EP0994936A1 - Compositions pour laver la vaisselle comprenant une phospholipase et une amylase - Google Patents

Compositions pour laver la vaisselle comprenant une phospholipase et une amylase

Info

Publication number
EP0994936A1
EP0994936A1 EP97934031A EP97934031A EP0994936A1 EP 0994936 A1 EP0994936 A1 EP 0994936A1 EP 97934031 A EP97934031 A EP 97934031A EP 97934031 A EP97934031 A EP 97934031A EP 0994936 A1 EP0994936 A1 EP 0994936A1
Authority
EP
European Patent Office
Prior art keywords
amylase
phospholipase
compositions
dishwashing
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97934031A
Other languages
German (de)
English (en)
Inventor
Saroj Rai
Ann Margaret Wolff
Lynda Anne Speed
Glenn Steven Ward
Mary Vijayarani Barnabas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0994936A1 publication Critical patent/EP0994936A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38627Preparations containing enzymes, e.g. protease or amylase containing lipase

Definitions

  • Processed or cooked food soils and stains often contain materials used for the processing, cooking and flavouring of the food : butter, milk, eggs, oils such as soya or olive oil, thickeners, sweeteners such as sugar. These materials are often based on proteins, fats and/or starches. In addition, such soils and stains are generally accompanied by amylose, sugars and their derivatives.
  • dishwashing compositions comprising a phospholipase and an amylase.
  • the greasy/oily stains/soils carry coloured compounds and are able to absorb onto dishware, especially plastic material and cause staining. It is thought that the phospholipase enzyme cleaves the insoluble phospholipids into free fatty acids and soluble lysophospholipids which do not carry the coloured compounds and therefore prevents the staining / discolouration of the dishware and plastic components of the dishwasher and achieves significant though food cleaning.
  • the second essential element of the dishwashing composition of the present invention is an amylase enzyme.
  • Amylases can be included for removal of carbohydrate-based stains.
  • WO94/02597 Novo Nordisk A/S published February 03, 1994, describes cleaning compositions which incorporate mutant amylases. See also WO95/10603, Novo Nordisk A/S, published April 20, 1995.
  • Other amylases known for use in cleaning compositions include both ⁇ - and ⁇ -amyiases.
  • ⁇ - Amylases are known in the art and include those disclosed in US Pat. no. 5,003,257; EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610; EP 368,341 ; and British Patent specification no. 1 ,296,839 (Novo).
  • isoamylase enzymes (EC 3.2.1.68). These debranching enzymes hydrolyse 1 ,6- ⁇ -D-glucosidic branch linkages in glycogen, amylopectin and their ⁇ -limit dextrins.
  • amylolytic enzymes are generally incorporated in the detergent compositions of the present invention a level of from 0.0001% to 2%, preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048% pure enzyme by weight of the composition.
  • the isoelectric point of such enzymes may be modified by the substitution of some charged amino acids, e.g. an increase in isoelectric point may help to improve compatibility with anionic surfactants.
  • the stability of the enzymes may be further enhanced by the creation of e.g. additional salt bridges and enforcing calcium binding sites to increase chelant stability.
  • Anionic sulfate surfactants suitable for use herein include the linear and branched primary alkyl sulfates, alkyl ethoxysulfates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C17 acyl-N-(C-
  • Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C ⁇ -C-i ⁇ alkyl sulfates which have been ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a CQ-C ⁇ Q alkyl sulfate which has been ethoxylated with from about 0.5 to about 20, preferably from about 0.5 to about 5, moles of ethylene oxide per molecule.
  • Anionic sulfonate surfactant Anionic sulfonate surfactant
  • Preferred soap surfactants are secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon.
  • the secondary carbon can be in a ring structure, e.g. as in p-octyl benzoic acid, or as in alkyl-substituted cyclohexyl carboxylates.
  • the secondary soap surfactants should preferably contain no ether linkages, no ester linkages and no hydroxyl groups. There should preferably be no nitrogen atoms in the head-group (amphiphilic portion).
  • the secondary soap surfactants usually contain 11-13 total carbon atoms, although slightly more (e.g., up to 16) can be tolerated, e.g. p-octyl benzoic acid.
  • Alkali metal sarcosinate surfactant Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R 1 ) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion.
  • R is a C5-C17 linear or branched alkyl or alkenyl group
  • R1 is a C1-C4 alkyl group
  • M is an alkali metal ion.
  • Preferred examples are the myristyl and oleyl methyl sarcosinates in the form of their sodium salts.
  • Nonionic ethoxylated alcohol surfactant The alkyl ethoxylate condensation products of aliphatic alcohols with from -about 1 to about 25 moles of ethylene oxide are suitable for use herein.
  • the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
  • Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
  • the ethoxylated C ⁇ -C-is fatty alcohols and C ⁇ -Ci8 mixed ethoxylated/propoxylated fatty alcohols are preferred surfactants for use herein, particularly where water soluble.
  • the ethoxylated fatty alcohols are the c 10 _c 18 ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the C12- 18 ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40.
  • condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine are suitable for use herein.
  • the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
  • nonionic surfactant include certain of the commercially available Tetronic ⁇ M compounds, marketed by BASF.
  • Nonionic alkylpolvsaccharide surfactant include certain of the commercially available Tetronic ⁇ M compounds, marketed by BASF.
  • R 3 represents a C-j-Cg alkyl, preferably C3 - C7 group and n represents an integer from 2 to 12, preferably 4 to 10 inclusive
  • compositions herein may contain a lime soap dispersant compound, which has a lime soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6.
  • LSDP lime soap dispersing power
  • the lime soap, dispersant compound is preferably present at a level of from 0.1% to 40% by weight, more preferably 1% to 20% by weight, most preferably from 2% to 10% by weight of the compositions.
  • a lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions.
  • a numerical measure of the effectiveness of a lime soap dispersant is given by the lime soap dispersing power (LSDP) which is determined using the lime soap dispersion test as described in an article by H.C. Borghetty and CA. Bergman, J. Am. Oil. Chem. Soc, volume 27, pages 88-90, (1950).
  • This lime soap dispersion test method is widely used by practitioners in this art field being referred to , for example, in the following review articles; W.N. Linfield, Surfactant Science Series, Volume 7, p3; W.N. Linfield, Tenside Surf. Det.
  • Polymeric lime soap dispersants suitable for use herein are described in the article by M.K. Nagarajan and W.F. Masler, to be found in Cosmetics and Toiletries, Volume 104, pages 71-73, (1989).
  • Examples of such polymeric lime soap dispersants include certain water-soluble salts of copolymers of acrylic acid, methacrylic acid or mixtures thereof, and an acrylamide or substituted acryiamide, where such polymers typically have a molecular weight of from 5,000 to 20,000.
  • Preferred low molecular weight acrylic acid containing copolymers include those which contain as monomer units: a) from 90% to 10%, preferably from 80% to 20% by weight acrylic acid or its salts and b) from 10% to 90%, preferably from 20% to 80% by weight of a substituted acrylic monomer or its salts having the general formula -[CR2-CR-
  • organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of the latter type are disclosed in GB-A- 1 ,596, 756.
  • Examples of such salts are the copolymers of polyacrylate with maleic anhydride having a molecular weight of from 20,000 to 70,000, especially about 40,000.
  • polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A- 351629.
  • organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose.
  • organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
  • Polymeric dye transfer inhibiting agents are those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
  • A is NC, CO, C, -O-,-S-, -N- ; x is O or 1 ;
  • R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
  • the N-O group can be represented by the following general structures :
  • Preferred class of these polyamine N-oxides are the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
  • examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
  • Another preferred class of polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is attached to said R groups. Examples of these classes are polyamine oxides wherein R groups can be aromatic such as phenyl.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
  • the polyamine oxides can be obtained in almost any degree of polymerisation.
  • the degree of polymerisation Is not critical provided the material has the desired water-solubility and dye-suspending power.
  • the average molecular weight is within the range of 500 to 1000,000; preferably from 1 ,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.
  • Preferred polymers for use herein may comprise a polymer selected from N-vinylimidazole N-vinylpyrrolidone copolymers wherein said polymer has an average molecular weight range from 5,000 to 50,000 more preferably from 8,000 to 30,000, most preferably from 10,000 to 20,000.
  • the preferred N- vinylimidazole N-vinylpyrrolidone copolymers have a molar ratio of N- vinyiimidazole to N-vinylpyrrolidone from 1 to 0.2, more preferably from 0.8 to 0.3, most preferably from 0.6 to 0.4 .
  • compositions herein may also utilize polyvinyloxazolidones as polymeric, dye transfer inhibiting agents.
  • Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000, preferably from 5,000 to 200,000, more preferably from 5,000 to 50,000, and most preferably from 5,000 to 15,000.
  • compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent.
  • Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000, more preferably from 5,000 to 50,000, and most preferably from 5,000 to 15,000.
  • Heavy metal ion sequestrants are preferably present at a level of from 0.005% to 20%, more preferably from 0.05% to 10%, most preferably from 0.1% to 5% by weight of the compositions.
  • Heavy metal ion sequestrants which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
  • a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
  • any salts/complexes are water soluble.
  • the molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least 1 :1.
  • heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EPA 317 542 and EPA 399 133.
  • any heavy metal ion sequestrant is sprayed onto powdered sodium sulphate prior to incorporation into granular compostions in accord with the invention. This step leads to enhanced sequestrant stability in the granular detergent matrix.
  • a preferred component of the dishwashing compositions herein is a crystal growth inhibitor selected from organo diphosphonic acid or one of its salts/complexes.
  • the organo diphosphonic acid component is preferably present at a level of from 0.005% to 20%, more preferably from 0.1% to 10%, most preferably from 0.2% to 5% by weight of the compositions.
  • the organo diphosphonic acid component may be present in its acid form or in the form of one of its salts or complexes with a suitable counter cation and reference hereinafter to the acid implicitly includes reference to said salts or complexes.
  • any salts/complexes are water soluble, with the alkali metal and alkaline earth metal salts/complexes being especially preferred.
  • the organo diphosphonic acid is preferably a C1-C4 diphosphonic acid, more preferably a C2 diphosphonic acid, such as ethylene diphosphonic acid, or most preferably ethane 1-hydroxy-1 ,1 -diphosphonic acid (HEDP).
  • lipolytic enzymes described in EP 258 068, WO 92/05249 and WO 95/22615 by Novo Nordisk and in WO 94/03578, WO 95/35381 and WO 96/00292 by Unilever.
  • cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation.
  • Addition of cutinases to detergent compositions have been described in e.g. WO-A- 88/09367 (Genencor); WO 90/09446 (Plant Genetic System) and WO 94/14963 and WO 94/14964 (Unilever).
  • the lipases and/or cutinases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition.
  • a preferred protease referred to as "Protease D” is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor , carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101 , +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in WO95/10591 and in the patent application of C.
  • such carbonyl hydrolase variants have an amino acid sequence not found in nature, which is derived by replacement of a plurality of amino acid residues of a precursor carbonyl hydrolase with different amino acids.
  • the plurality of amino acid residues of the precursor enzyme correspond to position +210 in combination with one or more of the following residues: +33, +62, +67, +76, +100, +101 , +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, +218, and +222, where the numbered position corresponds to naturally-occurring subtilisin from Bacillus amyloliquefaciens or to equivalent amino acid residues in other carbonyl hydrolases or subtilisins, such as Bacillus lentus subtilisin.
  • 210/76/103/104/156/166 210/76/103/104/156/217; 210/76/103/104/166/217 and/or 210/76/103/104/156/166/217; 210/76/103/104/166/222;
  • Variant DNA sequences encoding such carbonyl hydrolase or subtilisin variants are derived from a precursor DNA sequence which encodes a naturally- occurring or recombinant precursor enzyme.
  • the variant DNA sequences are derived by modifying the precursor DNA sequence to encode the substitution of one or more specific amino acid residues encoded by the precursor DNA sequence corresponding to positions +210, +33, +62, +67, +76, +100, +101 , +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, +218, and +222 in Bacillus lentus or any combination thereof.
  • the preferred precursor DNA sequence useful for the present invention is the DNA sequence of Bacillus lentus.
  • These recombinant DNA sequences encode carbonyl hydrolase variants having a novel amino acid sequence and, in general, at least one property which is substantially different from the same property of the enzyme encoded by the precursor carbonyl hydrolase DNA sequence.
  • properties include proteolytic activity, substrate specificity, stability, altered pH profile and/or enhanced performance characteristics.
  • the substitution to be made at each of. the identified amino acid residue positions include but are not limited to substitutions at position +210 including I, V, L, and A, substitutions at positions +33, +62, +76, +100, +101 , +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, and +218 of D or E, substitutions at position 76 including D, H, E, G, F, K, P and N; substitutions at position 103 including Q, T, D, E, Y, K, G, R and S; and substitutions at position 104 including S, Y, I, L, M, A, W, D, T, G and V; and substitutions at position 222 including S, C, A.
  • the specifically preferred amino acid(s) to be substituted at each such position are designated below in Table I. Although specific amino acids are shown in Table I, it is
  • Amino Acid Preferred Amino Acid to Residue be Substituted/Inserted
  • proteases described in patent applications EP 251 446 and WO 91/06637, protease BLAP® described in WO91/02792 and their variants described in WO 95/23221. See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 93/18140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO 95/07791 to Procter & Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo. Other suitable proteases are described in EP 516 200 by Unilever.
  • the proteolytic enzymes are incorporated in the dishwashing compositions of the present invention a level of from 0.0001% to 2%, preferably from 0.001% to 0.2%, more preferably from 0.005% to 0.1% pure enzyme by weight of the composition.
  • the cellulases usable in the present invention include both bacterial or fungal cellulases. Preferably, they will have a pH optimum of between 5 and 12 and an activity above 50 CEVU (Cellulose Viscosity Unit).
  • CEVU Cellulose Viscosity Unit
  • Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, J61078384 and WO96/02653 which discloses fungal cellulase produced respectively from Humicola insolens, Trichoderma, Thielavia and Sporotrichum.
  • EP 739 982 describes cellulases isolated from novel Bacillus species. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275; DE-OS-2.247.832 and WO95/26398.
  • cellulases examples include cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicola strain DSM 1800.
  • Suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids; and a " 43kD endoglucanase derived from Humicola insolens, DSM 1800, exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in PCT Patent Application No. WO 91/17243.
  • suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum described in WO94/21801 , Genencor, published September 29, 1994. Especially suitable cellulases are the cellulases having color care benefits.
  • cellulases examples include cellulases described in European patent application No. 91202879.2, filed November 6, 1991 (Novo). Carezyme and Celluzyme (Novo Nordisk A/S) are especially useful. See also WO91/17244 and WO91/21801. Other suitable cellulases for fabric care and/or cleaning properties are described in WO96/34092, WO96/17994 and WO95/24471. Said cellulases are normally incorporated in the detergent composition at levels from 0.0001% to 2% of pure enzyme by weight of the detergent composition.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase and haloperoxidase such as chloro- and bromo- peroxidase.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, WO89/09813 and in European Patent application EP No. 91202882.6, filed on November 6, 1991 and EP No. 96870013.8, filed February 20, 1996. Also suitable is the laccase enzyme.
  • Enzyme-containing compositions herein may comprise from 0.001% to 10%, preferably from 0.005% to 8%,most preferably from 0.01% to 6%, by weight of an enzyme stabilizing system.
  • the enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme.
  • Such stabilizing systems can comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acid, boronic acid, and mixtures thereof.
  • Such stabilizing systems can also comprise reversible protease inhibitors.
  • the compositions herein may further comprise from 0% to 10%, preferably from 0.01% to 6% by weight, of chlorine bleach scavengers, added to prevent chlorine bleach species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions. While chlorine levels in water may be small, typically in the range from 0.5 ppm to 1.75 ppm, the available chlorine in the total volume of water that comes in contact with the enzyme during washing is usually large; accordingly, enzyme stability in-use can be
  • Suitable chlorine scavenger anions are widely available, and are illustrated by salts containing ammonium cations or sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
  • Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used.
  • EDTA ethylenediaminetetracetic acid
  • MEA monoethanolamine
  • scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate, sodium perborate monohydrate and sodium percarbonate, as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, malate, tartrate, salicylate, etc. and mixtures thereof can be used if desired.
  • Suitable corrosion inhibitors include paraffin oil typically a predominantly branched_ . aliphatic hydrocarbon having a number of carbon atoms in the range of from 20 to 50; preferred paraffin oil selected from predominantly branched C25- 45 species with a ratio of cyclic to noncyclic hydrocarbons of about 32:68; a paraffin oil meeting these characteristics is sold by Wintershall, Salzbergen, Germany, under the trade name WINOG 70.
  • Suitable corrosion inhibitor compounds include benzotriazole and any derivatives thereof, mercaptans and diols, especially mercaptans with 4 to 20 carbon atoms including lauryl mercaptan, thiophenol, thionapthol, thionalide and thioanthranol.
  • mercaptans and diols especially mercaptans with 4 to 20 carbon atoms including lauryl mercaptan, thiophenol, thionapthol, thionalide and thioanthranol.
  • C-12- 20 fatty acids, or their salts especially aluminium tristearate.
  • the C-12- 20 hydroxy fatty acids, or their salts are also suitable.
  • Phosphonated octa-decane and other anti-oxidants such as betahydroxytoluene (BHT) are also suitable.
  • Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component.
  • silicone antifoam compounds also typically contain a silica component.
  • silica component The term "silicone” as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
  • Suitable antifoam compounds include, for example, high molecular weight hydrocarbons such as paraffin, fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C-18-C40 ketones (e.g.
  • N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g., sodium, potassium, lithium) phosphates and phosphate esters.
  • the hydrocarbons such as paraffin and haloparaffin, can be utilized in liquid form.
  • the liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about -40°C and about 5°C, and a minimum boiling point not less than 110°C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below about 100°C. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al. The hydrocarbons, thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms.
  • Copolymers of ethylene oxide and propylene oxide particularly the mixed ethoxylated/propoxylated fatty alcohols with an alkyl chain length of from 10 to 16 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10, are also suitable antifoam compounds for use herein.
  • Suitable organic solvent for use herein has the general formula RO(CH2C(Me)HO) n H, wherein R is an alkyl, alkenyl, or alkyl aryl group having from 1 to 8 carbon atoms, and n is an integer from 1 to 4.
  • R is an alkyl group containing 1 to 4 carbon atoms, and n is 1 or 2.
  • Especially preferred R groups are n-butyl or isobutyl.
  • Suitable solvents are benzyl alcohol, and diols such as 2-ethyl-1,3- hexanediol and 2,2,4-trimethl-1 ,3-pentanediol.
  • alkane mono and diols especially the C-
  • C1-C4 monohydric alcohols eg: ethanol, propanol, isopropanol, butanol and mixtures thereof
  • ethanol particularly preferred.
  • Hydrotropes eg: ethanol, propanol, isopropanol, butanol and mixtures thereof.
  • the pH of the compositions may be adjusted by the use of various pH adjusting agents.
  • Preferred acidification agents include inorganic and organic acids including, for example, carboxylate acids, such as citric and succinic acids.
  • Bicarbonates, particularly sodium bicarbonate, are useful pH adjusting agents herein.
  • a highly preferred acidification acid is citric acid which has the advantage of providing builder capacity to the wash solution.
  • the dishwashing compositions herein can be formulated in any desirable form such as powders, tablets, granulates, pastes, liquids and gels.
  • the dishwashing compositions herein may be formulated as liquid compositions which typically comprise from 94% to 35% by weight, preferably from 90% to 40% by weight, most preferably from 80% to 50% by weight of a liquid carrier, e.g., water, preferably a mixture of water and organic solvent.
  • a liquid carrier e.g., water, preferably a mixture of water and organic solvent.
  • the dishwashing compositions herein may also be in the form of solids, such as powders, granules and tablets.
  • the particle size of the components of granular compositions should preferably be such that no more that 5% of particles are greater than 1.4mm in diameter and not more than 5% of particles are less than 0.15mm in diameter.
  • the dishwashing method may be essentially any conventional dishwashing method.
  • granular detergent compositions can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation.
  • TAED Tetraacetyl ethylene diamine HEDP Ethane 1-hydroxy-1 ,1 -diphosphonic acid DETPMP Diethyltriamine penta (methylene) phosphonate, marketed by monsanto under the tradename Dequest
  • Lipase Lipolytic enzyme sold under the tradename Lipolase
  • Nonionic 1.2 1.0 0.7 0.8 1.9 0.7 0.6 0.3
  • detergent composition tablets were prepared in accord with the present invention by compression of a granular dishwashing detergent composition at a pressure of 13KN/cnr ⁇ 2 using a standard 12 head rotary press:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne des compositions pour laver la vaisselle, qui comprennent une phospholipase et une amylase et permettent d'enlever efficacement les salissures, notamment les taches de graisse/d'huile, les taches de féculents et les taches très colorées. Ces compositions empêchent également la coloration/décoloration de la vaisselle et des composants plastiques du lave-vaisselle par les éléments très colorés, ainsi que la formation de dépôts de savon de chaux sur la vaisselle.
EP97934031A 1997-07-02 1997-07-02 Compositions pour laver la vaisselle comprenant une phospholipase et une amylase Withdrawn EP0994936A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1997/011399 WO1999001531A1 (fr) 1997-07-02 1997-07-02 Compositions pour laver la vaisselle comprenant une phospholipase et une amylase

Publications (1)

Publication Number Publication Date
EP0994936A1 true EP0994936A1 (fr) 2000-04-26

Family

ID=22261184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97934031A Withdrawn EP0994936A1 (fr) 1997-07-02 1997-07-02 Compositions pour laver la vaisselle comprenant une phospholipase et une amylase

Country Status (5)

Country Link
EP (1) EP0994936A1 (fr)
JP (1) JP2002508026A (fr)
AU (1) AU3719297A (fr)
CA (1) CA2294839A1 (fr)
WO (1) WO1999001531A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11525134B2 (en) 2017-10-27 2022-12-13 Juno Diagnostics, Inc. Devices, systems and methods for ultra-low volume liquid biopsy

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716753A1 (fr) 1998-11-27 2014-04-09 Novozymes A/S Variants d'enzyme lipolytique
AR017744A1 (es) * 1999-02-08 2001-09-12 Procter & Gamble Glicoles polimericos y dioles para composiciones detergentes mejoradas para el lavado de vajilla
DE10007608A1 (de) * 2000-02-18 2001-08-30 Henkel Kgaa Protease und Percarbonat enthaltende Wasch- und Reinigungsmittel
EP2281878A1 (fr) 2000-06-26 2011-02-09 Novozymes A/S Enzyme lipolytique.
GB0020489D0 (en) * 2000-08-18 2000-10-11 Univ Leeds Use of percarbamic acids and precursors therefor
JP4222771B2 (ja) * 2002-04-03 2009-02-12 株式会社サンコンタクトレンズ 蛋白分解酵素を安定化させるための修飾担体、当該修飾担体により化学修飾された蛋白分解酵素および当該蛋白分解酵素の製造方法
JP2006524495A (ja) 2003-04-28 2006-11-02 ノボザイムス アクティーゼルスカブ ホスホリパーゼおよびそれを製造する方法
US20070015674A1 (en) 2005-06-30 2007-01-18 Xinbei Song Low phosphate automatic dishwashing detergent composition
JP5890193B2 (ja) * 2012-02-15 2016-03-22 花王株式会社 自動洗浄機用粉末洗浄剤組成物
JP6232246B2 (ja) * 2013-09-26 2017-11-15 シーバイエス株式会社 自動食器洗浄機用洗浄剤組成物およびその使用方法
JP6184024B2 (ja) * 2014-06-30 2017-08-23 ライオン株式会社 粒状洗剤
JP5801941B1 (ja) * 2014-11-21 2015-10-28 株式会社ニイタカ 洗浄剤組成物、食器洗浄方法、液体洗浄剤組成物用キット及びカートリッジ洗浄剤
EP3510133A1 (fr) * 2016-09-07 2019-07-17 Ecolab USA Inc. Compositions détergentes contenant une enzyme stabilisée par des phosphonates
MX2019013532A (es) * 2017-05-12 2020-08-03 Basf Se Metodo para usar enzimas lipasas para limpieza.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8813688D0 (en) * 1988-06-09 1988-07-13 Unilever Plc Enzymatic dishwashing composition
GB2247025A (en) * 1990-08-13 1992-02-19 Unilever Plc Enzymatic dishwashing and rinsing composition
ATE193319T1 (de) * 1993-12-03 2000-06-15 Buckman Labor Inc Enzymstabilisierung durch blockcopolymere
JP3152826B2 (ja) * 1993-12-22 2001-04-03 花王株式会社 酵素含有組成物の製造法
AR000862A1 (es) * 1995-02-03 1997-08-06 Novozymes As Variantes de una ó-amilasa madre, un metodo para producir la misma, una estructura de adn y un vector de expresion, una celula transformada por dichaestructura de adn y vector, un aditivo para detergente, composicion detergente, una composicion para lavado de ropa y una composicion para la eliminacion del
WO1997043376A1 (fr) * 1996-05-15 1997-11-20 The Procter & Gamble Company Compositions detergentes comportant des enzymes lipolytiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9901531A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11525134B2 (en) 2017-10-27 2022-12-13 Juno Diagnostics, Inc. Devices, systems and methods for ultra-low volume liquid biopsy

Also Published As

Publication number Publication date
CA2294839A1 (fr) 1999-01-14
AU3719297A (en) 1999-01-25
WO1999001531A1 (fr) 1999-01-14
JP2002508026A (ja) 2002-03-12

Similar Documents

Publication Publication Date Title
US5629278A (en) Detergent compositions
EP0659874B1 (fr) Compositions détergents
EP0753045A1 (fr) Composition detergente comprenant des lipoxydases
CA2138826C (fr) Compositions de rincage
CA2138824C (fr) Compositions de rincage
EP0994936A1 (fr) Compositions pour laver la vaisselle comprenant une phospholipase et une amylase
EP0690122A2 (fr) Compositions détergentes
GB2285053A (en) Rinse aid composition
EP0740521B1 (fr) Peroxydes diacyles et tetraacyles empechant le transfert de debris alimentaires blanchissables dans un lave-vaisselle
CA2183747C (fr) Compositions detergentes
WO1997043382A1 (fr) Composition detergente comportant une enzyme, une laccase, et un polymere s'opposant au transfert pigmentaire
US5858946A (en) Detergent compositions
US5789362A (en) Detergent composition comprising lipoxidase enzymes
CA2183745C (fr) Compositions detergentes
GB2290085A (en) Preparation of particulate detergent composition
CA2267286A1 (fr) Compositions detergentes contenant une mycodextranase
MXPA98002136A (en) Detergent compositions
MXPA98009640A (en) Detergent compositions that comprise specific lipolytic and dispersant soap soup
WO2000042150A1 (fr) Compositions detergentes comprenant une lyase de pectate et un catalyseur de blanchiment metallique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20010504

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021224