rayonnement en fonction de la direction visée. Pour atteindre ce résultat dans le mode de réalisation décrit, aux zones à faible trafic on affecte des antennes actives, c'est-à-dire des antennes qui sont pointables et reconfigurables de façon électronique et aux zones à trafic intense on affecte des antennes orientables mécaniquement et reconfigurables électroniquement. En variante toutes les zones sont dotées d'antennes de ce dernier type.
Dans ce qui suit, on ne décrira que les antennes orientables mécaniquement et dont le diagramme est modifiable de façon électronique . Ces antennes permettent le meilleur isolement entre zones du fait du pointage mécanique. Toutefois une antenne de ce type ne peut être affectée qu'à une seule zone. Il est donc nécessaire de prévoir au moins autant d'antennes de ce type qu'il existe de zones à trafic intense. Par exemple on prévoit, par région, huit à douze zones ayant un trafic intense et seize à vingt-quatre zones de faible trafic .
La figure 3 représente une antenne destinée aux zones à trafic intense. Elle permet l'émission et la réception. Cette antenne comporte un plateau 72 logeant deux panneaux d'éléments rayonnants, respectivement 74 et 76. Le panneau 74 est destiné à l'émission tandis que le panneau 76 est destiné à la réception.
Le plateau support 72 qui, sur la figure 3, est repré- sente en direction horizontale, est pivotant autour d'un axe horizontal 78, parallèle au plan du plateau 72, grâce à un moteur 80 appelé moteur d'élévation, le pivotement autour de l'axe 78 effectuant l'orientation en élévation.
Par ailleurs, un autre moteur 82, d'axe vertical 84, est prévu sous le moteur 80. La rotation autour de l'axe 84 per- met l'orientation en azimut.
Le panneau 74 d'éléments rayonnants destinés à l'émission a une forme générale elliptique de grand axe 86. Cette forme elliptique correspond à la forme sous laquelle l'antenne voit une zone proche de l'horizon, quand cette antenne est pointée vers cette zone, c'est-à-dire quand l'axe 88 vertical du plateau 72 est dirigé vers la zone en bord d'horizon.
De façon plus précise la forme elliptique est adaptée à la forme d'une zone à couvrir correspondant à un angle de pointage de 50° environ alors que l'angle maximum de pointage est de 54°. L'axe 86 est perpendiculaire au grand axe de l'ellipse sous laquelle une zone est vue pour un tel pointage de 50° .
Dans la description qui précède on comprend que les directions verticale et horizontale ont été mentionnées pour illustrer les directions relatives des divers éléments mais non pour indiquer une orientation absolue.
Le panneau 76 destiné à la réception a, comme le panneau 74, la forme générale d'une ellipse de grand axe 90, parallèle au grand axe 86 du panneau 74.
Le panneau 74 est destiné à la fois aux signaux TXF et aux signaux TXR. De même le panneau 76 est destiné aux signaux RXF et RXR.
La figure 4 est un schéma d'un circuit de commande destiné au panneau d'émission 74. Dans cet exemple on prévoit trois sous-bandes de fréquences porteuses destinées aux signaux TXF (émission vers les utilisateurs) et une seule bande de fréquences porteuses pour les signaux TXR (vers la station de connexion) . Ainsi, trois amplificateurs 92, 94 et 96 sont affectés aux signaux TXF et un amplificateur 98 est prévu pour les signaux TXR. Bien entendu, le circuit de la figure 4 n'est pas limité à cette répartition en trois sous-bandes pour les signaux TXF et une bande pour les signaux TXR. D'autres répartitions sont possibles telles que deux bandes pour les signaux THF et deux bandes pour les signaux TXR.
Les sorties des amplificateurs 92 à 98 sont appliquées aux entrées d'un multiplexeur 100 qui délivre des signaux aux éléments rayonnants du panneau 74 par l'intermédiaire d'un circuit ou réseau 102 formateur de faisceaux.
Selon une caractéristique de l'invention, ce réseau 102 adapte le diagramme de rayonnement à la position du satellite par rapport à la zone à laquelle est affectée l'antenne. Autrement dit à chaque instant l'axe 88 est dirigé vers la zone correspondante, grâce au moteur d'azimut 82 et au moteur d'élévation 80 (figure 3) , et à cette direction de pointage "mécanique" correspond une commande électronique 102 de façon à adapter le faisceau à la position relative de l'antenne et de la zone. Le faisceau est de section circulaire quand le satellite est au nadir de la zone et il est de section elliptique quand la zone est en bord d'horizon. A cet effet, en particulier pour l'émission, lorsque l'antenne est au nadir, on alimente seulement les éléments rayonnants qui sont répartis selon un cercle ; lorsque le satellite quitte le nadir de la zone, la commande des amplitudes des signaux fournis aux éléments rayonnants émetteurs met en action, au fur et à mesure, d'autres éléments rayonnants, le nombre d'éléments rayonnants activés étant maximum quand l'antenne s'apprête à quitter la zone de vision de la zone. Le circuit 102 comporte, dans l'exemple, q répartiteurs de puissance 104^ à 104g. Ces répartiteurs sont reconfigurables ; ils sont aussi à faibles pertes car ils sont situés après les amplificateurs 92 à 98.
Les répartiteurs de puissance 104i affectent l'ampli- tude des signaux fournis aux éléments rayonnants du panneau 74 mais non leur phase. En effet les éléments rayonnants n'interviennent pas pour le pointage ; il n'est donc pas nécessaire de faire varier la phase des signaux qui leur sont appliqués.
Par ailleurs, on a constaté qu'il n'était pas néces- saire de commander individuellement l'amplitude de chaque élément rayonnant. C'est pourquoi, dans une réalisation le nombre q de répartiteurs de puissance est un sous multiple du nombre d'élé- ments rayonnants. Dans l'exemple le nombre d'éléments rayonnants est de 64 ou 80 tandis que le nombre q est de 16.
Cette simplification résulte de l'observation que le diagramme de rayonnement est asymétrique par rapport à la direc- tion de pointage mécanique du panneau. Dans ces conditions les éléments rayonnants situés à une même distance du centre du panneau sont excités à un même niveau d'amplitude et peuvent donc être excités de la même manière, c'est-à-dire par les mêmes composants . La figure 4a montre un exemple de panneau d'éléments rayonnants disposés selon une forme allongée. Chaque élément rayonnant est représenté par un cercle 140. A l'intérieur de chaque élément rayonnant on a indiqué un numéro, ou indice, de 1 à 16. Les numéros identiques correspondent à une excitation de même niveau d'amplitude. Ainsi, par exemple, les quatre éléments d'indice 1 au centre sont tous excités avec la même amplitude. Par ailleurs, sur cette figure 4a, on observe, de façon générale, que les éléments rayonnants sont répartis selon quatre quadrants 152, 154, 156 et 158 excités de la même manière. La figure 5 représente le circuit destiné à exploiter les signaux reçus par le panneau d'éléments rayonnants 76 affectés à la réception.
Ce circuit comporte des filtres 110, des amplificateurs 112 à faible bruit des atténuateurs variables 114 et des dépha- seurs variables 115. Le rôle des atténuateurs 114 et des dépha- seurs 115 est le même que celui des atténuateurs 104 de la figure 4 à savoir adapter le diagramme de rayonnement à la position relative du satellite par rapport à la zone. L'utilisation de déphaseurs à la réception permet d'optimiser la formation du faisceau ; elle ne pénalise pas le bilan de liaison car les déphaseurs se trouvent en aval des amplificateurs 112 à faible bruit.
Également comme dans le cas de la figure 4, les atténuateurs 114 sont commandés en fonction de la position relative du satellite par rapport à la zone. Par ailleurs, un combineur passif 116 effectue la somme des signaux fournis par les atténuateurs 114.
Les signaux de sortie du combineur 116 sont fournis à un multiplexeur 120 qui sépare les signaux RXF et RXR. Dans l'exemple, on prévoit trois bandes de signaux RXF et une bande de signaux RXR de façon analogue à ce qui est prévu dans l'exemple de la figure 4.
Bien entendu, également comme dans l'exemple de la figure 4, la répartition entre les bandes pour les signaux RXF et RXR peut être différente.
Il est à noter que, comme représenté sur les figures 3 à 5, les câbles ou conducteurs électriques passent à travers un joint tournant 130, 132 et que ces câbles sont soumis à des rotations correspondant aux réglages en élévation et en azimut. La reconfiguration du diagramme de rayonnement en fonction de l'élévation est assurée par un réseau formateur de faisceaux à base de ferrite ou de MMIC (circuit intégré monolithique pour les micro-ondes, "Monolithic Microwave Integrate Circuit" en langue anglaise) . Pour l'antenne d'émission, on utilise de pré- férence un circuit à base de ferrite, un tel circuit étant mieux adapté à une formation de faisceaux à faibles pertes après l'amplification de puissance. Cette amplification de puissance est réalisée à l'aide d'amplificateurs SSPA qui présentent un faible rendement et dissipent donc une quantité importante de chaleur. II est donc préférable d'éloigner ce circuit du panneau 72 qui, en général, dispose de peu de moyens de dissipation thermique ; ce circuit est donc installé sous le panneau 134 dit "de terre" (figure 3) toujours orienté vers le centre de la terre et qui dispose de moyens de dissipation thermique plus importants. Le réseau formateur de faisceaux est, pour la réception, en technologie MMIC. Les amplificateurs à faible bruit sont disposés à proximité du panneau rayonnant pour minimiser les pertes ohmiques dues aux connexions.
Le pointage mécanique du plateau 72 est, par rapport à un pointage électronique, particulièrement avantageux car il n'est pas nécessaire de surdimensionner les panneaux d'éléments rayonnants 74 et 76.
L'absence de pointage électronique permet d'utiliser au mieux les ressources des signaux pour former les faisceaux sur une large bande passante. En particulier, l'absence de pointage électronique entraîne l'absence de dispersion en fréquence qui est liée à l'absence de pente de phase pour le pointage.
Le pas du réseau d'éléments rayonnants peut être de l'ordre de 0,9 λ. On évite ainsi aisément la formation de lobes de réseau. En outre, cette distance entre éléments rayonnants adjacents facilite l'implantation des divers éléments de commande et limite le couplage. Par ailleurs pour une taille donnée de panneaux 74, 76, par rapport à une antenne active pour laquelle le pas du réseau est d'environ 0,6 λ, le nombre d'éléments rayon- nants est réduit, ce qui limite les contrôles et le coût.
Le pointage mécanique du panneau sur la zone utile permet de limiter à ±12° la zone utile du diagramme élémentaire dans laquelle les signaux sont émis par un panneau d'éléments rayonnants. De cette manière, dans une zone, on peut isoler correcte- ment les signaux à polarisation circulaire droite des signaux à polarisation circulaire gauche et, ainsi, réaliser une isolation de polarisation supérieure à 20 dB.
L'utilisation d'un réseau formateur de faisceaux à ferrite à l'émission, permet d'adapter la surface utile de l'antenne au diagramme à réaliser.
On obtient ainsi un diagramme toujours gaussien et les lobes secondaires sont d'un très bas niveau quels que soient la forme du diagramme et l'angle de pointage. Ainsi l'isolation entre zones adjacentes est optimale. A l'émission, on utilise une loi apodisée permettant d'éliminer les lobes secondaires et on s'affranchit des problèmes de fonctions de transfert différentiel des amplificateurs lorsque ces derniers fonctionnent en recul par rapport à leur point de fonctionnement nominal.

Claims

REVENDICATIONS
1. Antenne d'émission et/ou réception destinée à communiquer avec une zone, cible ou source de position variable par rapport à l'antenne, caractérisée en ce que la zone, cible ou source ayant une grande étendue, l'antenne comporte, en co - binaison, des moyens moteurs (80, 82) pour pointer cette antenne vers la zone, cible ou source et des éléments rayonnants (74, 76) associés à des moyens de commande pour modifier le diagramme de rayonnement en fonction de la position relative de l'antenne et de la zone, cible ou source, afin d'adapter ce diagramme à la forme sous laquelle l'antenne voit la zone, cible ou source.
2. Antenne selon la revendication 1, caractérisée en ce que les moyens de commande des éléments rayonnants sont, pour l'émission, prévus pour commander seulement les amplitudes des signaux fournis à ces éléments.
3. Antenne selon la revendication 1 ou 2, caractérisée en ce que les moyens de commande des éléments rayonnants sont, pour la réception, prévus pour commander les amplitudes et les phases des signaux fournis à ces éléments.
4. Antenne selon la revendication 2 ou 3, caractérisée en ce que plusieurs éléments rayonnants reçoivent la même amplitude.
5. Antenne selon l'une quelconque des revendications 1 à 4, caractérisée en ce que l'antenne comporte une surface orientable à l'aide d'un moteur d'azimut et d'un moteur d'élévation.
6. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte un plateau (72) comportant, d'une part, des éléments rayonnants (74) pour l'émission et, d'autre part, des éléments rayonnants (76) pour la réception.
7. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que les éléments rayonnants (74, 76) sont disposés selon une configuration géométrique optimisée pour la position relative de l'antenne par rapport à la zone, cible ou source pour laquelle les signaux reçus sont les plus faibles ou les besoins d'émission sont les plus importants.
8. Antenne selon la revendication 7, caractérisée en ce que les éléments rayonnants (74, 76) sont disposés selon une sur- face allongée, notamment une ellipse.
9. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que les moyens de commande des éléments rayonnants comportent un réseau formateur de faisceaux à base de ferrite pour l'émission.
10. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que les moyens de commande des éléments rayonnants comportent, pour la réception, un réseau formateur de faisceaux à MMIC.
11. Application d'une antenne selon l'une quelconque des revendications précédentes, à un système de télécommunication dans lequel l'antenne se trouve à bord d'un engin spatial, tel qu'un satellite (22) , cette antenne restant constamment en communication avec une zone (26) de la terre d'une étendue de l'ordre de plusieurs centaines de kilomètres au cours du déplacement de l'engin au-dessus de la partie (24) de la terre qui contient la zone.
12. Procédé d'émission et/ou réception à l'aide d'une antenne destinée à communiquer avec une zone, cible ou source de position variable par rapport à cette antenne, caractérisé en ce que la zone, cible ou source, ayant une grande étendue, et l'antenne comportant des moyens moteurs et des éléments rayonnants, on pointe cette antenne vers la zone, cible ou source et on commande le diagramme de rayonnement des éléments rayonnants en fonction de la position relative de l'antenne et de la zone, cible ou source, afin d' adapter ce diagramme à la forme sous laquelle l'antenne voit la zone, cible ou source.
EP98933719A 1997-06-26 1998-06-25 Antenne orientable mecaniquement pour systeme de telecommunication et procede d'emission ou reception a l'aide d'une telle antenne Withdrawn EP1016161A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9708014A FR2765405B1 (fr) 1997-06-26 1997-06-26 Antenne pour systeme de telecommunication
FR9708014 1997-06-26
PCT/FR1998/001347 WO1999000868A1 (fr) 1997-06-26 1998-06-25 Antenne pour systeme de telecommunication et procede d'emission ou reception a l'aide d'une telle antenne

Publications (1)

Publication Number Publication Date
EP1016161A1 true EP1016161A1 (fr) 2000-07-05

Family

ID=9508480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98933719A Withdrawn EP1016161A1 (fr) 1997-06-26 1998-06-25 Antenne orientable mecaniquement pour systeme de telecommunication et procede d'emission ou reception a l'aide d'une telle antenne

Country Status (7)

Country Link
US (1) US6404385B1 (fr)
EP (1) EP1016161A1 (fr)
JP (1) JP2002506589A (fr)
AU (1) AU8344298A (fr)
CA (1) CA2290676A1 (fr)
FR (1) FR2765405B1 (fr)
WO (1) WO1999000868A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765405B1 (fr) 1997-06-26 1999-10-01 Alsthom Cge Alcatel Antenne pour systeme de telecommunication
US6812904B2 (en) * 2002-04-10 2004-11-02 Lockheed Martin Corporation Rolling radar array
US6882321B2 (en) * 2002-04-10 2005-04-19 Lockheed Martin Corporation Rolling radar array with a track
US6850201B2 (en) * 2002-04-10 2005-02-01 Lockheed Martin Corporation Gravity drive for a rolling radar array
US7199764B2 (en) * 2002-04-10 2007-04-03 Lockheed Martin Corporation Maintenance platform for a rolling radar array
US7183989B2 (en) 2002-04-10 2007-02-27 Lockheed Martin Corporation Transportable rolling radar platform and system
US7099696B2 (en) * 2003-02-14 2006-08-29 Radio Frequency Systems, Inc. Angle diversity dual antenna system
JP2009533010A (ja) * 2006-04-06 2009-09-10 アンドリュー・コーポレーション セルラーアンテナ及びそのためのシステムと方法
US8638264B2 (en) * 2010-03-23 2014-01-28 Lockheed Martin Corporation Pivot radar
US9263797B1 (en) 2011-08-08 2016-02-16 Lockheed Martin Corporation Pivoting sensor drive system
GB2539732A (en) 2015-06-25 2016-12-28 Airspan Networks Inc A configurable antenna and method of operating such a configurable antenna
GB2539735A (en) 2015-06-25 2016-12-28 Airspan Networks Inc Sub-sampling antenna elements
GB2539731B (en) 2015-06-25 2021-08-04 Airspan Ip Holdco Llc Quality of service in wireless backhauls
GB2539722B (en) 2015-06-25 2021-10-13 Airspan Ip Holdco Llc Bearing calculation
GB2539727B (en) 2015-06-25 2021-05-12 Airspan Ip Holdco Llc A configurable antenna and method of operating such a configurable antenna
GB2539733A (en) 2015-06-25 2016-12-28 Airspan Networks Inc An antenna apparatus and method of configuring a transmission beam for the antenna apparatus
GB2539734A (en) 2015-06-25 2016-12-28 Airspan Networks Inc An antenna apparatus and method of performing spatial nulling within the antenna apparatus
CN107787595B (zh) 2015-06-25 2021-07-13 艾尔斯潘网络公司 管理无线网络中的外部干扰
GB2539736A (en) 2015-06-25 2016-12-28 Airspan Networks Inc Wireless network configuration using path loss determination between nodes
GB2539730B (en) 2015-06-25 2021-04-07 Airspan Ip Holdco Llc Node role assignment in networks

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878520A (en) * 1973-01-24 1975-04-15 Stanford Research Inst Optically operated microwave phased-array antenna system
US5225839A (en) * 1980-12-29 1993-07-06 Okurowski Frank A All weather tactical strike system (AWTSS) and method of operation
US4837576A (en) * 1984-11-16 1989-06-06 Electrospace Systems, Inc. Antenna tracking system
US5351060A (en) * 1991-02-25 1994-09-27 Bayne Gerald A Antenna
JP2579070B2 (ja) * 1991-03-06 1997-02-05 日本無線株式会社 アレイアンテナ及び揺動補償型アンテナ装置
US5303240A (en) * 1991-07-08 1994-04-12 Motorola, Inc. Telecommunications system using directional antennas
US5296862A (en) * 1992-11-18 1994-03-22 Winegard Company Method for automatically positioning a satellite dish antenna to satellites in a geosynchronous belt
US5463400A (en) * 1994-06-30 1995-10-31 Motorola, Inc. Method and apparatus for synchronizing to a multi-beam satellite TDMA communication system
US5680141A (en) * 1995-05-31 1997-10-21 The United States Of America As Represented By The Secretary Of The Army Temperature calibration system for a ferroelectric phase shifting array antenna
CN1096612C (zh) * 1995-07-07 2002-12-18 英国国防部 相控阵雷达的电路模件
EP0855092B1 (fr) * 1995-10-13 2001-01-10 NIELSEN, Peter Procede et systeme de transmission de signaux electromagnetiques
FR2765405B1 (fr) 1997-06-26 1999-10-01 Alsthom Cge Alcatel Antenne pour systeme de telecommunication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9900868A1 *

Also Published As

Publication number Publication date
FR2765405B1 (fr) 1999-10-01
JP2002506589A (ja) 2002-02-26
CA2290676A1 (fr) 1999-01-07
AU8344298A (en) 1999-01-19
US6404385B1 (en) 2002-06-11
FR2765405A1 (fr) 1998-12-31
WO1999000868A1 (fr) 1999-01-07

Similar Documents

Publication Publication Date Title
EP1016161A1 (fr) Antenne orientable mecaniquement pour systeme de telecommunication et procede d'emission ou reception a l'aide d'une telle antenne
EP2532046B1 (fr) Antenne plane à balayage pour application mobile terrestre, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP2532050B1 (fr) Antenne plane directive embarquée, véhicule comportant une telle antenne et système de télécommunication par satellite comportant un tel véhicule
EP0992128B1 (fr) Systeme de telecommunication
EP2429036B1 (fr) Antenne de télécommunication multifaisceaux embarquée sur un satellite à grande capacité et système de télécommunication associé
FR2922051A1 (fr) Systeme d'antenne embarque de poursuite de satellite avec controle de polarisation
FR2719948A1 (fr) Antenne multi-faisceaux pour la réception de micro-ondes émanant de plusieurs satellites.
FR2778042A1 (fr) Systeme d'antennes de poursuite de satellites a defilement
EP1170823B1 (fr) Antenne de télécommunication destinée à couvrir une large zone terrestre
EP0749217B1 (fr) Système de communication par satellites à défilement, satellite, station et terminal y inclus
FR2783376A1 (fr) Systeme de communications par satellite ameliore utilisant une commande de puissance hf de stations terrestres multiples dans un seul faisceau de liaison descendante
EP0687921B1 (fr) Méthode et système de localisation d'équipements sol émetteurs à l'aide de satellites
EP1198864B1 (fr) Systeme comportant un satellite a antenne radiofrequence
EP1798809A1 (fr) Dispositif d'émission et/ou de réception d'ondes électromagnétiques pour aérodynes
FR2714778A1 (fr) Procédé et dispositif de transmission entre le sol et véhicule spatial géostationnaire.
FR2829297A1 (fr) Reseau formateur de faisceaux, vehicule spatial, systeme associe et methode de formation de faisceaux
FR2783378A1 (fr) Systeme de communications par satellite ameliore utilisant un partage de la puissance hf pour des sources primaires ou des faisceaux multiples dans des liaisons
EP1074064A1 (fr) Appareil de poursuite de satellites a defilement
CA2356725A1 (fr) Lentille divergente a dome pour ondes hyperfrequences et antenne comportant une telle lentille
EP1142063A1 (fr) Dispositif de telecommunication a reseaux a balayage electronique conforme et terminal de telecommunication associe
EP0992080B1 (fr) Antenne a forte capacite de balayage
WO1999060717A1 (fr) Circuit et procede de reception ou d'emission d'ondes hyperfrequences
FR2535120A1 (fr) Antenne, notamment pour satellite de telecommunications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR IT SE

17Q First examination report despatched

Effective date: 20010706

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030708