EP1004756A1 - Exhaust system of a multicylinder internal combustion engine - Google Patents

Exhaust system of a multicylinder internal combustion engine Download PDF

Info

Publication number
EP1004756A1
EP1004756A1 EP99119250A EP99119250A EP1004756A1 EP 1004756 A1 EP1004756 A1 EP 1004756A1 EP 99119250 A EP99119250 A EP 99119250A EP 99119250 A EP99119250 A EP 99119250A EP 1004756 A1 EP1004756 A1 EP 1004756A1
Authority
EP
European Patent Office
Prior art keywords
lambda
exhaust system
starting
probe
catalytic converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99119250A
Other languages
German (de)
French (fr)
Other versions
EP1004756B1 (en
Inventor
Peter Müller
Maximilian Engl
Stefan Detterbeck
Stephan Ramatschi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1004756A1 publication Critical patent/EP1004756A1/en
Application granted granted Critical
Publication of EP1004756B1 publication Critical patent/EP1004756B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector

Definitions

  • the invention relates to an exhaust system of a multi-cylinder internal combustion engine according to the preamble of claim 1.
  • a catalytic converter In the course of the tightening of the exhaust gas laws there will be an optimal reduction of pollutants of internal combustion engines is becoming increasingly important.
  • The is known Aftertreatment of the exhaust gases in a catalytic converter.
  • a catalytic converter For optimal mode of action a catalytic converter must ensure a favorable exhaust gas composition be carried out by a known Lambda control.
  • a lambda probe In the simplest case, a lambda probe is placed in front of a catalytic converter which emits a signal to a controller which, on the basis of this signal and the power requirement the fuel input into the cylinders of the Internal combustion engine controls.
  • lambda control can be carried out using the two-point method, at the one manipulated variable their direction with every voltage jump, the one Change bold / lean or lean / bold indicates changed.
  • two-point regulation affects aging and environmental influences (poisoning) as interference on the measurement of an accuracy.
  • To this Purpose is known to add another lambda probe behind the catalytic converter to arrange, the influences mentioned above in much less Dimensions is exposed.
  • the principle of the two-probe control is the controlled one Fat or lean shift through a correction control loop aditively changed.
  • the catalytic converters only achieve an optimal effect if they are in a certain temperature range (e.g. 400 to 800 ° C).
  • the catalyst is heated especially in the starting phase problematic.
  • Pre-catalysts are used, which are arranged near the cylinders and which can be brought up to their operating temperature very quickly.
  • the object of the present invention is an exhaust system of the beginning Specify the type mentioned, the precise adjustment of the air / fuel mixture enables.
  • the signals from the aforementioned lambda probes are fed to a controller, which, on the basis of this information, exactly those sub-line branches or pre-catalysts can determine, by a non-optimal air-fuel ratio is led. This also enables measures to be taken to attribute these unwanted deviations in the individual cylinders to zero.
  • not all sub-line strings have to with additional lambda probes downstream of the starting catalytic converters be monitored.
  • n-1 additional Lambda probes can be provided after the starting catalysts.
  • the lambda probes in front of the starting catalysts are preferably linear Lambda probes or broadband probes.
  • the lambda probes after the starting catalysts can be designed as jump probes.
  • the pre-catalyst function is usually monitored by Temperature comparison between the temperatures before and after the catalytic converter. As a rule, 2 temperature sensors are used for each sub-line needed.
  • a pre or Starting catalyst also by comparing the lambda signals before and be monitored after the catalyst.
  • a temperature probe can also be used or a temperature sensor after the respective pre-catalyst be arranged.
  • the exhaust system according to the invention brings good lambda controllability along with good full load behavior. Furthermore, a Inexpensive, lightweight and package-friendly exhaust system with one rapid light-off and heating behavior can be realized. Also results for lean concepts ( ⁇ > 1) the advantage of lower consumption compared a continuous double-flow system.
  • the invention is described below using an exemplary embodiment and With reference to the single drawing explained.
  • the drawing shows a schematic block diagram of an embodiment of the present invention.
  • a six-cylinder engine 10 is shown schematically, with each three cylinders (namely the cylinders of a cylinder bank) into one Exhaust gas line 12, 14 are performed.
  • the sub-line branches 12, 14 are pre and start catalysts VK1, VK2 in the vicinity of the Cylinder arranged.
  • the partial line strands 12, 14 are after the pre-catalysts VK1, VK2 brought together in a main pipe 20, in which a main catalyst HK is used.
  • the pre-catalysts VK1 and VK2 can be quickly to the temperature values required for good exhaust gas cleaning bring. After a certain starting phase, the main catalytic converter takes over most of the purification of those flowing through it Exhaust gases.
  • VK1 and VK2 are in the corresponding sub-lines 12 and 14 linear lambda probes for monitoring the Air-fuel ratio arranged.
  • the linear lambda probes 26 and 28 output a signal to control electronics, not shown, which at least based on these signals and the power requirement Controls fuel input into the respective cylinder.
  • control electronics not shown, which at least based on these signals and the power requirement Controls fuel input into the respective cylinder.
  • a lambda jump probe 24 according to the Main catalyst HK arranged in the main pipe 20. This probe 24 is the Exposed to much less environmental influences.
  • the Lambda probe 24 Since the Lambda probe 24 is arranged in the main tube, it is used by everyone Partial lines 12 and 14 coming exhaust flows through, so that no detailed breakdown of deviations for the individual sub-lines is possible. For this reason, a additional lambda jump probe 30 in the sub-wiring harness 12 behind the Pre-catalyst VK1 arranged, which also sends a voltage signal to the Control (not shown) delivers. Based on the signals from the lambda jump probes 30 and 24 can control incorrect measurements in the linear Assess lambda probes 26 and 28 and also precisely one specific one Assign probe. In this respect, this arrangement is a precise regulation the air-fuel composition to the required lambda value also possible in each individual line section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

The system has at least one part in which the exhaust gas, or part of it, passes via sections divided into two or more cylinder groups contg. at least one starting catalyzer (VK1,VK2) which recombine into a common main tube (20) contg. a main catalyzer (HK), whereby at least one lambda probe is arranged upstream and one downstream of the catalyses. A lambda probe is arranged before each starting catalyzer and an additional lambda probe is arranged after the starting catalyzer in at least one sub-section.

Description

Die Erfindung betrifft eine Abgasanlage einer Mehrzylinder-Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1.The invention relates to an exhaust system of a multi-cylinder internal combustion engine according to the preamble of claim 1.

Im Zuge der Verschärfung der Abgasgesetze wird eine optimale Schadstoffreduzierung von Verbrennungsmotoren immer wichtiger. Bekannt ist die Nachbehandlung der Abgase in einem Katalysator. Zur optimalen Wirkungsweise eines Katalysators muß eine günstige Abgaszusammenstellung sichergestellt sein, die durch eine an sich bekannte Lambda-Regelung erfolgt. Im einfachsten Fall wird eine Lambda-Sonde vor einem Katalysator angeordnet, die ein Signal an eine Steuerung abgibt, welche aufgrund dieses Signals und der Leistungsanforderung den Kraftstoffeintrag in die Zylinder der Brennkraftmaschine steuert.In the course of the tightening of the exhaust gas laws there will be an optimal reduction of pollutants of internal combustion engines is becoming increasingly important. The is known Aftertreatment of the exhaust gases in a catalytic converter. For optimal mode of action a catalytic converter must ensure a favorable exhaust gas composition be carried out by a known Lambda control. In the simplest case, a lambda probe is placed in front of a catalytic converter which emits a signal to a controller which, on the basis of this signal and the power requirement the fuel input into the cylinders of the Internal combustion engine controls.

Gemäß dem Bosch-Handbuch, 22. Aufl., VDI-Verlag, Düsseldorf, ab Seite 490, kann eine Lambda-Regelung nach der Zweipunktmethode erfolgen, bei der eine Stellgröße ihre Stellrichtung bei jedem Spannungssprung, der einen Wechsel fett/mager oder mager/fett anzeigt, verändert. Trotz einer solchen Zweipunkt-Regelung wirken sich Alterung und Umwelteinflüsse (Vergiftungen) als Störeinfluß auf die Messung einer Genauigkeit aus. Zu diesem Zweck ist es bekannt, eine weitere Lambda-Sonde hinter dem Katalysator anzuordnen, der den vorgenannten Einflüssen in wesentlich geringerem Maße ausgesetzt ist. Beim Prinzip der Zweisonden-Regelung wird die gesteuerte Fett- bzw. Magerverschiebung durch eine Korrekturregelschleife aditiv verändert.According to the Bosch manual, 22nd edition, VDI-Verlag, Düsseldorf, from page 490, lambda control can be carried out using the two-point method, at the one manipulated variable their direction with every voltage jump, the one Change bold / lean or lean / bold indicates changed. Despite one Two-point regulation affects aging and environmental influences (poisoning) as interference on the measurement of an accuracy. To this Purpose is known to add another lambda probe behind the catalytic converter to arrange, the influences mentioned above in much less Dimensions is exposed. The principle of the two-probe control is the controlled one Fat or lean shift through a correction control loop aditively changed.

Bei Motoren mit geringer Zylinderzahl (bis vier Zylinder) kann eine einflutige Abgasanlage, d. h. eine Abgasanlage mit einem Leitungsstrang, verwendet werden. Bei Motoren mit höherer Zylinderzahl ist die Verwendung einer zweiflutigen Abgasanlage im Sinne eines besseren Vollastverhaltens günstiger. Eine solche vollständig zweiflutige Abgasanlage ist jedoch teuer und besitzt ein schlechtes Startverhalten bezüglich der Schadstoffreduzierung. Als Alternative hat sich eine Abgasanlage als günstig herauskristallisiert, die lediglich in ihrem vorderen Teil zweiflutig ausgebildet ist, d. h. die Abgase werden zunächst durch zumindest zwei auf Zylindergruppen aufgeteilte Teilleitungsstränge geführt, die dann zu einem gemeinsamen Hauptrohr vereinigt werden. Um eine solche Abgasanlage handelt es sich auch vorliegend.For engines with a small number of cylinders (up to four cylinders), a single-flow Exhaust system, d. H. an exhaust system with a wiring harness used become. For engines with a higher number of cylinders, use a double-flow exhaust system cheaper in terms of better full-load behavior. However, such a completely double-flow exhaust system is expensive and has poor starting behavior with regard to pollutant reduction. As an alternative, an exhaust system has emerged as cheap, the is only double-flow in its front part, d. H. the exhaust gases are initially divided into at least two groups of cylinders Partial lines run, which then combines into a common main pipe become. Such an exhaust system is also present.

Die Abgaskatalysatoren erreichen nur dann eine optimale Wirkung, wenn sie sich in einem bestimmten Temperaturbereich (z. B. 400 bis 800 °C) befinden. Die Aufheizung des Katalysators ist insbesondere in der Startphase problematisch. Um die Aufheizung zu beschleunigen, werden u. a. kleinere Vorkatalysatoren eingesetzt, die in der Nähe der Zylinder angeordnet werden und die sich besonders schnell auf ihre Betriebstemperatur bringen lassen. Bei der Verwendung von verschiedenen Teilleitungssträngen bzw. einer mehrflutigen Abgasanlage werden für jeden Teilleitungsstrang ein zugehöriger Vor- bzw. Startkatalysator verwendet. In diesem Zusammenhang wird auf die DE 195 24 980 A1 hingewiesen. The catalytic converters only achieve an optimal effect if they are in a certain temperature range (e.g. 400 to 800 ° C). The catalyst is heated especially in the starting phase problematic. To accelerate the heating, u. a. smaller ones Pre-catalysts are used, which are arranged near the cylinders and which can be brought up to their operating temperature very quickly. When using different partial wiring harnesses or one multi-flow exhaust system become an associated for each sub-line Pre or start catalyst used. In this context referred to DE 195 24 980 A1.

Aufgabe der vorliegenden Erfindung ist es, eine Abgasanlage der eingangs genannten Art anzugeben, die ein genaues Einregeln des Luft-/Kraftstoffgemisches ermöglicht.The object of the present invention is an exhaust system of the beginning Specify the type mentioned, the precise adjustment of the air / fuel mixture enables.

Diese Aufgabe wird durch die in Anspruch 1 genannten Merkmale gelöst.This object is achieved by the features mentioned in claim 1.

Problematisch bei der Verwendung von mehreren Vorkatalysatoren sowie jeweils davor angeordneten Lambda-Sonden und einer weiteren Trimm- oder Justierungs-Lambda-Sonde nach einem Hauptkatalysator ist, daß diese Trimm- oder Justierungslambda-Sonde die Abgase aus allen Teilsträngen, die in dem Hauptstrang zusammengeführt werden, erfaßt. Daher ist es möglich, daß sich die Abgase derart vermischen, daß auftretende Lambda-Unterschiede ausgeglichen werden. Jedenfalls kann eine Abweichung nicht mehr unmittelbar festgestellt und auch nicht mehr einer bestimmten Lambda-Sonde vor einem Start- oder Vorkatalysator zugeordnet werden.Problematic when using multiple pre-catalysts as well Lambda probes arranged in front of each and a further trim or Adjustment lambda probe after a main catalyst is that this Trim or adjustment lambda probe the exhaust gases from all sub-strands, which are brought together in the main line. It is therefore possible that the exhaust gases mix in such a way that occurring lambda differences be balanced. In any case, a deviation cannot no longer determined immediately and also no longer of a specific lambda probe before a start or pre-catalytic converter.

Zur Vermeidung dieses Nachteils werden zusätzlich zum einen vor jedem Startkatalysator eine Lambda-Sonde vorgesehen und zum anderen zumindest in einem Teilleitungsstrang nach dem Startkatalysator eine weitere Lambda-Sonde angeordnet. Dabei können je nach Abgasanlagenarchitektur ein oder mehrerer solcher Anlagenteile parallel verwendet oder zusammengeschaltet sein.To avoid this disadvantage, in addition to each one before Starting catalyst provided a lambda probe and at least on the other another in a sub-line after the starting catalytic converter Lambda probe arranged. Depending on the exhaust system architecture one or more such system parts used in parallel or interconnected his.

Die Signale der genannten Lambda-Sonden werden einer Steuerung zugeführt, die aufgrund dieser Informationen genau diejenigen Teilleitungsstränge bzw. Vorkatalysatoren bestimmen kann, durch die ein nicht optimales Luft-Kraftstoffverhältnis geführt ist. Damit sind auch Maßnahmen möglich, um diese ungewollten Abweichungen in den einzelnen Zylindern auf Null zurückzuführen. The signals from the aforementioned lambda probes are fed to a controller, which, on the basis of this information, exactly those sub-line branches or pre-catalysts can determine, by a non-optimal air-fuel ratio is led. This also enables measures to be taken to attribute these unwanted deviations in the individual cylinders to zero.

Gemäß einer vorteilhaften Ausführungsform müssen nicht alle Teilleitungsstränge mit zusätzlichen, den Startkatalysatoren nachgeschalteten Lambda-Sonden überwacht werden.According to an advantageous embodiment, not all sub-line strings have to with additional lambda probes downstream of the starting catalytic converters be monitored.

Um alle Vorkatalysatoren bzw. denen vorgeschaltete Lambda-Sonden überwachen zu können, sollten jedoch bei n Teilleitungssträngen n-1 zusätzliche Lambda-Sonden nach den Startkatalysatoren vorgesehen sein.To monitor all pre-catalysts or those upstream Lambda probes to be able to, however, with n sub-wiring harnesses n-1 additional Lambda probes can be provided after the starting catalysts.

Vorzugsweise sind die Lambda-Sonden vor den Startkatalysatoren als lineare Lambda-Sonden oder Breitbandsonden ausgeführt. Die Lambda-Sonden nach den Startkatalysatoren können als Sprungsonden ausgebildet sein.The lambda probes in front of the starting catalysts are preferably linear Lambda probes or broadband probes. The lambda probes after the starting catalysts can be designed as jump probes.

Insgesamt kann mit den nach den Startkatalysatoren angeordneten Lambda-Sonden die jeweilige davorliegende Lambda-Sonde getrimmt bzw. justiert werden. Mit der nach dem Hauptkatalysator angeordneten Lambda-Sonde kann noch eine Gesamtüberwachung bzw. eine Überwachung eines letzten verbleibenden Teilstranges ohne zusätzliche Lambda-Sonde erreicht werden. Insgesamt ist das Gesamtsystem damit im Hinblick auf λ = 1 oder λ > 1 Konzepte regelfähig.Overall, the lambda probes arranged after the starting catalytic converters can the respective lambda probe in front is trimmed or adjusted become. With the lambda probe arranged after the main catalytic converter can still perform an overall monitoring or a monitoring of a last one remaining partial strand can be achieved without an additional lambda probe. Overall, the overall system is therefore in terms of λ = 1 or λ> 1 Concepts can be regulated.

Die Überwachung der Vorkatalysatorfunktion geschieht in der Regel durch Temperaturvergleich zwischen den Temperaturen vor und nach dem Katalysator. Dafür werden in der Regel für jeden Teilleitungsstrang 2 Temperatursensoren benötigt. Bei der vorliegenden Erfindung kann alternativ ein Vor- oder Startkatalysator auch durch den Vergleich der Lambda-Signale vor und nach dem Katalysator überwacht werden. Bei einem Teilleitungsstrang, bei dem keine zusätzliche Lambda-Sonde vorgesehen ist, kann noch eine Temperatursonde oder ein Temperatursensor nach dem jeweiligen Vorkatalysator angeordnet sein. The pre-catalyst function is usually monitored by Temperature comparison between the temperatures before and after the catalytic converter. As a rule, 2 temperature sensors are used for each sub-line needed. Alternatively, in the present invention, a pre or Starting catalyst also by comparing the lambda signals before and be monitored after the catalyst. With a sub-line, at which is not provided with an additional lambda probe, a temperature probe can also be used or a temperature sensor after the respective pre-catalyst be arranged.

Insgesamt bringt die erfindungsgemäße Abgasanlage eine gute Lambda-Regelbarkeit zusammen mit einem guten Vollastverhalten. Ferner kann eine kostengünstige, leichte und packagegünstige Abgasanlage mit einem schnellen Anspring- und Durchheizverhalten realisiert werden. Zudem ergibt sich für Magerkonzepte (λ > 1) der Vorteil eines geringeren Verbrauchs gegenüber einer durchgehenden zweiflutigen Anlage.Overall, the exhaust system according to the invention brings good lambda controllability along with good full load behavior. Furthermore, a Inexpensive, lightweight and package-friendly exhaust system with one rapid light-off and heating behavior can be realized. Also results for lean concepts (λ> 1) the advantage of lower consumption compared a continuous double-flow system.

Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels und mit Bezug auf die einzige Zeichnung näher erläutert. Die Zeichnung zeigt ein schematisches Blockschaltbild einer Ausführungsform der vorliegenden Erfindung.The invention is described below using an exemplary embodiment and With reference to the single drawing explained. The drawing shows a schematic block diagram of an embodiment of the present invention.

Im vorliegenden Fall ist schematisch ein Sechszylindermotor 10 dargestellt, bei dem jeweils drei Zylinder (nämlich die Zylinder einer Zylinderbank) in einen Abgasteilleitungsstrang 12, 14 geführt sind. In den Teilleitungssträngen 12, 14 sind jeweils Vor- bzw. Startkatalysatoren VK1, VK2 in der Nähe der Zylinder angeordnet. Die Teilleitungsstränge 12, 14 werden nach den Vorkatalysatoren VK1, VK2 in einem Hauptrohr 20 zusammengeführt, in dem ein Hauptkatalysator HK eingesetzt ist.In the present case, a six-cylinder engine 10 is shown schematically, with each three cylinders (namely the cylinders of a cylinder bank) into one Exhaust gas line 12, 14 are performed. In the sub-line branches 12, 14 are pre and start catalysts VK1, VK2 in the vicinity of the Cylinder arranged. The partial line strands 12, 14 are after the pre-catalysts VK1, VK2 brought together in a main pipe 20, in which a main catalyst HK is used.

Beim Starten des Motors 10 lassen sich die Vorkatalysatoren VK1 und VK2 schnell auf die zu einer guten Abgasreinigung erforderlichen Temperaturwerte bringen. Nach einer gewissen Startphase übernimmt dann der Hauptkatalysator den größten Teil der Reinigung der durch ihn hindurchfließenden Abgase.When starting the engine 10, the pre-catalysts VK1 and VK2 can be quickly to the temperature values required for good exhaust gas cleaning bring. After a certain starting phase, the main catalytic converter takes over most of the purification of those flowing through it Exhaust gases.

Vor den Vorkatalysatoren VK1 und VK2 sind in den entsprechenden Teilleitungssträngen 12 und 14 lineare Lambda-Sonden zur Überwachung des Luft-Kraftstoff-Verhältnisses angeordnet. Die linearen Lambda-Sonden 26 und 28 geben ein Signal an eine nicht dargestellte Steuerelektronik ab, welche zumindest aufgrund dieser Signale und der Leistungsanforderung den Kraftstoffeintrag in die jeweiligen Zylinder steuert. Um die Effekte der Alterung und der Umwelteinflüsse auf die Lambda-Sonden 26 und 28 zu beurteilen und eine entsprechende Trimmung oder Justierung in der Steuerung vorzunehmen, ist zum einen eine Lambda-Sprungsonde 24 nach dem Hauptkatalysator HK im Hauptrohr 20 angeordnet. Diese Sonde 24 ist den Umwelteinflüssen in wesentlich geringerem Maße ausgesetzt. Da die Lambda-Sonde 24 im Hauptrohr angeordnet ist, wird sie von allen aus den Teilleitungssträngen 12 und 14 kommenden Abgasen durchströmt, so daß keine detaillierte Aufschlüsselung von Abweichungen für die einzelnen Teilleitungsstränge möglich ist. Aus diesem Grund wird im vorliegenden Fall eine zusätzliche Lambda-Sprungsonde 30 im Teilleitungsstrang 12 hinter dem Vorkatalysator VK1 angeordnet, die ein Spannungssignal ebenfalls an die (nicht dargestellte) Steuerung abgibt. Aufgrund der Signale der Lambda-Sprungsonden 30 und 24 kann die Steuerung Fehlmessungen in den linearen Lambda-Sonden 26 und 28 beurteilen und auch genau einer bestimmten Sonde zuordnen. Insofern ist mit dieser Anordnung eine genaue Regelung der Luft-Kraftstoff-Zusammensetzung auf den erforderlichen Lambda-Wert auch in jeden einzelnen Teilleitungsstrang möglich.In front of the pre-catalytic converters VK1 and VK2 are in the corresponding sub-lines 12 and 14 linear lambda probes for monitoring the Air-fuel ratio arranged. The linear lambda probes 26 and 28 output a signal to control electronics, not shown, which at least based on these signals and the power requirement Controls fuel input into the respective cylinder. To the effects of aging and to assess the environmental influences on the lambda probes 26 and 28 and a corresponding trim or adjustment in the control a lambda jump probe 24 according to the Main catalyst HK arranged in the main pipe 20. This probe 24 is the Exposed to much less environmental influences. Since the Lambda probe 24 is arranged in the main tube, it is used by everyone Partial lines 12 and 14 coming exhaust flows through, so that no detailed breakdown of deviations for the individual sub-lines is possible. For this reason, a additional lambda jump probe 30 in the sub-wiring harness 12 behind the Pre-catalyst VK1 arranged, which also sends a voltage signal to the Control (not shown) delivers. Based on the signals from the lambda jump probes 30 and 24 can control incorrect measurements in the linear Assess lambda probes 26 and 28 and also precisely one specific one Assign probe. In this respect, this arrangement is a precise regulation the air-fuel composition to the required lambda value also possible in each individual line section.

Zusätzlich ist im Teilleitungsstrang 14 nach dem Vorkatalysator VK2 ein Temperatursensor 32 (gestrichelter dargestellt) vorgesehen, mit dessen Hilfe die Funktion des Vorkatalysators VK2 überwacht werden kann. Dazu sollte auch vor dem Vorkatalysator VK2 ein Temperatursensor angeordnet sein. Dies ist vorliegend nicht dargestellt. Bei Einsatz eines geeigneten Temperaturmodells kann eine solche zusätzliche Temperatursonde auch entfallen.In addition, there is a in the partial line 14 after the pre-catalyst VK2 Temperature sensor 32 (shown in dashed lines) provided, with the help the function of the pre-catalyst VK2 can be monitored. To do this a temperature sensor can also be arranged upstream of the pre-catalyst VK2. This is not shown here. When using a suitable temperature model such an additional temperature probe can also be omitted.

Claims (6)

Abgasanlage einer Mehrzylinder-Brennkraftmaschine mit zumindest einem Anlagenteil, bei dem die Brennkraftmaschinen-Abgase oder Teile davon zunächst durch zumindest zwei auf Zylindergruppen aufgeteilte Teilleitungsstränge geführt sind, in denen jeweils ein Startkatalysator eingesetzt ist und die sich zu einem gemeinsamen Hauptrohr vereinigen, in dem ein Hauptkatalysator eingesetzt ist, wobei zumindest eine Lambda-Sonde vor und eine Lambda-Sonde nach den Katalysatoren angeordnet sind,
dadurch gekennzeichnet,
daß vor jedem Startkatalysator eine Lambda-Sonde angeordnet ist, und zumindest in einem Teilleitungsstrang nach dem Startkatalysator eine zusätzliche Lambda-Sonde angeordnet ist.
Exhaust system of a multi-cylinder internal combustion engine with at least one system part, in which the internal combustion engine exhaust gases or parts thereof are initially routed through at least two sub-lines divided into cylinder groups, in each of which a starting catalytic converter is inserted and which unite to form a common main pipe in which a main catalytic converter is used, at least one lambda probe being arranged upstream and one lambda probe being arranged downstream of the catalysts,
characterized by
that a lambda probe is arranged in front of each starting catalytic converter, and an additional lambda probe is arranged in at least one partial wiring harness after the starting catalytic converter.
Abgasanlage nach Anspruch 1,
dadurch gekennzeichnet,
daß nicht in allen Teilleitungssträngen nach dem Startkatalysator eine zusätzliche Lambda-Sonde angeordnet ist.
Exhaust system according to claim 1,
characterized,
that an additional lambda probe is not arranged in all partial line strands after the starting catalytic converter.
Abgasanlage nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß bei n Teilleitungssträngen n-1 zusätzliche Lambda-Sonden vorgesehen sind.
Exhaust system according to claim 1 or 2,
characterized,
that n-1 additional lambda probes are provided for n partial wiring harnesses.
Abgasanlage nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Lambda-Sonden vor den Startkatalysatoren als lineare Lambda-Sonden oder Breitbandsonden ausgebildet sind.
Exhaust system according to one of the preceding claims,
characterized,
that the lambda probes in front of the starting catalysts are designed as linear lambda probes or broadband probes.
Abgasanlage nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die zumindest eine Lambda-Sonde nach dem Startkatalysator als Sprungsonde ausgebildet ist.
Exhaust system according to one of the preceding claims,
characterized,
that the at least one lambda probe is designed as a jump probe after the starting catalyst.
Abgasanlage nach einem der vorhergehenden Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß in einem Teilleitungsstrang nach einem Startkatalysator eine Temperatursonde oder ein Temperatursensor vorgesehen ist.
Exhaust system according to one of the preceding claims 1 to 5,
characterized,
that a temperature probe or a temperature sensor is provided in a partial wiring harness after a starting catalyst.
EP99119250A 1998-11-12 1999-09-28 Exhaust system of a multicylinder internal combustion engine Expired - Lifetime EP1004756B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19852294A DE19852294A1 (en) 1998-11-12 1998-11-12 Exhaust system of a multi-cylinder internal combustion engine
DE19852294 1998-11-12

Publications (2)

Publication Number Publication Date
EP1004756A1 true EP1004756A1 (en) 2000-05-31
EP1004756B1 EP1004756B1 (en) 2002-01-30

Family

ID=7887635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99119250A Expired - Lifetime EP1004756B1 (en) 1998-11-12 1999-09-28 Exhaust system of a multicylinder internal combustion engine

Country Status (5)

Country Link
US (1) US6321529B1 (en)
EP (1) EP1004756B1 (en)
JP (1) JP4435913B2 (en)
DE (2) DE19852294A1 (en)
ES (1) ES2170564T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1205648A3 (en) * 2000-11-10 2003-09-10 Volkswagen Aktiengesellschaft Method and arrangement for a catalyst heating system
EP1143131A3 (en) * 2000-04-07 2004-04-28 Volkswagen Aktiengesellschaft Multiple exhaust gas system and method to regulate an air/fuel ratio and to control the regeneration of an NOx storage catalyst

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10029633A1 (en) * 2000-04-07 2001-10-11 Volkswagen Ag Multi-flow exhaust system of a multi-cylinder engine and method for controlling an air-fuel ratio
JP3759578B2 (en) * 2000-09-01 2006-03-29 株式会社デンソー Deterioration detection device for exhaust gas purification catalyst
DE10100613C1 (en) 2001-01-09 2002-06-13 Siemens Ag Exhaust gas cleaning device used for I.C. engines has a regulating unit with a control inlet to influence the regulating behavior of the unit and for locally balancing the oxygen concentration in the exhaust gas cleaning element
DE10109331C1 (en) * 2001-02-27 2002-06-13 Siemens Ag Process for adjusting the oxygen concentration of a catalyst system in an exhaust gas pipe of an I.C. engine uses a catalyst system consisting of a pre-catalyst and a main catalyst arranged downstream
US6467259B1 (en) * 2001-06-19 2002-10-22 Ford Global Technologies, Inc. Method and system for operating dual-exhaust engine
DE10142669B4 (en) * 2001-08-31 2004-04-15 Bayerische Motoren Werke Ag Engine control and method for cleaning a catalytic converter in an exhaust system of a multi-cylinder internal combustion engine
DE10152456A1 (en) * 2001-10-24 2003-05-08 Volkswagen Ag Internal combustion engine with cylinders divided into at least three banks, has outlet pipes opening into exhaust gas pipes common to several cylinders with lambda sensors and catalysers
DE10239258A1 (en) * 2002-08-22 2004-03-04 Volkswagen Ag Internal combustion engine and method for operating an internal combustion engine with a fuel control device
DE10261911A1 (en) 2002-12-30 2004-07-29 Volkswagen Ag Process for controlling the temperature of a catalytic converter and multi-cylinder engine with lambda-split exhaust gas cleaning system
DE102005034880B4 (en) * 2005-07-26 2007-06-06 Siemens Ag Method and device for the diagnosis of an emission control system
CN114076022B (en) * 2020-08-21 2023-07-14 比亚迪股份有限公司 Variable exhaust pipe fitting, variable exhaust pipe device, engine, and vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207057A (en) * 1991-05-16 1993-05-04 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device for an engine
US5233829A (en) * 1991-07-23 1993-08-10 Mazda Motor Corporation Exhaust system for internal combustion engine
US5317868A (en) * 1991-12-10 1994-06-07 Robert Bosch Gmbh Method and arrangement for determining the conversion performance of a catalytic converter
US5351484A (en) * 1993-12-16 1994-10-04 Ford Motor Company Light-off catalyst monitor
US5357753A (en) * 1993-12-16 1994-10-25 Ford Motor Company Catalyst monitor for a Y pipe exhaust configuration
US5444977A (en) * 1992-11-02 1995-08-29 Nippondenso Co., Ltd. Air/fuel ratio sensor abnormality detecting device for internal combustion engine
US5544481A (en) * 1995-03-31 1996-08-13 Ford Motor Company Engine air/fuel control system and catalytic converter monitoring
EP0727568A1 (en) * 1995-02-17 1996-08-21 Hitachi, Ltd. Diagnostic apparatus for exhaust gas purification apparatus for internal combustion engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742542A (en) * 1993-07-27 1995-02-10 Honda Motor Co Ltd Exhaust emission control device foe intrenal combustion engine
DE19503852C2 (en) * 1994-02-09 2000-01-27 Fuji Heavy Ind Ltd Air-fuel ratio control device and method for controlling the air-fuel ratio of an engine
US5657625A (en) * 1994-06-17 1997-08-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Apparatus and method for internal combustion engine control
US5600056A (en) * 1994-06-20 1997-02-04 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio detection system for multicylinder internal combustion engine
DE19524980A1 (en) 1995-07-08 1997-01-09 Opel Adam Ag Exhaust system of a multi-cylinder internal combustion engine
US6047542A (en) * 1995-11-17 2000-04-11 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of engine
JP4092743B2 (en) * 1996-07-05 2008-05-28 マツダ株式会社 Method and apparatus for detecting catalyst deterioration of engine
DE19629554C2 (en) * 1996-07-22 2000-05-25 Siemens Ag Temperature control method for a lambda probe
US6047544A (en) * 1997-08-20 2000-04-11 Nissan Motor Co., Ltd. Engine exhaust gas purification catalyst and exhaust gas purifier
US5983627A (en) * 1997-09-02 1999-11-16 Ford Global Technologies, Inc. Closed loop control for desulfating a NOx trap

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207057A (en) * 1991-05-16 1993-05-04 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control device for an engine
US5233829A (en) * 1991-07-23 1993-08-10 Mazda Motor Corporation Exhaust system for internal combustion engine
US5317868A (en) * 1991-12-10 1994-06-07 Robert Bosch Gmbh Method and arrangement for determining the conversion performance of a catalytic converter
US5444977A (en) * 1992-11-02 1995-08-29 Nippondenso Co., Ltd. Air/fuel ratio sensor abnormality detecting device for internal combustion engine
US5351484A (en) * 1993-12-16 1994-10-04 Ford Motor Company Light-off catalyst monitor
US5357753A (en) * 1993-12-16 1994-10-25 Ford Motor Company Catalyst monitor for a Y pipe exhaust configuration
EP0727568A1 (en) * 1995-02-17 1996-08-21 Hitachi, Ltd. Diagnostic apparatus for exhaust gas purification apparatus for internal combustion engine
US5544481A (en) * 1995-03-31 1996-08-13 Ford Motor Company Engine air/fuel control system and catalytic converter monitoring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143131A3 (en) * 2000-04-07 2004-04-28 Volkswagen Aktiengesellschaft Multiple exhaust gas system and method to regulate an air/fuel ratio and to control the regeneration of an NOx storage catalyst
EP1205648A3 (en) * 2000-11-10 2003-09-10 Volkswagen Aktiengesellschaft Method and arrangement for a catalyst heating system

Also Published As

Publication number Publication date
ES2170564T3 (en) 2002-08-01
JP2000145498A (en) 2000-05-26
DE19852294A1 (en) 2000-05-18
EP1004756B1 (en) 2002-01-30
DE59900795D1 (en) 2002-03-14
JP4435913B2 (en) 2010-03-24
US6321529B1 (en) 2001-11-27

Similar Documents

Publication Publication Date Title
DE19837074C2 (en) Feedback control for desulfurization of a NOx trap
DE102008042549B4 (en) Method and device for diagnosing an exhaust gas probe
EP1004756B1 (en) Exhaust system of a multicylinder internal combustion engine
DE102016222418A1 (en) Method for controlling a filling of a storage of a catalyst for an exhaust gas component
DE102018216980A1 (en) Method for regulating a filling of a storage device of a catalytic converter for an exhaust gas component as a function of aging of the catalytic converter
DE102012003310B4 (en) Method and device for heating an exhaust gas catalytic converter
DE10130054B4 (en) Exhaust system of a multi-cylinder internal combustion engine and method for purifying an exhaust gas
DE102016202351A1 (en) Method for operating an internal combustion engine and three-cylinder engine for carrying out such a method
DE102018217307A1 (en) Method and control device for regulating a fill level of a memory of a catalytic converter for an exhaust gas component in overrun mode
DE102018251720A1 (en) Method for determining a maximum storage capacity of an exhaust gas component storage device of a catalytic converter
EP1831510B1 (en) Use of an apparatus for producing a flowof hot combustion exhaust gases for controlled aging of catalytic converters
DE60105661T2 (en) Diagnostic system for monitoring the functionality of a catalyst using an arc length ratio
DE19831748A1 (en) Procedure for controlling IC engine has variables characterizing air mass sucked in and/or oxygen content of air and/or setpoint variable for control unit corrected.
EP1730391B1 (en) Method and device for controlling an internal combustion engine
DE10358988B3 (en) Fuel injection control for multi-cylinder IC engine using comparison of estimated fuel/air ratio with actual fuel air ratio for correcting injected fuel mass for each engine cylinder for individual lambda regulation
DE102007043734A1 (en) Method and device for determining a deviation of a lambda value of at least one cylinder of an internal combustion engine from a total lambda value
EP1143131B1 (en) Multiple exhaust gas system and method to regulate an air/fuel ratio of a multi-cylinder internal combustion engine
EP1205648A2 (en) Method and arrangement for a catalyst heating system
DE10014881B4 (en) Apparatus and method for calibrating lambda probes
DE102006003487B4 (en) Method for lambda modulation
DE10309421B4 (en) Method for diagnosing a catalyst in the exhaust gas stream of an internal combustion engine and device for carrying out the method
DE102015222022B4 (en) Method and device for correcting a characteristic curve of a lambda probe
DE102015203458B3 (en) Method and device for operating an internal combustion engine
EP1507079B1 (en) Method for operating an internal combustion engine by adaption of mixture pilot control
EP1457654B1 (en) Method of determining the oxygen storage capacity of catalysts in multiple exhaust gas systems and apparatus for carrying out the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000626

17Q First examination report despatched

Effective date: 20000824

AKX Designation fees paid

Free format text: DE ES FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 59900795

Country of ref document: DE

Date of ref document: 20020314

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020409

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2170564

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140919

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150924

Year of fee payment: 17

Ref country code: ES

Payment date: 20150820

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150911

Year of fee payment: 17

Ref country code: FR

Payment date: 20150928

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150924

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59900795

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160929

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160928

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181119