EP1011940B1 - Method and device for manufacturing moulded bodies from crushed material - Google Patents

Method and device for manufacturing moulded bodies from crushed material Download PDF

Info

Publication number
EP1011940B1
EP1011940B1 EP98945303A EP98945303A EP1011940B1 EP 1011940 B1 EP1011940 B1 EP 1011940B1 EP 98945303 A EP98945303 A EP 98945303A EP 98945303 A EP98945303 A EP 98945303A EP 1011940 B1 EP1011940 B1 EP 1011940B1
Authority
EP
European Patent Office
Prior art keywords
electron beam
binder
curing
woodlike
conveyor belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98945303A
Other languages
German (de)
French (fr)
Other versions
EP1011940A1 (en
Inventor
Georg Reif
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Egger GmbH and Co OG
Original Assignee
Fritz Egger GmbH and Co OG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Egger GmbH and Co OG filed Critical Fritz Egger GmbH and Co OG
Publication of EP1011940A1 publication Critical patent/EP1011940A1/en
Application granted granted Critical
Publication of EP1011940B1 publication Critical patent/EP1011940B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/002Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder

Definitions

  • the invention relates to a process for the continuous production of composite wood-like plates, in the wood-like material, an electron beam curing Binder, compression pressure used for compression and electron beam energy for curing , the process of compaction from the process of introducing the electron beam energy is spatially separated.
  • the invention also relates to a device for continuous production of composite wood-like panels with a conveyor belt for the material, one subsequent pressing device and a subsequent electron beam device.
  • the two pairs of press rolls can spring up the plate arrangement in the irradiation area prevent or only partially prevent it in the middle between the pairs of press rolls, if the layers have a corresponding stiffness. Otherwise, the rear one Press roller pair only effective when starting production, while after insertion electron beam hardening may even have a destructive effect on the continuous, already fully hardened plywood board must be expected. In any case but are the known device and the method carried out with it for the Production of chipboard, fiberboard or OSB boards unsuitable, which are made of nonwovens that tend to spring open after compression.
  • thermal for the production of chipboard or fiberboard curable binders such as urea-formaldehyde resin, melamine-formaldehyde resin, Isocyanates, phenol-formaldehyde resin, etc. used.
  • the hardening corresponds chemically seen a thermally accelerated polymerization or polycondensation reaction.
  • chipboard the dried and glued with the binder Chips are fed to large-format stack presses or cycle presses (discontinuous production), or work is carried out in a continuous process (continuous production), e.g. to the Conti-Roll process, where an endless belt of chips forms a pressing section between them progressively approaching conveyor belt runs and / or a nip, whereby the compression is effected.
  • Press factor which is the time required for plate hardening to the dimension perpendicular relates to the plate surface.
  • the maximum possible is then calculated from the plate thickness Feed (with continuous production) or the maximum possible number of cycles at Cycle presses and thus the plant capacity.
  • Usual press factors are in the range between 3 and 6 s / mm for Conti-Roll systems and between 5 and 9 s / mm for cycle systems. For example, the curing of a 19 mm plate with a press factor of 5 results s / mm a manufacturing time of 95 seconds.
  • the steam boost effect which is advantageous for accelerating curing, has the further effect Disadvantage that the product moisture on the plate surface is almost zero and towards the middle towards what an inhomogeneous moisture profile means. From the point of view of a stable product, however, a homogeneous moisture profile should be aimed for, which can be found in the Practice only stops after storage for several weeks. The processing and in particular the lamination of panels with a clearly inhomogeneous moisture profile to quality problems. In addition, ever increasing system outputs have become one lower product moisture, which is now below the moisture that the Product accepts in everyday use (balancing moisture). So the product strives Absorb moisture from the environment.
  • a mixture is formed as a radiation-curable binder unsaturated oligomers (at least 30% by weight), acrylonitrile (1-30% by weight), not co-polymerizing Additives (maximum 30% by weight) and the rest to 100% by weight vinyl unsaturated monomers.
  • the invention has for its object to carry out the method described above and to design the device described at the outset in such a way that plate-shaped Body (molded body) of exact target thickness with high production output, without that a disturbing moisture content as well as an inhomogeneous moisture distribution in purchase must be taken.
  • the invention is based on the fact that the activation and curing of the binder used - in contrast to the thermally curing binders - is carried out by high-energy radiation from an electron beam accelerator. Its performance is essentially determined by two characteristic values: the acceleration voltage in MeV, which is responsible for the range of the energy in the body to be irradiated, and the amount of energy emitted by the radiator to the irradiated body (radiator power, dose amount), which is the product of accelerator voltage and accelerator current is.
  • the emitter power determines the amount of energy introduced into and absorbed by the body, which is responsible for the hardening of the binder.
  • Available accelerator systems with an acceleration voltage of 10 MeV enable a penetration depth of approx. 40 mm when irradiating one side of a plate material, which has a specific weight of 750 kg / m 3 , for example, and when irradiating on both sides with 10 MeV each of approx. 105 mm.
  • the water is on the one hand used to transport heat into the Plate center advantageous, but when lowering the pressure due to the risk of space disadvantageous, it hardly affects the method according to the invention.
  • the risk of moisture shifting is not given as there is no one-sided thermal load on the product acts, which is the cause of the moisture migration in the product to the cold middle of the plate out there.
  • absorption of the incident radiation or due to the polymerization no critical temperature increase, which is the build up of a significant would allow water vapor pressure.
  • Maturation times of several days as with the usual production are necessary are therefore not necessary what regarding the storage space requirement and the bound Capital is beneficial.
  • Unsaturated oligomers are suitable as binders for electron beam curing. It can be advantageous to add these monomers to the type and degree of polymerization to influence the binder. Accordingly, these monomers are also called Called crosslinker. Crosslinkers have mono- (e.g. HDDA), di- (DPGDA), tri- (e.g. TMPTA) or polyfunctional groups. The choice of the networker in coordination with the unsaturated oligomer in terms of the mixing ratio and in terms of Combination of different crosslinkers influences the properties of the manufactured one Molded body or plate, e.g. Flexural strength, transverse tensile strength, flexural modulus, durability against the effects of humidity and water).
  • Curing requires a radiation dose between 70 and 100 kGy.
  • Applicable unsaturated oligomers are e.g. Polyester resins, acrylic resins, diallyl phthalate prepolymers, acrylic modified alkyd, epoxy or urethane resins. These are in contrast to the Condensation resins usually used free of formaldehyde (test according to DIN EN 120 with photometric evaluation) and enable a connection that is resistant to boiling water of the composite in the sense of EN 1087 part 1.
  • thermal partial curing or initial curing an organic peroxide (e.g. TBPEH), which together with the binder is introduced and the crosslinking of the binder is initialized under the action of temperature.
  • organic peroxide e.g. TBPEH
  • This is also a two-stage hardening process, with the first stage being below Exposure to pressure and heat an initial hardening or partial hardening with stabilization the compacted form, and in a second stage without external influence of Pressure the complete curing or polymerization of the binder by electron beam energy he follows.
  • the thermal initial hardening only serves to fix the Material in the compressed layer and can take place at a comparatively low temperature, so that the aforementioned technological disadvantages of thermal hardening are limited being held.
  • top layers only by pressure and temperature. These hardened cover layers can have a thickness of 1 mm to several mm.
  • the binder in these top layers cannot be made from one in the electron beam curable binder, from a mixture of a thermally curable Binder and a binder curable in the electron beam or from a mixture made of a binder curable in the electron beam with an organic peroxide consist.
  • the binder for the portion of the product other than the top layers is an im Electron beam curable binder or a mixture of a thermally curable and a part curable in the electron beam.
  • the thermal hardening of the cover layers does not have to be complete crosslinking of the binder lead, especially if the binder used via an im Electron beam curable portion. Rather, the duration of exposure to temperature is even desirable to keep the top layers as short as possible to avoid the Exposure to adverse plate properties to be expected as low as possible to keep.
  • the thermal partial hardening is followed by a final hardening of the product by the action of electron beam energy, this depending on the requirements of the Product properties optionally under the influence of a compared to the first stage thermal hardening can already take place at reduced holding pressure or without pressure.
  • the already partially hardened top layers simplify the application of a holding pressure in the kind that on a form-stabilizing tape or a similar in function and effect Device in the field of electron beam exposure can be completely dispensed with or these can be dimensioned much weaker and therefore none or one clearly reduced absorption of the electron beam energy in the band or in the devices follows, which enables an improved use of the electron beam energy in the product.
  • the effects of temperature favor the surface properties of the product (coatability, achievable density and density distribution).
  • the inventive method is particularly suitable for the production of Chipboard, fiberboard or OSB. But it is also on other cellulosisclies or the like Material in particle or piece form applicable, in which a mutual Connection is achieved by a binder. Examples are the production of Plywood panels, sheet-like products made of paper or paper chips, textile fibers, Bark or also certain waste fractions such as plastic waste or composite materials Plastic and paper or cardboard.
  • binder urethane acrylate
  • TPEH organic peroxide
  • the samples of Examples 3 to 5 below are round samples with a diameter of approx. 110 mm, they were used in an electron beam accelerator system with a Accelerator voltage of 10 MeV and a current of approx. 1.5 mA corresponding to one average lamp power of 15 kW cured.
  • Comparative test specimens were produced in an analogous manner with urea-formaldehyde binder (UF) (100 parts of chips, 10 parts of solid resin, ammonium sulfate as the hardness component in accordance with sample series J).
  • the mechanical-technological properties were compared: sample Quetz standardized to 450 kg / m 3 [N / mm 2 ] Cross cooker [N / mm 2 ] 2-hour swelling [%] 24-hour swelling [%] Density [kg / m 3 ] Solid resin on atro [%] Formaldehyde [mg / 100g] Residual moisture [%] Crosslinker or binder K1 / 2 0.317 0.101 5.1 8.8 409 11.0 ⁇ 0.5 10.0 TMPTA 0.131 4.6 8.7 429 11.0 ⁇ 0.5 10.0 IMPTA L1 / 2 0.344 0.120 3.6 9.6 448 11.0 ⁇ 0.5 10.0 DPGDA 0.173 3.2 8.8 451 11.0 ⁇ 0.5 1
  • the binder was compared to Examples 3 and 4 in this case in the form of a 25% emulsion (for the purpose of improved distribution) of a melamine acrylate in the cold state upset.
  • the water introduced by the emulsion increased the moisture in the chips in the glued state still considerable.
  • Binders can only be pronounced with such chip moisture low pressing temperature and the associated long pressing time.
  • the transverse tensile strength for R comparable to UF-bound test specimens and lies in the range of the samples from example 4.
  • the low 2-hour swelling is striking for the R series.
  • a container-shaped spreader 1 which with Electron radiation hardenable binder glued cellulosic material 2 (wood chips, Wood fibers). This material 2 is in a uniform distribution on a continuous revolving band 3 poured on which a loose scattering layer 4 forms. This is pre-compressed in a pre-press 5.
  • the pre-press 5 has an upper pre-compression band in a mirror-symmetrical design and arrangement 6 and a lower pre-compression band 7, which via deflection rollers 8, Tension rollers 9 as well as top pressure rollers 10 and bottom pressure rollers 11 circulate.
  • the conveyor belt 3 with the scattering layer 4 runs between the pre-compression belts 6 and 7, which approach each other in the direction of transport, which is indicated by the in Transport direction decreasing distance between the opposite ones Form rollers 10 and 11 is reached. In this way, a diffusion layer 4 is formed thinner precompacted layer 12.
  • the conveyor belt 3 runs over deflection rollers 13 and a rigid table 14 in the area the task of the material 2 and support rollers 15 behind the pre-press 5.
  • a pressing device 16 main press
  • the press nip 19 run through from the upper run of the conveyor belt 3 with the pre-compressed layer 12 is, so that from this the compressed layer 20 is formed, which with the conveyor belt 3rd runs over the support rollers 21, the compressed layer 20 due to springback receives a slightly larger thickness than corresponds to the dimension of the press nip 19.
  • the conveyor belt 3 with the compressed layer 20 then passes through an electron beam device 22, which has an upper electron beam accelerator 23 and a lower electron beam accelerator 24 includes facing each other.
  • an electron beam device 22 which has an upper electron beam accelerator 23 and a lower electron beam accelerator 24 includes facing each other.
  • a hardened layer is formed on the electron beam device 22 from the compressed layer 20 Plate 25 (endless plate), the support rollers 26 of the final production (cross cutting, Surface grinding) is supplied.
  • the device according to Figure 2 largely corresponds to the device described above match. In this respect - as with the following illustrations - the same Reference numerals are used and will not be described again.
  • the difference to Figure 1 is that instead of the pressing device 16 a different trained press device 27 is provided. This press device 27 is after Conti-Roll process performed while working, but can be carried out significantly shorter than it is usually the case with thermal curing processes.
  • the pressing device 27 comprises an upper belt 28 and a lower belt 29, which are connected to deflection rollers 30 circulate.
  • Within the upper band 28 is an endless sequence of upper ones Rolling rods 31 are provided, and in a corresponding manner is within the lower band 29th an endless row of lower roller bars 32 is provided, the roller bars each over Rotate pulleys 33.
  • the upper roller bars 31 is an upper pressure plate 34 with upper ones Assigned printing cylinders 35, while the lower roller rods 32 a lower pressure plate 36 is associated with lower pressure cylinders 37.
  • the pressure plates 34 and 36 are in Transport direction inclined slightly converging, so that a tapering press nip 38 results which is traversed by the conveyor belt 3 with the pre-compressed layer 12.
  • the pre-press 5 is missing in the device according to Figure 3. Accordingly, the scattering layer 4 is fed directly to the pressing device 16 and into the compressed layer 20 converted.
  • the device according to Figure 4 differs from that of Figure 3 only in that a simplified electron beam device 39 is provided, which only one Has electron beam accelerator 23, the compressed layer 20 only from the top irradiated here. Of course it would also be possible to have radiation exclusively from the Bottom to be provided.
  • the device according to Figure 5 is a further development of the device according to Figure 1, one in the region of the electron beam device 22 from the conveyor belt 3 is provided with the compressed layer 20 holding pressure device 40 which has two holding conveyor belts, namely an encircling upper holding conveyor belt 41, which is guided over deflection rollers 42 and, as shown, the pressing device 16 passes through, and a lower holding conveyor belt, which is formed here by the conveyor belt 3.
  • the compressed layer 20 holding pressure device 40 which has two holding conveyor belts, namely an encircling upper holding conveyor belt 41, which is guided over deflection rollers 42 and, as shown, the pressing device 16 passes through, and a lower holding conveyor belt, which is formed here by the conveyor belt 3.
  • the area of the electron beam device 22 a holding pressure lying below the pressing pressure of the pressing device 16 on the compressed Layer 20 applied.
  • a vacuum device 43 for forming one of the compressed layer 20 passed through vacuum zone 44, so that the outside atmospheric pressure acting on the conveyor belts 3 and 41 delivers the holding pressure which a thickness of the compressed layer 20 corresponding to the press nip 19 during the electron irradiation backs up.
  • the conveyor belt 3 and the table 14 are through a short feed conveyor 45 replaced.
  • the press belt 48 is on the back in the area of the press nip 49 supported by pressure rollers 50 which apply the compression pressure.
  • the press belt 48 runs over an upper deflection pressure roller 51 and a lower deflection pressure roller 52, which the Deflection drum 47 are arranged adjacent and according to the arrows can be preloaded, and via further deflection rollers 53.
  • an electron beam device 54 At the end of the press nip 49 is an electron beam device 54 with an electron beam accelerator 55 arranged, the last between the two in the circumferential direction Pressure rollers 50 is placed.
  • an opposing electron accelerator could be arranged within the deflection drum 47 (not shown).
  • the indicated displacement of the deflection pressure rollers 51 and 52 allows a corresponding one Apply tension to the press belt 48.
  • the hardened Plate 25 (endless plate) is then removed via support rollers 26.
  • the device according to Figure 7 is largely the one already based on Figure 2 described device with a comparatively short pressing device 27 ' (Conti-Roll process). Deviatingly, the material is loaded 2 ', the not only radiation-curable binders but also thermally curable binders added is sufficient for a form-stabilizing partial hardening (pre-hardening). Accordingly heat is supplied via the pressure plates 34 and 36 to the pressing device 27 'and Partial curing is already brought about by reaction of only the thermally curable binder. The result is a partially hardened endless plate 56, which is shown in the usual manner is cut to length by means of a diagonal saw 57 into partially hardened individual plates 58, which in one Intermediate stack 59 are deposited without being already radiation-hardened.
  • the radiation curing could also directly behind the pressing device 27 'before or after cutting to length the diagonal saw 57 (not shown).
  • This arrangement is particularly suitable for the process variant of partial thermal hardening of the two cover layers and one Final hardening of the material using electron beam energy.
  • the application of a holding pressure In the area of the electron beam a device shown in Figure 5 can be used 40 done.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Disintegrating Or Milling (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A particle board, a fiberboard or an oriented strand board (25) is formed by the process according to the invention from a mixture of a comminuted cellulose material and a binder, especially a synthetic resin containing an unsaturated oligimer, that is hardenable by electron radiation. The process of the invention includes first forming a loosely scattered layer (4) of the mixture, e.g. on a conveyor belt, then compressing the layer in a press device (16), after performing a pre-compression in a pre-press in Some embodiments, and rapid setting of the layer (4) by means of electron radiation from an electron radiation device (22). Unlike the known processes that only use a thermosetting binder, the inventive method is hindered neither by heat transfer to the center of the board nor by a non-uniform humidity profile. High quality boards may be produced at a high yield without splitting and these boards require no conditioning storage.

Description

Die Erfindung bezieht sich auf ein Verfahren zur kontinuierlichen Herstellung von zusammengesetzten holzartigen Platten, bei dem holzartiges Material, ein elektronenstrahlhärtendes Bindemittel, Preßdruck zur Verdichtung und Elektronenstrahlenergie zur Härtung eingesetzt werden, wobei der Vorgang der Verdichtung von dem Vorgang des Einbringens der Elektronenstrahlenergie räumlich getrennt ist.The invention relates to a process for the continuous production of composite wood-like plates, in the wood-like material, an electron beam curing Binder, compression pressure used for compression and electron beam energy for curing , the process of compaction from the process of introducing the electron beam energy is spatially separated.

Die Erfindung bezieht sich ebenfalls auf eine Vorrichtung zur kontinuierlichen Herstellung von zusammengesetzten holzartigen Platten mit einem Transportband für das Material, einer nachfolgenden Preßvorrichtung und einer nachfolgenden Elektronenstrahleinrichtung.The invention also relates to a device for continuous production of composite wood-like panels with a conveyor belt for the material, one subsequent pressing device and a subsequent electron beam device.

Dieses Verfahren und diese Vorrichtung sind aus US-A 36 76 283 bekannt. Bei dieser Entgegenhaltung werden Holzschichten zu einer Sperrholzplatte miteinander verbunden, wobei das zwischen den Schichten vorhandene Bindemittel mittels einer beidseitig wirkenden Elektronenstrahleinrichtung ausgehärtet wird. Ein umlaufendes Verdichtungsband ist leicht geneigt über dem Transportband angeordnet und bildet mit diesem einen sich verengenden Verdichtungsspalt, so daß die den Verdichtungsspalt durchlaufenden Sperrholzschichten fest zusammengedrückt werden. Zwei nachfolgende und im Abstand zueinander angeordnete Preßwalzenpaare sollen die Schichten in der zusammengedrückten bzw. verdichteten Stellung halten, während sie mit der Elektronenstrahleinrichtung bestrahlt werden, die zwischen den beiden Preßwalzenpaaren angeordnet und dementsprechend bis nahe an die Plattenanordnung herangeführt ist.This method and this device are known from US-A 36 76 283. With this citation layers of wood are joined together to form a plywood panel, whereby the binder present between the layers by means of an electron beam device acting on both sides is cured. A circumferential compression band is slightly inclined arranged above the conveyor belt and forms a narrowing with this Compression gap so that the plywood layers passing through the compression gap are firm be squeezed together. Two consecutive and spaced apart Press roller pairs are said to hold the layers in the compressed or compressed position hold while being irradiated with the electron beam device which is between the arranged two pairs of press rolls and accordingly up to close to the plate arrangement is introduced.

Die beiden Preßwalzenpaare können aber ein Auffedern der Plattenanordnung im Bestrahlungsbereich in der Mitte zwischen den Preßwalzenpaaren nicht oder doch nur zum Teil verhindern, wenn die Schichten eine entsprechende Steifheit aufweisen. Im übrigen ist das hintere Preßwalzenpaar nur beim Anfahren der Produktion wirksam, während nach dem Einsetzen der Elektronenstrahlhärtung evtl. sogar mit einem zerstörerischen Effekt auf die durchlaufende, bereits vollständig ausgehärtete Sperrholzplatte gerechnet werden muß. Jedenfalls aber sind die bekannte Vorrichtung und das mit ihr durchgeführte Verfahren für die Herstellung von Spanplatten, Faserplatten oder OSB-Platten ungeeignet, die aus Vliesen hergestellt werden, die zu einem starken Auffedern nach der erfolgten Verdichtung neigen.However, the two pairs of press rolls can spring up the plate arrangement in the irradiation area prevent or only partially prevent it in the middle between the pairs of press rolls, if the layers have a corresponding stiffness. Otherwise, the rear one Press roller pair only effective when starting production, while after insertion electron beam hardening may even have a destructive effect on the continuous, already fully hardened plywood board must be expected. In any case but are the known device and the method carried out with it for the Production of chipboard, fiberboard or OSB boards unsuitable, which are made of nonwovens that tend to spring open after compression.

Wie allgemein bekannt werden für die Herstellung von Spanplatten oder Faserplatten thermisch härtbare Bindemittel wie beispielsweise Harnstoff-Formaldehyd-Harz, Melamin-Formaldehyd-Harz, Isocyanate, Phenol-Formaldehyd-Harz u.a. eingesetzt. Die Aushärtung entspricht chemisch gesehen einer thermisch beschleunigten Polymerisations- bzw. Polykondensationsreaktion. Zur Spanplattenherstellung werden die getrockneten und mit dem Bindemittel beleimten Späne großformatigen Etagenpressen oder Taktpressen (diskontinuierliche Herstellung) zugeführt, oder es wird im Durchlaufverfahren (kontinuierliche Herstellung) gearbeitet, z.B. nach dem Conti-Roll-Verfahren, wobei ein Endlosband aus Spänen eine Preßstrecke zwischen sich fortschreitend annähernden Förderbandtrumen und/oder einen Walzenspalt passiert, wodurch die Verdichtung bewirkt wird.As is generally known, thermal for the production of chipboard or fiberboard curable binders such as urea-formaldehyde resin, melamine-formaldehyde resin, Isocyanates, phenol-formaldehyde resin, etc. used. The hardening corresponds chemically seen a thermally accelerated polymerization or polycondensation reaction. For the production of chipboard, the dried and glued with the binder Chips are fed to large-format stack presses or cycle presses (discontinuous production), or work is carried out in a continuous process (continuous production), e.g. to the Conti-Roll process, where an endless belt of chips forms a pressing section between them progressively approaching conveyor belt runs and / or a nip, whereby the compression is effected.

Die Produktionsleistung solcher Anlagen wird entscheidend durch die vergleichsweise langsame Aushärtung begrenzt. Der limitierende Faktor ist insbesondere der Transport der von außen aufgebrachten Wärme zur Plattenmitte. Zur Beschleunigung wird der sogenannte "Dampfstoßeffekt" ausgenutzt. Dabei wandert Dampf durch Kondensation von der heißen Plattenoberfläche zur Plattenmitte und beschleunigt den Wärmetransport. Dieser Beschleunigung sind jedoch physikalische Grenzen gesetzt, da sich in der Plattenmitte ein Dampfdruck in Abhängigkeit vom außen aufgebrachten Druck und von der Temperatur einstellt. Wenn am Ende des Preßprozesses der von außen aufgebrachte Preßdruck abfällt, kann der in der Platte vorhandene Dampfdruck zu hoch sein, so daß es zu Plattenplatzern kommt, nämlich einem Aufbrechen der Platte in der Plattenmitte.The production performance of such systems is crucial due to the comparatively slow Curing limited. The limiting factor is especially the transport of the outside heat applied to the center of the plate. The so-called "Steam boost effect" exploited. This causes steam to migrate from the hot due to condensation Plate surface to the middle of the plate and accelerates the heat transfer. This acceleration However, there are physical limits because there is a vapor pressure in the middle of the plate depending on the pressure applied outside and the temperature. If at the end of the pressing process, the pressure applied from the outside drops, the in the The existing vapor pressure of the plate is too high, so that plate bursts occur, namely breaking the plate in the middle of the plate.

Ein wichtiger Kapazitätskennwert einer Span- bzw. Faserplattenproduktionsanlage ist der Preßfaktor, der die erforderliche Zeit für die Plattenaushärtung auf die Dimension senkrecht zur Plattenoberfläche bezieht. Über die Plattendicke errechnet sich dann der maximal mögliche Vorschub (bei kontinuierlicher Herstellung) bzw. die maximal mögliche Taktanzahl bei Taktpressen und damit die Anlagenkapazität. Übliche Preßfaktoren liegen im Bereich zwischen 3 und 6 s/mm für Conti-Roll-Anlagen und zwischen 5 und 9 s/mm für Taktanlagen. Beispielsweise ergibt sich für die Aushärtung einer 19 mm Platte bei einem Preßfaktor von 5 s/mm eine Herstellungszeit von 95 Sekunden.An important capacity characteristic of a particleboard or fiberboard production plant is that Press factor, which is the time required for plate hardening to the dimension perpendicular relates to the plate surface. The maximum possible is then calculated from the plate thickness Feed (with continuous production) or the maximum possible number of cycles at Cycle presses and thus the plant capacity. Usual press factors are in the range between 3 and 6 s / mm for Conti-Roll systems and between 5 and 9 s / mm for cycle systems. For example, the curing of a 19 mm plate with a press factor of 5 results s / mm a manufacturing time of 95 seconds.

Der für die Beschleunigung der Aushärtung vorteilhafte Dampfstoßeffekt hat den weiteren Nachteil, daß die Produktfeuchtigkeit an der Plattenoberfläche nahezu Null ist und zur Mitte hin deutlich ansteigt, was ein inhomogenes Feuchteprofil bedeutet. Unter dem Gesichtspunkt eines stabilen Produktes ist jedoch ein homogenes Feuchteprofil anzustreben, das sich in der Praxis erst nach einer Lagerung über mehrere Wochen hinweg einstellt. Die Verarbeitung und insbesondere die Kaschierung von Platten mit deutlich inhomogenem Feuchteprofil führt zu Qualitätsproblemen. Außerdem haben immer weiter gesteigerte Anlagenleistungen zu einer geringeren Produktfeuchtigkeit geführt, die nun unterhalb der Feuchtigkeit liegt, die das Produkt im alltäglichen Einsatz annimmt (Ausgleichsfeuchtigkeit). Das Produkt ist also bestrebt, Feuchtigkeit aus der Umgebung aufzunehmen.The steam boost effect, which is advantageous for accelerating curing, has the further effect Disadvantage that the product moisture on the plate surface is almost zero and towards the middle towards what an inhomogeneous moisture profile means. From the point of view of a stable product, however, a homogeneous moisture profile should be aimed for, which can be found in the Practice only stops after storage for several weeks. The processing and in particular the lamination of panels with a clearly inhomogeneous moisture profile to quality problems. In addition, ever increasing system outputs have become one lower product moisture, which is now below the moisture that the Product accepts in everyday use (balancing moisture). So the product strives Absorb moisture from the environment.

Der Einsatz hochenergetischer Elektronenstrahlung (Gammastrahlen, Röntgenstrahlung, ionisierende Strahlung) zur Härtung von organischen Kunstharzen ist bereits bekannt. So wird in der AT 338 499 die Imprägnierung von Span- und Faserplatten mit strahlenhärtbaren Komponenten zur Erzielung bestimmter technologischer Eigenschaften beschrieben. Dabei wird ein Plattenwerkstoff nach herkömmlichem Verfahren im Heißpreßverfahren hergestellt. Anschließend wird eine Imprägnierung im Wechseldruckverfahren mit den strahlenhärtbaren Komponenten vorgenommen und deren Aushärtung mittels Elektronenstrahlenergie durchgeführt. Mit dieser Nachbehandlung sollen die mechanischen Eigenschaften der Platte und ihre Dimensionsstabilität bei Einwirkung von Wasser verbessert werden, weswegen die eigentliche Plattenherstellung mit einer deutlich reduzierten Menge an thermisch härtbarem Bindemittel durchgeführt werden kann. Als strahlenhärtbares Bindemittel wird ein Gemisch aus ungesättigten Oligomeren (mindestens 30 Gew. %), Acrylnitril (1-30 Gew. %), nicht mitpolymerisierende Zusatzstoffe (maximal 30 Gew. %) und der Rest auf 100 Gew. % vinylisch ungesättigte Monomere beschrieben. Als ungesättigte Monomere werden Polyesterharze, Acrylharze, Diallylphtalat-Vorpolymerisate, ein acrylmodifiziertes Alkyd-, Epoxy- oder Urethanharz vorgeschlagen. Zumdem kommen Polymerisations-Beschleuniger zum Einsatz.The use of high-energy electron radiation (gamma rays, X-rays, ionizing Radiation) for curing organic synthetic resins is already known. So in AT 338 499 impregnates chipboard and fiberboard with radiation-curable components described to achieve certain technological properties. Doing so a plate material is produced by conventional methods in the hot pressing process. Subsequently is an impregnation in the alternating printing process with the radiation-curable Components made and their curing carried out using electron beam energy. With this post-treatment, the mechanical properties of the plate and their Dimensional stability can be improved when exposed to water, which is why the actual Board production with a significantly reduced amount of thermally curable binder can be carried out. A mixture is formed as a radiation-curable binder unsaturated oligomers (at least 30% by weight), acrylonitrile (1-30% by weight), not co-polymerizing Additives (maximum 30% by weight) and the rest to 100% by weight vinyl unsaturated monomers. Polyester resins, unsaturated monomers, Acrylic resins, diallyl phthalate prepolymers, an acrylic-modified alkyd, epoxy or Urethane resin proposed. Polymerization accelerators are also used.

Hier handelt es sich nicht um die Herstellung einer Platte durch Elektronenbestrahlung sondern um eine in einem nachgeschalteten Verfahren erfolgende Nachveredelung mittels Elektronenbestrahlung zur Verbesserung der Platteneigenschaften. Die eigentliche Plattenherstellung erfolgt auch hier unter Verwendung eines thermisch härtbaren Bindemittels und durch Wärmezufuhr im Preßbereich mit einer vollständigen Aushärtung des in der verdichteten Platte enthaltenen Bindemittels. Damit werden die vorgenannten Nachteile - Leistungsbegrenzung durch die Wärmetransportzeit, inhomogenes Feuchteprofil und Gefahr von Plattenplatzern - im Grundsatz nicht beseitigt.This is not about the production of a plate by electron radiation but rather a subsequent refinement in a downstream process by means of electron radiation to improve the sheet properties. The actual plate making is also carried out here using a thermally curable binder and by Heat supply in the press area with a complete hardening of the in the compressed Plate contained binder. This eliminates the aforementioned disadvantages - power limitation due to the heat transfer time, inhomogeneous moisture profile and risk of plate bursts - in principle not eliminated.

Aus der US 3 549 509 ist es bekannt, einen Formkörper unter Verwendung von strahlenhärtbarem Bindemittel herzustellen. Dabei wird Holzstaub oder Sägemehl mit einem strahlenhärtbaren flüssigen Monomer gemischt, in eine Form eingebracht, in dieser verdichtet und durch die Einwirkung von Strahlenenergie gehärtet. Als Strahlenquelle werden radioaktive Elektronenstrahler (z.B. Cobalt 60) oder ionisierende Strahlenquellen (z.B. Röntgenstrahlen) genannt. Nach den angeführten Beispielen erfolgt die Härtung in einer Cobalt-60-Strahlenkammer. Als strahlenhärtbares Monomer werden Methylacrylat, Methylmetacrylat und Propylacrylat vorgeschlagen.From US 3 549 509 it is known to use a molded body using radiation-curable To produce binders. Wood dust or sawdust is treated with a radiation-curable mixed liquid monomer, introduced into a mold, compressed in this and hardened by the action of radiation energy. Radioactive sources are used Electron emitter (e.g. Cobalt 60) or ionizing radiation sources (e.g. X-rays) called. According to the examples given, curing takes place in a cobalt 60 radiation chamber. Methyl acrylate, methyl methacrylate and propyl acrylate are used as radiation-curable monomers suggested.

Die Aushärtung in einer geschlossenen Form (Strahlenkammer) und die vergleichsweise langsame Aushärtung von Monomeren durch Gammastrahlung sind einer Hochleistungsherstellung abträglich. Dementsprechend ist auch dieses bekannte Verfahren nicht für die Herstellung von vergleichsweise dicken Platten oder Formkörpern aus Spänen oder Fasern sondern für dünne Beschichlungen von bereits formfesten Erzeugnissen vorgesehen, die als ersles in die Form eingelegt werden. The curing in a closed form (radiation chamber) and the comparative Slow curing of monomers by gamma radiation is a high-performance production detrimental. Accordingly, this known method is not for production either of comparatively thick plates or moldings made of chips or fibers intended for thin coatings of already dimensionally stable products, which are considered as ersles be inserted into the mold.

Der Erfindung liegt die Aufgabe zugrunde, das eingangs beschriebene Verfahren so durchzuführen und die eingangs beschriebene Vorrichtung so auszubilden, daß plattenförmige Körper (Formkörper) von exakter Solldicke mit hoher Produktionsleistung anfallen, ohne daß ein störender Feuchtigkeitsgehalt sowie eine inhomogene Feuchtigkeitsverteilung in Kauf genommen werden müssen.The invention has for its object to carry out the method described above and to design the device described at the outset in such a way that plate-shaped Body (molded body) of exact target thickness with high production output, without that a disturbing moisture content as well as an inhomogeneous moisture distribution in purchase must be taken.

Diese Aufgabe wird mit den kennzeichnenden Merkmalen der Ansprüche 1 oder 2 sowie der Ansprüche 17 oder 21 gelöst.This object is achieved with the characterizing features of claims 1 or 2 and Claims 17 or 21 solved.

Dementsprechend kommen erfindungsgemäß zwei Lösungswege in Betracht, die beide mit der leistungsfördernden Elektronenstrahlhärtung und deren verlustarmer Aufbringung im Abstand hinter der Verdichtung arbeiten, wobei der Verdichtungszustand bis zur Elektronenbestrahlung konserviert wird, was entweder durch eine thermische Teilhärtung bei der Verdichtung - auch in diesem Falle bildet die nachfolgende Elektronenstrahlhärtung die Haupthärtung - oder durch Aufbringen eines gesonderten Haltedrucks im Bereich von der Verdichtung bis zur Elektronenstrahlhärtung erfolgt. Accordingly, two approaches are possible according to the invention, both with the power-enhancing electron beam hardening and its low-loss application at a distance work behind the compaction, the state of compaction up to electron irradiation is preserved, either by partial thermal curing during compaction - In this case too, the subsequent electron beam hardening forms the main hardening - or by applying a separate holding pressure in the area of the compression until electron beam hardening takes place.

Zweckmäßige Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Verfahrens ergeben sich aus den Unteransprüchen.Appropriate refinements and developments of the method according to the invention result itself from the subclaims.

Die Erfindung beruht darauf, daß die Aktivierung und Aushärtung des eingesetzten Bindemittels - im Gegensatz zu den thermisch härtenden Bindemitteln - durch hochenergetische Strahlung eines Elektronenstrahlbeschleunigers erfolgt. Dessen Leistungsfähigkeit wird im wesentlichen durch zwei Kennwerte bestimmt: Die Beschleunigungsspannung in MeV, die für die Reichweite der Energie in den zu durchstrahlenden Körper verantwortlich ist, und die vom Strahler an den durchstrahlten Körper abgegebene Energiemenge (Strahlerleistung, Dosismenge), die das Produkt aus Beschleunigerspannung und Beschleunigerstrom ist. Die Strahlerleistung bestimmt die in den Körper eingebrachte und von diesem absorbierte Energiemenge, die für die Härtung des Bindemittels verantwortlich ist. Verfügbare Beschleunigersysteme mit einer Beschleunigungsspannung von 10 MeV ermöglichen bei einseitiger Bestrahlung eines Plattenwerkstoffs, der beispielsweise ein spezifisches Gewicht von 750 kg/m3 hat, eine Eindringtiefe von ca. 40 mm, bei zweiseitiger Bestrahlung mit je 10 MeV von ca. 105 mm.The invention is based on the fact that the activation and curing of the binder used - in contrast to the thermally curing binders - is carried out by high-energy radiation from an electron beam accelerator. Its performance is essentially determined by two characteristic values: the acceleration voltage in MeV, which is responsible for the range of the energy in the body to be irradiated, and the amount of energy emitted by the radiator to the irradiated body (radiator power, dose amount), which is the product of accelerator voltage and accelerator current is. The emitter power determines the amount of energy introduced into and absorbed by the body, which is responsible for the hardening of the binder. Available accelerator systems with an acceleration voltage of 10 MeV enable a penetration depth of approx. 40 mm when irradiating one side of a plate material, which has a specific weight of 750 kg / m 3 , for example, and when irradiating on both sides with 10 MeV each of approx. 105 mm.

Im Vergleich zum bisher üblichen Herstellungsprozeß für Span- oder Faserplatten weist das erfindungsgemäße Verfahren wesentliche Vorteile auf. Die Polymerisation des insbesondere Oligomere enthaltenden Bindemittels erfolgt schlagartig und wird primär durch die Einbringung der erforderlichen Polymerisationsenergie (Strahlungsdosis in kGy) bestimmt. Die Aushärtung erfolgt innerhalb weniger Zehntel Sekunden. Dadurch sind Preßfaktoren von 0,05 s/mm möglich, so daß sich für die bereits vorstehend angesprochene 19 mm-Platte eine Aushärtezeit von etwa 1 Sekunde ergibt, während es bei der üblichen Wärmehärtung 95 Sekunden waren.Compared to the previous manufacturing process for particleboard or fibreboard, this shows Process according to the invention have significant advantages. The polymerization of the particular Binder containing oligomers occurs abruptly and is primarily due to the introduction the required polymerization energy (radiation dose in kGy) is determined. The Curing takes place within a few tenths of a second. As a result, press factors of 0.05 s / mm possible, so that there is one for the 19 mm plate already mentioned above Curing time of around 1 second results, compared to 95 seconds with conventional heat curing were.

Ist bei der üblichen thermischen Härtung das Wasser einerseits zum Wärmetransport in die Plattenmitte vorteilhaft, beim Absenken des Preßdrucks jedoch wegen der Platzergefahr nachteilig, so beeinflußt es das erfindungsgemäße Verfahren kaum. Die Gefahr einer Feuchteverschiebung ist nicht gegeben, da auf das Produkt keine einseitige thermische Belastung einwirkt, welche die Ursache für die Feuchtewanderung im Produkt zur kalten Plattenmitte hin bildet. Im Produkt selbst erfolgt durch die Absorption der einfallenden Strahlung bzw. durch die Polymerisation keine kritische Temperaturerhöhung, die den Aufbau eines nennenswerten Wasserdampfdrucks ermöglichen würde. Die Gefahr von Plattenplatzern besteht daher nicht. Reifezeiten von mehreren Tagen wie bei der üblichen Herstellung notwendig sind daher nicht erforderlich, was hinsichtlich des Lagerplatzbedarfs und des gebundenen Kapitals von Vorteil ist. In the usual thermal hardening, the water is on the one hand used to transport heat into the Plate center advantageous, but when lowering the pressure due to the risk of space disadvantageous, it hardly affects the method according to the invention. The risk of moisture shifting is not given as there is no one-sided thermal load on the product acts, which is the cause of the moisture migration in the product to the cold middle of the plate out there. In the product itself, absorption of the incident radiation or due to the polymerization no critical temperature increase, which is the build up of a significant Would allow water vapor pressure. There is a risk of disk space therefore not. Maturation times of several days as with the usual production are necessary are therefore not necessary what regarding the storage space requirement and the bound Capital is beneficial.

Als Bindemittel für die Elektronenstrahlhärtung eignen sich ungesättigte Oligomere. Es kann vorteilhaft sein, diesen Monomere beizumischen, um die Art und den Grad der Polymerisation des Bindemittels zu beeinflussen. Dementsprechend werden diese Monomere auch als Vernetzer bezeichnet. Vernetzer verfügen über mono- (z.B. HDDA), di- (DPGDA), tri-(z.B. TMPTA) oder polyfunktionelle Gruppen. Die Wahl des Vernetzers in Abstimmung mit dem ungesättigten Oligomer hinsichtlich des Mischungsverhältnisses und hinsichtlich einer Kombination von verschiedenen Vernetzern beeinflußt die Eigenschaften des hergestellten Formkörpers bzw. der Platte, z.B. Biegefestigkeit, Querzugfestigkeit, Biege-E-Modul, Beständigkeit gegen Luftfeuchte- und Wassereinwirkung).Unsaturated oligomers are suitable as binders for electron beam curing. It can be advantageous to add these monomers to the type and degree of polymerization to influence the binder. Accordingly, these monomers are also called Called crosslinker. Crosslinkers have mono- (e.g. HDDA), di- (DPGDA), tri- (e.g. TMPTA) or polyfunctional groups. The choice of the networker in coordination with the unsaturated oligomer in terms of the mixing ratio and in terms of Combination of different crosslinkers influences the properties of the manufactured one Molded body or plate, e.g. Flexural strength, transverse tensile strength, flexural modulus, durability against the effects of humidity and water).

Für die untersuchten Oligomere und Gemische von Oligomeren mit Vernetzern ist zur vollständigen Aushärtung eine Strahlendosis zwischen 70 und 100 kGy erforderlich. Einsetzbare ungesättigte Oligomere sind z.B. Polyesterharze, Acrylharze, Diallylphtalat-Vorpolymerisate, acrylmodifizierte Alkyd-, Epoxy- oder Urethanharze. Diese sind im Gegensatz zu den üblicherweise eingesetzten Kondensationsharzen frei von Formaldehyd (Prüfung nach DIN EN 120 mit photometrischer Auswertung) und ermöglichen eine kochwasserfeste Verbindung des Verbundstoffes im Sinne der EN 1087-Teil 1.For the investigated oligomers and mixtures of oligomers with crosslinking agents is complete Curing requires a radiation dose between 70 and 100 kGy. Applicable unsaturated oligomers are e.g. Polyester resins, acrylic resins, diallyl phthalate prepolymers, acrylic modified alkyd, epoxy or urethane resins. These are in contrast to the Condensation resins usually used free of formaldehyde (test according to DIN EN 120 with photometric evaluation) and enable a connection that is resistant to boiling water of the composite in the sense of EN 1087 part 1.

Schon bei der üblichen Herstellung mittels Wärmehärtung ist man bestrebt, die Härtung im Moment der größten Verdichtung des Formkörpers bzw. der Platte durchzuführen oder zumindest einzuleiten, damit die Form- bzw. Dimensionsstabilität gewährleistet ist und keine Rückfederung beim Nachlassen des Preßdrucks erfolgt. Bei der Elektronenstrahlhärtung ist die schlagartige Aushärtung in dieser Hinsicht von Vorteil. Andererseits ist das Einbringen der Strahlenenergie im Bereich des hohen Preßdrucks unzweckmäßig, soweit hier der mechanischen Belastung entsprechend dicke Stahlplatten oder andere Druckbeaufschlagungseinrichtungen vorhanden sind, die in erheblichem Maße stahlenabsorbierend wirken und die Eindringtiefe der Strahlung herabsetzen. In diesem Zusammenhang wurde festgestellt, daß zur Sicherung der maximalen Materialverdichtung vor dem Aushärten ein Haltedruck ausreicht, der deutlich unter dem (maximalen) Preßdruck liegt. Es ist daher vorteilhaft, die Aushärtung bei einem entsprechend niedrigen Haltedruck außerhalb der die Elektronenstrahlen schwächenden Preßvorrichtung durchzuführen, also beispielsweise beim Conti-Roll-Verfahren im Abstand hinter dem engsten Preßspalt. Already in the usual production by means of heat hardening, efforts are made to harden in Perform the moment of greatest compression of the molded body or the plate or at least initiate, so that the form or dimensional stability is guaranteed and none Springback occurs when the pressure decreases. When it comes to electron beam curing the sudden hardening is advantageous in this regard. On the other hand is the introduction the radiation energy in the area of the high pressure is inappropriate, as far as the mechanical one Load according to thick steel plates or other pressurization devices are present, which have a significant steel-absorbing effect and which Reduce the penetration depth of the radiation. In this context it was found that a holding pressure is sufficient to ensure the maximum material compression before curing, which is significantly below the (maximum) baling pressure. It is therefore advantageous that Curing at a correspondingly low holding pressure outside of which the electron beams weakening pressing device, for example, in the conti-roll process at a distance behind the narrowest press nip.

Im Interesse einer ungehinderten bzw. ungeschwächten Bestrahlung mit Elektronenenergie kann auch zweistufig mit einer ersten formstabilisierenden thermischen Teilhärtung unter Preßdruck und einer anschließenden von äußerer Druckbeaufschlagung freien Elektronenstrahlaushärtung gearbeitet werden. Das setzt natürlich die Verwendung eines Bindemittels mit einem Bindemittelanteil voraus, der thermisch härtbar ist. Hierfür kommt eine Beimischung von üblicherweise verwendetem thermisch härtbarem Bindemittel in Betracht.In the interest of unimpeded or unimpaired irradiation with electron energy can also be done in two stages with a first shape-stabilizing thermal partial hardening Press pressure and a subsequent electron beam curing free of external pressurization be worked. Of course, this requires the use of a binder with a proportion of binder that is thermally curable. There is an admixture for this of commonly used thermosetting binder.

Als Variante für eine thermische Teilhärtung oder Ersthärtung kommt aber auch die Zugabe eines organischen Peroxids (z.B. TBPEH) in Betracht, das zusammen mit dem Bindemittel eingebracht wird und unter Temperatureinwirkung die Vernetzung des Bindemittels initialisiert. Auch hier handelt es sich um eine Zweistufenhärtung, wobei in der ersten Stufe unter Einwirkung von Druck und Wärme eine Ersthärtung oder Teilhärtung unter Stabilisierung der verdichteten Form erfolgt, und in einer zweiten Stufe ohne äußere Einwirkung von Druck die vollständige Aushärtung bzw. Polymerisation des Bindemittels durch Elektronenstrahlenergie erfolgt. Die thermische Ersthärtung dient auch hier lediglich zur Fixierung des Materials in der verdichteten Lage und kann bei vergleichsweise geringer Temperatur erfolgen, so daß die vorgenannten technologischen Nachteile der thermischen Härtung in Grenzen gehalten werden.However, the addition also comes as a variant for thermal partial curing or initial curing an organic peroxide (e.g. TBPEH), which together with the binder is introduced and the crosslinking of the binder is initialized under the action of temperature. This is also a two-stage hardening process, with the first stage being below Exposure to pressure and heat an initial hardening or partial hardening with stabilization the compacted form, and in a second stage without external influence of Pressure the complete curing or polymerization of the binder by electron beam energy he follows. The thermal initial hardening only serves to fix the Material in the compressed layer and can take place at a comparatively low temperature, so that the aforementioned technological disadvantages of thermal hardening are limited being held.

Eine weitere Variante der thermischen Teilhärtung stellt die Härtung lediglich der Decklagen durch Druck und Temperatur dar. Diese so gehärteten Decklagen können eine Dicke von 1 mm bis mehrere mm aufweisen. Das Bindemittel in diesen Decklagen kann aus einem nicht im Elektronenstrahl härtbaren Bindemittel, aus einem Gemisch aus einem thermisch härtbaren Bindemittel und einem im Elektronenstrahl härtbaren Bindemittel oder aus einem Gemisch aus einem im Elektronenstrahl härtbaren Bindemittel mit einem organischen Peroxid bestehen. Das Bindemittel für den Anteil des Produktes außer den Decklagen stellt ein im Elektronenstrahl härtbares Bindemittel dar oder ein Gemisch aus einem thermisch härtbaren und einem im Elektronenstrahl härtbaren Anteil.Another variant of partial thermal hardening is the hardening of the top layers only by pressure and temperature. These hardened cover layers can have a thickness of 1 mm to several mm. The binder in these top layers cannot be made from one in the electron beam curable binder, from a mixture of a thermally curable Binder and a binder curable in the electron beam or from a mixture made of a binder curable in the electron beam with an organic peroxide consist. The binder for the portion of the product other than the top layers is an im Electron beam curable binder or a mixture of a thermally curable and a part curable in the electron beam.

Die thermische Härtung der Decklagen muß nicht bereits zu einer vollständigen Vernetzung des Bindemittels führen, insbesondere dann, wenn das verwendete Bindemittel über einen im Elektronenstrahl härtbaren Anteil verfügt. Vielmehr ist sogar anzustreben die Temperatureinwirkungsdauer auf die Decklagen so kurz als möglich zu halten, um die durch die Temperatureinwirkung zu erwartenden nachteiligen Platteneigenschaften so gering als möglich zu halten. Der thermischen Teilhärtung nachgeschaltet ist eine Endhärtung des Produktes durch die Einwirkung von Elektronenstrahlenergie, wobei diese je nach Anforderung an die Produkteigenschaften wahlweise unter Einwirkung eines gegenüber der ersten Stufe mit thermischer Härtung bereits verminderten Haltedruckes oder drucklos erfolgen kann. The thermal hardening of the cover layers does not have to be complete crosslinking of the binder lead, especially if the binder used via an im Electron beam curable portion. Rather, the duration of exposure to temperature is even desirable to keep the top layers as short as possible to avoid the Exposure to adverse plate properties to be expected as low as possible to keep. The thermal partial hardening is followed by a final hardening of the product by the action of electron beam energy, this depending on the requirements of the Product properties optionally under the influence of a compared to the first stage thermal hardening can already take place at reduced holding pressure or without pressure.

Die bereits teilgehärteten Decklagen vereinfachen das Aufbringen eines Haltedruckes in der Art, daß auf ein formstabilisierendes Band oder eine in der Funktion und Wirkung ähnliche Vorrichtung im Bereich der Elektronenstrahleinwirkung völlig verzichtet werden kann oder diese deutlich schwächer dimensioniert werden können und somit keine oder eine deutlich verminderte Absorption der Elektronenstrahlenergie im Band oder in den Vorrichtungen crfolgt, was eine verbesserte Nutzung der Elektronenstrahlenergie im Produkt ermöglicht. Im übrigen begünstigt bei der zweistufigen Härtung die Einwirkung von Temperatur die Oberflächeneigenschaften des Produktes (Beschichtbarkeit, erzielbare Dichte und Dichteverteilung).The already partially hardened top layers simplify the application of a holding pressure in the Kind that on a form-stabilizing tape or a similar in function and effect Device in the field of electron beam exposure can be completely dispensed with or these can be dimensioned much weaker and therefore none or one clearly reduced absorption of the electron beam energy in the band or in the devices follows, which enables an improved use of the electron beam energy in the product. in the In the case of two-stage hardening, the effects of temperature favor the surface properties of the product (coatability, achievable density and density distribution).

Das erfindungsgeinäße Verfahren eignet sich in besonderem Maße zur Herstellung von Spanplatten, Faserplatten oder OSB. Es ist aber auch auf anderes zellulosisclies oder ähnliches Material in Teilchen- oder Stückform anwendbar, bei dem eine gegenseitige Verbindung durch ein Bindemittel erreicht wird. Beispiele sind die Herstellung von Sperrholzplatten, plattenförmige Erzeugnisse aus Papier bzw. Papierschnitzeln, Textilfasern, Rinde oder auch bestimmte Müllfraktionen wie Kunststoffabrälle oder Verbundstoffe aus Kunststoff und Papier bzw. Karton.The inventive method is particularly suitable for the production of Chipboard, fiberboard or OSB. But it is also on other cellulosisclies or the like Material in particle or piece form applicable, in which a mutual Connection is achieved by a binder. Examples are the production of Plywood panels, sheet-like products made of paper or paper chips, textile fibers, Bark or also certain waste fractions such as plastic waste or composite materials Plastic and paper or cardboard.

Die nachfolgenden Beispiele 1 bis 5 betreffen Versuche zum Nachweis der verbesserten mechanisch-technologischen Eigenschaften von erfindungsgemäß mit Elektronenstrahlenergie gehärteten Spankörpern: The following Examples 1 to 5 relate to tests to demonstrate the improved mechanical-technological Properties of the invention with electron beam energy hardened chip bodies:

Beispiel 1example 1

Zur Untersuchung der als ergänzende Maßnahme vorgesehenen radikalischen Härtung durch organische Peroxide wurden in einem Rührapparat 100 Teile Deckschichtspäne aus der industriellen Spänetrocknung mit 20 Teilen Bindemittel (Urethanacrylat) und 0,7 Teilen organisches Peroxid (TBPEH) vermischt und anschließend in einer Laborpresse (Format 33x33 cm) 150°C für 10 Minuten und einem spezifischen Preßdruck von 13 N/mm2 ausgesetzt. Die mechanisch-technologischen Eigenschaften waren wie folgt: Probe Dichte [kg/m3] Dicke [mm] Festharz auf atro %] Querzugfestigkeit [N/mm2] Restfeuchte [%] Peroxid 1019/20 1006 3,16 20,8 1,5 4,0 TBPEH To investigate the radical hardening by organic peroxides, which was provided as a supplementary measure, 100 parts of top layer chips from industrial chip drying were mixed with 20 parts of binder (urethane acrylate) and 0.7 parts of organic peroxide (TBPEH) in a stirrer and then in a laboratory press (size 33x33 cm ) 150 ° C for 10 minutes and a specific pressure of 13 N / mm 2 exposed. The mechanical-technological properties were as follows: sample Density [kg / m 3 ] Thickness [mm] Solid resin on atro%] Transverse tensile strength [N / mm 2 ] Residual moisture [%] peroxide 1019/20 1006 3.16 20.8 1.5 4.0 TBPEH

Beispiel 2Example 2

Auf 100 Teile industriell getrocknete Mittelschichtspäne wurden in einer Beleimungstrommel durch Luftzerstäubung 10 Teile Bindemittel (Urethanacrylat) und 0,4 Teile organisches Peroxid (TBPEH) auf die Späne aufgebracht. In einer Laborpresse wurden Platten vom Format 40x40 cm hergestellt bei 150°C für 5 Minuten und einem spezifischen Preßdruck von 10 N/mm2. Die Herstellung erfolgte zur Einstellung einer einheitlichen Plattendicke mit Abstandsleisten. In analoger Weise wurden Vergleichsplatten mit einem UF-Harz als Bindemittel hergestellt (Probenserie A). Die mechanisch-technologischen Eigenschaften waren wie folgt: Probe Dichte [kg/m2] Dicke [mm] Festharz auf atro %] Querzugfestigkeit [N/mm2] Rest feuchte [%] Peroxid bzw Bindemittel 1019/21 676 15,6 10,4 0,68 4,0 TBPEH A 680 16,0 11,0 0,60 5,5 UF 10 parts of binder (urethane acrylate) and 0.4 part of organic peroxide (TBPEH) were applied to the chips on 100 parts of industrially dried middle layer chips in a gluing drum by air atomization. In a laboratory press, 40x40 cm plates were produced at 150 ° C for 5 minutes and a specific pressing pressure of 10 N / mm 2 . The production was carried out to set a uniform plate thickness with spacer strips. In an analogous manner, comparison plates were produced with a UF resin as a binder (sample series A). The mechanical-technological properties were as follows: sample Density [kg / m 2 ] Thickness [mm] Solid resin on atro%] Transverse tensile strength [N / mm 2 ] Residual moisture [%] Peroxide or binder 1019/21 676 15.6 10.4 0.68 4.0 TBPEH A 680 16.0 11.0 0.60 5.5 UF

Die beiden Platten lieferten vergleichbare Ergebnisse hinsichtlich der Querzugfestigkeit. The two panels gave comparable results in terms of transverse tensile strength.

Die Proben der nachfolgenden Beispiele 3 bis 5 sind Rundproben mit einem Durchmesser von ca. 110 mm, sie wurden bei einer Elektronenstrahlbeschleunigeranlage mit einer Beschleunigerspannung von 10 MeV und einem Strom von ca. 1,5 mA entsprechend einer mittleren Strahlerleistung von 15 kW ausgehärtet.The samples of Examples 3 to 5 below are round samples with a diameter of approx. 110 mm, they were used in an electron beam accelerator system with a Accelerator voltage of 10 MeV and a current of approx. 1.5 mA corresponding to one average lamp power of 15 kW cured.

Beispiel 3Example 3

Industriell getrocknete Mittelschichtspäne wurden vor der weiteren Verarbeitung fraktioniert und das Siebgut mit einer Maschenweite von 2 bis 4 mm verwendet. Im Anschluß daran erfolgte die Beleimung in einer Laborbeleimtrommel von 100 Teilen Späne mit 10 Teilen Bindemittel (Epoxyacrylat) und 1 Teil Vernetzer (HDDA, TMPTH, DPGDA entsprechend der Probenserie K, L und M). Die Beleimung erfolgte heiß bei ca. 80°C Bindemitteltemperatur mittels Zerstäubung durch eine Zweistoffdüse. Die Spanfeuchte betrug ca 4% bezogen auf die Trockenmasse. Das beleimte Spangut wurde zu Rundlingen gepreßt und mittels Elektronenstrahl bei einer Dosis (bestimmt an der Probenoberfläche) von ca. 110 kGy gehärtet. Vergleichende Probekörper wurden in analoger Weise mit Harnstoff-Formaldehyd-Bindemittel (UF) hergestellt (100 Teile Späne, 10 Teile Festharz, Ammonsulfat als Härtekomponente entsprechend der Probenserie J). Die mechanisch-technologischen Eigenschaften waren im Vergleich: Probe Quetzug normiert auf 450 kg/m3 [N/mm2] Kochquerzug [N/mm2] 2-Std Quellung [%] 24-Std Quellung [%] Dichte [kg/m3] Festharz auf atro [%] Formaldehyd [mg/100g] Restfeuchte [%] Vemetzer bzw Bindemittel K1/2 0,317 0,101 5,1 8,8 409 11,0 < 0,5 10,0 TMPTA 0,131 4,6 8,7 429 11,0 < 0,5 10,0 IMPTA L1/2 0,344 0.120 3,6 9,6 448 11,0 < 0,5 10,0 DPGDA 0,173 3,2 8,8 451 11,0 < 0,5 10,0 DPGDA M1/2 0,319 0,130 3,2 8,8 445 11,1 < 0,5 10,0 HDDA 0,136 3,1 10,4 462 11,1 < 0.5 10,0 HDDA J1/2 0,292 --- 9,6 15,0 457 10,8 5,7 6,0 UF Industrially dried middle layer chips were fractionated before further processing and the screenings with a mesh size of 2 to 4 mm were used. This was followed by gluing in a laboratory glue drum of 100 parts of chips with 10 parts of binder (epoxy acrylate) and 1 part of crosslinker (HDDA, TMPTH, DPGDA according to the sample series K, L and M). The glue was applied hot at approx. 80 ° C binder temperature by atomization through a two-component nozzle. The chip moisture was about 4% based on the dry matter. The glued chip was pressed into round shapes and cured by means of an electron beam at a dose (determined on the sample surface) of approx. 110 kGy. Comparative test specimens were produced in an analogous manner with urea-formaldehyde binder (UF) (100 parts of chips, 10 parts of solid resin, ammonium sulfate as the hardness component in accordance with sample series J). The mechanical-technological properties were compared: sample Quetz standardized to 450 kg / m 3 [N / mm 2 ] Cross cooker [N / mm 2 ] 2-hour swelling [%] 24-hour swelling [%] Density [kg / m 3 ] Solid resin on atro [%] Formaldehyde [mg / 100g] Residual moisture [%] Crosslinker or binder K1 / 2 0.317 0.101 5.1 8.8 409 11.0 <0.5 10.0 TMPTA 0.131 4.6 8.7 429 11.0 <0.5 10.0 IMPTA L1 / 2 0.344 0.120 3.6 9.6 448 11.0 <0.5 10.0 DPGDA 0.173 3.2 8.8 451 11.0 <0.5 10.0 DPGDA M1 / 2 0.319 0.130 3.2 8.8 445 11.1 <0.5 10.0 HDDA 0.136 3.1 10.4 462 11.1 <0.5 10.0 HDDA J1 / 2 0.292 --- 9.6 15.0 457 10.8 5.7 6.0 UF

Man erkennt im Vergleich für die im Elektronenstrahl gehärteten Proben, daß bei selbem Beleimungsgrad die Querzugfestigkeit höher liegt, die Proben eine Kochquerzugfestigkeit aufweisen und die 2-Stundenquellung vermindert ist. Anzumerken ist, daß das Harnstoff-Formaldehyd-Bindemittel eine Kochquerzugfestigkeitsprüfung nicht zuläßt (die Probe löst sich beim Kochen auf). Der Formaldehydgehalt der strahlengehärteten Proben lag unterhalb der Nachweisgrenze von 0,5 mg pro 100 g Platte nach EN 120. It can be seen in comparison for the samples hardened in the electron beam that the same Degree of gluing the cross tensile strength is higher, the samples a cooking cross tensile strength and the 2-hour swelling is reduced. It should be noted that the urea-formaldehyde binder a cross cooking tensile strength test does not permit (the sample loosens when cooking). The formaldehyde content of the radiation-hardened samples was below the detection limit of 0.5 mg per 100 g plate according to EN 120.

Beispiel 4Example 4

Die Proben wurden in analoger Weise wie in Beispiel 3 beschrieben hergestellt, der Beleimungsgrad jedoch um 50% reduziert. Die mechanisch-technologischen Eigenschaften waren im Vergleich: Probe Querzug normiert auf 450 kg/m3 [N/mm2] Kochquetzug [N/mm2] 2-Std Quellung [%] 24-Std Quellung [%] Dichte [kg/m3] Fest harz auf atro [%] Formaldehyd [mg/100g] Rest feuchte [%] Vernetzer N1/2 0,265 0,076 6,3 11,3 428 5,5 < 0,5 10,0 TMPTA 0,118 9,6 15,0 477 5,5 < 0,5 10,0 TMPTA O1/2 0,265 0,074 10,0 12,2 462 5,6 < 0,5 10,0 DPGDA 0,077 8,1 11,6 436 5,6 < 0,5 10,0 DPGDA P1/2 0,291 0,085 6,8 12,6 466 5,5 <0,5 10,0 HDDA 0,075 5,8 10,8 418 5,5 < 0,5 10,0 HDDA J1/2 0,292 --- 9,6 15,0 457 10,8 5,7 6,0 UF The samples were produced in a manner analogous to that described in Example 3, but the degree of gluing was reduced by 50%. The mechanical-technological properties were compared: sample Transverse tension normalized to 450 kg / m 3 [N / mm 2 ] Cooking squeeze [N / mm 2 ] 2-hour swelling [%] 24-hour swelling [%] Density [kg / m 3 ] Solid resin on atro [%] Formaldehyde [mg / 100g] Residual moisture [%] Crosslinker N1 / 2 0.265 0.076 6.3 11.3 428 5.5 <0.5 10.0 TMPTA 0.118 9.6 15.0 477 5.5 <0.5 10.0 TMPTA O1 / 2 0.265 0.074 10.0 12.2 462 5.6 <0.5 10.0 DPGDA 0.077 8.1 11.6 436 5.6 <0.5 10.0 DPGDA P1 / 2 0.291 0.085 6.8 12.6 466 5.5 <0.5 10.0 HDDA 0.075 5.8 10.8 418 5.5 <0.5 10.0 HDDA J1 / 2 0.292 --- 9.6 15.0 457 10.8 5.7 6.0 UF

Man erkennt im Vergleich für die im Elektronenstrahl gehärteten Proben, daß bei deutlich geringerem Beleimungsgrad die Querzugfestigkeit um bis zu 9,3% abfällt, eine Kochquerzugfestigkeit noch gegeben ist und zu den Werten in Beispiel 3 um 50% geringer ist. Der Formaldehydgehalt der strahlengehärteten Proben lag unterhalb der Nachweisgrenze von 0,5 mg pro 100 g Platte nach EN 120.It can be seen in comparison for the samples hardened in the electron beam that at clearly the cross-tensile strength drops by up to 9.3%, a cooking cross-tensile strength is still given and is 50% lower than the values in Example 3. The The formaldehyde content of the radiation-hardened samples was below the detection limit of 0.5 mg per 100 g plate according to EN 120.

Beispiel 5Example 5

Das Bindemittel wurde im Vergleich zu den Beispielen 3 und 4 in diesem Fall in Form einer 25%-igen Emulsion (zwecks verbesserter Verteilung) eines Melaminacrylates in kaltem Zustand aufgebracht. Das durch die Emulsion eingebrachte Wasser erhöhte die Spänefeuchtigkeit im beleimten Zustand noch erheblich. Im herkömmlichen Herstellungsverfahren mit üblichen Bindemitteln lassen sich Platten mit solcher Spanfeuchtigkeit nur bei ausgesprochen geringer Preßtemperatur und damit verbunden langer Preßzeit herstellen.The binder was compared to Examples 3 and 4 in this case in the form of a 25% emulsion (for the purpose of improved distribution) of a melamine acrylate in the cold state upset. The water introduced by the emulsion increased the moisture in the chips in the glued state still considerable. In the conventional manufacturing process with usual Binders can only be pronounced with such chip moisture low pressing temperature and the associated long pressing time.

Die mechanisch-technologischen Eigenschaften waren im Vergleich: Probe Querzug normiert auf 450 kg/m3 [N/mm2] Kochquerzug [N/mm2] 2-Std Quellung [%] 24-Std Quellung [%] Dichte [kg/m3] Fest-harz auf atro [%] Formaldehyd [mg/100g] Restfeuchte [%] Bindemittel R1/2 0,277 0.091 3,0 8,4 494 4,8 < 0,5 20,8 Emulsion 0,086 3,0 8,6 470 4,8 < 0,5 20,8 Emulsion J 1/2 0,292 --- 9,6 15,0 457 10,8 5,7 6,0 UF The mechanical-technological properties were compared: sample Transverse tension normalized to 450 kg / m 3 [N / mm 2 ] Cross cooker [N / mm 2 ] 2-hour swelling [%] 24-hour swelling [%] Density [kg / m 3 ] Solid resin on atro [%] Formaldehyde [mg / 100g] Residual moisture [%] binder R1 / 2 0.277 0.091 3.0 8.4 494 4.8 <0.5 20.8 emulsion 0.086 3.0 8.6 470 4.8 <0.5 20.8 emulsion J 1/2 0.292 --- 9.6 15.0 457 10.8 5.7 6.0 UF

Trotz hoher Plattenrestfeuchte und geringem Beleimungsgrad ist die Querzugfestigkeit für R vergleichbar mit UF-gebundenen Probekörpern und liegt im Bereich der Proben aus Beispiel 4. Auffallend ist für die Serie R die geringe 2-Stundenquellung.Despite the high residual board moisture and low degree of gluing, the transverse tensile strength for R comparable to UF-bound test specimens and lies in the range of the samples from example 4. The low 2-hour swelling is striking for the R series.

Ausführungsbeispiele der erfindungsgemäßen Vorrichtung werden nachfolgend anhand einer schematischen Zeichnung näher erläutert: Es zeigen:

Abbildung 1
eine Vorrichtung zur kontinuierlichen Herstellung von Span- oder Faserplatten unter Verwendung einer Vorpresse und mit beidseitiger Elektronenbestrahlung;
Abbildung 2
eine Vorrichtung wie in Abbildung 1, bei der jedoch die Hauptpresse anders ausgebildet ist;
Abbildung 3
eine der Abbildung 1 entsprechende Vorrichtung jedoch ohne Vorpresse;
Abbildung 4
eine Abbildung 3 entsprechende Vorrichtung mit einseitiger Elektronenbestrahlung;
Abbildung 5
eine Abbildung 1 entsprechende Vorrichtung, bei der jedoch im Bereich der Elektronenbestrahlung ein Haltedruck auf die verdichtete Platte aufgebracht wird;
Abbildung 6
eine Vorrichtung mit einer Presse, die von einer Umlenktrommel großen Durchmessers, mit dieser zusammenarbeitenden Druckrollen und einem Druckband gebildet ist, wobei eine einseitig wirkende Elektronenstrahleinrichtung vorgesehen ist; und
Abbildung 7
eine weitgehend Abbildung 2 entsprechende Vorrichtung, die der kombinierten thermischen und Elektronenstrahl-Härtung dient, wobei letztere in einer der Preßvorrichtung nachgeschalteten getrennten Einheit durchgeführt wird.
Exemplary embodiments of the device according to the invention are explained in more detail below with the aid of a schematic drawing:
illustration 1
a device for the continuous production of chipboard or fiberboard using a pre-press and with double-sided electron radiation;
Figure 2
a device as in Figure 1, but the main press is different;
Figure 3
a device corresponding to Figure 1 but without a pre-press;
Figure 4
a device corresponding to Figure 3 with one-sided electron radiation;
Figure 5
a device corresponding to Figure 1, in which, however, a holding pressure is applied to the compacted plate in the area of electron radiation;
Figure 6
a device with a press, which is formed by a deflection drum of large diameter, with this cooperating pressure rollers and a printing belt, wherein a single-acting electron beam device is provided; and
Figure 7
a device largely corresponding to Figure 2, which is used for combined thermal and electron beam curing, the latter being carried out in a separate unit connected downstream of the pressing device.

Die Ausführungen gemäß den Abbildungen 1 bis 4 entsprechen nicht der Erfindung nach den Ansprüchen.The statements according to Figures 1 to 4 do not correspond to the invention according to the Claims.

Gemäß Abbildung 1 ist eine behälterförmige Streuvorrichtung 1 vorgesehen, die mit durch Elektronenbestrahlung härtbarem Bindemittel beleimtes zellulosisches Material 2 (Holzspäne, Holzfasern) aufnimmt. Dieses Material 2 wird in gleichmäßiger Verteilung auf ein kontinuierlich umlaufendes Band 3 geschüttet, auf dem sich eine lockere Streuschicht 4 bildet. Diese wird in einer Vorpresse 5 vorverdichtet.According to Figure 1, a container-shaped spreader 1 is provided, which with Electron radiation hardenable binder glued cellulosic material 2 (wood chips, Wood fibers). This material 2 is in a uniform distribution on a continuous revolving band 3 poured on which a loose scattering layer 4 forms. This is pre-compressed in a pre-press 5.

Die Vorpresse 5 weist in spiegelsymmetrischer Ausbildung und Anordnung ein oberes Vorverdichtungsband 6 und ein unteres Vorverdichtungsband 7 auf, die über Umlenkrollen 8, Spannrollen 9 sowie oberseitige Vordruckrollen 10 und unterseitige Vordruckrollen 11 umlaufen. Das Transportband 3 mit der Streuschicht 4 läuft zwischen den Vorverdichtungsbändern 6 und 7 hindurch, die sich in Transportrichtung einander annähern, was durch den in Transportrichtung sich verringernden Abstand zwischen sich den sich gegenüberliegenden Vordruckrollen 10 und 11 erreicht wird. Auf diese Weise entsteht aus der Streuschicht 4 eine dünnere vorverdichtete Schicht 12.The pre-press 5 has an upper pre-compression band in a mirror-symmetrical design and arrangement 6 and a lower pre-compression band 7, which via deflection rollers 8, Tension rollers 9 as well as top pressure rollers 10 and bottom pressure rollers 11 circulate. The conveyor belt 3 with the scattering layer 4 runs between the pre-compression belts 6 and 7, which approach each other in the direction of transport, which is indicated by the in Transport direction decreasing distance between the opposite ones Form rollers 10 and 11 is reached. In this way, a diffusion layer 4 is formed thinner precompacted layer 12.

Das Transportband 3 läuft über Umlenkrollen 13 sowie einen starren Tisch 14 im Bereich der Aufgabe des Materials 2 und über Stützrollen 15 hinter der Vorpresse 5 um. In Transportrichtung hinter der Vorpresse 5 ist eine Preßvorrichtung 16 (Hauptpresse) vorgesehen, die von einer oberen Trommel 17 und einer unteren Trommel 18 gebildet wird, deren Preßspalt 19 vom Obertrum des Transportbandes 3 mit der vorverdichteten Schicht 12 durchlaufen wird, so daß aus dieser die verdichtete Schicht 20 entsteht, die mit dem Transportband 3 über die Stützrollen 21 hinweg läuft, wobei die verdichtete Schicht 20 infolge Rückfederung eine etwas größere Dicke erhält, als es der Abmessung des Preßspalts 19 entspricht.The conveyor belt 3 runs over deflection rollers 13 and a rigid table 14 in the area the task of the material 2 and support rollers 15 behind the pre-press 5. In the direction of transport behind the pre-press 5 there is a pressing device 16 (main press), which is formed by an upper drum 17 and a lower drum 18, the press nip 19 run through from the upper run of the conveyor belt 3 with the pre-compressed layer 12 is, so that from this the compressed layer 20 is formed, which with the conveyor belt 3rd runs over the support rollers 21, the compressed layer 20 due to springback receives a slightly larger thickness than corresponds to the dimension of the press nip 19.

Darauf passiert das Transportband 3 mit der verdichteten Schicht 20 eine Elektronenstrahleinrichtung 22, die einen oberen Elektronenstrahlbeschleuniger 23 und einen unteren Elektronenstrahlbeschleuniger 24 umfaßt, die einander zugewandt sind. Durch die schlagartige Aushärtung des mit dem Material 2 vermischten Bindemittels durch die Elektronenbestrahlung entsteht an der Elektronenstrahleinrichtung 22 aus der verdichteten Schicht 20 eine ausgehärtete Platte 25 (Endlosplatte), die über Stützrollen 26 der Endfertigung (Quertrennen, Oberflächenschleifen) zugeführt wird.The conveyor belt 3 with the compressed layer 20 then passes through an electron beam device 22, which has an upper electron beam accelerator 23 and a lower electron beam accelerator 24 includes facing each other. By the sudden Hardening of the binder mixed with the material 2 by electron radiation a hardened layer is formed on the electron beam device 22 from the compressed layer 20 Plate 25 (endless plate), the support rollers 26 of the final production (cross cutting, Surface grinding) is supplied.

Die Vorrichtung nach Abbildung 2 stimmt weitgehend mit der zuvor beschriebenen Vorrichtung überein. Insoweit werden - wie auch bei den nachfolgenden Abbildungen - dieselben Bezugszeichen verwendet und wird von einer erneuten Beschreibung abgesehen. Der Unterschied zu Abbildung 1 besteht darin, daß anstelle der Preßvorrichtung 16 eine abweichend ausgebildete Preßvorrichtung 27 vorgesehen ist. Diese Preßvorrichtung 27 ist nach dem Conti-Roll-Verfahren arbeitend ausgeführt, kann jedoch deutlich kürzer ausgeführt sein, als es üblicherweise bei Verfahren mit thermischer Härtung der Fall ist.The device according to Figure 2 largely corresponds to the device described above match. In this respect - as with the following illustrations - the same Reference numerals are used and will not be described again. The difference to Figure 1 is that instead of the pressing device 16 a different trained press device 27 is provided. This press device 27 is after Conti-Roll process performed while working, but can be carried out significantly shorter than it is usually the case with thermal curing processes.

Die Preßvorrichtung 27 umfaßt ein oberes Band 28 und ein unteres Band 29, die über Umlenkrollen 30 umlaufen. Innerhalb des oberen Bandes 28 ist eine endlose Folge von oberen Rollstäben 31 vorgesehen, und in entsprechender Weise ist innerhalb des unteren Bandes 29 eine endlose Reihe von unteren Rollstäben 32 vorgesehen, wobei die Rollstäbe jeweils über Umlenkrollen 33 umlaufen. Den oberen Rollstäben 31 ist eine obere Druckplatte 34 mit oberen Druckzylindern 35 zugeordnet, während den unteren Rollstäben 32 eine untere Druckplatte 36 mit unteren Druckzylindern 37 zugeordnet ist. Die Druckplatten 34 und 36 sind in Transportrichtung leicht konvergierend geneigt, so daß sich ein sich verjüngender Preßspalt 38 ergibt, der vom Transportband 3 mit der vorverdichteten Schicht 12 durchlaufen wird. Durch entsprechende Druckbeaufschlagung der Druckzylinder 35 und 37 läßt sich der zur Wirkung kommende Preßdruck der Preßvorrichtung 27 und damit der Verdichtungsvorgang den jeweiligen Bedingungen und Vorgaben anpassen.The pressing device 27 comprises an upper belt 28 and a lower belt 29, which are connected to deflection rollers 30 circulate. Within the upper band 28 is an endless sequence of upper ones Rolling rods 31 are provided, and in a corresponding manner is within the lower band 29th an endless row of lower roller bars 32 is provided, the roller bars each over Rotate pulleys 33. The upper roller bars 31 is an upper pressure plate 34 with upper ones Assigned printing cylinders 35, while the lower roller rods 32 a lower pressure plate 36 is associated with lower pressure cylinders 37. The pressure plates 34 and 36 are in Transport direction inclined slightly converging, so that a tapering press nip 38 results which is traversed by the conveyor belt 3 with the pre-compressed layer 12. By appropriate pressurization of the pressure cylinders 35 and 37, the Effect coming pressure of the pressing device 27 and thus the compression process adapt to the respective conditions and specifications.

Bei der Vorrichtung nach Abbildung 3 fehlt im Vergleich zu Abbildung 1 die Vorpresse 5. Dementsprechend wird die Streuschicht 4 direkt der Preßvorrichtung 16 zugeführt und in die verdichtete Schicht 20 umgewandelt.In comparison to Figure 1, the pre-press 5 is missing in the device according to Figure 3. Accordingly, the scattering layer 4 is fed directly to the pressing device 16 and into the compressed layer 20 converted.

Die Vorrichtung nach Abbildung 4 unterscheidet sich von derjenigen nach Abbildung 3 nur dadurch, daß eine vereinfachte Elektronenstrahleinrichtung 39 vorgesehen ist, die nur einen Elektronenstrahlbeschleuniger 23 aufweist, der die verdichtete Schicht 20 nur von der Oberseite her bestrahlt. Natürlich wäre es auch möglich, eine Bestrahlung ausschließlich von der Unterseite her vorzusehen.The device according to Figure 4 differs from that of Figure 3 only in that a simplified electron beam device 39 is provided, which only one Has electron beam accelerator 23, the compressed layer 20 only from the top irradiated here. Of course it would also be possible to have radiation exclusively from the Bottom to be provided.

Die Vorrichtung gemäß Abbildung 5 ist eine Weiterbildung der Vorrichtung gemäß Abbildung 1, wobei im Bereich der Elektronenstrahleinrichtung 22 eine von dem Transportband 3 mit der verdichteten Schicht 20 durchlaufene Haltedruckvorrichtung 40 vorgesehen ist, die zwei Haltetransportbänder aufweist, nämlich ein umlaufendes oberes Haltetransportband 41, das über Umlenkrollen 42 geführt ist und wie dargestellt bereits die Preßvorrichtung 16 durchläuft, und ein unteres Haltetransportband, das hier vom Transportband 3 gebildet ist.The device according to Figure 5 is a further development of the device according to Figure 1, one in the region of the electron beam device 22 from the conveyor belt 3 is provided with the compressed layer 20 holding pressure device 40 which has two holding conveyor belts, namely an encircling upper holding conveyor belt 41, which is guided over deflection rollers 42 and, as shown, the pressing device 16 passes through, and a lower holding conveyor belt, which is formed here by the conveyor belt 3.

Im Ausführungsbeispiel nach Abbildung 5 wird im Bereich der Elektronenstrahleinrichtung 22 ein unter dem Preßdruck der Preßvorrichtung 16 liegender Haltedruck auf die verdichtete Schicht 20 aufgebracht. Dazu ist eine Vakuumeinrichtung 43 zur Ausbildung einer von der verdichteten Schicht 20 durchlaufenen Vakuumzone 44 vorgesehen, so daß der von außen auf die Transportbänder 3 und 41 wirkende Atmosphärendruck den Haltedruck liefert, der eine dem Preßspalt 19 entsprechende Dicke der verdichteten Schicht 20 während der Elektronenbestrahlung sichert.In the exemplary embodiment according to Figure 5, the area of the electron beam device 22 a holding pressure lying below the pressing pressure of the pressing device 16 on the compressed Layer 20 applied. For this purpose, a vacuum device 43 for forming one of the compressed layer 20 passed through vacuum zone 44, so that the outside atmospheric pressure acting on the conveyor belts 3 and 41 delivers the holding pressure which a thickness of the compressed layer 20 corresponding to the press nip 19 during the electron irradiation backs up.

Bei der Vorrichtung gemäß Abbildung 6 sind das Transportband 3 und der Tisch 14 durch ein kurzes Zubringer-Transportband 45 ersetzt. Dieses führt die Streuschicht 4 zu einer Preßvorrichtung 46, zu der eine Umlenktrommel 47 von großem Durchmesser gehört, über deren halbe Umfangslänge ein Preßband 48 mit Radialabstand unter Bildung eines langen Preßspalts 49 mit umläuft. Das Preßband 48 ist im Bereich des Preßspalts 49 rückseitig durch Druckrollen 50 abgestützt, die den Verdichtungsdruck aufbringen. Das Preßband 48 läuft über eine obere Umlenkdruckrolle 51 und eine untere Umlenkdruckrolle 52, die der Umlenktrommel 47 benachbart angeordnet sind und entsprechend den eingezeichneten Pfeilen vorgespannt werden können, sowie über weitere Umlenkrollen 53.In the device according to Figure 6, the conveyor belt 3 and the table 14 are through a short feed conveyor 45 replaced. This leads to the scattering layer 4 Press device 46, to which a deflection drum 47 of large diameter belongs whose half circumferential length is a press belt 48 with radial spacing to form a long one Press nip 49 rotates with. The press belt 48 is on the back in the area of the press nip 49 supported by pressure rollers 50 which apply the compression pressure. The press belt 48 runs over an upper deflection pressure roller 51 and a lower deflection pressure roller 52, which the Deflection drum 47 are arranged adjacent and according to the arrows can be preloaded, and via further deflection rollers 53.

Am Ende des Preßspalts 49 ist eine Elektronenstrahleinrichtung 54 mit einem Elektronenstrahlbeschleuniger 55 angeordnet, der zwischen den beiden in Umlaufrichtung letzten Druckrollen 50 plaziert ist. Zusätzlich könnte ein gegenüberliegender Elektronenbeschleuniger innerhalb der Umlenktrommel 47 angeordnet sein (nicht gezeichnet).At the end of the press nip 49 is an electron beam device 54 with an electron beam accelerator 55 arranged, the last between the two in the circumferential direction Pressure rollers 50 is placed. In addition, an opposing electron accelerator could be arranged within the deflection drum 47 (not shown).

Durch die angedeutete Verlagerung der Umlenkdruckrollen 51 und 52 läßt sich eine entsprechende Zugspannung auf das Preßband 48 ausüben. Die eigentliche Verdichtung der Streuschicht 4 erfolgt wie dargestellt hauptsächlich im Bereich der unteren Umlenkdruckrolle 52 sowie ggf. auch noch im Bereich der in Umlaufrichtung vorderen Druckrollen 50. Da im Bereich der hinteren Druckrollen das Preßband 48 in gleichbleibendem Abstand zur Umlenktrommel 47 gehalten ist, übt das Preßband 48 im Bereich der Elektronenstrahleinrichtung 54 nur noch eine Haltefunktion aus, um ein Auffedern der verdichteten Schicht 20 vor dem Aushärten im Bereich des Elektronenstrahlbeschleunigers 55 zu verhindern. Die ausgehärtete Platte 25 (Endlosplatte) wird dann über Stützrollen 26 abgeführt.The indicated displacement of the deflection pressure rollers 51 and 52 allows a corresponding one Apply tension to the press belt 48. The actual compaction of the spreading layer 4, as shown, takes place mainly in the area of the lower deflection pressure roller 52 and possibly also in the area of the front pressure rollers 50 in the circumferential direction of the rear pressure rollers, the press belt 48 at a constant distance from the deflection drum 47 is held, the press belt 48 exercises in the area of the electron beam device 54 only a holding function to prevent the compressed layer 20 from springing open To prevent hardening in the area of the electron beam accelerator 55. The hardened Plate 25 (endless plate) is then removed via support rollers 26.

Bei der Vorrichtung nach Abbildung 7 handelt es sich weitgehend um die bereits anhand von Abbildung 2 beschriebene Vorrichtung mit einer vergleichsweise kurzen Preßvorrichtung 27' (Conti-Roll-Verfahren). Abweichend erfolgt die Beschickung mit einem Material 2', dem nicht nur strahlenhärtbares Bindemittel sondern auch thermisch härtbares Bindemittel zugemischt ist, das für eine formstabilisierende Teilhärtung (Vorhärtung) ausreicht. Dementsprechend wird über die Druckplatten 34 und 36 der Preßvorrichtung 27' Wärme zugeführt und bereits eine Teilaushärtung durch Reaktion nur des thermisch härtbaren Bindemittels bewirkt. Als Ergebnis entsteht eine teilgehärtete Endlosplatte 56, die wie dargestellt in üblicher Weise mittels einer Diagonalsäge 57 in teilgehärtete Einzelplatten 58 abgelängt wird, die in einem Zwischenstapel 59 abgelegt werden, ohne bereits strahlengehärtet zu sein.The device according to Figure 7 is largely the one already based on Figure 2 described device with a comparatively short pressing device 27 ' (Conti-Roll process). Deviatingly, the material is loaded 2 ', the not only radiation-curable binders but also thermally curable binders added is sufficient for a form-stabilizing partial hardening (pre-hardening). Accordingly heat is supplied via the pressure plates 34 and 36 to the pressing device 27 'and Partial curing is already brought about by reaction of only the thermally curable binder. The result is a partially hardened endless plate 56, which is shown in the usual manner is cut to length by means of a diagonal saw 57 into partially hardened individual plates 58, which in one Intermediate stack 59 are deposited without being already radiation-hardened.

Die Strahlenhärtung erfolgt vielmehr in einer nachgeschalteten getrennten Einheit 60 mit einer Elektronenstrahleinrichtung 61, mit einem oberen Elektronenstrahlbeschleuniger 62 und einem unteren Elektronenstrahlbeschleuniger 63, zwischen denen hindurch die teilgehärteten Einzelplatten 58 auf Stützrollen 64 hindurchgeführt werden, so daß voll ausgehärtete Einzelplatten 65 entstehen, in denen nunmehr auch das strahlenhärtbare Bindemittel chemisch reagiert hat, so daß die Einzelplatten 65 ihre Endfestigkeit aufweisen. Sie werden dann auf einem Fertigstapel 66 abgelegt.Rather, radiation curing takes place in a separate unit 60 connected downstream Electron beam device 61, with an upper electron beam accelerator 62 and a lower electron beam accelerator 63, between which the partially hardened Single plates 58 are guided on support rollers 64, so that fully hardened individual plates 65 arise, in which the radiation-curable binder now also reacts chemically has, so that the individual plates 65 have their final strength. You will then be on one Finished stack 66 filed.

Bei entsprechender Anordnung der Elektronenstrahleinrichtung 61 könnte die Strahlenaushärtung auch unmittelbar hinter der Preßvorrichtung 27' vor oder nach dem Ablängen mittels der Diagonalsäge 57 erfolgen (nicht dargestellt). Diese Anordnung eignet sich insbesondere für die Verfahrensvariante einer thermischen Teilhärtung der beiden Decklagen und einer Endhärtung des Materials mittels Elektronenstrahlenergie. Das Aufbringen eines Haltedrukkes im Bereich des Elektronenstrahls kann dabei durch eine in Abbildung 5 dargestellte Vorrichtung 40 erfolgen.With a corresponding arrangement of the electron beam device 61, the radiation curing could also directly behind the pressing device 27 'before or after cutting to length the diagonal saw 57 (not shown). This arrangement is particularly suitable for the process variant of partial thermal hardening of the two cover layers and one Final hardening of the material using electron beam energy. The application of a holding pressure In the area of the electron beam, a device shown in Figure 5 can be used 40 done.

Claims (23)

  1. Method of continuous production of composite woodlike boards, using woodlike material, an electron-beam-curing binder, compressive pressure for compaction and electron beam energy for curing, with spatial separation of the process of compaction from the process of introducing the electron beam energy, characterized
    a) in that the woodlike material is used in the form of a web of chips or fibres and
    b) in that the state of compaction of the web following compaction and before and during electron beam curing is secured by applying a holding pressure to the web.
  2. Method of continuous production of composite woodlike boards, using woodlike material, an electron-beam-curing binder, compressive pressure for compaction and electron beam energy for curing, with spatial separation of the process of compaction from the process of introducing the electron beam energy, characterized
    a) in that the woodlike material is used in the form of a web of chips or fibres,
    b) in that not only the electron-beam-curing binder but also heat-curing binder is admixed to the woodlike material and
    c) in that in the course of compaction there is first of all a dimensionally stabilizing partial heat-cure before full curing is accomplished by means of the electron beam energy.
  3. Method according to Claim 2, characterized in that the partial heat-cure is confined to the outer layers of the shaped article.
  4. Method according to Claim 2 or 3, characterized in that, based on the dry mass of the material, the fraction of the heat-curable binder is between 0.5 and 20% by weight, preferably between 1 and 10% by weight, and the fraction of the radiation-curable binder is between 0.5 and 20% by weight, preferably between 1 and 10% by weight.
  5. Method according to one of Claims 2 to 4, characterized in that the heat-curing fraction is a binder such as phenol-formaldehyde resin, tannin resin, urea-formaldehyde resin, melamine-formaldehyde resin or mixtures or mixed resins thereof.
  6. Method according to one of Claims 2 to 4, characterized in that the heat-curing fraction is a binder such as isocyanate resin.
  7. Method according to Claim 6, characterized in that the isocyanate resin is a PMDI.
  8. Method according to Claim 2, characterized in that the material is admixed not only with the binder which cures by electron beam energy but also with peroxide, and in that, with the shaped article under external pressure, the binder is first of all given a dimensionally stabilizing partial cure in the form of free-radical curing by means of peroxide, by supplying heat, before full curing is accomplished by means of electron beam energy.
  9. Method according to Claim 8, characterized in that the peroxide used comprises organic peroxide.
  10. Method according to one of Claims 1 to 9, characterized in that the binder used which cures by electron beam energy comprises a synthetic resin which includes an unsaturated oligomer.
  11. Method according to Claim 10, characterized in that a monomer is added as a cure-accelerating crosslinker to the oligomer.
  12. Method according to Claim 10 or 11, characterized in that the fraction of binder, based on the dry mass of the material, is between 0 and 30% by weight, preferably between 1 and 10% by weight, for the unsaturated oligomer and between 0 and 20% by weight, preferably between 0 and 5% by weight, for the crosslinker.
  13. Method according to Claim 11 or 12, characterized in that the crosslinkers used comprise monomers containing mono-, bi-, tri- or polyfunctional groups or a mixture of these monomers.
  14. Method according to Claim 13, characterized in that the functional groups of the monomers are composed of monomers with vinylic unsaturation.
  15. Method according to one of Claims 10 to 14, characterized in that the unsaturated oligomers used comprise synthetic resins having polymerizable C-C double bonds, from the group of the unsaturated polyester resins, ether acrylates, epoxy acrylates, urethane acrylates, or of the unsaturated acrylate resins.
  16. Method according to one of Claims 1 to 15, characterized in that it is used to produce chipboard, fibreboard or OSB boards.
  17. Device for continuous production of composite woodlike boards, having a conveyor belt (3, 45) for the material, a downstream compression means (16, 46) and a downstream electron beam installation (22, 54), characterized in that in order to accomplish the method according to Claim 1
    a) the conveyor belt (3, 45) is assigned a broadcasting means (1) for applying the material and
    b) in the region of the electron beam installation (22, 54) there is a holding pressure means (40; 47, 48) for applying a holding pressure which holds the compacted boardlike article (20) at the target thickness during irradiation.
  18. Device according to Claim 17, characterized in that the holding pressure means (40; 47, 48) comprises at least one holding conveyor belt (41; 48) which can be pressed against the boardlike article (20).
  19. Device according to Claim 17 or 18, characterized in that the holding pressure means (47, 48) comprises a guide pulley (47) and a holding conveyor belt (48) passed around the said pulley (47), which bear against opposite sides on the boardlike article (20).
  20. Device according to Claim 18 or 19, characterized in that the holding pressure means (40) comprises a vacuum installation (43) which is connected to the interspace (vacuum zone 44) traversed by the boardlike article (20) so that atmospheric pressure presses against the holding conveyor belt (41).
  21. Device for continuous production of composite woodlike boards, having a conveyor belt (3) for the material, a compression means (27') and a downstream electron beam installation (61), characterized in that in order to accomplish the method according to Claim 2
    a) the conveyor belt (3) is assigned a broadcasting means (1) for applying the material and
    b) the compression means (27') is assigned a heating installation for introducing heat into the compacted boardlike article (12).
  22. Device according to one of Claims 17 to 21, characterized in that the electron beam installation (22, 61) has two electron beam accelerators (23, 24; 62, 63) which are arranged on opposite sides of the conveyor track.
  23. Device according to one of Claims 17 to 22, characterized in that the electron beam installation (61) is configured as a separate unit (60) downstream of the compression means (27').
EP98945303A 1997-09-05 1998-09-02 Method and device for manufacturing moulded bodies from crushed material Expired - Lifetime EP1011940B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19738953A DE19738953C1 (en) 1997-09-05 1997-09-05 Method and device for the production of molded articles from comminuted material
DE19738953 1997-09-05
PCT/EP1998/005562 WO1999012711A1 (en) 1997-09-05 1998-09-02 Method and device for manufacturing moulded bodies from crushed material

Publications (2)

Publication Number Publication Date
EP1011940A1 EP1011940A1 (en) 2000-06-28
EP1011940B1 true EP1011940B1 (en) 2001-11-07

Family

ID=7841367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98945303A Expired - Lifetime EP1011940B1 (en) 1997-09-05 1998-09-02 Method and device for manufacturing moulded bodies from crushed material

Country Status (9)

Country Link
US (1) US6582648B1 (en)
EP (1) EP1011940B1 (en)
JP (1) JP2001515802A (en)
AT (1) ATE208252T1 (en)
AU (1) AU9265898A (en)
CA (1) CA2303300C (en)
DE (3) DE19738953C1 (en)
ES (1) ES2167937T3 (en)
WO (1) WO1999012711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220371220A1 (en) * 2019-10-25 2022-11-24 Imal S.R.L. Process and system for the production of panels made of wooden material

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036193A1 (en) * 2000-07-24 2002-02-14 Agrosys Gmbh & Co Kg Process for the production of molded parts from fiber material obtained from renewable raw materials
DE10344926B3 (en) * 2003-09-25 2005-01-20 Dynea Erkner Gmbh Wooden components, eg boards, with one or more strand layers with a binding agent system, are produced by partial hardening during a first stage, and forming during a second stage
LT3081307T (en) * 2005-03-24 2018-03-12 Xyleco, Inc. Method of making a composite
US7846295B1 (en) 2008-04-30 2010-12-07 Xyleco, Inc. Cellulosic and lignocellulosic structural materials and methods and systems for manufacturing such materials
US20090320697A1 (en) * 2008-06-27 2009-12-31 Mario Antonio Rago Continuous press and method for manufacturing composite materials with progressive symmetrical pressure
DE102009001145A1 (en) * 2009-02-25 2010-09-09 Leibniz-Institut Für Polymerforschung Dresden E.V. Method for curing and surface functionalization of molded parts
CN102555018A (en) * 2012-01-18 2012-07-11 敦化市亚联机械制造有限公司 Double-steel belt continuous flat pressing machine for high-speed production of thin plates
US9481777B2 (en) 2012-03-30 2016-11-01 The Procter & Gamble Company Method of dewatering in a continuous high internal phase emulsion foam forming process
CN103341899B (en) * 2013-06-28 2015-07-15 江苏快乐木业集团有限公司 Method for processing oriented strand board boxboard
EP2876207A1 (en) * 2013-11-25 2015-05-27 CEPI aisbl DryPulp for cureformed paper
EP3626418A1 (en) * 2018-09-18 2020-03-25 PolymerTrend LLC. Method and devices for the production of products using lignocellulose-containing particles
CN109551576B (en) * 2018-12-13 2022-01-18 柳州市荣森新型材料科技有限公司 Wear-resistant impregnated bond paper veneer ecological plate and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549509A (en) * 1967-06-01 1970-12-22 Giorgio Corp Di Solid objects containing lignocellulose particles and radiation-induced polymer and method of making same
US3660223A (en) * 1968-09-16 1972-05-02 Samuel L Casalina Rigid, flexible and composite solid objects having cellulose containing rice hull particles and radiation induced polymer and method of making same
US3676283A (en) * 1969-08-14 1972-07-11 Grace W R & Co Laminate and process for laminating with polythiol polyene reaction product
AT338499B (en) * 1973-09-12 1977-08-25 Oesterr Studien Atomenergie Process for the production of plastic-impregnated wood chipboard or wood fiber hardboard
GB2039919B (en) * 1978-07-06 1983-02-09 Akesson A Method of manufacturing bonded products of cellulose or cellulose derivatives
US4382847A (en) * 1980-03-06 1983-05-10 Arne Akesson Method of manufacturing bonded products of cellulose or cellulose derivatives
US4490409A (en) * 1982-09-07 1984-12-25 Energy Sciences, Inc. Process and apparatus for decorating the surfaces of electron irradiation cured coatings on radiation-sensitive substrates
EP0348423A4 (en) * 1987-03-09 1990-05-14 Polycure Pty Ltd Laminated board and electron beam curable composition used in manufacture thereof.
DE3937421C1 (en) * 1989-11-10 1991-01-24 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De
WO1992007022A1 (en) * 1990-10-23 1992-04-30 Atomic Energy Of Canada Limited Process for the preparation of cellulosic fibre-reinforced thermoplastic composite materials
US5830305A (en) * 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Methods of molding articles having an inorganically filled organic polymer matrix
JPH073629A (en) * 1993-06-08 1995-01-06 Toyobo Co Ltd Production of low-shrinkable cellulosic fiber-containing fibrous structure
US5856022A (en) * 1994-06-15 1999-01-05 Minnesota Mining And Manufacturing Company Energy-curable cyanate/ethylenically unsaturated compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220371220A1 (en) * 2019-10-25 2022-11-24 Imal S.R.L. Process and system for the production of panels made of wooden material

Also Published As

Publication number Publication date
ES2167937T3 (en) 2002-05-16
ATE208252T1 (en) 2001-11-15
DE59802091D1 (en) 2001-12-13
CA2303300C (en) 2006-05-30
CA2303300A1 (en) 1999-03-18
AU9265898A (en) 1999-03-29
US6582648B1 (en) 2003-06-24
JP2001515802A (en) 2001-09-25
DE19738953C1 (en) 1999-03-04
DE19881279D2 (en) 2001-01-18
WO1999012711A1 (en) 1999-03-18
EP1011940A1 (en) 2000-06-28

Similar Documents

Publication Publication Date Title
DE69310154T2 (en) Phenol formaldehyde steam presses of particle board
EP1011940B1 (en) Method and device for manufacturing moulded bodies from crushed material
EP0820371B1 (en) Method and device for the continuous production of panels of lignocellulose-containing particles
DE19718772A1 (en) Procedure for manufacture of derived timber product board, such as chip board or fibre board
DE202020104647U1 (en) Wood fiber board and corresponding manufacturing plant
EP1519818B1 (en) Mdf press technology
DE102016110076A1 (en) Method and device for the production of wood-based panels and wood-based panels
DE2832509B1 (en) Process for the production of chipboard
EP2974841B1 (en) Method for producing a fibreboard panel
DE102015103511B4 (en) Process for producing a wood chipboard and aminoplast curing agents used therein
DE2929243A1 (en) WOODEN CHIPBOARD AND METHOD FOR THEIR PRODUCTION
EP2293908B1 (en) Method for producing a moulded wood material part
EP0365708B1 (en) Method for producing wooden or fiber material articles
DE1808375A1 (en) Paper press
DE19606262C1 (en) Medium density fibreboard rapid prodn. achieved by steam shock heating
DE10116686A1 (en) Process for the preparation of straw and other annual plants for the production of fiberboard, chipboard and insulation boards as well as wall elements and other molded parts and process for the production of fiberboard, chipboard and insulation boards as well as wall elements and other molded parts
DE10037508A1 (en) Production of wood material board, especially oriented strand boards, comprises preheating a material using high frequency or microwave energy, and then warming and pressing it to harden it
EP1414629B8 (en) Panel consisting of a derived timber product and produced in an environmentally-friendly manner
DE202016102908U1 (en) Apparatus for the production of wood-based panels and wood-based panels
DE202017106335U1 (en) Wave fiber board in the wet and semi-dry process
DE4242053C2 (en) Press tool for the production of wood-based panels
EP2786849B1 (en) Method for producing a multi-layered fibreboard panel, and a multi-layered fibreboard panel
WO2021190728A1 (en) Production of a lignocellulose-containing, plastic-coated and printable molding
AT250656B (en) Process for the production of press plates
DE102008057949A1 (en) Process for producing a fibrous board

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010314

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011107

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011107

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011107

REF Corresponds to:

Ref document number: 208252

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59802091

Country of ref document: DE

Date of ref document: 20011213

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020207

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020207

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020207

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020129

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2167937

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020930

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060901

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060922

Year of fee payment: 9

Ref country code: GB

Payment date: 20060922

Year of fee payment: 9

Ref country code: FR

Payment date: 20060922

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060925

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060926

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20060927

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 9

BERE Be: lapsed

Owner name: FRITZ *EGGER G.M.B.H. & CO.

Effective date: 20070930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080331

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070902

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070902

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070902

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902