EP0987509A1 - Wärmeaustauschvorrichtung - Google Patents
Wärmeaustauschvorrichtung Download PDFInfo
- Publication number
- EP0987509A1 EP0987509A1 EP99307326A EP99307326A EP0987509A1 EP 0987509 A1 EP0987509 A1 EP 0987509A1 EP 99307326 A EP99307326 A EP 99307326A EP 99307326 A EP99307326 A EP 99307326A EP 0987509 A1 EP0987509 A1 EP 0987509A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- capillary
- reservoir
- wick
- liquid
- link
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/043—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
Definitions
- This invention relates to a heat transfer apparatus. It arose in connection with the design of earth orbiting satellites where there is a need to transfer heat from one hot side, facing the sun, to an opposite, cold side. This can be done with the use of one or more evaporators for a working fluid at the hot side and one or more condensers located at the cold side, the evaporators and condensers being connected in a loop essentially as described with reference to Figure 1 of French patent specification FR 2723187. It is to be noted that such systems need to be designed so that they will operate in a gravity-free environment.
- Rotation of the satellite can be expected to result in different sides of the satellite facing the sun at different times. It is therefore necessary to provide duplicate heat transfer systems designed to operate in opposite directions. However, such need for duplication also duplicates the weight. This is a problem because any weight added to the infrastructure of the satellite will reduce the maximum possible weight of its payload. Another problem arises from the fact that two separate heat pipe loops require twice the interface surface for heat collection and dissipation and there may be insufficient space available for this. Yet another problem is that two heat pipe loops require twice the amount of working fluid which may be toxic and corrosive giving rise to problems during manufacture and if there is leakage.
- French patent specification 2723187 describes a technique for avoiding the need to duplicate the heat transfer systems. It describes, with reference to Figures 2-6, a capillary pumped heat transfer apparatus which is reversible. Using a single loop, heat is automatically transferred in a direction from a hot location to a cold location. However, although the desired effect is achieved using just one loop, the amount and therefore weight of components in that loop is not much less than what would be required in duplicate systems. This is because the system needs to contain an evaporator and a condenser at the hot location and also at the cold location. The evaporator, at the location which is for the time being cold, is essentially redundant, as is the condenser at the location which is, for the time being, hot.
- French patent specification 2723187 does envisage the possibility of its evaporators also acting as condensers but, so far as the inventors know, no such system has been tried in practice.
- Patent specification WO 97/00416 describes a capillary pumped heat transfer loop having a bank of evaporators connected in parallel at a hot location from which heat is to be removed. Thermally separated from the evaporators is a reservoir to which each of the evaporators is connected by a capillary link. This ensures that the capillary wick in the evaporator is continuously fed with liquid for evaporation.
- the inventors have now recognized that an unexpected advantage can be obtained by using a capillary link, similar in function to that of WO 97/00416, in a reversible system.
- the advantage is that, when one of the units is being used (or starts to be used) as a condenser, the capillary link ensures that the wick is saturated with liquid and therefore does not tend to create an unwanted capillary pumping action in opposition to the wanted pumping action of the unit or units at the hot location. To obtain this effect it is necessary, of course, to include a reservoir at both locations.
- a reversible capillary pumped heat transfer loop for transferring heat between first and second locations and comprising, at each location, a heat transfer unit for evaporating a working fluid when the unit is required to remove heat and for condensing the working fluid when the unit is required to deliver heat, each such unit including a capillary device and one or more channels associated with the capillary device for the collection of fluid from it when the unit is acting as an evaporator and for the feeding of fluid to it when the unit is acting as a condenser; characterized in that each unit comprises a fluid reservoir into which the capillary device extends, the combined volumes of the reservoirs and the amount of working fluid in the loop being selected to ensure that there is always sufficient liquid in the reservoir to keep the capillary devices saturated with liquid.
- Each unit preferably includes a tubular housing of heat conducting material defining the aforementioned channels, which open onto an inner surface of the housing. This allows heat to be readily conducted away from vapour in the channels when the unit is operating as a condenser.
- the channels are preferably formed at a first end of the housing whilst the other, second, end of the housing defines the reservoir.
- the heat conducting material of the housing is preferably a metal alloy since this allows the channels to be formed by an extrusion process and also helps to reduce weight.
- the capillary device is also of generally tubular configuration and fits in the housing in contact with its inner surface at least at the aforementioned "first" end.
- the capillary device can be made from a single element but preferably takes the form of a capillary wick of relatively fine capillary structure to generate the pumping action; and a separate capillary link, having a relatively coarse capillary structure, for supplying liquid from the reservoir to the wick.
- the capillary link is preferably made from synthetic plastics material, for example polyethylene.
- the capillary link can be machined from a body of sintered powder, e.g. polyethylene powder, its external surfaces being shaped so as to make close resilient contact with internal surfaces of the reservoir and of the capillary wick.
- sintered powder e.g. polyethylene powder
- the capillary wick is also formed with a central aperture or bore defining a passage from the reservoir into the part of the housing that contains the wick.
- an inlet pipe for liquid from the condenser passes from one end of the housing, through the reservoir and well into the capillary link, preferably to the other end of the housing so that liquid leaving an open end of the inlet pipe flows in a reverse direction along the aforementioned bore before being absorbed into the capillary material.
- This reverse flow helps any bubbles of gas to drift towards the reservoir.
- the inlet pipe needs to be of relatively small diameter causes a high velocity of flow through it, reducing any heating effect, and consequential generation of bubbles, as it passes through the reservoir.
- an evaporator for use in a capillary pumped heat transfer system comprising a capillary wick having an outer surface from which vaporized liquid is drawn by capillary action into the wick, and a reservoir characterized by means for introducing liquid into an end of the cavity remote from the reservoir so that at least some of the liquid passes along the cavity towards the reservoir before being absorbed into the wick.
- the illustrated heat transfer system comprises two units 1 located at first and second locations 2 and 3 respectively, as shown in Figure 1.
- the units 1 are identical, so only one will be described.
- This comprises a body 4 of metal chosen for its heat conducting properties and ease of extrusion. It has a generally tubular configuration having a first end defining a first port 5 and a second end having a second port 6 located in a threaded plug 7.
- the tubular housing 4 has a part 8 of relatively small diameter and which carries a flange 9 serving as a mechanical support and to transfer heat to and from a part or component of the spacecraft.
- On an inner surface of the portion 8, a large number of grooves 10 are formed as shown in Figure 2. These grooves extend parallel to the axis of the body 4.
- Each groove has an open side 11 having a width which is slightly less than half the width of the flats 12 between adjacent grooves.
- an internal bore of the body 4 is machined to define internal shoulders 15, 16 and 17.
- the shoulder 17 forms an acute angle with the axis of the body 4 and is aligned with a corresponding shoulder 17A on the external surface of the body 4.
- the shoulders 17, 17A divide a small diameter part 8 at one end the body 4 from a larger diameter part 18 at the opposite end.
- This wider part 18 serves as a reservoir for working fluid. Its volume is greater than the volume of the narrower part 8 of the body 4 and the total volumes of all reservoirs in the loop accounts for more than half of the volume of fluid in the loop.
- the body 19 Contained within the body 4 is a capillary device formed from two separate tubular bodies 19, 20.
- the illustrated embodiment it is constructed from PTFE powder which is sintered to form a porous rigid body having a pore size of about 2.5 ⁇ m.
- suitable materials include: sintered metal e.g. copper, stainless steel wire, molybdenum, tungsten, titanium or nickel; sintered ceramics; and many forms of open cell, foamed or sintered thermoplastic materials which may be glass-filled and/or powder filled.
- the purpose of filling the plastics material is to decrease the thermal expansion coefficient of the material and to increase the Young's modulus.
- Another powdered material may be introduced to increase the porosity of the wick; this powder may be removed, after sintering, by a post-burning process.
- the wick 19 is machined to the required shape. It has a shoulder 21 on its external surface which engages against the shoulder 15 on the internal surface of the body 4 to locate it in a desired axial position.
- the internal bore of the wick 19 is flared outwardly at its open end to co-operate with a tapered ferrule 22.
- An externally threaded plug 23 co-operates with an internal thread of the body 4 between the shoulders 16 and 17 so as to exert axial pressure on the ferrule 22, thereby pressing the porous wick 19 into a fluid tight contact with the internal wall of the body 4.
- the capillary link 20 is, in the illustrated example, made in a way similar to that of the wick 19 but from sintered polyethylene powder and has a pore size of about 105 ⁇ m so that it defines relatively coarse capillary passages. It has a relatively narrow part 24 which fits tightly into the body 19, because of the natural elasticity of the synthetic plastics materials, and extends from an open end to a shoulder 26 which is located against the shoulder 17 of the body 4. The shoulder 26 leads to a wide part 25 of the link 20 which is located against the internal wall of the wide part of the body 4. The link 20 is held axially in position by the plug 7.
- capillary link 20 could be made from other synthetic plastics materials, possibly glass-filled.
- the plug 7 also supports a pipe 27 which extends along the axis of the body 4 connecting the port 6 to a point close to the open end of the capillary link 20. Its outer diameter is significantly smaller than the inner diameter of the narrow part of the link 20 so as to allow the passage of fluid therebetween. It is held in its axial position by kinks making contact with the inner surface of the link 20 so as to space the pipe 27 from that inner surface.
- the vapour is collected, as indicated by the arrows on Figure 3, by the channels 10 and transmitted along them to the port 5.
- capillary pumping more liquid is introduced into the capillary wick 19 from the capillary link 20; and into the capillary link 20 either directly from the pipe 27 or from the reservoir 18.
- any bubbles of vapour inside the narrow part 24 of the link 20 will not be absorbed by it.
- Such bubbles will pass into the reservoir where, being cooler, they may condense.
- the link 20 in this way acts as a simple heat pipe between the relatively hot flange 9 and the cooler reservoir 18. It maintains a flow of liquid towards the fine capillary wick 19 and helps to move gas bubbles in the direction of the reservoir, this latter effect acting in concert with the flow of liquid from pipe 27 (to be described later).
- the temperature of the reservoir 18 at the hot location defines the saturation temperature of the working fluid and therefore needs to be controlled.
- the temperature is self-controlled by a balance of parasitic heat fluxes transferred: within the body 4; by the gas bubbles pushed towards the reservoir; by cold liquid coming from the condenser; and by external thermal leaks with the environment.
- a notable feature is that heat flow from the flange 9 to liquid in the reservoir is limited by the thermally insulating properties of the material from which the capillary link 20 is made. It provides a thermally insulating lining on the inner surface of the reservoir.
- an active temperature control system could be included. This could employ heaters, Peltier cells, dedicated radiative surfaces, etc. The materials and construction of the apparatus would then need to be such as to minimise parasitic heat fluxes.
- Vapour from the port 5 is transferred by the capillary pumping action along pipework to a corresponding port at location 3 where it enters the grooves 10.
- the content is entirely vapour but this condenses progressively along the channel so that at the opposite end its content is entirely liquid.
- the situation close to the input end is shown at the right hand side of Figure 3, where it can be seen that a thin film C of condensed liquid has formed over the entire surface of the groove as heat is conducted from the vapour through this surface and into the conductive body 8.
- the uniformity of this thin film is a significant advantage as compared with previous designs of evaporator which have employed rectangular or dovetail shaped grooves having corners where the liquid tends to accumulate.
- the accumulation of liquid in the corners reduces the effective surface area through which heat from the vapour can be conducted away and increases the thickness of the film of liquid, which acts as an insulator between the vapour and the body 4 thereby impeding the transfer of heat.
- the only corners effective to attract the liquid are those, shown at C, formed between the conductive metal body 8 and the capillary wick 19, so the surface area of metal in close thermal contact with the vapour is as high as possible and so that the liquid, after condensation from the vapour, is removed as quickly as possible from this surface.
- the liquid passes into the wick which is entirely saturated with liquid because its temperature, like that of the body part 8, is cooler than the saturation temperature of the fluid. Therefore, there can be no capillary action of the elements 19 or 20, these being entirely passive when the apparatus is acting as a condenser.
- the condenser is hydraulically passive: fluid flows through it only because it is pushed by the pressure generated by the evaporator.
- the condensed liquid is pushed into the reservoir or passes directly into the pipe 27 from where it passes to the port 6 of the unit at location 2.
- the small diameter of the pipe 27 ensures that this liquid passes through the relatively hot reservoir at a relatively high velocity, thereby minimising the opportunity for it to evaporate.
- the risk of bubbles entering the capillary elements of the evaporator is thus considerably reduced and any such bubbles that do form tend to be carried by the reverse flow of liquid from the open end of the pipe 27 towards the reservoir.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9811506 | 1998-09-15 | ||
FR9811506A FR2783313A1 (fr) | 1998-09-15 | 1998-09-15 | Dispositif de tranfert de chaleur |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0987509A1 true EP0987509A1 (de) | 2000-03-22 |
EP0987509B1 EP0987509B1 (de) | 2003-07-16 |
Family
ID=9530454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19990307326 Expired - Lifetime EP0987509B1 (de) | 1998-09-15 | 1999-09-15 | Wärmeaustauschvorrichtung |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0987509B1 (de) |
FR (1) | FR2783313A1 (de) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002002201A2 (en) * | 2000-06-30 | 2002-01-10 | Swales Aerospace | Phase control in the capillary evaporators |
US7004240B1 (en) | 2002-06-24 | 2006-02-28 | Swales & Associates, Inc. | Heat transport system |
US7251889B2 (en) | 2000-06-30 | 2007-08-07 | Swales & Associates, Inc. | Manufacture of a heat transfer system |
US7549461B2 (en) | 2000-06-30 | 2009-06-23 | Alliant Techsystems Inc. | Thermal management system |
US7661464B2 (en) | 2005-12-09 | 2010-02-16 | Alliant Techsystems Inc. | Evaporator for use in a heat transfer system |
US7708053B2 (en) | 2000-06-30 | 2010-05-04 | Alliant Techsystems Inc. | Heat transfer system |
US7931072B1 (en) | 2002-10-02 | 2011-04-26 | Alliant Techsystems Inc. | High heat flux evaporator, heat transfer systems |
US8047268B1 (en) | 2002-10-02 | 2011-11-01 | Alliant Techsystems Inc. | Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems |
US8109325B2 (en) | 2000-06-30 | 2012-02-07 | Alliant Techsystems Inc. | Heat transfer system |
US8136580B2 (en) | 2000-06-30 | 2012-03-20 | Alliant Techsystems Inc. | Evaporator for a heat transfer system |
US20150083361A1 (en) * | 2012-12-13 | 2015-03-26 | Empire Technology Development, Llc | Heat transfer system and method |
WO2018192839A1 (fr) | 2017-04-18 | 2018-10-25 | Euro Heat Pipes | Évaporateur à interface de vaporisation optimisée |
JP2020020518A (ja) * | 2018-07-31 | 2020-02-06 | 株式会社リコー | 蒸発器、ループ型ヒートパイプ、冷却装置及び電子機器 |
CN111076582A (zh) * | 2019-11-22 | 2020-04-28 | 北京空间机电研究所 | 一种航天器用防逆流多芯毛细泵组件 |
JP6980081B1 (ja) * | 2020-11-13 | 2021-12-15 | 古河電気工業株式会社 | ヒートパイプ |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2216537A1 (de) * | 1973-02-06 | 1974-08-30 | Gaz De France | |
EP0242669A1 (de) * | 1986-04-24 | 1987-10-28 | Dornier Gmbh | Integrierter Kapillarverdampfer als wärmeaufnehmendes Element eines Thermalkreislaufs |
US4765396A (en) * | 1986-12-16 | 1988-08-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Polymeric heat pipe wick |
FR2723187A1 (fr) * | 1994-07-29 | 1996-02-02 | Centre Nat Etd Spatiales | Systeme de transfert d'energie entre une source chaude et une source froide |
WO1997000416A1 (fr) * | 1995-06-14 | 1997-01-03 | S.A.B.C.A. | Boucle a pompage capillaire de transport de chaleur |
FR2752291A1 (fr) * | 1996-08-12 | 1998-02-13 | Centre Nat Etd Spatiales | Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide |
-
1998
- 1998-09-15 FR FR9811506A patent/FR2783313A1/fr active Pending
-
1999
- 1999-09-15 EP EP19990307326 patent/EP0987509B1/de not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2216537A1 (de) * | 1973-02-06 | 1974-08-30 | Gaz De France | |
EP0242669A1 (de) * | 1986-04-24 | 1987-10-28 | Dornier Gmbh | Integrierter Kapillarverdampfer als wärmeaufnehmendes Element eines Thermalkreislaufs |
US4765396A (en) * | 1986-12-16 | 1988-08-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Polymeric heat pipe wick |
FR2723187A1 (fr) * | 1994-07-29 | 1996-02-02 | Centre Nat Etd Spatiales | Systeme de transfert d'energie entre une source chaude et une source froide |
WO1997000416A1 (fr) * | 1995-06-14 | 1997-01-03 | S.A.B.C.A. | Boucle a pompage capillaire de transport de chaleur |
FR2752291A1 (fr) * | 1996-08-12 | 1998-02-13 | Centre Nat Etd Spatiales | Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide |
Non-Patent Citations (2)
Title |
---|
KOTLYAROV ET AL: "Methods of Increase of the Evaporators Reliability for Loop Heat Pipes and Capillary Pumped Loops", SAE 1993 TRANSACTIONS JOURNAL OF AEROSPACE, vol. 102 (section1), 1993, Society of Automotive Engineers, Warrendale, XP000197437 * |
VAN OOST ET AL: "Test results of reliable and very high capillary multi-evaporators /condenser loop", CALODUCS ET BOUCLES DIPHASIQUES A POMPAGE CAPILLAIRE, 3 May 1996 (1996-05-03), Société Française des Thermiciens, PARIS, XP002104571 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8109325B2 (en) | 2000-06-30 | 2012-02-07 | Alliant Techsystems Inc. | Heat transfer system |
US6889754B2 (en) | 2000-06-30 | 2005-05-10 | Swales & Associates, Inc. | Phase control in the capillary evaporators |
US8136580B2 (en) | 2000-06-30 | 2012-03-20 | Alliant Techsystems Inc. | Evaporator for a heat transfer system |
US8752616B2 (en) | 2000-06-30 | 2014-06-17 | Alliant Techsystems Inc. | Thermal management systems including venting systems |
EP1684043A3 (de) * | 2000-06-30 | 2006-08-30 | Swales Aerospace | Phasenregelung in Kapillarverdampfer |
US7251889B2 (en) | 2000-06-30 | 2007-08-07 | Swales & Associates, Inc. | Manufacture of a heat transfer system |
US7549461B2 (en) | 2000-06-30 | 2009-06-23 | Alliant Techsystems Inc. | Thermal management system |
WO2002002201A3 (en) * | 2000-06-30 | 2003-02-27 | Swales Aerospace | Phase control in the capillary evaporators |
US7708053B2 (en) | 2000-06-30 | 2010-05-04 | Alliant Techsystems Inc. | Heat transfer system |
US9200852B2 (en) | 2000-06-30 | 2015-12-01 | Orbital Atk, Inc. | Evaporator including a wick for use in a two-phase heat transfer system |
US9631874B2 (en) | 2000-06-30 | 2017-04-25 | Orbital Atk, Inc. | Thermodynamic system including a heat transfer system having an evaporator and a condenser |
US8066055B2 (en) | 2000-06-30 | 2011-11-29 | Alliant Techsystems Inc. | Thermal management systems |
WO2002002201A2 (en) * | 2000-06-30 | 2002-01-10 | Swales Aerospace | Phase control in the capillary evaporators |
US9273887B2 (en) | 2000-06-30 | 2016-03-01 | Orbital Atk, Inc. | Evaporators for heat transfer systems |
US7004240B1 (en) | 2002-06-24 | 2006-02-28 | Swales & Associates, Inc. | Heat transport system |
US8047268B1 (en) | 2002-10-02 | 2011-11-01 | Alliant Techsystems Inc. | Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems |
US7931072B1 (en) | 2002-10-02 | 2011-04-26 | Alliant Techsystems Inc. | High heat flux evaporator, heat transfer systems |
US7661464B2 (en) | 2005-12-09 | 2010-02-16 | Alliant Techsystems Inc. | Evaporator for use in a heat transfer system |
US20150083361A1 (en) * | 2012-12-13 | 2015-03-26 | Empire Technology Development, Llc | Heat transfer system and method |
WO2018192839A1 (fr) | 2017-04-18 | 2018-10-25 | Euro Heat Pipes | Évaporateur à interface de vaporisation optimisée |
US11300361B2 (en) | 2017-04-18 | 2022-04-12 | Euro Heat Pipes | Evaporator having an optimized vaporization interface |
JP2020020518A (ja) * | 2018-07-31 | 2020-02-06 | 株式会社リコー | 蒸発器、ループ型ヒートパイプ、冷却装置及び電子機器 |
CN111076582A (zh) * | 2019-11-22 | 2020-04-28 | 北京空间机电研究所 | 一种航天器用防逆流多芯毛细泵组件 |
JP6980081B1 (ja) * | 2020-11-13 | 2021-12-15 | 古河電気工業株式会社 | ヒートパイプ |
JP2022078819A (ja) * | 2020-11-13 | 2022-05-25 | 古河電気工業株式会社 | ヒートパイプ |
TWI784792B (zh) * | 2020-11-13 | 2022-11-21 | 日商古河電氣工業股份有限公司 | 熱管 |
Also Published As
Publication number | Publication date |
---|---|
EP0987509B1 (de) | 2003-07-16 |
FR2783313A1 (fr) | 2000-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0987509B1 (de) | Wärmeaustauschvorrichtung | |
EP1957925B1 (de) | Wärmeübertragungssystem mit verdampfer | |
US5725049A (en) | Capillary pumped loop body heat exchanger | |
US4470450A (en) | Pump-assisted heat pipe | |
US4934160A (en) | Evaporator, especially for discharging waste heat | |
US4869313A (en) | Low pressure drop condenser/evaporator pump heat exchanger | |
US4899810A (en) | Low pressure drop condenser/heat pipe heat exchanger | |
US7775261B2 (en) | Capillary condenser/evaporator | |
US4770238A (en) | Capillary heat transport and fluid management device | |
US4492266A (en) | Manifolded evaporator for pump-assisted heat pipe | |
US20040182550A1 (en) | Evaporator for a heat transfer system | |
US5842513A (en) | System for transfer of energy between a hot source and a cold source | |
WO2013172988A1 (en) | Temperature- actuated capillary valve for loop heat pipe system | |
CA2234403A1 (en) | Capillary evaporator for diphasic loop of energy transfer between a hot source and a cold source | |
US3741289A (en) | Heat transfer apparatus with immiscible fluids | |
JPH01193591A (ja) | ヒートパイプシステム | |
EP0806620A2 (de) | Kapillarverdampfer | |
US4627487A (en) | Separate liquid flow heat pipe system | |
EP1549897B1 (de) | Verdampfer für ein wärmeübertragungssystem | |
CN112432532B (zh) | 蒸发器组件及环路热管 | |
JP2904199B2 (ja) | キャピラリポンプループ用蒸発器及びその熱交換方法 | |
US20020139516A1 (en) | Heat pipe with a secondary wick for supplying subcooled liquid to high heat flux areas | |
JPH0424490A (ja) | キャピラリーポンプ | |
KR100995419B1 (ko) | 평판형 양면 증발면을 가지는 루프 히트 파이프 장치의 증발기 | |
JP2732755B2 (ja) | 二重管ヒートパイプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE FR IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000921 |
|
AKX | Designation fees paid | ||
RBV | Designated contracting states (corrected) |
Designated state(s): BE FR IT NL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
17Q | First examination report despatched |
Effective date: 20020109 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE FR IT NL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
26N | No opposition filed |
Effective date: 20040419 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CJ Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
BECA | Be: change of holder's address |
Owner name: ATRIUM SAS, RUE LAURENT PICHAT, FR-75016 PARIS Effective date: 20091118 |
|
BECN | Be: change of holder's name |
Owner name: ASTRIUM SAS Effective date: 20091118 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: TD Effective date: 20100226 Ref country code: NL Ref legal event code: SD Effective date: 20100226 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160915 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20180928 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20180926 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20180927 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20190914 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MK Effective date: 20190915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160915 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180926 Year of fee payment: 20 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20190710 |