EP0984223A1 - Procédé de combustion pour brûler un combustible - Google Patents

Procédé de combustion pour brûler un combustible Download PDF

Info

Publication number
EP0984223A1
EP0984223A1 EP99402117A EP99402117A EP0984223A1 EP 0984223 A1 EP0984223 A1 EP 0984223A1 EP 99402117 A EP99402117 A EP 99402117A EP 99402117 A EP99402117 A EP 99402117A EP 0984223 A1 EP0984223 A1 EP 0984223A1
Authority
EP
European Patent Office
Prior art keywords
jet
oxidant
fuel
main
jets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99402117A
Other languages
German (de)
English (en)
Other versions
EP0984223B1 (fr
Inventor
Jacques Dugue
Jean-Michel Samaniego
Bernard Labegorre
Olivier Charon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9530048&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0984223(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0984223A1 publication Critical patent/EP0984223A1/fr
Application granted granted Critical
Publication of EP0984223B1 publication Critical patent/EP0984223B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel

Definitions

  • the invention relates to a method for burning a fuel, in which at least one jet of gas is injected into a combustion zone fuel and, at a distance therefrom, at least one main jet of an oxidant.
  • the invention aims to overcome these drawbacks by proposing a combustion process providing stable, low combustion emission of nitrogen oxides, despite a distance between the oxidant jets and fuel much higher than that described in the prior art such as USP 4,988,285.
  • the subject of the invention is a combustion method for burning a fuel, in which at least one jet of fuel is injected simultaneously into a main combustion zone and at a distance from it at least one main jet of an oxidant, characterized in that the injection point of each main oxidant jet is arranged relative to the injection point of the fuel jet closest to it at a distance D satisfying at least one of the following relationships: D AT > 5 (and preferably> 10) and / or D B > 5 (and preferably> 10) D being defined as the minimum distance between the outer edge of the oxidant jet considered and the outer edge of the fuel jet closest to it, at their respective injection points, and A and B being respectively the section of the main jet of the oxidant and the section of the fuel jet, the sections being considered at the point of injection of the jets, so as to keep the main oxidant and fuel jets separate until said at least one main jet d oxidant and / or the fuel jet has resulted in an amount of a substantially inert surrounding fluid.
  • the invention is characterized in that one injects into an auxiliary combustion zone located upstream of said main combustion zone at least one auxiliary jet of an oxidant to stabilize combustion in said main combustion zone.
  • the injection point of said auxiliary oxidant jet being disposed at a distance D s from the associated fuel jet, D s satisfying the following relationship: D s AT s ⁇ 5 D s being the minimum distance between the external edge of the auxiliary oxidant jet considered and the external edge of the associated fuel jet, at their respective injection points, and A s being the section of the auxiliary oxidant jet considered at its injection point, so as to obtain a substantially uniform combustion.
  • a distance D verifying at least one of the two preceding relationships allows the main oxidant jet and the fuel jet to entrain a quantity of surrounding fluid, notably substantially inert, before they react. with the other.
  • each of the relationships implies that the total flow contained in the jet is at least 1.8 times the initial flow of the entraining jet.
  • the ratio (jet flow / initial flow) increases when the ratio (entraining fluid density / entrained fluid density) decreases.
  • each of the two inequalities makes it possible to obtain a dilution of each of the jets of main oxidant and of fuel.
  • the implementation of this invention will be done with a distance D satisfying at least one of the above relationships, and preferably satisfying D / A 0.5 > 10 and / or D / B 0.5 > 10, so that the flow of one of the jets at least and preferably of each jet (initial flow plus surrounding fluid substantially inert) or at least 3.6 times the initial flow of the entraining jet.
  • the method is characterized in that the total flow of oxidant injected by said jets is regulated main and auxiliary oxidant at a value higher than the flow rate stoichiometric oxidant necessary to burn all the fuel injected in the combustion zone by said at least one jet of fuel.
  • the flow rate of the oxidant injected by said at least is regulated an auxiliary jet at a value less than 30%, preferably between 2% and 15% of the total oxidant flow injected into the combustion zone.
  • substantially uniform combustion means that obtains a substantially uniform combustion zone characterized by a volume of combustion zone at least doubled compared to a flame where fuel and oxidant jets mix quickly without dilution with combustion products, and a temperature field with small gradients in the flame volume, such as for an oxidant composed of pure oxygen, the maximum average temperature is at least lower minus 500 ° C at the theoretical adiabatic temperature of the mixture fuel / oxidant.
  • the total momentum (fuel + oxidizer) of the jets of fluid related to a unit of power will preferably be greater than approximately 3 N / MW, of so as to obtain a satisfactory mixture of gases (the momentum -or "momentum" - is defined here as the product of a mass flow (kg / s) by a speed (m / s)).
  • Case 1 corresponds to very low injection speeds for oxidant and weak for natural gas. Practice shows that flames produced are sensitive to buoyancy forces and can create points hot on the roof of an oven, due to the raising of the rear part of the flame. Cases 2 to 5 show different examples where the mixture of gases is provided by a momentum provided either by the oxidant jets, either by the fuel jets, or by both.
  • substantially inert surrounding fluid means the fluid (usually a gas) located near the main oxidant jet. In general, it consists of the combustion gases which recirculate throughout the area of combustion as well as in the vicinity of injections of oxidizing fluids and combustible, these combustion gases being more or less diluted by the air present in this combustion zone, air of which only the species generally remain inert (nitrogen, argon) which have not reacted with the fuel.
  • Figures 1 and 2 illustrate a first embodiment of a combustion installation for implementing the method according to the invention.
  • the installation 1 comprises, for initiate or maintain combustion in a main area of combustion 2, on the one hand an injector 3 of a central fuel jet 4 (shown in dashed lines), such as a jet of natural gas, and on the other hand two identical injectors 5 and 6 of main jets of an oxidant 7 and 8 (shown in solid lines), for example air, possibly enriched with oxygen, or pure oxygen, arranged diametrically opposite by compared to the injector 3 of the central fuel jet 4.
  • a central fuel jet 4 shown in dashed lines
  • an oxidant 7 and 8 shown in solid lines
  • the injector 3 is connected to a fuel supply 9, and the injectors 5 and 6, to a supply oxidant 10.
  • this further comprises an injector 13 of an auxiliary jet oxidant 14 (shown in phantom) in an auxiliary zone 2A of combustion (represented by hatching) located upstream of the area main combustion 2.
  • the auxiliary jet 14 is arranged near the injector 3 of the central fuel jet 4 and associated with it.
  • the injector 13 is also supplied by the power supply oxidant 10.
  • the oxidant supply 10 comprises, connected to the oxidant injectors 5, 6 and 13, means 15 for distributing the total flow rate of oxidant injected into a first fraction feeding the injectors 5 and 6 of the main jets 7 and 8 of oxidant and a second fraction, complementary to the first, feeding the injector 13 of the auxiliary oxidant jet 14.
  • These distribution means 15 can for example be produced by a pipe pricking in diversion on a main line supply of oxidant from supply 10 and in which is disposed a valve to regulate the fraction of the total flow rate of the oxidant supplying the auxiliary injector 13.
  • the various injectors 3, 5, 6 and 13 for example have circular outlet openings so as to form conical jets widening in their directions of projection respectively indicated by arrows 20, 22, 24, and 26 in Figure 1.
  • outlet orifices such as for example slit, ellipse, ring or other orifices to modify the shape jets.
  • the two main jets 7 and 8 of oxidant injected in the main combustion zone 2 simultaneously the central jet 4 of fuel and away from it as well as diametrically opposed by compared to him, the two main jets 7 and 8 of oxidant.
  • the central jet 4 of fuel is preferably injected with a speed below 75m / s while the two main jets 7 and 8 of oxidant are injected at a speed preferably between 50 and 150m / s.
  • D represents the minimum distance between the outer edge of the oxidant jet considered, 7 or 8, and the outer edge of the fuel 4 at their respective injection points (see Figure 2), and A represents the section of the main jet of the oxidant considered 7 or 8 at its point injection.
  • the jets of oxidant 7 and 8 and of fuel 4 do not begin to mix only from a distance L from the injection points respective, in mixing zones 30, 31 shown in gray.
  • the separation of the jets over this distance L allows them, in particular the jets 7 and 8 main oxidant, cause a significant amount of fluid surrounding substantially inert, as shown by arrows 32 in Figure 1.
  • This entrained amount of the surrounding fluid is usually more than five, preferably ten times the jet flow causing this fluid.
  • this surrounding fluid is mainly composed of combustion products.
  • the oxidant / fuel mixture in mixing zones 30 and 31, increases the volume occupied by the main combustion zone 2. This has effect of homogenizing the spatial distribution of the temperature field in this main combustion zone 2 and decrease the average temperature in it, so that the emission of nitrogen oxides is efficiently scaled down.
  • the distance D also satisfies the following relationship: D Ac > 5 where A c represents the section of the fuel jet at its injection point.
  • the auxiliary combustion jet 4 is also injected into the main combustion zone 2, at a distance D s from the associated jet 4 of fuel. Stabilization of the combustion in the main zone 2 is ensured by the presence of the auxiliary combustion zone 2A upstream, which thus ensures a region of stable ignition of the oxidant / fuel mixture in the zone 2.
  • D s satisfies the following relationship: D s AT s ⁇ 5
  • D s represents the minimum distance between the outer edge of the auxiliary oxidant jet 14 considered and the outer edge of the associated fuel jet 4, at their respective injection points, and A s represents the cross section of the auxiliary oxidant jet 14 at its injection point.
  • the sections A, A c , and A s of the jets at their respective injection points are determined by taking into account their particular geometric shapes.
  • the distances D minimum between the outer edges of the respective oxidant and fuel can also be different, namely a jet of oxidant having a smaller section can be arranged closer to the fuel jet than the one with a larger section.
  • jet injectors can be provided. fuel and several main oxidant jet injectors. In that case, to satisfy relation (I), consider for each main throw oxidizing the fuel jet closest to it.
  • Figure 4 shows in a front view identical to that of the Figure 2 another variant of an installation 1 for the implementation of method according to the invention.
  • the installation of this variant comprises three injectors 50, 51 and 52 of three jets of a first fuel, for example natural gas, which are coplanar with injectors 55 and 56 of main oxidant jets arranged diametrically opposite with respect to the injectors 50, 51 and 52, and an injector 53 of a jet of a second fuel, for example fuel oil, disposed above of the three injectors 50, 51 and 52 of the jets of the first fuel and allowing to alternate the fuel used.
  • a first fuel for example natural gas
  • injectors 55 and 56 of main oxidant jets arranged diametrically opposite with respect to the injectors 50, 51 and 52
  • an injector 53 of a jet of a second fuel for example fuel oil
  • the injectors 55 and 56 and therefore the jets main oxidant sprayed into the combustion zone by them find, at their respective injection points, at a minimum distance D between the outer edges with respect to the nearest fuel jet, i.e. the jet projected by the injector 50 with respect to the main injector 55 and the injector 52 with respect to the main injector 56, so as to respect relations (I) and (II).
  • auxiliary injectors 57 and 58 of auxiliary oxidant jets are disposed above the three injectors 50, 51 and 52 of the fuel jets, one of which 57 is associated with the injectors 50, 51 and 53 and the other of which 58 is associated with the injectors 51, 52 and 53.
  • These auxiliary injectors 57 and 58 are located at a minimum distance D s between the external edges of the fuel jets so as to respect the relationship (III).
  • FIG. 5 shows by way of indication a graph representing a result obtained with the method according to the invention implemented using an installation of the type shown in FIGS. 1 and 2 and in which the distance D defined could be adjusted higher of the main oxidant jets relative to the central fuel jet.
  • This graph shows the quantity of nitrogen oxides (NO x ) produced during combustion as a function of the parameter D / ⁇ A defined above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Abstract

L'invention concerne un procédé de combustion pour brûler un combustible, dans lequel on dispose le point d'injection de chaque jet (7,8) principal d'oxydant par rapport au point d'injection d'un jet (4) de combustible le plus proche de lui à une distance D satisfaisant à la relation suivante : ((D) / (√(A)))>5 et/ou ((D) / (√(B)))>5 D étant la distance minimale entre le bord externe du jet d'oxydant considéré (7,8) et le bord externe du jet (4) de combustible le plus proche de lui, à leurs points respectifs d'injection, A et B étant respectivement la section du jet (7,8) principal de l'oxydant et la section du jet de combustible, considérés à leurs points d'injection respectifs. <IMAGE>

Description

L'invention est relative à un procédé pour brûler un combustible, dans lequel on injecte dans une zone de combustion au moins un jet de combustible et, à distance de celui-ci, au moins un jet principal d'un oxydant.
Il est connu de USP 4,988,285 un procédé de combustion permettant de réduire la formation d'oxydes d'azote du type NOx, dans lequel on injecte dans une zone de combustion un jet de combustible, par exemple du gaz naturel, et un jet principal d'un oxydant, par exemple de l'air ou de l'air enrichi en oxygène, disposé à une faible distance du jet de combustible, de préférence comprise entre 4 à 20 fois le diamètre du jet d'oxydant principal..
La Demanderesse a cependant constaté qu'un tel procédé de combustion connu conduit à la production d'une quantité trop importante d'oxydes d'azote lorsque les jets de combustible et d'oxydant principal sont disposés à faible distance l'un de l'autre.
Lorsqu'on éloigne l'un de l'autre les jets d'oxydant et de combustible pour réduire l'émission des oxydes d'azote, on se trouve alors confronté à des problèmes de stabilité de la combustion entretenue (la flamme peut s'éteindre par instants) et à la présence de combustible imbrûlé dans les fumées ce qui est également nocif pour l'environnement.
L'invention vise à pallier ces inconvénients en proposant un procédé de combustion permettant d'obtenir une combustion stable, à faible émission d'oxydes d'azote, malgré une distance entre les jets d'oxydant et de combustible bien supérieure à celle décrite dans l'art antérieur tel que USP 4,988,285.
A cet effet, l'invention a pour objet un procédé de combustion pour brûler un combustible, dans lequel on injecte simultanément dans une zone principale de combustion au moins un jet de combustible et à distance de celui-ci au moins un jet principal d'un oxydant, caractérisé en ce que l'on dispose le point d'injection de chaque jet principal d'oxydant par rapport au point d'injection du jet de combustible le plus proche de lui à une distance D satisfaisant l'une au moins des relations suivantes : D A > 5 (et de préférence> 10) et/ou D B > 5 (et de préférence > 10) D étant définie comme la distance minimale entre le bord externe du jet d'oxydant considéré et le bord externe du jet de combustible le plus proche de lui, à leurs points respectifs d'injection, et A et B étant respectivement la section du jet principal de l'oxydant et la section du jet de combustible, les sections étant considérées au point d'injection des jets, de manière à maintenir les jets principal d'oxydant et de combustible séparés jusqu'à ce que ledit au moins un jet principal d'oxydant et/ou le jet de combustible ait entraíné une quantité d'un fluide environnant sensiblement inerte. De préférence, la quantité de fluide environnant entraíné est supérieure à cinq, encore plus préférentiellement à dix fois son propre débit.
Selon une variante préférentielle, l'invention est caractérisée en ce que l'on injecte dans une zone auxiliaire de combustion située en amont de ladite zone principale de combustion au moins un jet auxiliaire d'un oxydant pour stabiliser la combustion dans ladite zone principale de combustion, le point d'injection dudit jet auxiliaire d'oxydant étant disposé à une distance Ds du jet associé de combustible, Ds satisfaisant à la relation suivante : Ds As < 5 Ds étant la distance minimale entre le bord externe du jet auxiliaire d'oxydant considéré et le bord externe du jet associé de combustible, à leurs points respectifs d'injection, et As étant la section du jet auxiliaire d'oxydant considéré à son point d'injection, de manière à obtenir une combustion sensiblement uniforme.
L'utilisation d'une distance D vérifiant au moins l'une des deux relations précédentes permet au jet principal d'oxydant et au jet de combustible d'entraíner une quantité de fluide environnant notamment sensiblement inerte avant qu'ils ne réagissent l'un avec l'autre. En prenant comme référence comme commencement de leur interaction (et au début de la zone de combustion principale) le point de rencontre des bords du jet d'oxydant principal et du jet de combustible, pour des jets sensiblement parallèles, chacune des relations implique que le débit total contenu dans le jet est au moins 1.8 fois le débit initial du jet entraínant. Le rapport (débit jet/débit initial) augmente lorsque le rapport (masse volumique fluide entraínant/masse volumique fluide entraíné) diminue. La vérification de chacune des deux inégalités permet d'obtenir une dilution de chacun des jets d'oxydant principal et de combustible. La mise en oeuvre de cette invention se fera avec une distance D satisfaisant au moins l'une des relations ci-dessus, et de préférence satisfaisant D/A0.5 > 10 et/ou D/B0.5 > 10, de façon à ce que le débit de l'un des jets au moins et de préférence de chaque jet (débit initial plus fluide environnant sensiblement inerte) soit au moins 3.6 fois le débit initial du jet entraínant.
Selon un mode préférentiel de réalisation, le procédé est caractérisé en ce que l'on régule le débit total d'oxydant injecté par lesdits jets principal et auxiliaire d'oxydant à une valeur supérieure au débit stoechiométrique d'oxydant nécessaire pour brûler tout le combustible injecté dans la zone de combustion par ledit au moins un jet de combustible. De préférence également, on régule le débit de l'oxydant injecté par ledit au moins un jet auxiliaire à une valeur inférieure à 30%, de préférence compris entre 2% et 15% du débit total d'oxydant injecté dans la zone de combustion.
Le procédé selon l'invention peut de plus comporter une ou plusieurs des caractéristiques suivantes :
  • on injecte symétriquement autour dudit au moins un jet de combustible, plusieurs jets principaux d'oxydant,
  • on injecte dans ladite zone de combustion deux jets principaux d'oxydant disposés diamétralement opposés par rapport à au moins un jet central de combustible,
  • on injecte dans ladite zone de combustion trois jets centraux de combustible, coplanaires avec les deux jets principaux d'oxydant disposés diamétralement opposés par rapport aux trois jets centraux de combustible,
  • on injecte dans ladite zone de combustion au moins un jet d'un premier combustible, notamment du gaz naturel, et au moins un jet d'un second combustible, notamment du fioul (le combustible peut être dans tous les cas, solide, liquide et/ou gazeux).
Le terme "combustion sensiblement uniforme" signifie que l'on obtient une zone de combustion sensiblement uniforme caractérisée par un volume de zone de combustion au moins doublé par rapport à une flamme où les jets de combustible et d'oxydant se mélangent rapidement sans dilution préalable avec des produits de combustion, et un champ de température avec de faibles gradients dans le volume de la flamme, tel que, pour un oxydant composé d'oxygène pur, la température moyenne maximale est inférieure d'au moins 500°C à la température adiabatique théorique du mélange combustible/oxydant.
La quantité de mouvement totale (combustible + comburant) des jets de fluide rapportée à une unité de puissance (et qui sera donc exprimée en Newton/Megawatt) sera de préférence supérieure à environ 3 N/MW, de manière à obtenir un mélange satisfaisant des gaz (la quantité de mouvement -ou "momentum"- est ici définie comme le produit d'un débit massique (kg/s) par une vitesse (m/s)).
Le tableau ci-après (ramené à une puissance de brûleur de 1 MW) résume les différents résultats obtenus par une flamme oxygène/gaz naturel (de 1 MW) :
OXYGENE NATURAL GAS TOTAL
Cas Vitesse Quantité de mouvement (N) Vitesse (m/s) Quantité de mouvement (N) Quantité de mouvement (N)
1 10 0.9 50 1.1 2.0
2 10 0.9 100 2.2 3.1
3 60 5.1 5 0.1 5.2
4 100 8.5 100 2.2 10.7
5 300 25.5 400 8.8 34.3
Le cas 1 correspond à des vitesses d'injection très faibles pour l'oxydant et faible pour le gaz naturel. La pratique montre que les flammes produites sont sensibles aux forces de flottabilités et peuvent créer des points chauds sur la voûte d'un four, du fait du relèvement de la partie arrière de la flamme. Les cas 2 à 5 montrent différents exemples où le mélange des gaz est assuré par une quantité de mouvement apportée soit par les jets d'oxydant, soit par les jets de combustible, soit par les deux.
Le terme fluide environnant sensiblement inerte signifie le fluide (en général un gaz) situé à proximité du jet d'oxydant principal. En général, il est constitué par les gaz de combustion qui recirculent dans toute la zone de combustion ainsi qu'au voisinage des injections de fluides comburant et combustible, ces gaz de combustion étant plus ou moins dilué par l'air présent dans cette zone de combustion, air dont il ne reste en général que les espèces inertes (azote, argon) qui n'ont pas réagi avec le combustible.
D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante, donnée à titre d'exemple, sans caractère limitatif, en regard des dessins annexés sur lesquels :
  • La figure 1 est un schéma d'une installation de combustion pour la mise en oeuvre du procédé de combustion selon l'invention,
  • La figure 2 est un schéma en vue de face de l'installation de la figure 1,
  • La figure 3 est un schéma selon une vue identique à celle de la figure 2 d'une première variante d'une installation de combustion pour illustrer un développement du procédé selon l'invention,
  • La figure 4 est un schéma selon une vue identique à celle de la figure 2 d'une seconde variante d'une installation de combustion pour illustrer un autre développement du procédé selon l'invention, et
  • La figure 5 est un graphique montrant l'émission en oxydes d'azote d'une installation mettant en oeuvre le procédé selon l'invention.
  • Les figures 1 et 2 illustrent un premier exemple de réalisation d'une installation de combustion pour la mise en oeuvre du procédé selon l'invention.
    En référence à ces figures 1 et 2, l'installation 1 comprend, pour amorcer ou entretenir une combustion dans une zone principale de combustion 2, d'une part un injecteur 3 d'un jet central de combustible 4 (représenté en traits interrompus), comme par exemple un jet de gaz naturel, et d'autre part deux injecteurs identiques 5 et 6 de jets principaux d'un oxydant 7 et 8 (représentés en traits pleins), par exemple de l'air, éventuellement enrichi d'oxygène, ou de l'oxygène pur, disposés diamétralement opposés par rapport à l'injecteur 3 du jet central de combustible 4.
    Pour leur approvisionnement respectif, l'injecteur 3 est relié à une alimentation de combustible 9, et les injecteurs 5 et 6, à une alimentation d'oxydant 10.
    Par ailleurs, pour stabiliser la flamme et/ou faciliter le démarrage de l'installation 1, celle-ci comprend en outre un injecteur 13 d'un jet auxiliaire d'oxydant 14 (représenté en traits mixtes) dans une zone auxiliaire 2A de combustion (représentée par des haçhures) située en amont de la zone principale 2 de combustion. Comme on le voit sur la figure, le jet auxiliaire 14 est disposé à proximité de l'injecteur 3 du jet central de combustible 4 et associé à celui-ci. L'injecteur 13 est également approvisionné par l'alimentation d'oxydant 10.
    Afin de pouvoir maítriser aisément le débit total d'oxygène injecté par les jets principaux 7, 8 et auxiliaire 14 d'oxydant respectivement dans la zone 2 de combustion et dans la zone auxiliaire 2A de combustion, l'alimentation d'oxydant 10 comprend, reliés aux injecteurs d'oxydant 5, 6 et 13, des moyens 15 de répartition du débit total d'oxydant injecté en une première fraction alimentant les injecteurs 5 et 6 des jets 7 et 8 principaux d'oxydant et une seconde fraction, complémentaire à la première, alimentant l'injecteur 13 du jet auxiliaire d'oxydant 14.
    Ces moyens 15 de répartition peuvent par exemple être réalisés par une conduite se piquant en dérivation sur une ligne principale d'alimentation en oxydant de l'alimentation 10 et dans laquelle est disposée une vanne pour réguler la fraction du débit total de l'oxydant alimentant l'injecteur auxiliaire 13.
    Ainsi que l'on voit sur la figure 2, les divers injecteurs 3, 5, 6 et 13 possèdent par exemple des orifices de sortie circulaires de manière à former des jets coniques s'élargissant dans leurs directions de projection respectives indiquées par des flèches 20, 22, 24, et 26 sur la figure 1. Mais on peut aussi prévoir d'autre formes d'orifices de sortie comme par exemple des orifices en forme de fente, d'ellipse, d'anneau ou autre pour modifier la forme des jets.
    Lors de la mise en ouvre du procédé selon l'invention, on injecte dans la zone principale 2 de combustion simultanément le jet central 4 de combustible et, à distance de celui-ci ainsi que diamétralement opposés par rapport à lui, les deux jets 7 et 8 principaux d'oxydant. On régule le débit total d'oxydant injecté par les jets principaux 7 et 8 et auxiliaire d'oxydant 14 de façon à ce qu'il soit supérieur au débit stoechiométrique d'oxydant nécessaire pour brûler tout le combustible injecté dans la zone de combustion 2 afin de réaliser une combustion complète, c'est-à-dire une combustion ne produisant pratiquement pas de combustible imbrûlé.
    Avantageusement, en régime stable de fonctionnement, on régule le débit d'oxydant injecté par le jet auxiliaire d'oxydant à une valeur inférieure à 30%, et de préférence à une valeur comprise entre 2 et 15% du débit total d'oxydant injecté dans la zone de combustion.
    Le jet central 4 de combustible est de préférence injecté avec une vitesse inférieure à 75m/s tandis que les deux jets 7 et 8 principaux d'oxydant sont injectés à une vitesse comprise de préférence entre 50 et 150m/s.
    En outre, on dispose les points d'injection définis par la disposition des divers injecteurs de combustible 3 et d'oxydant 5 et 6, de telle sorte que la distance D entre le point d'injection de chaque jet principal d'oxydant 7, 8 satisfait par rapport au point d'injection du jet de combustible 4 à la relation suivante : D A > 5
    Dans cette relation (I), D représente la distance minimale entre le bord externe du jet d'oxydant considéré, 7 ou 8, et le bord externe du jet de combustible 4 à leurs points respectifs d'injection (voir figure 2), et A représente la section du jet principal de l'oxydant considéré 7 ou 8 à son point d'injection.
    Ainsi, les jets d'oxydant 7 et 8 et de combustible 4 ne commencent à se mélanger qu'à partir d'une distance L des points d'injection respectifs, dans des zones 30, 31 de mélange représentées en gris. La séparation des jets sur cette distance L permet à ceux-ci, notamment aux jets 7 et 8 principaux d'oxydant, d'entraíner une quantité importante du fluide environnant sensiblement inerte, comme cela est représenté par des flèches 32 sur la figure 1. Cette quantité entraínée du fluide environnant est généralement supérieure à cinq, de préférence à dix fois le débit du jet entraínant ce fluide. Dans le cas où les jets sont injectés dans une chambre de combustion fermée, ce fluide environnant est composé principalement de produits de combustion.
    Du fait que le fluide environnant ne participe pas activement à la combustion et grâce à la quantité importante entraínée de ce fluide, on dilue le mélange oxydant / combustible dans les zones de mélange 30 et 31, et on agrandit le volume occupé par la zone principale 2 de combustion. Ceci a pour effet d'homogénéiser la distribution spatiale du champ de température dans cette zone principale 2 de combustion et de diminuer la température moyenne dans celle-ci, de sorte que l'émission des oxydes d'azote est efficacement réduite.
    Pour optimiser d'avantage les conditions de combustion, la distance D satisfait en outre à la relation suivante : D Ac > 5 où Ac représente la section du jet de combustible à son point d'injection.
    Pour le démarrage et ensuite pour la stabilisation de la combustion, on injecte en outre dans la zone principale 2 de combustion, à une distance Ds du jet 4 associé de combustible, le jet auxiliaire d'oxydant 14. La stabilisation de la combustion dans la zone principale 2 est assurée par la présence de la zone auxiliaire 2A de combustion en amont, qui assure ainsi une région d'inflammation stable du mélange oxydant/combustible dans la zone 2. Ds satisfait à la relation suivante : Ds As < 5
    Dans cette relation (III), Ds représente la distance minimale entre le bord externe du jet auxiliaire d'oxydant 14 considéré et le bord externe du jet associé de combustible 4, à leurs points respectifs d'injection, et As représente la section du jet auxiliaire d'oxydant 14 à son point d'injection.
    Bien entendu, dans toutes ces relations, les sections A, Ac, et As des jets à leurs points respectifs d'injection sont déterminées en prenant en compte leurs formes particulières géométriques.
    En particulier, si par exemple la taille de la section d'un des jets principaux d'oxydant est supérieure à celle de l'autre, les distances D minimales entres les bords externes des jets respectifs d'oxydant et de combustible peuvent également être différentes, à savoir un jet d'oxydant ayant une section plus petite peut être disposé plus près du jet de combustible que celui ayant une section plus grande.
    De plus, on peut prévoir plusieurs injecteurs de jets de combustible et plusieurs injecteurs de jets principaux d'oxydant. Dans ce cas, pour satisfaire à la relation (I), il faut considérer pour chaque jet principal d'oxydant le jet de combustible le plus proche de lui.
    Dans une configuration minimale de l'invention, on ne prévoit qu'un jet de combustible, un jet d'oxydant principal et un jet d'oxydant auxiliaire, la disposition des jets satisfaisant aux relations (I), (Il) et (III).
    En variante à l'installation des figures 1 et 2 et comme cela est représenté sur la figure 3, on peut par exemple prévoir deux injecteurs supplémentaires 37 et 38 de jets principaux d'oxydant. Ces injecteurs 37 et 38 ainsi que les injecteurs 5 et 6 sont disposés symétriquement autour de l'injecteur 3 du jet central 4 de combustible. Une telle configuration permet de réaliser une installation de combustion plus compacte du fait que l'on peut choisir des injecteurs d'oxydant principal de diamètre réduit et disposés plus près de l'injecteur de combustible tout en satisfaisant à la relation (I).
    La figure 4 montre en une vue de face identique à celle de la figure 2 une autre variante d'une installation 1 pour la mise en oeuvre du procédé selon l'invention.
    L'installation de cette variante comprend trois injecteurs 50, 51 et 52 de trois jets d'un premier combustible, par exemple du gaz naturel, qui sont coplanaires avec des injecteurs 55 et 56 de jets principaux d'oxydant disposés diamétralement opposés par rapport aux injecteurs 50, 51 et 52, et un injecteur 53 d'un jet d'un second combustible, par exemple du fioul, disposé au dessus des trois injecteurs 50, 51 et 52 des jets du premier combustible et permettant d'alterner le combustible utilisé.
    Bien entendu, les injecteurs 55 et 56 et par conséquent les jets d'oxydant principal projetés dans la zone de combustion par ceux-ci se trouvent, à leurs points respectifs d'injection, à une distance D minimale entre les bords externes par rapport au jet de combustible le plus proche, c'est-à-dire le jet projeté par l'injecteur 50 en ce qui concerne l'injecteur principal 55 et l'injecteur 52 en ce qui concerne l'injecteur principal 56, de façon à respecter les relations (I) et (II).
    De plus, deux injecteurs 57 et 58 de jets auxiliaires d'oxydant sont disposés au dessus des trois injecteurs 50, 51 et 52 des jets de combustible dont l'un 57 est associé aux injecteurs 50, 51 et 53 et dont l'autre 58 est associé aux injecteurs 51, 52 et 53. Ces injecteurs auxiliaires 57 et 58 se trouvent à une distance Ds minimale entre les bords externes des jets de combustible de façon à respecter la relation (III).
    Bien entendu, dans toutes les variantes représentées sur les figures 1 à 4, on peut également envisager d'inverser l'alimentation des injecteurs de sorte que l'on injecte des jets d'oxydant à la place des jets de combustible et vice versa du moment que les relations (I), (II) et (III) sont respectées.
    La figure 5 montre à titre indicatif un graphique représentant un résultat obtenu avec le procédé selon l'invention mis en oeuvre à l'aide d'une installation du type représentée sur les figures 1 et 2 et dans laquelle on pouvait ajuster la distance D définie plus haut des jets d'oxydant principal par rapport au jet central de combustible. Ce graphique montre la quantité d'oxydes d'azote (NOx) produite lors de la combustion en fonction du paramètre D/√A défini plus haut.
    Sur ce graphique, on voit que la formation des oxydes d'azotes diminue considérablement en fonction du paramètre D/√A. On voit clairement que pour les jets principaux d'oxydant dont la disposition respecte la relation D / A > 5, la réduction des émissions d'oxydes d'azote est importante.
    Grâce au procédé selon l'invention et en particulier à la disposition des jets principaux et auxiliaires d'oxydant par rapport aux injecteurs de combustible, on obtient une combustion stable et une émission réduite des oxydes d'azote.

    Claims (11)

    1. Procédé de combustion pour brûler un combustible, dans lequel on injecte simultanément dans une zone principale de combustion au moins un jet de combustible et à distance de celui-ci au moins un jet principal d'un oxydant, caractérisé en ce que l'on dispose le point d'injection de chaque jet principal d'oxydant par rapport au point d'injection du jet de combustible le plus proche de lui à une distance D satisfaisant l'une au moins des relations suivantes : D A > 5 (et de préférence > 10) et/ou D B > 5 (et de préférence > 10) D étant définie comme la distance minimale entre le bord externe du jet d'oxydant considéré et le bord externe du jet de combustible le plus proche de lui, à leurs points respectifs d'injection, et A et B étant respectivement la section du jet principal de l'oxydant et la section du jet de combustible, les sections étant considérées au point d'injection des jets, de manière à maintenir les jets principal d'oxydant et de combustible séparés jusqu'à ce que ledit au moins un jet principal d'oxydant et/ou le jet de combustible ait entraíné une quantité d'un fluide environnant sensiblement inerte de manière à obtenir une combustion sensiblement uniforme.
    2. Procédé selon la revendication 1, caractérisé en ce l'on injecte dans une zone auxiliaire de combustion située en amont de ladite zone principale de combustion au moins un jet auxiliaire d'un oxydant pour stabiliser la combustion dans ladite zone principale de combustion, le point d'injection dudit jet auxiliaire d'oxydant étant disposé à une distance Ds du jet associé de combustible, Ds satisfaisant à la relation suivante : Ds As < 5 Ds étant la distance minimale entre le bord externe du jet auxiliaire d'oxydant considéré et le bord externe du jet associé de combustible, à leurs points respectifs d'injection, et As étant la section du jet auxiliaire d'oxydant considéré à son point d'injection.
    3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la quantité de fluide environnant entraíné est supérieure à cinq, encore plus préférentiellement à dix fois son propre débit.
    4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que selon un mode préférentiel de réalisation, le procédé est caractérisé en ce que l'on régule le débit total d'oxydant injecté par lesdits jets principal et auxiliaire d'oxydant à une valeur supérieure au débit stoechiométrique d'oxydant nécessaire pour brûler tout le combustible injecté dans la zone de combustion par ledit au moins un jet de combustible.
    5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'on régule le débit de l'oxydant injecté par ledit au moins un jet auxiliaire à une valeur inférieure à 30 %, de préférence compris entre 2 % et 15 % du débit total d'oxydant injecté dans la zone de combustion.
    6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'on régule le débit total d'oxydant injecté par lesdits jets principal et auxiliaire d'oxydant à une valeur supérieure au débit stoechiométrique d'oxydant nécessaire pour brûler tout le combustible injecté dans la zone de combustion par ledit au moins un jet de combustible.
    7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'on régule le débit de l'oxydant injecté par ledit au moins un jet auxiliaire à une valeur inférieure à 30%, de préférence compris entre 2% et 15% du débit total d'oxydant injecté dans la zone de combustion (2).
    8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'on injecte symétriquement autour dudit au moins un jet de combustible (4), plusieurs jets principaux d'oxydant (5,6,37,38).
    9. Procédé selon la revendication 8, caractérisé en ce que l'on injecte dans ladite zone de combustion deux jets principaux d'oxydant (5,6) disposés diamétralement opposés par rapport à au moins un jet central de combustible (4).
    10. Procédé selon la revendication 9, caractérisé en ce que l'on injecte dans ladite zone de combustion trois jets centraux de combustible, coplanaires avec les deux jets principaux d'oxydant disposés diamétralement opposés par rapport aux trois jets centraux de combustible.
    11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que l'on injecte dans ladite zone de combustion au moins un jet d'un premier combustible, notamment du gaz naturel, et au moins un jet d'un second combustible, notamment du fioul.
    EP99402117A 1998-09-02 1999-08-25 Procédé de combustion pour brûler un combustible Revoked EP0984223B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9810966A FR2782780B1 (fr) 1998-09-02 1998-09-02 Procede de combustion pour bruler un combustible
    FR9810966 1998-09-02

    Publications (2)

    Publication Number Publication Date
    EP0984223A1 true EP0984223A1 (fr) 2000-03-08
    EP0984223B1 EP0984223B1 (fr) 2004-05-19

    Family

    ID=9530048

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99402117A Revoked EP0984223B1 (fr) 1998-09-02 1999-08-25 Procédé de combustion pour brûler un combustible

    Country Status (9)

    Country Link
    US (1) US6196831B1 (fr)
    EP (1) EP0984223B1 (fr)
    JP (1) JP2000088212A (fr)
    CN (1) CN1247290A (fr)
    AT (1) ATE267362T1 (fr)
    DE (1) DE69917395T2 (fr)
    ES (1) ES2221335T3 (fr)
    FR (1) FR2782780B1 (fr)
    ID (1) ID23833A (fr)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2986855A1 (fr) * 2012-02-10 2013-08-16 Air Liquide Oxy-bruleur a injections multiples de combustible et procede d'oxy-combustion correspondant
    EP2230453A3 (fr) * 2009-03-20 2015-03-04 Aga Ab Procédé pour homogénéiser la distribution de chaleur ainsi que pour diminuer la quantité de NOx

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2795716B1 (fr) * 1999-07-02 2001-08-03 Air Liquide Procede de calcination d'un materiau a base de minerai
    US6910878B2 (en) * 2003-06-19 2005-06-28 Praxair Technology, Inc. Oxy-fuel fired process heaters
    FR2863689B1 (fr) * 2003-12-16 2006-05-05 Air Liquide Procede de combustion etagee mettant en oeuvre un oxydant prechauffe
    FR2863692B1 (fr) * 2003-12-16 2009-07-10 Air Liquide Procede de combustion etagee avec injection optimisee de l'oxydant primaire
    US20070152083A1 (en) * 2004-06-18 2007-07-05 Malcolm David B Uniform droplet spray nozzle for liquids
    US7185830B2 (en) * 2004-06-18 2007-03-06 Malcolm David B Uniform droplet spray nozzle for liquids
    SE528808C2 (sv) * 2004-09-15 2007-02-20 Aga Ab Förfarande vid förbränning, jämte brännare
    US20060275724A1 (en) * 2005-06-02 2006-12-07 Joshi Mahendra L Dynamic burner reconfiguration and combustion system for process heaters and boilers
    SE0501840L (sv) * 2005-08-19 2007-02-20 Aga Ab Förfarande jämte för övervakning av en brännare
    KR101215229B1 (ko) * 2005-10-28 2012-12-26 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 저-질소산화물 연소를 위한 방법 및 장치
    FR2903762B1 (fr) * 2006-07-13 2008-09-05 Air Liquide Bruleur et procede pour la mise en oeuvre alternee d'une oxycombustion et d'une aerocombustion
    FR2917155A1 (fr) * 2007-06-08 2008-12-12 Saint Gobain Emballage Sa Combustion diluee
    EP2080952A1 (fr) * 2008-01-17 2009-07-22 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Brûleur et procédé pour alterner une oxycombustion et une combustion à l'air
    JP5608756B2 (ja) * 2009-11-19 2014-10-15 エクソンモービル・ケミカル・パテンツ・インク 空気インナーライナーの製造方法
    US9033259B2 (en) 2010-12-23 2015-05-19 General Electric Company Method and system for mixing reactor feed
    EP2479492A1 (fr) * 2011-01-21 2012-07-25 Technip France Brûleur, four
    CA2849068C (fr) * 2011-10-03 2019-05-14 Saint-Gobain Emballage Chambre de combustion a emissions reduites
    US9228744B2 (en) 2012-01-10 2016-01-05 General Electric Company System for gasification fuel injection
    US9545604B2 (en) 2013-11-15 2017-01-17 General Electric Company Solids combining system for a solid feedstock

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4541796A (en) * 1980-04-10 1985-09-17 Union Carbide Corporation Oxygen aspirator burner for firing a furnace
    EP0754912A2 (fr) * 1995-07-17 1997-01-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de combustion et appareil pour sa mise en oeuvre avec injection séparée du combustible et du carburant
    EP0844433A2 (fr) * 1996-11-25 1998-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et dispositif de combustion avec injection séparée du combustible et du comburant

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5819929B2 (ja) * 1978-07-11 1983-04-20 新日本製鐵株式会社 低NO↓xバ−ナ−
    DE2951796C2 (de) * 1978-12-21 1982-11-04 Kobe Steel, Ltd., Kobe, Hyogo Brenner für gasförmige oder flüssige Brennstoffe für minimale NO&darr;x&darr;-Emission
    JPS55143307A (en) * 1979-04-23 1980-11-08 Kobe Steel Ltd Double combustion apparatus
    US4378205A (en) * 1980-04-10 1983-03-29 Union Carbide Corporation Oxygen aspirator burner and process for firing a furnace
    US4988285A (en) 1989-08-15 1991-01-29 Union Carbide Corporation Reduced Nox combustion method
    JPH07190319A (ja) * 1993-12-06 1995-07-28 Bloom Eng Co Inc 空気多段供給式バーナ及びその燃焼方法
    JP3254337B2 (ja) * 1994-09-24 2002-02-04 トヨタ自動車株式会社 低NOxバーナ
    JP3557028B2 (ja) * 1996-02-14 2004-08-25 Jfeスチール株式会社 燃焼バーナ及びその炉内燃焼方法
    US5839890A (en) * 1996-09-19 1998-11-24 Praxair Technology, Inc. Condensation free nozzle

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4541796A (en) * 1980-04-10 1985-09-17 Union Carbide Corporation Oxygen aspirator burner for firing a furnace
    EP0754912A2 (fr) * 1995-07-17 1997-01-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de combustion et appareil pour sa mise en oeuvre avec injection séparée du combustible et du carburant
    EP0844433A2 (fr) * 1996-11-25 1998-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et dispositif de combustion avec injection séparée du combustible et du comburant

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2230453A3 (fr) * 2009-03-20 2015-03-04 Aga Ab Procédé pour homogénéiser la distribution de chaleur ainsi que pour diminuer la quantité de NOx
    FR2986855A1 (fr) * 2012-02-10 2013-08-16 Air Liquide Oxy-bruleur a injections multiples de combustible et procede d'oxy-combustion correspondant

    Also Published As

    Publication number Publication date
    FR2782780B1 (fr) 2000-10-06
    US6196831B1 (en) 2001-03-06
    CN1247290A (zh) 2000-03-15
    ES2221335T3 (es) 2004-12-16
    ID23833A (id) 2000-05-25
    DE69917395D1 (de) 2004-06-24
    FR2782780A1 (fr) 2000-03-03
    JP2000088212A (ja) 2000-03-31
    DE69917395T2 (de) 2005-06-02
    EP0984223B1 (fr) 2004-05-19
    ATE267362T1 (de) 2004-06-15

    Similar Documents

    Publication Publication Date Title
    EP0984223B1 (fr) Procédé de combustion pour brûler un combustible
    EP1144915B1 (fr) Appareil de type torchere et procede pour la combustion de gaz
    EP1640661B1 (fr) Système aérodynamique à effervescence d&#39;injection air/carburant dans une chambre de combustion de turbomachine
    EP1640662B1 (fr) Injecteur à effervescence pour système aéromécanique d&#39;injection air/carburant dans une chambre de combustion de turbomachine
    EP1379810B1 (fr) Procédé de combustion comportant des injections séparées de combustible et d&#39;oxydant et ensemble brûleur pour la mise en oeuvre de ce procédé
    CA2478876C (fr) Systeme d&#39;injection air/carburant ayant des moyens de generation de plasmas froids
    EP0933594B1 (fr) Procédé de fonctionnement d&#39;une chambre de combustion de turbine à gaz fonctionnant au carburant liquide
    FR2724447A1 (fr) Melangeur de carburant double pour chambre de combustion de turbomoteur
    FR2715460A1 (fr) Structure de brûleur.
    FR2488942A1 (fr) Procede et appareil de combustion pour turbine a gaz
    FR2485692A1 (fr) Procede et bruleur pour produire une combustion a faible teneur en oxydes d&#39;azote des gaz d&#39;echappement dans un tube radiant
    EP0850200A1 (fr) PROCEDE ET DISPOSITIF POUR LA REDUCTION DE L&#39;EMISSION DE NOx DANS UN FOUR DE VERRERIE
    EP1618334B1 (fr) Procede de combustion etagee d un combustible liquide et d&#39;un oxydant dans un four
    FR2706020A1 (fr) Ensemble de chambre de combustion, notamment pour turbine à gaz; comprenant des zones de combustion et de vaporisation séparées.
    CA2657537C (fr) Bruleur et procede pour la mise en oeuvre alternee d&#39;une oxycombustion et d&#39;une aerocombustion
    EP1157235B1 (fr) Dispositif pour ameliorer le brulage des combustibles gazeux
    EP2981761B1 (fr) Procédé de combustion d&#39;un bruleur à gaz a premelange bas nox
    FR2766557A1 (fr) Bruleurs a combustible liquide et gazeux a faible emission d&#39;oxydes d&#39;azote
    EP3303232B1 (fr) Four a injection sonique
    WO2023057722A1 (fr) Dispositif d&#39;injection de dihydrogène et d&#39;air
    FR3139378A1 (fr) Dispositif et procede d’injection de melange hydrogene-air pour bruleur de turbomachine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: CHARON, OLIVIER

    Inventor name: LABEGORRE, BERNARD

    Inventor name: SAMANIEGO, JEAN-MICHEL

    Inventor name: DUGUE, JACQUES

    17P Request for examination filed

    Effective date: 20000908

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

    17Q First examination report despatched

    Effective date: 20030324

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040519

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 69917395

    Country of ref document: DE

    Date of ref document: 20040624

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040819

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040819

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040819

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040831

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040831

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040831

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040805

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2221335

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    26 Opposition filed

    Opponent name: PRAXAIR, INC.

    Effective date: 20050217

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

    PLCK Communication despatched that opposition was rejected

    Free format text: ORIGINAL CODE: EPIDOSNREJ1

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    APBP Date of receipt of notice of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA2O

    APBQ Date of receipt of statement of grounds of appeal recorded

    Free format text: ORIGINAL CODE: EPIDOSNNOA3O

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041019

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20090820

    Year of fee payment: 11

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20090820

    Year of fee payment: 11

    Ref country code: GB

    Payment date: 20090827

    Year of fee payment: 11

    Ref country code: DE

    Payment date: 20090821

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20090915

    Year of fee payment: 11

    RDAF Communication despatched that patent is revoked

    Free format text: ORIGINAL CODE: EPIDOSNREV1

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    27W Patent revoked

    Effective date: 20091110

    GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

    Effective date: 20091110

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20090821

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20090914

    Year of fee payment: 11