EP0992080B1 - Antenne a forte capacite de balayage - Google Patents

Antenne a forte capacite de balayage Download PDF

Info

Publication number
EP0992080B1
EP0992080B1 EP98933717A EP98933717A EP0992080B1 EP 0992080 B1 EP0992080 B1 EP 0992080B1 EP 98933717 A EP98933717 A EP 98933717A EP 98933717 A EP98933717 A EP 98933717A EP 0992080 B1 EP0992080 B1 EP 0992080B1
Authority
EP
European Patent Office
Prior art keywords
reflector
antenna
antenna according
radiating elements
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98933717A
Other languages
German (de)
English (en)
Other versions
EP0992080A1 (fr
Inventor
Régis Lenormand
Frédéric Croq
Frédéric Magnin
Philippe Voisin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0992080A1 publication Critical patent/EP0992080A1/fr
Application granted granted Critical
Publication of EP0992080B1 publication Critical patent/EP0992080B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/192Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with dual offset reflectors

Definitions

  • the present invention relates to an antenna strong scanning capacity. It relates more particularly an antenna which is intended for a telecommunications system, especially by satellites.
  • antennas are often needed for receiving signals from a mobile source and / or transmit signals to a mobile receiver (or target).
  • a mobile receiver or target
  • active antennas are used stationary radiant elements but which can be varied the direction of the radiation pattern by varying the phase of the signals supplying the radiating elements.
  • This technique does not allow to obtain diagrams of satisfactory radiation for deflection angles important, i.e. for directions deviating so notable of the average direction of emission and / or reception.
  • Tracking a source or receiver can also be performed using a conventional antenna, a motor controlling the movement of this antenna.
  • This type of antenna mechanically movable and motorized components not suitable for all applications. In particular, for applications spatial it is better to avoid, for reasons of reliability, size and weight, the use of such antenna.
  • the invention overcomes these drawbacks. She permits the creation of an antenna with high scanning capacity with a satisfactory radiation pattern for the angles of important depointing and which does not call upon organs mobile.
  • the antenna according to the invention comprises an assembly static radiating elements controlled to perform a scan and reflecting means for amplifying the angle of scanning provided by the radiating elements.
  • Ways reflector have two reflectors with a focus common the first reflector receiving the beam emitted by the set of radiating elements and the second reflector receiving the beam reflected by the first reflector.
  • the focal length of the first reflector is greater than the focal length of the second reflector so that the beam coming out of the antenna has an inclination to a direction predetermined which is greater than the inclination ⁇ , with respect to at the given direction, of the beam emitted by the elements Radiant.
  • the angle of the scanning carried out by the elements radiant can be reduced in proportion to the amplification produced by the reflecting means.
  • the radiating elements are not used for angles of too important depointing.
  • the constraints imposed on radiating elements to be scanned according to a reduced angle are much less severe.
  • overall dimensions are less limited, which allows a not, i.e. a distance between two radiating elements adjacent, of sufficient value to avoid the lobes of networks without compromising the propagation of radiation.
  • the reflecting means are in fact analogous to those commonly used, for example in Grain Breaker antennas, to increase the beam size.
  • the reflector means are used unlike usual use. Indeed, in a Cassegrain antenna, a increase in beam size corresponds to a decrease in scanning angle.
  • each reflector comprises, by example, a dish.
  • the gain of the amplification in scanning depends on the ratio between the focal lengths of the two reflectors.
  • This ratio is, for example, four.
  • the reflectors are arranged in such a way that the output beam is not obscured, even partially, by the first reflector, i.e. the receiving reflector directly the beam from the radiating elements.
  • a preferred application of the invention relates to a antenna for communication with a plurality of sources or receivers located in a wide area, communication to remain confined to the area despite the change in position of the antenna in relation to the area.
  • Satellites have an altitude between 1000 and 1500 km.
  • each satellite has groups reception and transmission antennas, each group being dedicated to a given area.
  • the receiving antennas receive signals from a station in the area and antennas retransmit signals received to another station in the same area.
  • the antennas of a group remain constantly oriented towards the area, as long as it remains in the field of satellite view. So, for a satellite, a region of the earth is divided into n areas and when it moves over it a region, each group is assigned a group of antennas constantly transmitting and receiving towards this area.
  • the low altitude of the satellites minimizes propagation times, which is favorable for interactive communications, especially for so-called multimedia applications.
  • the radiation pattern has a variable shape depending on the position relative of the satellite to the area.
  • the antenna sees the area in the form of a circle when the satellite is at the nadir of this zone ; on the other hand when the satellite moves away from this position the antenna sees the area as an ellipse all the more flattened as it approaches the horizon.
  • an antenna according to the invention in which the reflectors are paraboloides allows to adapt the ground trace of the diagram to the relative position of the antenna relative to the area, without having to modify the radiation pattern provided by the radiating elements.
  • the antenna has a significant gain when the satellite is close to the horizon relative to the zoned.
  • the distance from the satellite to the area is the more important; thus the increase in gain compensates increasing distance, which is favorable for maintaining communications.
  • each antenna being used for an even smaller scan.
  • An antenna according to the invention can be used for follow several zones, the radiating elements being able to receive, or transmit, signals from or to multiple zones.
  • antenna which we will describe is intended for a telecommunications system using a constellation of low-orbiting satellites, about 1300 km above from the surface 10 of the earth.
  • the system must establish communications between users 12, 14, 16 ( Figure 1) and one, or more, station (s) 20 to which suppliers are connected services such as databases.
  • the communications are also established between users through of the connection station 20.
  • the satellite 22 sees a region 24 of the earth (FIG. 2) and this region is divided into zones 26 1 , 26 2 ... 26 n .
  • Each zone 26 i has the shape of a circle with a diameter of about 700 km.
  • Each region 24 is delimited by a cone 70 (FIG. 1) centered on the satellite and an apex angle determined by the altitude of the satellite. A region is thus the part of the earth visible from the satellite. When the satellite altitude is 1300 km, the apex angle is about 110 °.
  • Communication between zones is carried out using terrestrial means, for example using cables arranged between the connection stations of the various zones forming part from the same region or from different regions.
  • the number and the arrangement of the satellites are such that at each instant, an area 26 i sees two or three satellites. In this way, when a zone 26 i leaves the field of vision of the satellite assigned to communications in this zone, there remains a satellite to take over and the switching from one satellite to the other takes place instantaneously.
  • the antennas according to the invention are, during the movement of the satellite over a region 24, always pointed to the same area or the same set of areas. They must therefore have a strong scanning capacity or misalignment.
  • the antenna includes ( Figure 3) a panel 30 of radiant elements associated with a network forming phase control beam (not shown) of applied signals with radiant elements.
  • a beam 32 emitted by the panel 30 is directed towards a first reflector 34 having the shape of a paraboloid with circular cutout.
  • This reflector is an element a fictitious surface 36 whose axis 38, on which the hearth 40, is distant from the reflector 34.
  • the axis 38 is perpendicular to the plane of the panel 30.
  • the beam 42 reflected by the reflector 34 is directed towards a second reflector 44 arranged opposite the axis 38 with respect to the reflector 34 and to the panel 30.
  • This reflector 44 is also an element of a fictitious surface 46, which in the plan of FIG. 3 is a parabola with the same focus 40 as the parabola 36 and the same axis 38.
  • the surface 46 is also a paraboloid.
  • the concavity of the reflector 44 is turned towards the concavity of the reflector 34.
  • the focal length of the reflector 44 is for example four times less than the focal length of the reflector 34.
  • the axis 38 does not form an intersection with the reflectors 34 and 44.
  • the edge 44 1 of the reflector 44 closest to the axis 38 is at a distance from the axis substantially less than the distance from the edge 34 1 corresponding from reflector 34 to axis 38.
  • the network 30 has a general external shape of a circle with a diameter of 30 cm (or 12 ⁇ ) approximately with 37 separate radiating elements others 42 mm, or 1.7 ⁇ , ⁇ being the wavelength of the radiation.
  • Each of the reflectors is cut in a circle.
  • the diameter of the circle limiting the reflector 34 is, in this example, of the order of 28 ⁇ , while the diameter of the circle limiting the reflector 44 is of the order of 30 ⁇ .
  • the distance between the edge 34 1 of the axis 38 is 24 ⁇ and the distance between the edge 44 1 of the reflector 44 and the axis 38 is 4 ⁇ .
  • the grating 30 When the grating 30 emits a beam of waves 32 1 parallel to the axis 38, that is to say perpendicular to its plane, this beam is reflected by the reflector 34 so that it is focused at the focus 40 Under these conditions the reflector 44 returns this beam 32 2 parallel to the axis 38 as represented by the beam 32 3 .
  • the beam 32 6 reflected by the reflector 34 converges at a point 50 close to the focal point 40 and the beam 32 7 reflected by the reflector 44 is inclined by an angle which is approximately n times the angle ⁇ , n being the ratio of the focal distance f of the reflector 34 to the focal distance f 'of the reflector 44.
  • this ratio between the focal distances being four, the beam 32 7 is therefore inclined at an angle 4 ⁇ with respect to the axis 38.
  • the beam 32 10 is reflected in a beam 32 11 by the reflector 34 and the latter converges at a point 52 distant from the focal point 40.
  • the beam 32 11 is reflected by the reflector 44 according to a beam 32 12 .
  • the beam 32 7 also of azimuth 90 °, is inclined by 18 ° relative to axis 38. This value corresponds well to 4 ⁇ .
  • the beam 32 12 has an inclination of 38 ° relative to the axis 38, this which is substantially less than four times the inclination of the beam 32 10 .
  • the azimuth of the beam 32 12 is also 90 °.
  • the beam emitted by the network 30 can scan an angle ⁇ between 4.5 ° and -14 °.
  • limits are imposed, firstly, by the geometry because the beam reflected by the reflector 34 must reach the reflector 44 and, moreover, the beam reflected by the reflector 44 must not be obscured by the reflector 34.
  • the radiation performance of the beams converging forward (in the direction of the outgoing beam) of the focal point 40 also limits the scanning because, for these inclined beams, it departs from nominal operation.
  • Figure 4 relates to a variant of Figure 3 in which the reflector 44 'has a general shape ovoid, i.e. more elongated in one direction than in the orthogonal direction, and the reflector 34 'presents, as the reflector 34, a circular cut.
  • the reflector 44 has its largest dimension in the plane of symmetry which is perpendicular to the axis 38 common to both dishes. In this example this larger dimension is approximately 48 ⁇ .
  • the antenna does not allow cover the entire region seen by satellite but the fraction 80 of this region which is hatched in FIG. 5. This fraction 80 represents approximately 60% of the region.
  • an antenna 90 transmits so privileged towards the West, while an antenna 92 transmits in a way privileged towards the East.
  • the two antennas 90 and 92 are integral with a plan support 94 whose normal 96 is directed towards the center of Earth. In other words the axis 96 is always pointed towards the point 100 in Figure 5.
  • the antennas 90 and 92 emit towards regions symmetrical with respect to the axis 102 ( Figure 5).
  • the antenna 90 transmits towards the region 80 while the antenna 92 transmits towards the symmetrical region of this region 80 with respect to the axis 102.
  • the axis 38 1 of the antenna 90 is, with respect to the axis 96 inclined so that it is directed towards a zone 26p (FIG. 5) corresponding substantially to the center of region 80.
  • axis 38 2 of antenna 92 is inclined symmetrically.
  • the same network of elements radiant 30 can be used to emit multiple beams.
  • the same network 30 associated with reflectors 34 and 44 or 34 'and 44' can be used for send to multiple zones or receive signals from multiple areas.
  • the same support 94 carries two pairs of antennas 90 1 , 92 1 and 90 2 , 92 2 .
  • Each antenna for example the reference 92 1 , comprises two panels of radiating elements, one 30 1 for transmission, and the other 30 2 for reception.
  • the gain is greater at the edge of region 24 than at nadir.
  • the region limits correspond to the most significant inclinations for which the concerned area of the output reflector (or radiating aperture) is the most important and therefore for which the resolution is the most important.
  • Figure 3 where we see that on the reflector 44 the beam 32 12 corresponds to a larger area than the beam 32 3 . In this way, for the most inclined areas which are the most distant, the increase in gain compensates for the increase in distance.
  • the shape of the ground trace adapts to the target area.

Description

La présente invention est relative à une antenne à forte capacité de balayage. Elle concerne plus particulièrement une antenne qui est destinée à un système de télécommunication, notamment par satellites.
Pour diverses applications, on a souvent besoin d'antennes destinées à recevoir des signaux d'une source mobile et/ou émettre des signaux vers un récepteur (ou cible) mobile. Pour réaliser de telles antennes d'émission et/ou de réception on utilise le plus souvent des antennes actives constituées d'éléments rayonnants immobiles mais dont on peut faire varier la direction du diagramme de rayonnement en faisant varier la phase des signaux alimentant les éléments rayonnants.
Cette technique ne permet pas d'obtenir des diagrammes de rayonnement satisfaisants pour les angles de dépointage importants, c'est-à-dire pour les directions s'écartant de façon notable de la direction moyenne d'émission et/ou de réception.
Le suivi d'une source ou d'un récepteur peut également être effectué à l'aide d'une antenne conventionnelle, un moteur commandant le déplacement de cette antenne. Ce type d'antenne à éléments mécaniquement mobiles et à moteur ne convient pas pour toutes les applications. En particulier, pour les applications spatiales il est préférable d'éviter, pour des raisons de fiabilité, d'encombrement et de poids, l'utilisation d'une telle antenne.
L'invention remédie à ces inconvénients. Elle permet la réalisation d'une antenne à forte capacité de balayage avec un diagramme de rayonnement satisfaisant pour les angles de dépointage importants et qui ne fait pas appel à des organes mobiles.
L'antenne conforme à l'invention comporte un ensemble d'éléments rayonnants statiques commandés pour réaliser un balayage et des moyens réflecteurs pour amplifier l'angle de balayage fourni par les éléments rayonnants. Les moyens réflecteur comportent deux réflecteurs présentant un foyer commun le premier réflecteur recevant le faisceau émis par l'ensemble d'éléments rayonnants et le deuxième réflecteur recevant le faisceau réfléchi par le premier réflecteur.
Selon l'invention la distance focale du premier réflecteur est supérieure à la distance focale du deuxième réflecteur de telle sorte que le faisceau sortant de l'antenne présente une inclinaison par rapport à une direction prédéterminée qui est supérieure à l'inclinaison Θ, par rapport à la direction donnée, du faisceau émis par les éléments rayonnants.
Ainsi l'angle du balayage effectué par les éléments rayonnants peut être réduit en proportion de l'amplification réalisée par les moyens réflecteurs. De cette manière, les éléments rayonnants ne sont pas utilisés pour des angles de dépointage trop importants. En outre les contraintes imposées à des éléments rayonnants devant effectuer un balayage selon un angle réduit, sont beaucoup moins sévères. En particulier, les dimensions de l'ensemble sont moins limitées, ce qui permet un pas, c'est-à-dire une distance entre deux éléments rayonnants adjacents, d'une valeur suffisante pour éviter les lobes de réseaux sans compromettre la propagation du rayonnement.
Les moyens réflecteurs sont en fait analogues à ceux habituellement utilisés, par exemple dans les antennes Casse-grain, pour augmenter la taille du faisceau. Toutefois avec l'invention les moyens réflecteurs sont utilisés à l'inverse de l'usage habituel. En effet, dans une antenne Cassegrain, une augmentation de la taille du faisceau correspond à une diminution de l'angle de balayage.
Dans une réalisation, chaque réflecteurs comporte, par exemple, un paraboloïde. Le gain de l'amplification en balayage dépend du rapport entre les distances focales des deux réflecteurs.
Ce rapport est, par exemple, de quatre.
Les réflecteurs sont disposés de façon telle que le faisceau de sortie ne soit pas occulté, même partiellement, par le premier réflecteur, c'est-à-dire le réflecteur recevant directement le faisceau provenant des éléments rayonnants.
Une application préférée de l'invention concerne une antenne pour la communication avec une pluralité de sources ou récepteurs se trouvant dans une zone étendue, la communication devant rester confinée dans la zone malgré le changement de position de l'antenne par rapport à la zone.
Ce problème se pose en particulier dans un système de télécommunication à réseau de satellites à orbite basse. Un tel système a déjà été proposé pour la communication à haut débit entre stations ou mobiles terrestres se trouvant dans une zone géographique déterminée d'une étendue de plusieurs centaines de kilomètres. Les satellites ont une altitude qui se situe entre 1000 et 1500 km.
Dans ce système, chaque satellite comporte des groupes d'antennes de réception et d'émission, chaque groupe étant dédié à une zone donnée. Dans chaque groupe les antennes de réception reçoivent les signaux provenant d'une station dans la zone et les antennes réémettent les signaux reçus vers une autre station dans la même zone. Les antennes d'un groupe restent constamment orientées vers la zone, tant que celle-ci reste dans le champ de vision du satellite. Ainsi, pour un satellite, une région de la terre est divisée en n zones et quand il se déplace au-dessus d'une région, à chaque zone est affecté un groupe d'antennes d'émission et de réception qui restent constamment orientées vers cette zone.
De cette manière, pendant le déplacement - par exemple d'une durée d'une vingtaine de minutes - du satellite au-dessus d'une région, un seul groupe d'antennes d'émission et de réception étant affecté à la zone, on évite des commutations d'une antenne à une autre qui pourraient être dommageables à la rapidité ou la qualité de la communication.
Par ailleurs, la basse altitude des satellites minimise les temps de propagation, ce qui est favorable à des communications de type interactif, notamment pour des applications dites multimédias.
On comprend qu'avec ce système de télécommunication il est préférable qu'une antenne destinée à une zone ne puisse être perturbée par les signaux provenant d'une autre zone ou qu'elle ne perturbe pas d'autres zones. En outre le diagramme de rayonnement présente une forme variable en fonction de la position relative du satellite par rapport à la zone. Quand les zones sont, sur la terre, toutes circulaires, l'antenne voit la zone sous la forme d'un cercle quand le satellite est au nadir de cette zone ; par contre quand le satellite s'éloigne de cette position l'antenne voit la zone sous la forme d'une ellipse d'autant plus aplatie qu'il se rapproche de l'horizon.
On a constaté qu'une antenne conforme à l'invention dans laquelle les réflecteurs sont des paraboloides permet d'adapter la trace au sol du diagramme à la position relative de l'antenne par rapport à la zone, sans qu'on ait à modifier le diagramme de rayonnement fourni par les éléments rayonnants.
En outre, l'antenne présente un gain important quand le satellite se trouve proche de l'horizon par rapport à la zone. Or, dans ce cas, la distance du satellite à la zone est la plus importante ; ainsi l'augmentation du gain compense l'augmentation de distance, ce qui est favorable au maintien des communications.
Pour le suivi d'une zone, dans une réalisation, on prévoit deux antennes du type mentionné ci-dessus, chaque antenne étant utilisée pour un balayage encore plus réduit.
Une antenne selon l'invention peut être utilisée pour suivre plusieurs zones, les éléments rayonnants pouvant recevoir, ou émettre, des signaux de, ou vers, plusieurs zones.
D'autres caractéristiques et avantages de l'invention apparaítront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :
  • la figure 1 est un schéma montrant un système de télécommunication entre stations ou mobiles terrestres faisant appel à un système de satellites,
  • la figure 2 est un schéma illustrant un système de télécommunication,
  • la figure 3 est un schéma en coupe d'une antenne conforme à l'invention,
  • la figure 4 est un schéma en coupe pour une variante,
  • la figure 5 est un schéma montrant la région que peut couvrir l'antenne représentée sur la figure 4,
  • la figure 6 est un schéma montrant deux antennes associées pour couvrir l'ensemble des zones représentées sur la figure 6, et
  • la figure 7 est un schéma en perspective d'une réalisation faisant appel à des antennes associées.
  • L'exemple d'antenne que l'on va décrire est destiné à un système de télécommunication faisant appel à une constellation de satellites à orbite basse, environ 1300 km au-dessus de la surface 10 de la terre.
    Le système doit établir des communications entre des utilisateurs 12, 14, 16 (figure 1) et une, ou plusieurs, station(s) de connexion 20 à laquelle sont connectés des fournisseurs de services tels que des bases de données. Les communications sont également établies entre les utilisateurs par l'intermédiaire de la station de connexion 20.
    Ces communications sont réalisées par l'intermédiaire d'un satellite 22.
    Dans le système, à chaque instant, le satellite 22 voit une région 24 de la terre (figure 2) et cette région est divisée en zones 261, 262...26n.
    Chaque zone 26i a la forme d'un cercle d'un diamètre d'environ 700 km. Chaque région 24 est délimitée par un cône 70 (figure 1) centré sur le satellite et d'un angle au sommet déterminé par l'altitude du satellite. Une région est ainsi la partie de la terre visible depuis le satellite. Quand l'altitude du satellite est de 1300 km, l'angle au sommet est de 110° environ.
    La communication entre zones est effectuée à l'aide de moyens terrestres, par exemple à l'aide de câbles disposés entre les stations de connexion des diverses zones faisant partie d'une même région ou de régions différentes.
    Le nombre et la disposition des satellites sont tels qu'à chaque instant, une zone 26i voit deux ou trois satellites. De cette manière, quand une zone 26i sort du champ de vision du satellite affecté aux communications dans cette zone, il reste un satellite pour prendre le relais et la commutation d'un satellite à l'autre s'effectue de façon instantanée.
    Toutefois une telle commutation n'intervient que toutes les vingt minutes environ. En pratique cette commutation se produit quand, pour la zone 26i en question, l'élévation du satellite descend en dessous de 10°.
    Les antennes selon l'invention sont, au cours du déplacement du satellite au-dessus d'une région 24, toujours pointées vers la même zone ou un même ensemble de zones. Elles doivent donc présenter une forte capacité de balayage ou dépointage.
    A cet effet, l'antenne comprend (figure 3) un panneau 30 d'éléments rayonnants associé à un réseau formateur de faisceau (non montré) de commande de la phase des signaux appliqués aux éléments rayonnants. Un faisceau 32 émis par le panneau 30 est dirigé vers un premier réflecteur 34 ayant la forme d'un paraboloïde à découpe circulaire. Ce réflecteur est un élément d'une surface fictive 36 dont l'axe 38, sur lequel se trouve le foyer 40, est éloigné du réflecteur 34.
    L'axe 38 est perpendiculaire au plan du panneau 30.
    Le faisceau 42 réfléchi par le réflecteur 34 est dirigé vers un second réflecteur 44 disposé à l'opposé de l'axe 38 par rapport au réflecteur 34 et au panneau 30. Ce réflecteur 44 est également un élément d'une surface fictive 46, qui dans le plan de la figure 3, est une parabole de même foyer 40 que la parabole 36 et de même axe 38. La surface 46 est également un paraboloïde.
    La concavité du réflecteur 44 est tournée vers la concavité du réflecteur 34.
    La distance focale du réflecteur 44 est par exemple quatre fois plus faible que la distance focale du réflecteur 34.
    L'axe 38 ne forme pas d'intersection avec les réflecteurs 34 et 44. Le bord 441 du réflecteur 44 le plus proche de l'axe 38 est à une distance de l'axe sensiblement plus faible que la distance du bord 341 correspondant du réflecteur 34 à l'axe 38.
    Dans l'exemple représenté sur la figure 3 le réseau 30 a une forme extérieure générale d'un cercle de diamètre 30 cm (ou 12 λ) environ avec 37 éléments rayonnants séparés les uns des autres de 42 mm, soit 1,7 λ, λ étant la longueur d'onde du rayonnement.
    Chacun des réflecteurs est découpé selon un cercle. Le diamètre du cercle limitant le réflecteur 34 est, dans cet exemple, de l'ordre de 28 λ, tandis que le diamètre du cercle limitant le réflecteur 44 est de l'ordre de 30 λ. La distance séparant le bord 341 de l'axe 38 est de 24 λ et la distance entre le bord 441 du réflecteur 44 et l'axe 38 est de 4 λ.
    Lorsque le réseau 30 émet un faisceau d'ondes 321 parallèle à l'axe 38, c'est-à-dire perpendiculaire à son plan, ce faisceau est réfléchi par le réflecteur 34 de façon telle qu'il soit focalisé au foyer 40. Dans ces conditions le réflecteur 44 renvoie ce faisceau 322 parallèlement à l'axe 38 comme représenté par le faisceau 323.
    Quand le réseau 30 émet un faisceau 325 incliné d'un angle Θ relativement faible par rapport à l'axe 38, le faisceau 326 réfléchi par le réflecteur 34 converge en un point 50 proche du foyer 40 et le faisceau 327 réfléchi par le réflecteur 44 est incliné d'un angle qui est d'environ n fois l'angle Θ, n étant le rapport de la distance focale f du réflecteur 34 à la distance focale f' du réflecteur 44. Dans l'exemple, ce rapport entre les distances focales étant de quatre, le faisceau 327 est donc incliné d'un angle 4Θ par rapport à l'axe 38.
    Cette amplification dans le rapport des distances focales ne se vérifie cependant pas pour des faisceaux 3210, émis par le réseau 30, qui présentent un angle d'inclinaison important par rapport à l'axe 38.
    On voit ainsi sur la figure 3 que le faisceau 3210 est réfléchi en un faisceau 3211 par le réflecteur 34 et ce dernier converge en un point 52 éloigné du foyer 40. Le faisceau 3211 est réfléchi par le réflecteur 44 selon un faisceau 3212.
    Par exemple, pour un faisceau d'azimut ϕ = 90° et d'inclinaison Θ de 4,5° par rapport à l'axe 38,c'est-à-dire par rapport à la normale au plan du réseau 30, le faisceau 327, également d'azimut 90°, est incliné de 18° par rapport à l'axe 38. Cette valeur correspond bien à 4Θ.
    Par contre, pour une inclinaison, ou dépointage, de -14° (faisceau 3210), également avec un azimut de 90°, on constate que le faisceau 3212 présente une inclinaison de 38° par rapport à l'axe 38, ce qui est sensiblement inférieur au quadruple de l'inclinaison du faisceau 3210. L'azimut du faisceau 3212 est également de 90°.
    Dans l'exemple, pour un azimut de 90°, le faisceau émis par le réseau 30 peut balayer un angle Θ compris entre 4,5° et
    -14°. Ces limites sont imposées, en premier lieu, par la géométrie car le faisceau réfléchi par le réflecteur 34 doit atteindre le réflecteur 44 et, en outre, le faisceau réfléchi par le réflecteur 44 ne doit pas être occulté par le réflecteur 34. En second lieu, les performances de rayonnement des faisceaux convergeant en avant (dans le sens du faisceau sortant) du foyer 40 limitent aussi le balayage car, pour ces faisceaux inclinés, on s'éloigne du fonctionnement nominal.
    La figure 4 se rapporte à une variante de la figure 3 dans laquelle le réflecteur 44' présente une forme générale ovoïde, c'est-à-dire plus allongée dans une direction que dans la direction orthogonale, et le réflecteur 34' présente, comme le réflecteur 34, une découpe circulaire.
    Le réflecteur 44' présente sa plus grande dimension dans le plan de symétrie qui est perpendiculaire à l'axe 38 commun aux deux paraboloïdes. Dans cet exemple cette plus grande dimension est de 48 λ environ.
    Pour le reste les caractéristiques sont les mêmes que dans le cas de la figure 3.
    Avec la géométrie représentée sur la figure 4 on obtient, pour un azimut de 90°, les mêmes performances que l'antenne représentée sur la figure 3.
    Pour un faisceau émis par le réseau 30 d'azimut 0° on constate, pour une inclinaison Θ = -5° par rapport à l'axe 38, que le faisceau sortant est incliné de -20° avec un azimut de 2,3°. Pour un dépointage Θ = -15° et également un azimut de 0°, le dépointage du faisceau sortant est de -45° avec un angle d'azimut de 31,5°.
    Avec ce réflecteur pour un azimut de 90° on peut faire varier le dépointage du faisceau émis par le réseau 30 de +4° à -14° dans le plan contenant le centre du réseau 30 et l'axe 38 et de +15° à -15° dans le plan de symétrie.
    Avec de tels dépointages l'antenne ne permet pas de couvrir l'intégralité de la région vue par le satellite mais la fraction 80 de cette région qui est hachurée sur la figure 5. Cette fraction 80 représente environ 60% de la région.
    Pour pouvoir couvrir l'intégralité de la région, on fait appel à un couple d'antennes arrangé comme représenté sur la figure 6. Dans cet exemple, une antenne 90 émet de façon privilégiée vers l'Ouest, tandis qu'une antenne 92 émet de façon privilégiée vers l'Est.
    Les deux antennes 90 et 92 sont solidaires d'un support plan 94 dont la normale 96 est dirigée vers le centre de la terre. Autrement dit l'axe 96 est toujours pointé vers le point 100 sur la figure 5.
    Les antennes 90 et 92 émettent vers des régions symétriques par rapport à l'axe 102 (Figure 5). Ainsi l'antenne 90 émet vers la région 80 tandis que l'antenne 92 émet vers la région symétrique de cette région 80 par rapport à l'axe 102. L'axe 381 de l'antenne 90 est, par rapport, à l'axe 96 incliné de façon telle qu'il soit dirigé vers une zone 26p (figure 5) correspondant sensiblement au centre de la région 80. Bien entendu l'axe 382 de l'antenne 92 est incliné de façon symétrique.
    Il est à noter que le même réseau d'éléments rayonnants 30 peut être utilisé pour émettre plusieurs faisceaux. Autrement dit le même réseau 30 associé aux réflecteurs 34 et 44 ou 34' et 44', peut être utilisé pour émettre vers plusieurs zones ou recevoir des signaux de plusieurs zones.
    Dans l'exemple représenté sur la figure 7 un même support 94 porte deux couples d'antennes 901, 921 et 902, 922. Chaque antenne, par exemple celle de référence 921, comprend deux panneaux d'éléments rayonnants, l'un 301 pour l'émission, et l'autre 302 pour la réception.
    Quel que soit le mode de réalisation on constate que le gain est plus important en limite de région 24 qu'au nadir. En effet, les limites de région correspondent aux inclinaisons les plus importantes pour lesquelles l'aire concernée du réflecteur de sortie (ou ouverture rayonnante) est la plus importante et donc pour lesquelles la résolution est la plus importante. Cette propriété apparaít sur la figure 3 où l'on voit que sur le réflecteur 44 le faisceau 3212 correspond à une aire plus importante que le faisceau 323. De cette manière, pour les zones les plus inclinées qui sont les plus éloignées, l'augmentation du gain compense l'augmentation de distance.
    Par ailleurs on a aussi constaté que la forme de la trace au sol s'adapte à la zone visée.

    Claims (11)

    1. Antenne comprenant un ensemble (30 ; 301, 302) d'éléments rayonnants statiques commandé pour émettre un faisceau dans des directions variables par rapport à une direction centrale donnée, et des moyens réflecteurs (34, 44 ; 34', 44') comportant deux réflecteurs (34, 44 ; 34', 44') présentant un foyer commun (40), le premier réflecteur (34, 34') recevant le faisceau émis par l'ensemble d'éléments rayonnants et le deuxième réflecteur (44, 44') recevant le faisceau réfléchi par le premier réflecteur, caractérisée en ce la distance focale du premier réflecteur (34, 34') est supérieure à la distance focale du deuxième réflecteur (44, 44') de telle sorte que le faisceau sortant de l'antenne présente une inclinaison par rapport à une direction prédéterminée (38) qui est supérieure à l'inclinaison Θ, par rapport à la direction donnée (38), du faisceau émis par les éléments rayonnants (30).
    2. Antenne selon la revendication 1, caractérisée en ce que chacun des réflecteurs (34, 44 ; 34', 44') est un segment de paraboloïde.
    3. Antenne selon la revendication 1 ou 2, caractérisée en ce que les deux réflecteurs présentent un axe commun (38).
    4. Antenne selon la revendication 3, caractérisée en ce que l'axe commun (38) est dans la direction centrale.
    5. Antenne selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'au moins un réflecteur est délimité par un bord ou découpe sensiblement circulaire.
    6. Antenne selon l'une quelconque des revendications 1 à 5, caractérisée en ce qu'au moins un réflecteur est délimité par un bord ou découpe de forme allongée.
    7. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que l'ensemble (30) d'éléments rayonnants est commandé pour rayonner simultanément vers plusieurs zones distinctes (261, 262 ...).
    8. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est orientée de façon telle que pour les directions de pointage correspondant aux cibles (26) les plus éloignées, l'ouverture rayonnante est plus importante que pour des cibles plus proches.
    9. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte un ensemble d'éléments rayonnants (301) pour l'émission et un ensemble d'éléments rayonnants (302) pour la réception qui sont associés aux mêmes moyens réflecteurs.
    10. Ensemble d'au moins deux antennes dont chacune est selon l'une quelconque des revendications précédentes, caractérisée en ce que les éléments rayonnants et les moyens réflecteurs des deux antennes sont symétriques par rapport à un axe (96) constituant un axe de visée centrale de l'antenne.
    11. Application d'une antenne selon l'une quelconque des revendications précédentes à un système de télécommunication par satellites tournant autour de la terre, l'antenne, montée à bord d'un satellite, étant commandée de façon telle qu'elle vise toujours la même zone (26i) au cours du déplacement du satellite au-dessus d'une région (24) divisée en une pluralité de zones sensiblement de mêmes formes et de mêmes dimensions.
    EP98933717A 1997-06-26 1998-06-25 Antenne a forte capacite de balayage Expired - Lifetime EP0992080B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9708011 1997-06-26
    FR9708011A FR2765404B1 (fr) 1997-06-26 1997-06-26 Antenne a forte capacite de balayage
    PCT/FR1998/001345 WO1999000870A1 (fr) 1997-06-26 1998-06-25 Antenne a forte capacite de balayage

    Publications (2)

    Publication Number Publication Date
    EP0992080A1 EP0992080A1 (fr) 2000-04-12
    EP0992080B1 true EP0992080B1 (fr) 2002-01-30

    Family

    ID=9508477

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98933717A Expired - Lifetime EP0992080B1 (fr) 1997-06-26 1998-06-25 Antenne a forte capacite de balayage

    Country Status (8)

    Country Link
    US (1) US6172649B1 (fr)
    EP (1) EP0992080B1 (fr)
    AU (1) AU8344098A (fr)
    CA (1) CA2289007C (fr)
    DE (1) DE69803671T2 (fr)
    ES (1) ES2169919T3 (fr)
    FR (1) FR2765404B1 (fr)
    WO (1) WO1999000870A1 (fr)

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2835356B1 (fr) * 2002-01-31 2005-09-30 Cit Alcatel Antenne de reception pour couverture multifaisceaux

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3914768A (en) * 1974-01-31 1975-10-21 Bell Telephone Labor Inc Multiple-beam Cassegrainian antenna
    US4203105A (en) * 1978-05-17 1980-05-13 Bell Telephone Laboratories, Incorporated Scanable antenna arrangements capable of producing a large image of a small array with minimal aberrations
    US4236161A (en) * 1978-09-18 1980-11-25 Bell Telephone Laboratories, Incorporated Array feed for offset satellite antenna
    US4595929A (en) * 1982-04-13 1986-06-17 Communications Satellite Corporation Scheme for aberration correction in scanning or multiple beam confocal antenna system
    US4755826A (en) * 1983-01-10 1988-07-05 The United States Of America As Represented By The Secretary Of The Navy Bicollimated offset Gregorian dual reflector antenna system
    US5576721A (en) * 1993-03-31 1996-11-19 Space Systems/Loral, Inc. Composite multi-beam and shaped beam antenna system
    US5621415A (en) * 1994-11-15 1997-04-15 Teledesic Corporation Linear cell satellite system
    US5790077A (en) * 1996-10-17 1998-08-04 Space Systems/Loral, Inc. Antenna geometry for shaped dual reflector antenna

    Also Published As

    Publication number Publication date
    CA2289007A1 (fr) 1999-01-07
    FR2765404B1 (fr) 1999-09-24
    EP0992080A1 (fr) 2000-04-12
    AU8344098A (en) 1999-01-19
    CA2289007C (fr) 2005-08-23
    DE69803671T2 (de) 2002-09-12
    US6172649B1 (en) 2001-01-09
    ES2169919T3 (es) 2002-07-16
    WO1999000870A1 (fr) 1999-01-07
    DE69803671D1 (de) 2002-03-14
    FR2765404A1 (fr) 1998-12-31

    Similar Documents

    Publication Publication Date Title
    EP0979539B1 (fr) Dispositif terminal-antenne pour constellation de satellites defilants
    EP0682383A1 (fr) Antenne multi-faisceaux pour la réception de micro-ondes émanant de plusieurs satellites
    FR2793073A1 (fr) Antenne a reflecteur continu pour reception multiple de faisceaux de satellite
    FR2765405A1 (fr) Antenne pour systeme de telecommunication
    FR2685131A1 (fr) Antenne de reception a reflecteur fixe pour plusieurs faisceaux de satellite.
    FR2861897A1 (fr) Systeme d'antenne haute-frequence multi-faisceaux
    FR2765421A1 (fr) Systeme de telecommunication
    EP0949710A1 (fr) Lentille sphérique focalisante multicouches
    EP0992080B1 (fr) Antenne a forte capacite de balayage
    CA2067932A1 (fr) Antenne lobe form et grand gain
    EP1074064A1 (fr) Appareil de poursuite de satellites a defilement
    FR2814614A1 (fr) Lentille divergente a dome pour ondes hyperfrequences et antenne comportant une telle lentille
    EP0638956B1 (fr) Antenne active à balayage électronique en azimut et en élévation, en particulier pour l'imagerie hyperfréquence par satellite
    EP3675278B1 (fr) Antenne multifaisceaux à pointage réglable
    FR3068523A1 (fr) Antenne a reseau transmetteur comportant un mecanisme de reorientation de la direction du faisceau
    WO2003065507A1 (fr) Antenne de reception pour couverture multi-faisceaux
    CA2706761C (fr) Antenne a reflecteur a flexibilite de couverture et de frequence et satellite comportant une telle antenne
    EP1339177B1 (fr) Système antennaire pour liaisons entre véhicule mobile et objets aériens, procédé correspondant et utilisation du système
    EP0978898A1 (fr) Antenne de réception à réflecteur excentré à balayage par la tête de réception, notamment pour la réception de plusieurs satellites de télévision et son procédé de mise en oeuvre
    WO2021130072A1 (fr) Antenne parabolique multilobes pour communications par faisceaux hertziens tropospheriques
    FR2762935A1 (fr) Dispositif terminal-antenne pour constellation de satellites defilants
    FR2531276A3 (fr) Antenne du type cassegrain a source primaire excentree

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000126

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES GB IT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010426

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES GB IT

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020130

    REF Corresponds to:

    Ref document number: 69803671

    Country of ref document: DE

    Date of ref document: 20020314

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2169919

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20160527

    Year of fee payment: 19

    Ref country code: DE

    Payment date: 20160622

    Year of fee payment: 19

    Ref country code: ES

    Payment date: 20160527

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20160621

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69803671

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20170625

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170625

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180103

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170625

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20181105

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170626