EP0990464B1 - Jet pump for compression of a two phase mixture by means of supersonic flow - Google Patents

Jet pump for compression of a two phase mixture by means of supersonic flow Download PDF

Info

Publication number
EP0990464B1
EP0990464B1 EP98810976A EP98810976A EP0990464B1 EP 0990464 B1 EP0990464 B1 EP 0990464B1 EP 98810976 A EP98810976 A EP 98810976A EP 98810976 A EP98810976 A EP 98810976A EP 0990464 B1 EP0990464 B1 EP 0990464B1
Authority
EP
European Patent Office
Prior art keywords
foam
gas
liquid
nozzle
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810976A
Other languages
German (de)
French (fr)
Other versions
EP0990464A1 (en
Inventor
Klaus Dr. Döbbeling
Bettina Dr. Paikert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to DE59807474T priority Critical patent/DE59807474D1/en
Priority to EP98810976A priority patent/EP0990464B1/en
Priority to AT98810976T priority patent/ATE234144T1/en
Priority to US09/391,400 priority patent/US6241479B1/en
Publication of EP0990464A1 publication Critical patent/EP0990464A1/en
Application granted granted Critical
Publication of EP0990464B1 publication Critical patent/EP0990464B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/04Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids
    • F04F5/06Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids of rotary type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/311Injector mixers in conduits or tubes through which the main component flows for mixing more than two components; Devices specially adapted for generating foam
    • B01F25/3111Devices specially adapted for generating foam, e.g. air foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/311Injector mixers in conduits or tubes through which the main component flows for mixing more than two components; Devices specially adapted for generating foam
    • B01F25/3111Devices specially adapted for generating foam, e.g. air foam
    • B01F25/31113Devices specially adapted for generating foam, e.g. air foam with rotating elements, e.g. driven by one of the components for feeding or by the resulting mixture for additional mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3122Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof the material flowing at a supersonic velocity thereby creating shock waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/834Mixing in several steps, e.g. successive steps

Definitions

  • the present invention relates to the field of compressor technology. she relates to a method for compressing a gas and a compression device to perform the procedure.
  • the object is achieved in a method of the type mentioned at the outset by that in a first step a foam from the gas and a liquid is formed in which the speed of sound is significantly lower than that Gas and in the liquid taken that in a second step the Foam passed through a nozzle at supersonic speed and thereby the gas in the foam is compressed, and that in a third step behind the nozzle the compressed gas and the liquid are separated become.
  • the essence of the invention is a foam-like for compression Gas-liquid system to use, which is opposed by one the significantly reduced speed of sound in the individual components. This makes it possible for the compression process with reduced effort to achieve the necessary supersonic speed. At the same time can over the liquid that is separated again later on is the one that arises during compression Heat can be dissipated easily.
  • a preferred embodiment of the method according to the invention is thereby characterized in that a substantially still foam is generated that the nozzle is moved through the foam at supersonic speed, and that the movement of the nozzle is carried out as a circular movement around an axis of rotation becomes.
  • This type of procedure proves to be particularly favorable for the Implementation of the method by apparatus.
  • a preferred development of this embodiment because of its simplicity is characterized in that the foam behind the nozzle in one with the Nozzle with the moving collecting container is caught, and that when rotating centrifugal force arising in the collecting container for the separation of gas and Liquid is used.
  • Another preferred embodiment of the method according to the invention is characterized in that to produce the foam, the gas in one volume the liquid is introduced distributed and that the gas from below through a porous bottom into a layer of liquid above the bottom is introduced. This makes it possible to create a fine-pored surface over a large area without moving parts Generate foam that is special for the compression according to the invention suitable is.
  • the compression device according to the invention for performing the method according to the invention is characterized by a container for the generated Foam, which container with first means for generating the foam is connected, and at least one nozzle, which is relative to the foam The foam can be moved through the nozzle at supersonic speed passes, and second means for separating the foam into gas and Liquid, which second means are arranged behind the nozzle.
  • a first preferred embodiment of the device according to the invention is characterized in that the first means comprise a porous floor, which closes the container down, and which from the bottom
  • the gas can be acted on over a wide area such that the at least one nozzle is located inside of the container on an arm rotatable about a central axis of rotation and essentially is arranged tangentially to the rotating circle that the arm of a motor is driven that the second means each installed one behind the nozzle and connected to the nozzle collection container, which each on End of the arm is arranged, and that in the collecting container third Means for separate removal of the gaseous particles which separate during the rotation and liquid components are provided.
  • a preferred development of this embodiment is characterized in that that the arm is each tubular, that the third means each include first inner tube extending within the arm, and that the Liquid through the first inner tube and the gas in the space between the first inner tube and the arm.
  • An essential feature of the present invention is the use of a Gas-liquid system for compression of the gas itself.
  • a Gas-liquid system for compression of the gas itself.
  • the speed of sound is much lower than the speed of sound of the pure gas or liquid. So e.g. the speed of sound below 40 m / s in an air-water system, if the volume ratio ⁇ of air to the mixture as a whole between 0.1 and 0.9 (Fig. 1). This means that supersonic speed is relative simply generated and that such a mixture through a flow cross-sectional constriction can be highly compressed.
  • Foam is characterized by high gas or air volume fractions ( ⁇ ⁇ 0.9). Foam is defined as a dispersion of gas in a liquid, which contains one or more surface-active substances.
  • the liquid is lying mainly in the form of thin films to coat the foam Bubbles before.
  • the size (diameter) of the bubbles varies between a few micrometers (fine foam) and several millimeters (coarse foam).
  • the surface-active substances are soluble in the liquid and reduce their surface tension, so that the formation of stable bubbles allows becomes.
  • foam by means of a 1-5% butyl glycol / water solution and air.
  • the method according to the invention can now be done by means of a compression device of which a preferred exemplary embodiment is shown in FIG. 2 and 3 is reproduced.
  • the compression device 10 shown comprises a container 11 in which the desired foam 21 is generated.
  • the container 11 is closed at the bottom by a porous bottom 23, over a layer during the operation of the compression device 10 the liquid 22 used (in particular water plus surface-active Substances).
  • a feed space 24 is arranged below the porous base 23, the via a feed 25 with the used to be compressed Gas (especially air) can be filled.
  • the gas penetrates in the form of small bubbles from the feed chamber 24 through the porous bottom 23 - which also as a perforated plate or the like.
  • Rotation axis 12 rotatably arranged a system which by means of a motor 26 (or an equivalent drive) moved at a peripheral speed is, which is above the speed of sound of the foam 21, and with this Ultrasound speed captures the foam 21 and by reducing the cross-section flows.
  • This is done on two opposite arms 15, 16 two tangentially directed nozzles 19, 20 are provided, through which the relative flows to the foam 21 at rest, rotating around the axis of rotation 12, nozzles 19, 20 and arrives in the collecting container 17, 18 located behind it.
  • the two nozzles 19, 20 shown in the example only one nozzle or more than two nozzles can be used.
  • the compression device 10 shown in FIGS. 2 and 3 now works as follows: Rotate in the container filled with foam 21 - driven by the engine 26 - the two nozzles 19, 20 with the associated collecting container 17, 18 counterclockwise (rotating arrows in Fig. 2).
  • the speed of rotation in the exemplary and preferred air-water mixture is approx. 100 m / s, i.e. the nozzles 19, 20 move relative to the foam 21 at supersonic speed.
  • Such a speed can be achieved, for example when the rotational frequency of the motor 26 is 50 Hz and the nozzles 19, 20 have a distance of approximately 0.3 m from the axis of rotation 12.
  • the two-phase mixture is compressed in the nozzles 19, 20.
  • the liquid (water) thrown radially outwards due to the centrifugal force and over the radial inner tubes 29, 30 and the axial inner tube 14 transported to the outlet 28.
  • the liquid emerging at outlet 28 can - possibly after heat has been removed - are returned to the container 11 for foam formation.
  • the gas (air) remaining during ejection is in the space between the arms 15, 16 and the radial inner tubes 29, 30 to the axial outer tube 13 out and can (in compressed form) removed at the outlet 27 become.
  • the bottom 23 of the container 11 consists of a porous material or a perforated plate. Is on the floor 23 always a layer of liquid 22. The gas (air) flows through the bottom 23 and forms 22 bubbles when penetrating the liquid layer. It is created this way always a fresh foam 21.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Physical Water Treatments (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

The process comprises forming a foam (21) from the gas and a liquid, where the speed of sound is smaller than the in gas and in the liquid ; directing the foam at supersonic speed through a nozzle (19,20) so condensing the gas; and separating the condensed gas and liquid from one another after the nozzle (19,20). An Independent claim is included for a condensing apparatus (10).

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Kompressortechnik. Sie betrifft ein Verfahren zum komprimieren eines Gases sowie eine Kompressionsvorrichtung zum Durchführen des Verfahrens.The present invention relates to the field of compressor technology. she relates to a method for compressing a gas and a compression device to perform the procedure.

STAND DER TECHNIKSTATE OF THE ART

Im Stand der Technik (siehe z.B. die Druckschrift US-A-5,083,429) ist bereits verschiedentlich vorgeschlagen worden, ein strömendes gasförmiges Medium dadurch zu komprimieren, dass es in einer geeigneten Vorrichtung (Kompressionsrohr) zunächst auf Ueberschallgeschwindigkeit beschleunigt und anschliessend unter Erzeugung von Schockwellen und anschliessender Druckerhöhung wieder abgebremst wird. Die bei der Kompression entstehende Wärme kann dabei beispielsweise durch Eindüsen von Wasser in den entsprechenden Rohrabschnitt abgeführt werden. Nachteilig bei dieser Art der Kompression ist, dass die Schallgeschwindigkeit des gasförmigen Mediums (z.B. Luft) in der Regel relativ hoch ist, und dass daher einiger Aufwand betrieben werden muss, um den Gasstrom auf Ueberschallgeschwindigkeit zu bringen.In the prior art (see e.g. the document US-A-5,083,429) is already different has been proposed to create a flowing gaseous medium to compress it in a suitable device (compression tube) first accelerated to supersonic speed and then generating shock waves and then increasing the pressure again is braked. The heat generated during the compression can, for example by injecting water into the corresponding pipe section be dissipated. The disadvantage of this type of compression is that the speed of sound the gaseous medium (e.g. air) is usually relatively high, and that therefore some effort must be made to keep the gas flow going Bring supersonic speed.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es ist daher Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung für die Kompression eines gasförmigen Mediums anzugeben, welche mit einer deutlich reduzierten Schallgeschwindigkeit arbeiten und daher mit reduziertem Aufwand verwirklicht werden können.It is therefore an object of the invention to provide a method and an apparatus for the Specify compression of a gaseous medium, which with a clear work at reduced speed of sound and therefore with less effort can be realized.

Die Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass in einem ersten Schritt aus dem Gas und einer Flüssigkeit ein Schaum gebildet wird, in welchem die Schallgeschwindigkeit deutlich kleiner ist als in dem Gas und in der Flüssigkeit für sich genommen, dass in einem zweiten Schritt der Schaum mit Ueberschallgeschwindigkeit durch eine Düse geleitet und dadurch das im Schaum befindliche Gas komprimiert wird, und dass in einem dritten Schritt hinter der Düse das komprimierte Gas und die Flüssigkeit voneinander getrennt werden.The object is achieved in a method of the type mentioned at the outset by that in a first step a foam from the gas and a liquid is formed in which the speed of sound is significantly lower than that Gas and in the liquid taken that in a second step the Foam passed through a nozzle at supersonic speed and thereby the gas in the foam is compressed, and that in a third step behind the nozzle the compressed gas and the liquid are separated become.

Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens sind Gegenstand der abhängigen Ansprüche 2 bis 9.Advantageous further developments of the method according to the invention are the subject of dependent claims 2 to 9.

Der Kern der Erfindung besteht darin, für die Kompression ein schaumartiges Gas-Flüssigkeits-System zu verwenden, welches sich durch eine gegenüber den einzelnen Komponenten deutlich reduzierte Schallgeschwindigkeit aus zeichnet. Hierdurch ist es möglich, mit reduziertem Aufwand die für den Kompressionsvorgang notwendige Ueberschallgeschwindigkeit zu erreichen. Zugleich kann über die später wieder abseparierte Flüssigkeit die bei der Kompression entstehende Wärme auf einfache Weise abgeführt werden.The essence of the invention is a foam-like for compression Gas-liquid system to use, which is opposed by one the significantly reduced speed of sound in the individual components. This makes it possible for the compression process with reduced effort to achieve the necessary supersonic speed. At the same time can over the liquid that is separated again later on is the one that arises during compression Heat can be dissipated easily.

Eine bevorzugte Ausführungsform des Verfahrens nach der Erfindung ist dadurch gekennzeichnet, dass ein im wesentlichen ruhender Schaum erzeugt wird, dass die Düse mit Ueberschallgeschwindigkeit durch den Schaum bewegt wird, und dass die Bewegung der Düse als Kreisbewegung um eine Drehachse ausgeführt wird. Diese Art der Verfahrensführung erweist sich als besonders günstig für die apparative Realisierung des Verfahrens.A preferred embodiment of the method according to the invention is thereby characterized in that a substantially still foam is generated that the nozzle is moved through the foam at supersonic speed, and that the movement of the nozzle is carried out as a circular movement around an axis of rotation becomes. This type of procedure proves to be particularly favorable for the Implementation of the method by apparatus.

Eine wegen ihrer Einfachheit bevorzugte Weiterbildung dieser Ausführungsform zeichnet sich dadurch aus, dass der Schaum hinter der Düse in einem mit der Düse mitbewegten Auffangbehälter aufgefangen wird, und dass die bei der Drehung entstehende Zentrifugalkraft im Auffangbehälter zur Trennung von Gas und Flüssigkeit eingesetzt wird.A preferred development of this embodiment because of its simplicity is characterized in that the foam behind the nozzle in one with the Nozzle with the moving collecting container is caught, and that when rotating centrifugal force arising in the collecting container for the separation of gas and Liquid is used.

Eine andere bevorzugte Ausführungsform des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass zur Erzeugung des Schaumes das Gas in ein Volumen der Flüssigkeit verteilt eingebracht wird ,und dass das Gas von unten durch einen porösen Boden in eine über dem Boden stehende Schicht der Flüssigkeit eingebracht wird. Hierdurch lässt sich grossflächig ohne bewegte Teile ein feinporiger Schaum erzeugen, der für die erfindungsgemässe Kompression besonders geeignet ist.Another preferred embodiment of the method according to the invention is characterized in that to produce the foam, the gas in one volume the liquid is introduced distributed and that the gas from below through a porous bottom into a layer of liquid above the bottom is introduced. This makes it possible to create a fine-pored surface over a large area without moving parts Generate foam that is special for the compression according to the invention suitable is.

Die erfindungsgemässe Kompressionsvorrichtung zur Durchführung des Verfahrens nach der Erfindung ist gekennzeichnet durch einen Behälter für den erzeugten Schaum, welcher Behälter mit ersten Mitteln zur Erzeugung des Schaumes verbunden ist, sowie wenigstens eine Düse, welche relativ zum Schaum derart bewegbar ist, dass der Schaum mit Ueberschallgeschwindigkeit durch die Düse hindurchtritt, sowie zweiten Mitteln zur Auftrennung des Schaumes in Gas und Flüssigkeit, welche zweiten Mittel hinter der Düse angeordnet sind.The compression device according to the invention for performing the method according to the invention is characterized by a container for the generated Foam, which container with first means for generating the foam is connected, and at least one nozzle, which is relative to the foam The foam can be moved through the nozzle at supersonic speed passes, and second means for separating the foam into gas and Liquid, which second means are arranged behind the nozzle.

Vorteilhafte Weiterbildungen der erfindungsgemäßen Kompressionsvorrichtung sind Gegenstand der abhängigen Ansprüche 11 bis 16.Advantageous further developments of the compression device according to the invention are the subject of dependent claims 11 to 16.

Eine erste bevorzugte Ausführungsform der Vorrichtung nach der Erfindung ist dadurch gekennzeichnet, dass die ersten Mittel einen porösen Boden umfassen, welcher den Behälter nach unten abschliesst, und welcher von der Unterseite her flächig mit dem Gas beaufschlagbar ist, dass die wenigstens eine Düse innerhalb des Behälters an einem Arm um eine zentrale Drehachse drehbar und im wesentlichen tangential zum Drehkreis angeordnet ist, dass der Arm von einem Motor angetrieben ist, dass die zweiten Mittel jeweils einen hinter der Düse angebrachten und mit der Düse verbundenen Auffangbehälter umfassen, welcher jeweils am Ende des Armes angeordnet ist, und dass in dem Auffangbehälter jeweils dritte Mittel zur getrennten Abfuhr der sich bei der Drehung trennenden gasförmigen und flüssigen Komponenten vorgesehen sind.A first preferred embodiment of the device according to the invention is characterized in that the first means comprise a porous floor, which closes the container down, and which from the bottom The gas can be acted on over a wide area such that the at least one nozzle is located inside of the container on an arm rotatable about a central axis of rotation and essentially is arranged tangentially to the rotating circle that the arm of a motor is driven that the second means each installed one behind the nozzle and connected to the nozzle collection container, which each on End of the arm is arranged, and that in the collecting container third Means for separate removal of the gaseous particles which separate during the rotation and liquid components are provided.

Eine bevorzugte Weiterbildung dieser Ausführungsform ist dadurch gekennzeichnet, dass der Arm jeweils rohrförmig ausgebildet ist, dass die dritten Mittel ein jeweils innerhalb des Armes verlaufendes erstes Innenrohr umfassen, und dass die Flüssigkeit durch das erste Innenrohr und das Gas im Zwischenraum zwischen dem ersten Innenrohr und dem Arm abgeführt werden.A preferred development of this embodiment is characterized in that that the arm is each tubular, that the third means each include first inner tube extending within the arm, and that the Liquid through the first inner tube and the gas in the space between the first inner tube and the arm.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen

Fig. 1
ein Diagramm der Abhängigkeit der Schallgeschwindigkeit in einem Luft-Wasser-System vom Verhältnis ε des Luftvolumens Vair zum Gesamtvolumen V des Luft-Wasser-Gemisches;
Fig. 2
in der Draufsicht ein bevorzugtes Ausführungsbeispiel einer Kompressionsvorrichtung mit zwei Düsen an zwei Armen; und
Fig. 3
die Kompressionsvorrichtung nach Fig. 2 in der teilweise geschnittenen Seitenansicht.
The invention will be explained in more detail below on the basis of exemplary embodiments in connection with the drawing. Show it
Fig. 1
a diagram of the dependence of the speed of sound in an air-water system on the ratio ε of the air volume V air to the total volume V of the air-water mixture;
Fig. 2
in plan view a preferred embodiment of a compression device with two nozzles on two arms; and
Fig. 3
2 in the partially sectioned side view.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Ein wesentliches Merkmal der vorliegenden Erfindung ist die Verwendung eines Gas-Flüssigkeits-Systems zur Kompression des Gases selbst. In zweiphasigen Gas-Flüssigkeits-Strömungen ist oftmals die Schallgeschwindigkeit viel geringer als die Schallgeschwindigkeit des reinen Gases bzw. der reinen Flüssigkeit. So liegen z.B. die Schallgeschwindigkeiten unter 40 m/s in einem Luft-Wasser-System, wenn das Volumenverhältnis ε von Luft zum Gemisch insgesamt zwischen 0,1 und 0,9 liegt (Fig. 1). Dies bedeutet, dass Ueberschallgeschwindigkeit relativ einfach erzeugt und dass ein solches Gemisch durch eine Strömungsquerschnittsverengung stark komprimiert werden kann.An essential feature of the present invention is the use of a Gas-liquid system for compression of the gas itself. In two-phase Gas-liquid flows are often the speed of sound is much lower than the speed of sound of the pure gas or liquid. So e.g. the speed of sound below 40 m / s in an air-water system, if the volume ratio ε of air to the mixture as a whole between 0.1 and 0.9 (Fig. 1). This means that supersonic speed is relative simply generated and that such a mixture through a flow cross-sectional constriction can be highly compressed.

Eine spezielle Form eines solchen Gas-Flüssigkeits- bzw. Luft-Wasser-Gemisches ist der Schaum. Schaum zeichnet sich durch hohe Gas- bzw. Luftvolumenanteile (ε ≈ 0,9) aus. Schaum ist definiert als eine Dispersion von Gas in einer Flüssigkeit, die eine oder mehrere oberflächenaktive Substanzen enthält. Die Flüssigkeit liegt hauptsächlich in Form von dünnen Filmen als Ummantelung der im Schaum vorhandenen Blasen vor. Die Grösse (der Durchmesser) der Blasen variiert zwischen einigen Mikrometern (feiner Schaum) und mehreren Millimetern (grober Schaum). Die oberflächenaktiven Substanzen sind in der Flüssigkeit löslich und verringern deren Oberflächenspannung, so dass die Bildung von stabilen Blasen ermöglicht wird. In der beispielhaften Luft-Wasser-Mischung kann Schaum beispielsweise mittels einer 1-5%-igen Butyl-Glycol/Wasser-Lösung und Luft erzeugt werden.A special form of such a gas-liquid or air-water mixture is the foam. Foam is characterized by high gas or air volume fractions (ε ≈ 0.9). Foam is defined as a dispersion of gas in a liquid, which contains one or more surface-active substances. The liquid is lying mainly in the form of thin films to coat the foam Bubbles before. The size (diameter) of the bubbles varies between a few micrometers (fine foam) and several millimeters (coarse foam). The surface-active substances are soluble in the liquid and reduce their surface tension, so that the formation of stable bubbles allows becomes. In the exemplary air-water mixture, for example, foam by means of a 1-5% butyl glycol / water solution and air.

Das erfindungsgemässe Verfahren kann nun mittels einer Kompressionsvorrichtung durchgeführt werden, von der ein bevorzugtes Ausführungsbeispiel in Fig. 2 und 3 wiedergegeben ist. Die dargestellte Kompressionsvorrichtung 10 umfasst einen Behälter 11, in welchem der gewünschte Schaum 21 erzeugt wird. Der Behälter 11 ist nach unten hin durch einen porösen Boden 23 abgeschlossen, über dem während des Betriebes der Kompressionsvorrichtung 10 stets eine Schicht der verwendeten Flüssigkeit 22 (insbesondere Wasser plus oberflächenaktive Substanzen) steht. Unterhalb des porösen Bodens 23 ist ein Zuführraum 24 angeordnet, der über eine Zuführung 25 mit dem verwendeten, zu komprimierenden Gas (insbesondere Luft) gefüllt werden kann. Das Gas dringt in Form kleiner Bläschen vom Zuführraum 24 durch den porösen Boden 23 - der auch als Lochblech oder dgl. ausgebildet sein kann - in die darüberstehende Flüssigkeit 22 und erzeugt beim Durchtreten durch die Flüssigkeit 22 den Schaum 21, der den Behälter 11 oberhalb der Flüssigkeit 22 mehr oder weniger stark ausfüllt.The method according to the invention can now be done by means of a compression device of which a preferred exemplary embodiment is shown in FIG. 2 and 3 is reproduced. The compression device 10 shown comprises a container 11 in which the desired foam 21 is generated. The container 11 is closed at the bottom by a porous bottom 23, over a layer during the operation of the compression device 10 the liquid 22 used (in particular water plus surface-active Substances). A feed space 24 is arranged below the porous base 23, the via a feed 25 with the used to be compressed Gas (especially air) can be filled. The gas penetrates in the form of small bubbles from the feed chamber 24 through the porous bottom 23 - which also as a perforated plate or the like. Can be formed - in the liquid 22 above and generated when passing through the liquid 22, the foam 21, the container 11 fills more or less strongly above the liquid 22.

Im Bereich des Schaumes 21 ist innerhalb des Behälters 11 um eine zentrale Drehachse 12 drehbar ein System angeordnet, welches mittels eines Motors 26 (oder eines gleichwirkenden Antriebes) mit einer Umfangsgeschwindigkeit bewegt wird, die über der Schallgeschwindigkeit des Schaumes 21 liegt, und mit dieser Ueberschallgeschwindigkeit den Schaum 21 einfängt und durch eine Querschnittsverengung strömen lässt. Hierzu sind an zwei gegenüberliegenden Armen 15, 16 zwei tangential gerichtete Düsen 19, 20 vorgesehen, durch die der relativ zu den um die Drehachse 12 rotierenden Düsen 19, 20 ruhende Schaum 21 hindurchströmt und in dahinterliegende Auffangbehälter 17, 18 gelangt. Es versteht sich von selbst, dass anstelle der im Beispiel gezeigten zwei Düsen19, 20 auch nur eine Düse oder mehr als zwei Düsen eingesetzt werden können.In the area of the foam 21 there is a central one inside the container 11 Rotation axis 12 rotatably arranged a system which by means of a motor 26 (or an equivalent drive) moved at a peripheral speed is, which is above the speed of sound of the foam 21, and with this Ultrasound speed captures the foam 21 and by reducing the cross-section flows. This is done on two opposite arms 15, 16 two tangentially directed nozzles 19, 20 are provided, through which the relative flows to the foam 21 at rest, rotating around the axis of rotation 12, nozzles 19, 20 and arrives in the collecting container 17, 18 located behind it. It understands It goes without saying that instead of the two nozzles 19, 20 shown in the example only one nozzle or more than two nozzles can be used.

In den Auffangbehältern 17, 18 endet vor der Behälterwand jeweils ein innerhalb des rohrförmigen Armes 15, 16 konzentrisch verlaufendes Innenrohr 29, 30. Die radialen Innenrohre 29, 30 sind zu einem in der Drehachse 12 liegenden, axialen Innenrohr 14 geführt und an dieses angeschlossen. Die rohrförmigen Arme 15, 16, verbinden die Auffangbehälter 17, 18 mit einem axialen Aussenrohr 13, welches das axiale Innenrohr 14 konzentrisch umgibt. Die axialen Rohre 13, 14 dienen als Welle. Sie und die an ihnen befestigten Arme 15, 16 werden durch den unterhalb des Behälters 11 angeordneten Motor 26 gedreht. Die axialen Rohre 13, 14 sind nach unten zu geschlossen. Nach oben hin sind sie von aussen durch geeignete Auslässe 27, 28 zugänglich.In the receptacles 17, 18 one ends in front of the container wall of the tubular arm 15, 16 concentrically extending inner tube 29, 30. Die radial inner tubes 29, 30 are to an axial lying in the axis of rotation 12 Inner tube 14 guided and connected to this. The tubular arms 15, 16, connect the receptacles 17, 18 with an axial outer tube 13, which surrounds the axial inner tube 14 concentrically. The axial tubes 13, 14 serve as Wave. You and the arms 15, 16 attached to them are by the below of the container 11 arranged motor 26 rotated. The axial tubes 13, 14 are closed down too. From the outside, they are suitable from the outside Outlets 27, 28 accessible.

Die in Fig. 2 und 3 dargestellte Kompressionsvorrichtung 10 funktioniert nun wie folgt: In dem mit dem Schaum 21 gefüllten Behälter rotieren - angetrieben von dem Motor 26 - die beiden Düsen 19, 20 mit dem dazugehörigen Auffangbehälter 17, 18 entgegen dem Uhrzeigersinn (Drehpfeile in Fig. 2). Die Rotationsgeschwindigkeit beträgt bei dem beispielhaften und bevorzugten Luft-Wasser-Gemisch ca. 100 m/s, d.h., die Düsen 19, 20 bewegen sich relativ zum Schaum 21 mit Ueberschallgeschwindigkeit. Eine solche Geschwindigkeit kann beispielsweise erreicht werden, wenn die Umdrehungsfrequenz des Motors 26 50 Hz beträgt und die Düsen 19, 20 einen Abstand von ca. 0,3 m von der Drehachse 12 haben.The compression device 10 shown in FIGS. 2 and 3 now works as follows: Rotate in the container filled with foam 21 - driven by the engine 26 - the two nozzles 19, 20 with the associated collecting container 17, 18 counterclockwise (rotating arrows in Fig. 2). The speed of rotation in the exemplary and preferred air-water mixture is approx. 100 m / s, i.e. the nozzles 19, 20 move relative to the foam 21 at supersonic speed. Such a speed can be achieved, for example when the rotational frequency of the motor 26 is 50 Hz and the nozzles 19, 20 have a distance of approximately 0.3 m from the axis of rotation 12.

In den Düsen 19, 20 tritt eine Verdichtung des 2-Phasen-Gemisches ein. In den Auffangbehältern 17, 18 hinter den Düsen 19, 20 wird die Flüssigkeit (das Wasser) aufgrund der Zentrifugalkraft radial nach aussen ausgeschleudert und über die radialen Innenrohre 29, 30 und das axiale Innenrohr 14 zum Auslass 28 transportiert. Die am Auslass 28 austretende Flüssigkeit kann - ggf. nach einem Wärmeentzug - wieder zur Schaumbildung in den Behälter 11 zurückgeführt werden. Das beim Ausschleudern zurückbleibende Gas (Luft) wird im Zwischenraum zwischen den Armen 15, 16 und den radialen Innenrohren 29, 30 zum axialen Aussenrohr 13 geführt und kann (in komprimierter Form) am Auslass 27 entnommen werden.The two-phase mixture is compressed in the nozzles 19, 20. In the Collection containers 17, 18 behind the nozzles 19, 20, the liquid (water) thrown radially outwards due to the centrifugal force and over the radial inner tubes 29, 30 and the axial inner tube 14 transported to the outlet 28. The liquid emerging at outlet 28 can - possibly after heat has been removed - are returned to the container 11 for foam formation. The gas (air) remaining during ejection is in the space between the arms 15, 16 and the radial inner tubes 29, 30 to the axial outer tube 13 out and can (in compressed form) removed at the outlet 27 become.

Wie bereits weiter oben erwähnt, besteht der Boden 23 des Behälters 11 aus einem porösen Material oder einem Lochblech. Auf dem Boden 23 befindet sich stets eine Flüssigkeitsschicht 22. Das Gas (die Luft) durchströmt den Boden 23 und bildet beim Durchdringen der Flüssigkeitsschicht 22 Blasen. Es entsteht so stets ein frischer Schaum 21.As already mentioned above, the bottom 23 of the container 11 consists of a porous material or a perforated plate. Is on the floor 23 always a layer of liquid 22. The gas (air) flows through the bottom 23 and forms 22 bubbles when penetrating the liquid layer. It is created this way always a fresh foam 21.

Bei Ausgangsvolumenverhältnissen von ε = 0,9 beträgt (beim Luft-Wasser-Gemisch) das Massenverhältnis von Wasser zu Luft 85,9, d.h., die bei der Kompression der Luft frei werdende Wärme wird vom Wasser aufgenommen, ohne dass es zu einer nennenswerten Temperaturerhöhung kommt. With initial volume ratios of ε = 0.9 (with air-water mixture) the mass ratio of water to air 85.9, i.e. that during compression The heat released from the air is absorbed by the water without it there is a significant temperature increase.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
Kompressionsvorrichtungcompression device
1111
Behältercontainer
1212
Drehachseaxis of rotation
1313
Aussenrohrouter tube
1414
Innenrohrinner tube
15,1615.16
Armpoor
17,1817.18
Auffangbehälterreceptacle
19,2019.20
Düsejet
2121
Schaumfoam
2222
Flüssigkeit (Flüssigkeitsschicht)Liquid (liquid layer)
2323
Boden (porös)Floor (porous)
2424
Zuführraum (Gas)Feed space (gas)
2525
Zuführung (Gas)Supply (gas)
2626
Motorengine
2727
Auslass (Gas)Outlet (gas)
2828
Auslass (Flüssigkeit)Outlet (liquid)
29,3029.30
Innenrohrinner tube

Claims (16)

  1. Method of compressing a gas, characterized in that, in a first step, a foam (21) is formed from the gas and a liquid, in which foam (21) the sonic velocity is markedly lower than in the gas and in the liquid taken by themselves, in that, in a second step, the foam is directed at supersonic velocity through a nozzle (19, 20) and the gas located in the foam is thereby compressed, and in that, in a third step, the compressed gas and the liquid are separated from one another behind the nozzle (19, 20).
  2. Method according to Claim 1, characterized in that an essentially static foam (21) is produced, and in that the nozzle (19, 20) is moved at supersonic velocity through the foam (21).
  3. Method according to Claim 2, characterized in that the movement of the nozzle (19, 20) is executed as a circular movement about an axis of rotation (12).
  4. Method according to Claim 3, characterized in that the foam is collected behind the nozzle (19, 20) in a collecting container (17, 28) moving along with the nozzle (19, 20), and in that the centrifugal force arising in the collecting container (17, 18) during the rotation is used for the separation of gas and liquid.
  5. Method according to one of Claims 1 to 4, characterized in that, to produce the foam (21), the gas is introduced into a volume of the liquid (22) in a distributed manner.
  6. Method according to Claim 5, characterized in that the gas is introduced from below through a porous base (23) into a layer of the liquid (22) above the base (23).
  7. Method according to one of Claims 1 to 6, characterized in that, to stabilize the foam, at least one surface-active substance is admixed with the liquid (22) before the formation of the foam.
  8. Method according to one of Claims 1 to 7, characterized in that air is compressed, and wherein the liquid (22) used is water.
  9. Method according to Claim 8, characterized in that butyl-glycol, in particular with the formation of a 1 to 5% solution, is added as a surface-active substance to the water.
  10. Compression apparatus (10) for carrying out the method according to Claims 1 to 9, characterized by a container (11) for the foam (21) produced, which container (11) is connected to first means (22-25) for producing the foam (21), as well as at least one nozzle (19, 20), which can be moved relative to the foam in such a way that the foam (21) passes at supersonic velocity through the nozzle (19, 20), as well as second means (17, 18; 29, 30) for the separation of the foam into gas and liquid, which second means are arranged behind the nozzle (19, 20).
  11. Compression apparatus according to Claim 10, characterized in that the first means comprise a porous base (23), which closes off the container (11) at the bottom and to which gas can be admitted over the surface area from the underside.
  12. Compression apparatus according to either of Claims 10 and 11, characterized in that the at least one nozzle (19, 20) is arranged inside the container (11) on an arm (15, 16) so as to be rotatable about a central axis of rotation (12) and essentially tangentially to the circle of rotation, and in that the arm (15, 16) is driven by a motor (26).
  13. Compression apparatus according to Claim 12, characterized in that the second means in each case comprise a collecting container (17, 18), which is attached behind the nozzle (19, 20), is connected to the nozzle (19, 20) and is in each case arranged on the end of the arm (15, 16), and in that in each case third means (29, 30) for the separate discharge of the gaseous and liquid components separating during the rotation are provided in the collecting container (17, 18).
  14. Compression apparatus according to Claim 13, in that the arm (15, 16) is in each case of tubular design, in that the third means comprise a first inner tube (29, 30) running in each case inside the arm (15, 16), and in that the liquid is drawn off through the first inner tube (29, 30) and the gas is drawn off in the intermediate space between the first inner tube (29, 30) and the arm (15, 16).
  15. Compression apparatus according to Claim 14, characterized in that an outer tube (13) and a second inner tube (14), through which the gas and respectively the liquid are directed out of the container (11) after their separation, are arranged concentrically in the axis of rotation (12), and in that the arm (15, 16) is in each case connected to the outer tube (13) and the first inner tube (29, 30) is in each case connected to the second inner tube (14).
  16. Compression apparatus according to one of Claims 12 to 15, characterized in that a plurality of nozzles (19, 20), distributed over the circumference, are arranged so as to be rotatable inside the container (11) on corresponding arms (15, 16) and are driven by the motor (26).
EP98810976A 1998-09-28 1998-09-28 Jet pump for compression of a two phase mixture by means of supersonic flow Expired - Lifetime EP0990464B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59807474T DE59807474D1 (en) 1998-09-28 1998-09-28 Jet pump for compression of a two-phase mixture using supersonic flow
EP98810976A EP0990464B1 (en) 1998-09-28 1998-09-28 Jet pump for compression of a two phase mixture by means of supersonic flow
AT98810976T ATE234144T1 (en) 1998-09-28 1998-09-28 JET PUMP FOR COMPRESSING A TWO-PHASE MIXTURE USING SUPERSONIC FLOW
US09/391,400 US6241479B1 (en) 1998-09-28 1999-09-08 Supersonic centrifugal compression and separation of liquid and gas mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810976A EP0990464B1 (en) 1998-09-28 1998-09-28 Jet pump for compression of a two phase mixture by means of supersonic flow

Publications (2)

Publication Number Publication Date
EP0990464A1 EP0990464A1 (en) 2000-04-05
EP0990464B1 true EP0990464B1 (en) 2003-03-12

Family

ID=8236356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810976A Expired - Lifetime EP0990464B1 (en) 1998-09-28 1998-09-28 Jet pump for compression of a two phase mixture by means of supersonic flow

Country Status (4)

Country Link
US (1) US6241479B1 (en)
EP (1) EP0990464B1 (en)
AT (1) ATE234144T1 (en)
DE (1) DE59807474D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248763A1 (en) * 2002-10-18 2004-05-06 Leo Schlager Centrifuge for compressing of free flowing medium has rotatable capsule with at least one narrow outlet opening around circumference and which with regard to circumference of capsule forms tangentially orientated thrust nozzle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE339906C (en) * 1921-08-18 Wilh Strube G M B H Steam jet pump
GB169683A (en) * 1920-09-29 1922-01-12 Vickers Electrical Co Ltd Improvements in ejectors of the inward flow radial type
GB327051A (en) * 1929-05-16 1930-03-27 Ernst Schoch Improvements in or relating to injectors
DE870208C (en) * 1948-12-17 1953-03-12 Carl Metz Feuerwehrgeraetefabr Air foam generator for fire extinguishing purposes
US3134338A (en) * 1961-08-07 1964-05-26 A Y Dodge Co Jet pump
US3200764A (en) * 1962-09-10 1965-08-17 Jr Robert C Saunders Fluid injector
NL8400557A (en) * 1984-02-22 1985-09-16 Erich Ludwig Leroy METHOD AND APPARATUS FOR MAKING A FOAM WITH VERY FINE FOAM BUBBLES
HUT55872A (en) 1988-07-08 1991-06-28 Gergely Veres Method and apparatus for pressure intensifying gaseous medium by heat-manipulation
EP0445169A1 (en) * 1988-11-22 1991-09-11 Dunne Miller Weston Limited Liquid-gas mixing device
US5338113A (en) * 1990-09-06 1994-08-16 Transsonic Uberschall-Anlagen Gmbh Method and device for pressure jumps in two-phase mixtures
GB9127474D0 (en) * 1991-12-30 1992-02-19 Framo Dev Ltd Multiphase fluid transport
CA2129901A1 (en) * 1992-02-11 1993-09-02 Efim Fuks A two-phase supersonic flow system
DE19536837B4 (en) * 1995-10-02 2006-01-26 Alstom Apparatus and method for injecting fuels into compressed gaseous media

Also Published As

Publication number Publication date
DE59807474D1 (en) 2003-04-17
EP0990464A1 (en) 2000-04-05
US6241479B1 (en) 2001-06-05
ATE234144T1 (en) 2003-03-15

Similar Documents

Publication Publication Date Title
DE69908420T2 (en) METHOD FOR REMOVING CONDENSIBLE COMPONENTS FROM NATURAL GAS
EP0946305B1 (en) Device for aerosol production
EP0218960A2 (en) Process and apparatus for extracting solids from a liquid mixture
CH330376A (en) Method for separating gas and heavy dirt particles from liquids and liquid suspensions and device for carrying out this method
DE3019212A1 (en) FIBER BED ELEMENT AND METHOD FOR FILTERING AEROSOLS FROM GASES
EP3894622A1 (en) Jet suction box and jet suction method
EP1177828A2 (en) Device for separating liquids and /or solid matters or gases from a gas stream having different specific weight
DE68909613T2 (en) METHOD AND DEVICE FOR PROCESSING PARTICULARLY FINE DISTRIBUTED MATERIAL.
CH629115A5 (en) Appliance for producing spherical particles
WO2003101667A1 (en) Dry ice jet cleaning system
DE2060617A1 (en) Process for removing suspended particles from a gas
EP0990464B1 (en) Jet pump for compression of a two phase mixture by means of supersonic flow
EP1186348B1 (en) Method and device for spraying liquids
EP1798333A2 (en) Apparatus and method for degassing a liquid or pasty medium, in particular a coating colour
DE2823253A1 (en) Aerosol and foam generator - with radial blowing agent jets diverted into annular gap with entrained material
DE2701702A1 (en) METHOD AND DEVICE FOR GENERATING BUBBLES IN A LIQUID
DE69014144T2 (en) Method and device for producing carbon dioxide snow.
DE69014891T2 (en) DEVICE FOR PRODUCING A PARTICLE DISPERSION.
DE19706698A1 (en) Ultrasonic nebulization method and apparatus
DE2435458A1 (en) PROCESS AND DEVICE FOR SEPARATING AND DRAINING LIQUID FROM A POINT LOCATING BETWEEN TWO SUCCESSIVE STAGES OF WATER VAPOR RECOVERY
DE2522324A1 (en) Counter current gas-liquid contactor - using jet ejector effect from liquid input to pull gas through column
DE19632642C2 (en) Spray nozzle and method for ejecting liquid in the form of small particles
WO2000025932A1 (en) Method and device for mechanically separating a disperse system
DE441194C (en) Device for atomizing liquids
EP0300402B1 (en) Production method for extremely small particles, and application of said method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000927

AKX Designation fees paid

Free format text: AT CH DE FR GB LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59807474

Country of ref document: DE

Date of ref document: 20030417

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABREMA AGENCE BREVETS ET MARQUES GANGUILLET & HUMP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100930

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110729

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110901

Year of fee payment: 14

Ref country code: GB

Payment date: 20110826

Year of fee payment: 14

Ref country code: SE

Payment date: 20110909

Year of fee payment: 14

Ref country code: AT

Payment date: 20110825

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 234144

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120928

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120928

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120928

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59807474

Country of ref document: DE

Effective date: 20130403