EP0993543B1 - Kühlungssystem für heisse turbinenteile - Google Patents

Kühlungssystem für heisse turbinenteile Download PDF

Info

Publication number
EP0993543B1
EP0993543B1 EP99916166A EP99916166A EP0993543B1 EP 0993543 B1 EP0993543 B1 EP 0993543B1 EP 99916166 A EP99916166 A EP 99916166A EP 99916166 A EP99916166 A EP 99916166A EP 0993543 B1 EP0993543 B1 EP 0993543B1
Authority
EP
European Patent Office
Prior art keywords
coolant
turbine
annular
air
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99916166A
Other languages
English (en)
French (fr)
Other versions
EP0993543A1 (de
Inventor
Kent Goran Hultgren
Brian Charles Owen
Steven Wayne Dowman
Raymond Scott Nordlund
Ricky Lee Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Inc
Original Assignee
Siemens Westinghouse Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Westinghouse Power Corp filed Critical Siemens Westinghouse Power Corp
Publication of EP0993543A1 publication Critical patent/EP0993543A1/de
Application granted granted Critical
Publication of EP0993543B1 publication Critical patent/EP0993543B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Definitions

  • the present invention relates generally to gas turbines, and more particularly to a closed-loop cooling scheme for stationary hot parts of a gas turbine.
  • Combustion turbines comprise a casing or cylinder for housing a compressor section, combustion section and turbine section.
  • the compressor section comprises an inlet end and a discharge end.
  • the combustion section or combustor comprises an inlet end and a combustor transition.
  • the combustor transition is proximate the discharge end of the combustion section and comprises a wall which defines a flow channel which directs the working fluid into the turbine section's inlet end.
  • a supply of air is compressed in the compressor section and directed into the combustion section.
  • Fuel enters the combustion section by means of a nozzle.
  • the compressed air enters the combustion inlet and is mixed with the fuel.
  • the air/fuel mixture is then combusted to produce high temperature and high pressure gas. This working gas is then ejected past the combustor transition and injected into the turbine section to run the turbine.
  • the turbine section comprises rows of vanes which direct the working gas to the airfoil portions of the turbine blades.
  • the working gas flows through the turbine section causing the turbine blades to rotate, thereby turning the rotor, which is connected to a generator for producing electricity.
  • the maximum power output of a combustion turbine is achieved by heating the gas flowing through the combustion section to as high a temperature as is feasible.
  • the hot gas heats the various turbine components, such as the transition, vanes and ring segments, that it passes when flowing through the turbine.
  • Conventional turbine closed-loop cooling assemblies generally comprise at least one manifold, strain relief devices, such as piston rings or bellows, and a supply of cooling fluid located outside the turbine.
  • the manifold typically comprises an outer casing.
  • the strain relief devices are employed to connect the manifold outer casing proximate the component that must be cooled.
  • the closed-loop cooling manifolds receive cooling fluid from the source outside the turbine and distribute the cooling fluid circumferentially about the turbine casing. Unlike open-loop cooling systems, the closed-loop cooling fluid remains separated from the working fluid that flows through the turbine flow path and is diverted to a location outside the turbine.
  • Piston rings and bellows of conventional closed-loop cooling schemes also have their own drawbacks. Both piston rings and bellows have poor fatigue life characteristics. Piston rings have significant leakage rates, require large pressure drops to operate properly and must maintain proper alignment to be effective. Both bellows and piston rings are also difficult to install as well as maintain. In addition, bellows and piston rings are not very flexible in responding to changing conditions or positioning of parts to which they connect. It is, therefore, desirable to provide a closed-loop cooling scheme that utilizes pipe joints that are superior to piston rings and bellows.
  • WO 9618810 discloses a combustion turbine as recited in the pre-charaterising portion of the independent claim.
  • the cooling scheme further comprises a piping arrangement for distributing the coolant to and directing coolant exhaust from the turbine components.
  • the piping arrangement comprises inlet pipes and inlet passages for supplying the coolant from the coolant inlet chamber to the turbine components and exhaust pipes and exhaust passages for directing the coolant from the turbine components to the coolant exhaust chamber.
  • the cooling scheme further comprises static seals for sealing the blade ring against the cylinder and flexible joints for attaching the blade ring to the turbine components.
  • the cooling scheme further comprises an air supply system for supplying air to positively pressurize an inter-stage seal located radially inward of second row vanes of the turbine.
  • Figure 1 a cross-sectional view of the closed-loop cooling scheme according to the present invention in cooperation with a combustion turbine.
  • Figure 1 shows a compressor section 94, a combustion section 96, a nozzle 97 and a turbine section 100, about which the cooling scheme is centered.
  • Figure 2 shows a cross-sectional view of a preferred embodiment of the closed-loop cooling scheme according to the present invention in cooperation with a section of the top half of a turbine.
  • the section of turbine shown in Figure 2 comprises a transition 10, vanes 22 and 24, ring segments 32 and 34, a blade ring 40 and a cylinder 50.
  • the cooling scheme of the present invention is intended to cool the first and second row vanes 22 and 24, first and second row ring segments 32 and 34, and the transition 10, collectively referred to as the turbine hot parts.
  • These turbine components are situated at regular intervals about the circumference of the turbine.
  • the closed-loop cooling scheme of the present invention comprises an annular coolant inlet chamber 80 for housing coolant before being distributed to the turbine hot parts, an annular coolant exhaust chamber 90 for collecting coolant exhaust from the turbine hot parts, a coolant inlet conduit 78 for supplying the coolant to the coolant inlet chamber 80, a coolant exhaust conduit 92 for directing coolant from the coolant exhaust chamber 90, and a piping arrangement for distributing the coolant to and directing coolant from the turbine hot parts.
  • the coolant is steam, but the invention is equally applicable to other coolant media.
  • the cooling scheme utilizes static seals 44 and 45 for sealing the blade ring 40 to the cylinder 50, and flexible joints 60 for attaching the blade ring 40 to the turbine hot parts to achieve fluid communication between the turbine hot parts and the chambers 80 and 90.
  • the piping arrangement of the present invention comprises inlet channels and exhaust channels through the blade ring 40.
  • Inlet channels are inlet pipes, inlet passages or a combination of both.
  • Exhaust channels are exhaust pipes, exhaust passages or any combination thereof. Passages, as opposed to pipes, are sometimes utilized in locations where the channel need pass through the blade ring 40.
  • Inlet channels supply the coolant to the turbine components to be cooled and extend from the coolant inlet chamber 80 to each hot part.
  • Exhaust channels direct the coolant from the turbine components and extend from each hot part to the coolant exhaust chamber 90.
  • the number of channels making up the piping arrangement depends on the number of turbine hot parts situated about the turbine.
  • the cooling scheme will be installed on a ATS ("Advanced Turbine System") turbine. Because there are sixteen transitions 10 on the ATS turbine, there are sixteen pairs of inlet channels (pipes 8) and exhaust channels (pipes-not shown) to cool the transition 10.
  • FIG. 19 there are thirty-two pairs of inlet channels (pipes 19) and exhaust channels (passages 21) for the first row vanes 22, thirty-two pairs of inlet channels (passages 23) and exhaust channels (passages 25) for the second row vanes 24, forty-eight pairs of inlet channels (pipes 29 and 36) and exhaust channels (pipes 39 and passages 31) for the first row ring segments 32, and forty-eight pairs of inlet channels (pipes 37 and passages 33) and exhaust channels (pipes 35 and 38) for the second row ring segments 34.
  • Figures 1 and 2 only show the cooling scheme at one location about the turbine.
  • coolant from an external source enters through the coolant inlet conduit 78 into the coolant inlet chamber 80, where it is directed through the inlet pipes of the piping arrangement and openings in the blade ring 40 to the turbine hot parts.
  • Heat is transferred to the coolant from the hot parts and the coolant is directed through the exhaust pipes of the piping arrangement and openings in the blade ring 40 into the coolant exhaust chamber 90, where it is exhausted through the coolant exhaust conduit 92 to a heat recovery unit (not shown).
  • hot air is used instead of cooling steam to heat up the system. Without this warm-up period with hot air, the cooling steam would create condensation throughout the system. Similarly, after operation of the cooling scheme with cooling steam, hot air is once again run through the system to limit the amount of condensation that may form.
  • the coolant inlet chamber 80 is situated directly above the second row vanes 24 and second row ring segments 34, no piping is needed to supply coolant to these parts. Only flexible joints 60 are needed to connect the blade ring 40 to these parts, as passages through the blade ring 40 complete the connection to the coolant inlet chamber 80. Piping 35 and 38 are needed, however, to exhaust the coolant from the second row ring segments 34 because the second row ring segments 34 are located a distance away from the coolant exhaust chamber 90.
  • These flexible joints 60 provide a line-contact sealing surface during expansion, contraction and angulation of the connection.
  • Initial evaluations of piston-ring joints and the flex-slide joints 60 reveal that the flex-slide joints 60 have leakage rates that are 1/10 that of piston ring joints.
  • the flex-slide joints 60 are used to connect the transition 10 and the vanes 22 and 24 to the coolant inlet chamber 80 and coolant exhaust chamber 90.
  • Portions 36 and 37 of the inlet channels and portions 39 and 38 of the exhaust channels for the ring segments 32 and 34, are housed in towers 20 and 30, respectively.
  • the towers 20 and 30 are cylindrical housings which are received by and bolted to the blade ring 40 to accommodate the portions 36, 37, 39 and 38.
  • the ring segments 32 and 34 do not require flexible joints 60 and instead, bolts are used to connect the towers 20 and 30 to the ring segments 32 and 34.
  • the preferred embodiment of the present invention utilizes an air supply system which floods an annular cavity 64 between the second row vanes 24 and the blade ring 40 with air.
  • the air is needed to positively pressurize an inter-stage seal (not shown) located radially inward of the second row vanes 24.
  • Positive pressurization is needed at the inter-stage seal so that working fluid does not make contact with the turbine rotor structure.
  • the air supply system comprises four air inlet conduits 62, four flexible joints 60, and an annular cavity 64.
  • the annular cavity 64 to distribute air circumferentially about the turbine enables the air to be supplied without spanning the horizontal joint of the turbine without piping.
  • the air supply system requires bleed air from the the compressor.
  • This air enters the cooling scheme at the air inlet conduits 62, travels through the wall of cylinder 50, through the coolant inlet chamber 80 (by means of the flexible joints 60 and the air conduits 61), through the blade ring 40 and into the annular cavity 64 between the second row vanes 24 and the blade ring 40.
  • the flexible joints 60 are flex-slide joints 60 and the air conduits 61 are conduits.
  • all pipes are coupled, preferably hard-welded, to the blade ring 40 before the blade ring 40 is rolled into the cylinder 50.
  • the flexible joints 60 are attached to the vanes 22 and 24 with rigid couplers and welded into the blade ring 40.
  • the flexible joints 60 allow for simple alignment and installation of the air inlet conduits 62, vanes 22 and 24 and transitions 10.
  • the cooling scheme allows for axial installation of the first row vanes 22 and circumferential installation of the second row vanes 24.
  • Bolting at the horizontal joint, and the joint itself, also present design changes. For example, the inlet and exhaust channels need to be routed around the bolts and through the horizontal joint boss by means of slots and/or drilled holes.
  • INCONEL® alloy 625 a nickel-chromium heat- and corrosion- resisting alloy manufactured by INCO Alloys International, Inc., of Huntington, West Virginia, is the preferred "clean" material for such applications.
  • a sleeve made of INCONEL® alloy 625 is used to shield the cooling flow from eroded material on the surface of the passageway through the blade ring 40.
  • the advantages of the cooling scheme of the present invention are several. Although some air is diverted from the compressor section of the turbine to provide air to the air supply system, the closed-loop cooling aspect of the present invention diverts less air from the compressor than open-loop cooling systems and thereby controls No x emissions.
  • the cooling scheme of the present invention only utilizes the air supply system to positively pressurize the inter-stage seal cavity 64.
  • the particular piping arrangement, i.e., the four air inlet conduits 62, are used to isolate the air separate from the cooling steam in the coolant inlet chamber 80.
  • the cooling scheme itself that directly affects the cooling uses no manifold assemblies. Consequently, the present scheme does not require precise machining and alignment design or maintenance as conventional closed-loop cooling schemes that utilize manifolds which must be precisely machined and aligned and maintained to enable the manifolds to sufficiently couple with the turbine blade ring 40. Therefore, the cooling scheme design of the present invention is more simplified and economical than conventional closed-loop cooling schemes.
  • the chambers 80 and 90 provide a common exhaust and common inlet. This reduces the number of required pipes and joints at the cylinder 50 as well as the blade ring 40.
  • the chamber design also allows for the passages through blade ring 40 to achieve direct fluid communication with the chambers 80 and 90 without the need for extra piping. This direct communication also leads to the use of fewer joints.
  • the use of flexible joints in the cooling scheme of the present invention improves upon conventional systems that utilize piston rings and bellows.
  • the flex-slide joints 60 provide a line-contact sealing surface during expansion, contraction and angulation of the connections.
  • the flex-slide joints 60 have much smaller leakage rates and require less pressure drops for operation than piston-ring joints.
  • Flex-slide joints 60 are easier to install and maintain than both bellows and piston rings, making maintenance of other turbine parts less burdensome.
  • the flex-slide joints 60 are very flexible in responding to changing conditions or positioning of parts to which they connect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (5)

  1. Verbrennungsturbine, welche umfasst:
    einen Verdichter (94) zum Verdichten von Luft;
    eine Düse (97) zum Einspritzen von Brennstoff in eine Brennkammer (96);
    die besagte Brennkammer (96), die mit dem besagten Verdichter (94) kommuniziert, um die Druckluft aufzunehmen, wobei die besagte Brennkammer (96) außerdem mit der besagten Düse (97) kommuniziert, um den Brennstoff aufzunehmen, wobei die besagte Brennkammer (96) aus der Luft und dem Brennstoff ein Betriebsfluid erzeugt, wobei die besagte Brennkammer (96) einen Brennkammerübergang (10) umfasst, um das besagte Betriebsfluid in einen Turbinenteil (100) zu leiten;
    den Turbinenteil (100), der mechanisch mit dem besagten Brennkammerübergang (10) gekoppelt ist und mit ihm kommuniziert, um das Betriebsfluid aufzunehmen, mit dem die Turbine betrieben wird;
    einen Zylinder (50), der die Turbine umgibt, um als ein äußeres Gehäuse der Turbine zu dienen;
    einen Schaufelkranz (40), der sich innerhalb des Zylinders (50) befindet und Turbinenkomponenten umgibt; und
    ein Kühlungsschema zum Kühlen stationärer Turbinenkomponenten,
    wobei das Kühlungsschema umfasst:
    eine ringförmige Kühlmitteleinlasskammer (80), die sich zwischen dem Zylinder (50) und dem Schaufelkranz (40) befindet, zur Aufnahme des Kühlmittels, bevor es auf die stationären Turbinenkomponenten verteilt wird;
    eine ringförmige Kühlmittelausströmkammer (90), die sich zwischen dem Zylinder (50) und dem Schaufelkranz (40) und in der Nähe der besagten ringförmigen Kühlmitteleinlasskammer (80) befindet, zum Sammeln des aus den stationären Turbinenkomponenten ausströmenden Kühlmittels;
    eine Kühlmitteleinlassleitung (78) zum Zuführen des Kühlmittels zur Kühlmitteleinlasskammer (80), wobei die besagte Kühlmitteleinlassleitung (78) mit der besagten ringförmigen Kühlmitteleinlasskammer (80) kommuniziert; und
    eine Kühlmittelausströmleitung (92) zum Ableiten von Kühlmittel aus der Kühlmittelausströmkammer (90), wobei die besagte Kühlmittelausströmleitung (92) mit der besagten ringförmigen Kühlmittelausströmkammer (90) kommuniziert; und
    gekennzeichnet durch
       eine Rohrleitungsanordnung zum Verteilen des Kühlmittels auf die stationären Turbinenkomponenten und zum Ableiten des Kühlmittels von diesen; und
       dadurch, dass die Rohrleitungsanordnung Kühlmittel von der ringförmigen Einlasskammer (80) zu einer ersten Gruppe von stationären Turbinenkomponenten durch die ringförmige Ausströmkammer (90) leitet und Kühlmittel von einer zweiten Gruppe von stationären Turbinenkomponenten zu der ringförmigen Ausströmkammer (90) durch die ringförmige Kühlmitteleinlasskammer (80) ableitet.
  2. Verbrennungsturbine nach Anspruch 1, dadurch gekennzeichnet, dass die besagte Rohrleitungsanordnung umfasst:
    eine Vielzahl von Einlasskanälen, die mit der besagten Kühlmitteleinlasskammer (80) und den zu kühlenden Turbinenkomponenten kommunizieren, zum Zuführen des Kühlmittels zu den Turbinenkomponenten;
    eine Vielzahl von Ausströmkanälen, die mit den zu kühlenden Turbinenkomponenten und mit der besagten Kühlmittelausströmkammer (90) kommunizieren, um das Kühlmittel von den Turbinenkomponenten abzuleiten.
  3. Verbrennungsturbine nach Anspruch 2, dadurch gekennzeichnet, dass sie ferner umfasst:
    statische Dichtungen (44) und (45) zum Abdichten des Schaufelkranzes (40) bezüglich des Zylinders (50); und
    gelenkige Verbindungen (60) zum Befestigen des Schaufelkranzes (40) an den Turbinenkomponenten.
  4. Verbrennungsturbine nach Anspruch 3, dadurch gekennzeichnet, dass die gelenkigen Verbindungen (60) Flex-Slide-Gelenke sind.
  5. Verbrennungsturbine nach Anspruch 3, dadurch gekennzeichnet, dass sie ferner umfasst:
    ein Luftzuführungssystem zum Zuführen von Luft, um eine Zwischenstufendichtung, die sich radial innerhalb der Leitschaufeln (24) der zweiten Reihe der Turbine befindet, positiv mit Druck zu beaufschlagen, wobei das besagte Luftzuführungssystem umfasst:
    wenigstens einen ringförmigen Hohlraum (64), wobei der besagte ringförmige Hohlraum (64) mit der Zwischenstufendichtung kommuniziert; und
    eine Vielzahl von Lufteinlassleitungen (61) zum Zuführen von Luft zu dem besagten wenigstens einen ringförmigen Hohlraum (64),
    wobei die besagten Lufteinlassleitungen (61) mit dem besagten wenigstens einen ringförmigen Hohlraum (64) kommunizieren.
EP99916166A 1998-04-27 1999-03-25 Kühlungssystem für heisse turbinenteile Expired - Lifetime EP0993543B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/067,593 US6105363A (en) 1998-04-27 1998-04-27 Cooling scheme for turbine hot parts
US67593 1998-04-27
PCT/US1999/006593 WO1999056005A1 (en) 1998-04-27 1999-03-25 Cooling scheme for turbine hot parts

Publications (2)

Publication Number Publication Date
EP0993543A1 EP0993543A1 (de) 2000-04-19
EP0993543B1 true EP0993543B1 (de) 2004-05-12

Family

ID=22077067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99916166A Expired - Lifetime EP0993543B1 (de) 1998-04-27 1999-03-25 Kühlungssystem für heisse turbinenteile

Country Status (4)

Country Link
US (1) US6105363A (de)
EP (1) EP0993543B1 (de)
DE (1) DE69917170T2 (de)
WO (1) WO1999056005A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977909B2 (ja) * 1997-11-26 2007-09-19 三菱重工業株式会社 回収式蒸気冷却ガスタービン
JP4274666B2 (ja) 2000-03-07 2009-06-10 三菱重工業株式会社 ガスタービン
JP4698860B2 (ja) * 2000-04-18 2011-06-08 三菱重工業株式会社 タービンの蒸気制御装置
JP2002309903A (ja) * 2001-04-10 2002-10-23 Mitsubishi Heavy Ind Ltd ガスタービンの蒸気配管構造
DE102004014117A1 (de) 2004-03-23 2005-10-13 Alstom Technology Ltd Komponente einer Turbomaschine mit einer Kühlanordnung
US8240988B2 (en) * 2008-03-26 2012-08-14 Siemens Energy, Inc. Fastener assembly with cyclone cooling

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2783613A (en) * 1951-01-18 1957-03-05 Helmut P G A R Von Zborowski Cooling system employing fuel for cooling the blades of gas turbine engines
US3095699A (en) * 1958-12-18 1963-07-02 Babcock & Wilcox Co Combined gas-steam turbine power plant and method of operating the same
US3427000A (en) * 1966-11-14 1969-02-11 Westinghouse Electric Corp Axial flow turbine structure
US4054306A (en) 1976-05-28 1977-10-18 Pressure Science Incorporated Tube and cylindrical surface sealing apparatus
US4071269A (en) 1976-05-28 1978-01-31 Pressure Science Incorporated Flexible piping joint
US4448449A (en) 1981-05-04 1984-05-15 Halling Horace P Flexible piping joint and method of forming same
FR2540939A1 (fr) * 1983-02-10 1984-08-17 Snecma Anneau d'etancheite pour un rotor de turbine d'une turbomachine et installation de turbomachine munie de tels anneaux
US4555902A (en) * 1984-01-16 1985-12-03 Vevy Manufacturing Inc. Heat recovery system
US4821522A (en) * 1987-07-02 1989-04-18 United Technologies Corporation Sealing and cooling arrangement for combustor vane interface
DE3924615A1 (de) * 1989-07-26 1991-01-31 Babcock Werke Ag Kombinierter gas/dampfturbinen-prozess
US5412937A (en) * 1993-11-04 1995-05-09 General Electric Company Steam cycle for combined cycle with steam cooled gas turbine
JP3353259B2 (ja) * 1994-01-25 2002-12-03 謙三 星野 タ−ビン
US5640840A (en) * 1994-12-12 1997-06-24 Westinghouse Electric Corporation Recuperative steam cooled gas turbine method and apparatus
US5685693A (en) * 1995-03-31 1997-11-11 General Electric Co. Removable inner turbine shell with bucket tip clearance control
US5611197A (en) * 1995-10-23 1997-03-18 General Electric Company Closed-circuit air cooled turbine
US5953900A (en) * 1996-09-19 1999-09-21 Siemens Westinghouse Power Corporation Closed loop steam cooled steam turbine

Also Published As

Publication number Publication date
WO1999056005A1 (en) 1999-11-04
US6105363A (en) 2000-08-22
EP0993543A1 (de) 2000-04-19
DE69917170D1 (de) 2004-06-17
DE69917170T2 (de) 2005-05-04

Similar Documents

Publication Publication Date Title
EP0687865B1 (de) Nachrüstungs-Gasturbinenbrenner mit niedrigem NOx-Ausstoss
KR100415951B1 (ko) 터빈및전이조립체
US7383686B2 (en) Secondary flow, high pressure turbine module cooling air system for recuperated gas turbine engines
EP2592231B1 (de) Flexible Metalldichtung für einen Überleitkanal in einem Turbinensystem
US6872047B2 (en) Steam-cooling-type turbine
EP1217169B1 (de) Verschraubung für Rotorscheiben
US10436445B2 (en) Assembly for controlling clearance between a liner and stationary nozzle within a gas turbine
CN102575526B (zh) 密封元件、燃气涡轮机喷嘴设备和燃气涡轮机
EP0968355B1 (de) Versorgungsrohransatz für die kühlung der komponenten einer gasturbine
US6450758B1 (en) Cooling system for a bearing of a turbine rotor
EP0512941B1 (de) Zusammenbau eines Stators für eine rotierende Maschine
EP1101897B1 (de) Methode zur Demontage, zum Ersatz und zur Montage von Teilen eines Dampfkühlungssystems für Gasturbinen
US20040163394A1 (en) Coolant recovery type gas turbine
EP1079069B1 (de) Dampfkühlungssystem für eine Gasturbine
EP2592233B1 (de) Turbinensystem mit einer Faltdichtung
EP0993543B1 (de) Kühlungssystem für heisse turbinenteile
EP1010858B1 (de) Dampfkühlung für einen Turbinenrotor
EP1793105A2 (de) Dampfgekühlte Gasturbine
US20050247062A1 (en) Gas turbine
RU2310086C1 (ru) Газотурбинная установка
WO1982001033A1 (en) Turbine cooling system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SMITH, RICKY, LEE

Inventor name: NORDLUND, RAYMOND, SCOTT

Inventor name: DOWMAN, STEVEN, WAYNE

Inventor name: OWEN, BRIAN, CHARLES

Inventor name: HULTGREN, KENT, GORAN

17Q First examination report despatched

Effective date: 20030508

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69917170

Country of ref document: DE

Date of ref document: 20040617

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69917170

Country of ref document: DE

Representative=s name: PETER BERG, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69917170

Country of ref document: DE

Representative=s name: BERG, PETER, DIPL.-ING., DE

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 69917170

Country of ref document: DE

Owner name: SIEMENS ENERGY, INC., ORLANDO, US

Free format text: FORMER OWNER: SIEMENS WESTINGHOUSE POWER CORP., ORLANDO, FLA., US

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 69917170

Country of ref document: DE

Owner name: SIEMENS ENERGY, INC., US

Free format text: FORMER OWNER: SIEMENS WESTINGHOUSE POWER CORP., ORLANDO, US

Effective date: 20111028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SIEMENS ENERGY, INC.

Effective date: 20120413

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180312

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180312

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180518

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180327

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69917170

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190324