EP0978221B1 - Circuitry for dimming a fluorescent lamp - Google Patents

Circuitry for dimming a fluorescent lamp Download PDF

Info

Publication number
EP0978221B1
EP0978221B1 EP98924143A EP98924143A EP0978221B1 EP 0978221 B1 EP0978221 B1 EP 0978221B1 EP 98924143 A EP98924143 A EP 98924143A EP 98924143 A EP98924143 A EP 98924143A EP 0978221 B1 EP0978221 B1 EP 0978221B1
Authority
EP
European Patent Office
Prior art keywords
arrangement according
circuit arrangement
frequency
switches
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98924143A
Other languages
German (de)
French (fr)
Other versions
EP0978221A1 (en
Inventor
Berthold Birk
Günter Hahlganss
Walter Kares
Ulrich Roskoni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1997117309 external-priority patent/DE19717309A1/en
Priority claimed from DE19733939A external-priority patent/DE19733939A1/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0978221A1 publication Critical patent/EP0978221A1/en
Application granted granted Critical
Publication of EP0978221B1 publication Critical patent/EP0978221B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2821Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage
    • H05B41/2822Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a single-switch converter or a parallel push-pull converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/04Dimming circuit for fluorescent lamps

Definitions

  • the invention relates to a circuit arrangement for dimmable Operation of a fluorescent lamp, in particular for use in Motor vehicles as instrument lighting. From a standing start Corresponding circuit arrangements are known in the art, where the fluorescent lamp is operated at an operating frequency becomes. By switching the operating frequency on and off with one device and thus the lamp with one Dimming frequency, which is above the human's visual frequency Eye lies, that is achieved for the human eye The impression arises that the fluorescent lamp is of different brightness, depending on the pulse width of the dimming frequency.
  • Such a circuit arrangement is known from JP-A-06333695. To the lamp current by the fluorescent lamp, it is necessary to either to provide an additional controller or to use an elaborately stabilized resonant circuit.
  • the object of the invention is therefore to provide a simple structure Specify circuitry for dimming a fluorescent lamp.
  • a particularly simple push-pull converter is replaced by one Resonant circuit consisting of a capacitance and an inductor, which is connected to a first pole of the supply voltage.
  • the oscillating circuit is alternately direct or via two switches via a third switch with the second pole of the supply voltage connectable.
  • the two switches are each with one connection the connections of the capacitance and / or the inductance are connected.
  • fluorescent lamps can either be parallel to the inductance and / or capacitance can be arranged or via a transformer are supplied with the operating frequency, the primary winding of the Transformer advantageously forms the inductance of the resonant circuit.
  • circuit arrangement according to claim 5 is a circuit arrangement realized with few components.
  • the circuit arrangement according to claim 6 gives a particularly effective Regulation of the lamp current, which is nevertheless simple and with few Components is built.
  • the positive feedback device in the form of a coil on the same bobbin how the inductance is applied can be done easily and simultaneously with the inductor.
  • the lamp current setpoint depends on the temperature the fluorescent lamp or the environment is specified, a Minimum brightness reached even at low temperatures.
  • Circuit arrangements according to the invention of particularly simple construction are given in claims 9 and 12.
  • a microprocessor for the control device the possibly even for other tasks, for example in an instrument cluster a motor vehicle is present and the invention Brightness control used for instrument lighting the circuit can be implemented with little component effort.
  • the circuit with a separate microprocessor or be realized by means of switching gates.
  • the switch before or at the beginning of the pulse sequence pause can be in the resonant circuit contained current short-circuited and so an afterglow of the Fluorescent lamp can be prevented safely.
  • a Ballast choke between a pole of the supply voltage and the The circuit can additionally stabilize the oscillating circuit and are kept sinusoidal.
  • the push-pull converter from FIG. 1 has an oscillating circuit consisting of the capacitor C and the coil L, which is connected directly to the positive supply voltage and can be connected via the transistors S1, S2 alternately to the ground potential via the series reactor Lv and the transistor S3.
  • the following description assumes that the transistor S3 is turned on, that is to say that the transistors S1, S2 are connected to the second pole of the supply voltage.
  • the voltage is also coupled through the coil L1, which is wound on the same coil former as the coil L, and the alternating voltage that occurs alternately blocks the transistors S1, S2 with the oscillation frequency of the resonant circuit.
  • the operating point of the two transistors S1, S2 is set via the resistor R.
  • the resonant circuit transmits its energy via the transformer, which is formed from the coils L, L1 and L2, to the lamp circuit which, in addition to the coil L2, also has the fluorescent lamp KL, the impedance Z and a shunt SH.
  • the voltage is tapped between the fluorescent lamp KL and the shunt SH and fed to the rectifier G.
  • the rectified voltage U1 is present at the minus input of the comparator K.
  • the square wave voltage U3 of the frequency f3 at the output of the comparator K1 is changed in its pulse width W3.
  • the current setpoint can be set by the level of the triangular voltage can be set in Figure 2b.
  • the output voltage U3 of the comparator K1 is connected to an input of the AND gate A led while to the second input of the AND gate A the dimming frequency f2 is set with the voltage curve U4 ( Figure 2a).
  • the dimming frequency f2 is rectangular and its pulse width W2 also changeable.
  • the pulse width W2 of the dimming frequency f2 is determined the duty cycle of the push-pull converter and thus the fluorescent lamp KL, as will be described in more detail later.
  • the Pulse width W2 of the dimming frequency f2 is e.g. either automatically depending the ambient brightness or manually depending on the desired Brightness of the fluorescent lamp KL adjustable.
  • the voltage U5 is present at the output of the AND gate A: It points during the pulse width W2 of the dimming frequency f2 switching pulses of the pulse width W3 with the switching frequency f3.
  • the transistor S3 is turned on the switching pulses are controlled with the pulse width W3.
  • the transistor S3 With the first pulse with the pulse width W3 during a pulse width W2 Dimming frequency f2, the transistor S3 is turned on.
  • the current IB can flow from the supply voltage source + UB into the time Resonant circuit flow.
  • the resonant circuit begins at its resonance frequency to swing.
  • the resonant circuit oscillates further and the current stored in the resonant circuit flows through the series choke Lv and the diode D connected as a freewheeling diode in the Resonant circuit back, but decreases accordingly.
  • transistor S3 switches through again: current can flow out of the Supply voltage source + UB flow into the resonance circuit and the Current IB increases during the duty cycle.
  • the current fluctuates during the pulse width W2 of the dimming frequency f2 around its mean IM ( Figure 2 f). With increasing or decreasing Pulse width W3 is increased or current IB reduced and the lamp current IL via the transformer. If the pulse width W2 of the dimming frequency f2 has ended and the last pulse the pulse sequence of frequency f3 at transistor t4 at time t4 has transistor S3 during the pause time P of the frequency f2 locked. The resonant circuit vibrates due to its load by the lamp KL and own losses, which become currents IB and IL back to 0 and the fluorescent lamp goes out. With the beginning of the next Pulse of the dimming frequency f2, it begins to light up again previously described. Since the dimming frequency f2 is above human The fluorescent lamp appears to the human eye depending on the pulse width W2 differently bright.
  • the fluorescent lamp KL can with a sufficiently large supply voltage also in the primary circuit e.g. arranged parallel to the capacitor C. are so that the secondary coil L2 can be dispensed with. Furthermore, the voltage can also be set via a shunt in the primary circuit can be tapped for the rectifier G.
  • the circuit from FIG. 3 also has an oscillating circuit from the capacitor C and the coil L on that with the positive supply voltage is connected and alternately via transistors S4, S5 is connectable to ground potential.
  • the control device SE is via a control line SL1, SL2 with the base of the transistors S4, S5 connected.
  • the dimming frequency f2 (FIG. 4a) with the pulse sequences controlled with the switching frequency f3 alternately, the duration T5 of the individual contiguous pulses for a transistor S4, S5 half of the oscillation period T1 of the resonant circuit is ( Figure 4b, c).
  • the resonant circuit oscillates almost sinusoidally, so that only small disturbing harmonics occur. Therefore it is also advantageous if the oscillation period T of the resonance frequency is an even multiple the oscillation period T3 is the switching frequency f3.
  • the oscillation period T1 of the resonant circuit corresponds to four times the oscillation period T3 of the individual pulses.
  • the pulse width W3 of the individual pulses becomes the average current IM in the primary circuit and thus also the lamp current IL in the secondary circuit.
  • the dimming frequency f2 is only present internally in the control device SE.
  • Your pulse width W2 determines the duty cycle of the resonant circuit and so that the duty cycle of the fluorescent lamp KL.
  • the one shown in Figure 3 Circuit corresponds to a control. Individuals can do this Pulse width values W2 of the dimming frequency f2 for various desired ones Brightnesses and / or operating temperatures in the storage devices be stored, which are directly present in the memory device SE or which the control device SE can access.
  • FIG. 5 shows a fluorescent lamp L, which is connected to a high-voltage capacitor Z with the secondary circuit L2 of a transformer.
  • the transformer is energized in its primary circuit L by two push-pull switching MOSFET transistors S6 and S7, which are controlled by a control device SL, the primary circuit L of the transformer being connected to the operating voltage U B at the same time.
  • Each gate G of the transistors S6, S7 is connected to the control device SL.
  • the drain D of each transistor S6, S7 leads to the primary winding L of the transformer, the sources S of the MOSFET transistors S6, S7 leading together to a shunt resistor R1 which is connected to ground.
  • the control device SL processes a voltage drop across the shunt resistor R1 as an input signal.
  • the voltage drop is fed to the inverting input of a comparator K, at the non-inverting input of which there is a reference voltage U REF with a constant value.
  • the output of the comparator K is connected to the control device SL.
  • the two MOSFET transistors S6, S7 are successively each triggered once with a pulse 1.
  • This is the resonant circuit, consisting of the secondary coil L2, the high-voltage capacitor Z and the fluorescent lamp KL triggered.
  • the resonant circuit reverberates an e-function (see signal 4, point 2).
  • the gas in the cold cathode fluorescent lamp KL can ionize and organize itself during this time.
  • the transistors S6, S7 continuously controlled alternately (signal 1 and 2, point 4).
  • the Cold cathode fluorescent lamp KL emits light immediately from this point in time (as signal 4 can be seen in point 3).
  • the control device SL controls the MOSFET transistors S6, S7 in a pulsed manner on ( Figure 6a, signal 1 and 2).
  • the one through the MOSFET transistors S6, S7 current flowing is considered voltage drop across the Shunt resistance R1 measured and evaluated by comparator K2, which depends on whether the measured voltage is the reference value exceeds or not, emits a low or high signal.
  • the output signal of the comparator K2 becomes logical in the control device SL linked with signal 1. This causes the MOSFET transistors S6, S7 during control by the control logic in the Clock of the output signal of the comparator K controlled or blocked become.
  • This device has the advantage that the flicker-free operation of the fluorescent lamp L only through the special control of the MOSFET transistors S6, S7 is reached. On extensive control circuits, as usual, you can do without.

Description

Die Erfindung betrifft eine Schaltungsanordnung zum dimmbaren Betrieb einer Leuchtstofflampe, insbesondere zum Einsatz in Kraftfahrzeugen als Instrumentenbeleuchtung. Aus dem Stand der Technik sind entsprechende Schaltungsanordnungen bekannt, bei denen die Leuchtstofflampe mit einer Betriebsfrequenz betrieben wird. Durch das ein- und Ausschalten der Betriebsfrequenz mit einer Vorrichtung und damit der Lampe mit einer Dimmfrequenz, die oberhalb der Sehfrequenz des menschlichen Auges liegt, wird erreicht, dass für das menschliche Auge der Eindruck entsteht, die Leuchtstofflampe sei verschieden hell, je nach Pulsweite der Dimmfrequenz. Eine derartige Schaltungsanordnung ist aus der JP-A-06333695 bekannt. Um den Lampenstrom durch die Leuchtstofflampe einzustellen, ist es erforderlich, entweder einen zusätzlichen Regler vorzusehen oder einen aufwendig stabilisierten Schwingkreis zu verwenden. Aufgabe der Erfindung ist es daher, eine einfach aufgebaute Schaltungsanordnung zum Dimmen einer Leuchtstofflampe anzugeben.The invention relates to a circuit arrangement for dimmable Operation of a fluorescent lamp, in particular for use in Motor vehicles as instrument lighting. From a standing start Corresponding circuit arrangements are known in the art, where the fluorescent lamp is operated at an operating frequency becomes. By switching the operating frequency on and off with one device and thus the lamp with one Dimming frequency, which is above the human's visual frequency Eye lies, that is achieved for the human eye The impression arises that the fluorescent lamp is of different brightness, depending on the pulse width of the dimming frequency. Such a circuit arrangement is known from JP-A-06333695. To the lamp current by the fluorescent lamp, it is necessary to either to provide an additional controller or to use an elaborately stabilized resonant circuit. The object of the invention is therefore to provide a simple structure Specify circuitry for dimming a fluorescent lamp.

Diese Aufgabe wird durch eine Vorrichtung nach Anspruch 1, gelöst.This object is achieved by a device according to claim 1.

Durch die Ausgestaltung der Schaltung mit einem Gegentaktwandler zum Erzeugen der Betriebsfrequenz wird eine einfach aufgebaute funktionelle Realisierung von Oszillator und Regler erreicht. By designing the circuit with a push-pull converter to generate the operating frequency is easy built functional implementation of oscillator and controller reached.

Ein besonders einfach aufgebauter Gegentaktwandler wird durch einen Schwingkreis bestehend aus einer Kapazität und einer Induktivität realisiert, der mit einem ersten Pol der Versorgungsspannung verbunden ist. Der Schwingkreis ist weiterhin abwechselnd über zwei Schalter direkt oder über einen dritten Schalter mit dem zweiten Pol der Versorgungsspannung verbindbar. Die zwei Schalter sind dabei mit je einem Anschluß an die Anschlüsse der Kapazität und/oder der Induktivität angeschlossen. Die Leuchtstofflampe kann bei dieser Schaltung entweder parallel zur Induktivität und/oder Kapazität angeordnet sein oder über einen Transformator mit der Betriebsfrequenz versorgt werden, wobei die Primärwicklung des Transformators vorteilhafterweise die Induktivität des Schwingkreises bildet.A particularly simple push-pull converter is replaced by one Resonant circuit consisting of a capacitance and an inductor, which is connected to a first pole of the supply voltage. The oscillating circuit is alternately direct or via two switches via a third switch with the second pole of the supply voltage connectable. The two switches are each with one connection the connections of the capacitance and / or the inductance are connected. The With this circuit, fluorescent lamps can either be parallel to the inductance and / or capacitance can be arranged or via a transformer are supplied with the operating frequency, the primary winding of the Transformer advantageously forms the inductance of the resonant circuit.

Die Verwendung von elektronischen Schaltern wie z. B. Transistoren oder Feldeffekttransistoren stellt eine preisgünstige Lösung für die Schalter dar.The use of electronic switches such. B. transistors or Field effect transistors represent an inexpensive solution for the switches.

Mit einer Schaltungsanordnung nach Anspruch 5 wird eine Schaltungsanordnung mit wenigen Bauteilen realisiert.With a circuit arrangement according to claim 5 is a circuit arrangement realized with few components.

Die Schaltungsanordnung nach Anspruch 6 gibt eine besonders wirksame Regelung des Lampenstromes an, die dennoch einfach und mit wenigen Bauteilen aufgebaut ist.The circuit arrangement according to claim 6 gives a particularly effective Regulation of the lamp current, which is nevertheless simple and with few Components is built.

Die Mitkopplungseinrichtung in Form einer Spule, die auf denselben Spulenkörper wie die Induktivität aufgebracht ist, läßt sich einfach und gleichzeitig mit der Induktivität herstellen.The positive feedback device in the form of a coil on the same bobbin how the inductance is applied can be done easily and simultaneously with the inductor.

Dadurch, dass der Lampenstromsollwert in Abhängigkeit der Temperatur der Leuchtstofflampe oder der Umgebung vorgegeben wird, wird eine Mindesthelligkeit auch bei tiefen Temperaturen erreicht. The fact that the lamp current setpoint depends on the temperature the fluorescent lamp or the environment is specified, a Minimum brightness reached even at low temperatures.

Besonders einfach aufgebaute erfindungsgemäße Schaltungsanordnungen sind in den Ansprüchen 9 und 12 angegeben. Insbesondere bei Verwendung eines Mikroprozessors für die Steuerungseinrichtung, der eventuell sogar schon für andere Aufgaben, zum Beispiel in einem Kombiinstrument eines Kraftfahrzeuges vorhanden ist und die erfindungsgemäße Helligkeitssteuerung für die Instrumentenbeleuchtung verwendet wird, ist die Schaltung mit geringem Bauteileaufwand zu realisieren. Natürlich kann die Schaltung auch mit einem separaten Mikroprozessor oder mittels Schaltgattern realisiert sein.Circuit arrangements according to the invention of particularly simple construction are given in claims 9 and 12. Especially when used a microprocessor for the control device, the possibly even for other tasks, for example in an instrument cluster a motor vehicle is present and the invention Brightness control used for instrument lighting the circuit can be implemented with little component effort. Naturally can the circuit with a separate microprocessor or be realized by means of switching gates.

Durch eine Schaltungsanordnung, bei der die Betriebsfrequenz der Leuchtstofflampe in etwa der Resonanzfrequenz des Schwingkreises entspricht, erhält man eine nahezu sinusförmige Betriebsfrequenz mit wenig Oberschwingungen. Dies vermindert Störungen, die von der Schaltung ausgehen können und erhöht so die elektromagnetische Verträglichkeit der Schaltung.Through a circuit arrangement in which the operating frequency of the Fluorescent lamp corresponds approximately to the resonance frequency of the resonant circuit, you get an almost sinusoidal operating frequency with little Harmonics. This reduces interference from the circuit can go out and thus increases the electromagnetic compatibility the circuit.

Durch gleichzeitiges Ein- und darauffolgendes Ausschalten der beiden Schalter vor oder bei Beginn der lmpulsfolgepause kann der im Schwingkreis enthaltene Strom kurzgeschlossen und so ein Nachleuchten der Leuchtstofflampe sicher verhindert werden. Durch das Einfügen einer Vorschaltdrossel zwischen einen Pol der Versorgungsspannung und den Schwingkreis kann der Strom durch die Schaltung zusätzlich stabilisiert und sinusförmig gehalten werden.By simultaneously switching the two on and then off The switch before or at the beginning of the pulse sequence pause can be in the resonant circuit contained current short-circuited and so an afterglow of the Fluorescent lamp can be prevented safely. By inserting a Ballast choke between a pole of the supply voltage and the The circuit can additionally stabilize the oscillating circuit and are kept sinusoidal.

Die Erfindung wird nachfolgend anhand der Figuren für drei mögliche Ausgestaltungen näher beschrieben. Es zeigen:

Figur 1:
eine erste Schaltung mit einem Gegentaktwandler,
Figur 2:
einzelne Verläufe von Zustandsgrößen der Schaltung aus Figur 1,
Figur 3:
eine zweite Schaltung mit einem Gegentaktwandler,
Figur 4:
einzelne Verläufe von Zustandsgrößen der Schaltung aus Figur 3,
Figur 5:
eine dritte Schaltung mit einem Gegentaktwandler,
Figur 6:
einzelne Verläufe der Zustandsgrößen der Schaltung aus Figur 5.
The invention is described in more detail below with reference to the figures for three possible configurations. Show it:
Figure 1:
a first circuit with a push-pull converter,
Figure 2:
individual courses of state variables of the circuit from FIG. 1,
Figure 3:
a second circuit with a push-pull converter,
Figure 4:
individual profiles of state variables of the circuit from FIG. 3,
Figure 5:
a third circuit with a push-pull converter,
Figure 6:
individual courses of the state variables of the circuit from FIG. 5.

Der Gegentaktwandler aus Figur 1 weist einen Schwingkreis bestehend aus dem Kondensator C und der Spule L auf, der direkt mit der positiven Versorgungsspannung verbunden ist und über die Transistoren S1, S2 abwechselnd mit dem Masse Potential über die Vorschaltdrossel Lv und den Transistor S3 verbindbar ist. Die folgende Beschreibung geht davon aus, daß der Transistor S3 durchgeschaltet ist, das heißt, daß die Transistoren S1, S2 mit dem zweiten Pol der Versorgungsspannung verbunden sind. Durch die Spule L1, die auf demselben Spulenkörper wie die Spule L gewickelt ist, wird die Spannung mitgekoppelt und die auftretende Wechselspannung sperrt abwechselnd die Transistoren S1, S2 mit der Schwingfrequenz des Resonanzkreises. Über den Widerstand R wird der Arbeitspunkt der beiden Transistoren S1, S2 eingestellt. Der Schwingkreis schwingt mit seiner Resonanzfrequenz ω = 1: LxC , wobei L die Induktivität der Spule und C die Kapazität des Kondensators C darstellt. Der Schwingkreis überträgt seine Energie über den Trafo, der aus den Spulen L, L1 und L2 gebildet wird, auf den Lampenstromkreis, der außer der Spule L2 noch die Leuchtstofflampe KL, die Impedanz Z und einen Shunt SH aufweist. Zwischen der Leuchtstofflampe KL und dem Shunt SH wird die Spannung abgegriffen und dem Gleichrichter G zugeführt. Die gleichgerichtete Spannung U1 liegt am Minuseingang des Komparators K an. An dem positiven Eingang des Komparators liegt eine sägezahnförmige Spannung U2 mit der Frequenz f3 = 1:T3 an, deren Verlauf in Figur 2b dargestellt ist. Je nach dem Lampenstrom IL und der sich dadurch über den Shunt SH einstellenden Spannung wird die am Ausgang des Komparators K1 anliegende Rechteckspannung U3 der Frequenz f3 in ihrer Pulsweite W3 verändert.The push-pull converter from FIG. 1 has an oscillating circuit consisting of the capacitor C and the coil L, which is connected directly to the positive supply voltage and can be connected via the transistors S1, S2 alternately to the ground potential via the series reactor Lv and the transistor S3. The following description assumes that the transistor S3 is turned on, that is to say that the transistors S1, S2 are connected to the second pole of the supply voltage. The voltage is also coupled through the coil L1, which is wound on the same coil former as the coil L, and the alternating voltage that occurs alternately blocks the transistors S1, S2 with the oscillation frequency of the resonant circuit. The operating point of the two transistors S1, S2 is set via the resistor R. The resonant circuit oscillates with its resonance frequency ω = 1: LxC , where L is the inductance of the coil and C is the capacitance of the capacitor C. The resonant circuit transmits its energy via the transformer, which is formed from the coils L, L1 and L2, to the lamp circuit which, in addition to the coil L2, also has the fluorescent lamp KL, the impedance Z and a shunt SH. The voltage is tapped between the fluorescent lamp KL and the shunt SH and fed to the rectifier G. The rectified voltage U1 is present at the minus input of the comparator K. At the positive input of the comparator there is a sawtooth voltage U2 with the frequency f3 = 1: T3, the course of which is shown in FIG. 2b. Depending on the lamp current IL and the voltage resulting from the shunt SH, the square wave voltage U3 of the frequency f3 at the output of the comparator K1 is changed in its pulse width W3.

Je höher der Lampenstrom ist, um so kürzer wird die Pulsweite W3 der Rechteckspannung. In Figur 2 c ist die Ein- und Ausschaltdauer der dargestellten Impulse gleich.The higher the lamp current, the shorter the pulse width W3 Square-wave voltage. In Figure 2 c is the on and off time shown Immediate impulses.

Wird der Lampenstrom IL größer, wird die Pulsweite W3 kürzer, bei kleinerem Strom entsprechend länger. Die Stromsollwertvorgabe kann durch die Höhe der Dreieckspannung in Figur 2b eingestellt werden. Die Ausgangsspannung U3 des Komparators K1 wird auf einen Eingang des UND-Gliedes A geführt, während auf den zweiten Eingang des UND-Gliedes A die Dimmfrequenz f2 mit dem Spannungsverlauf U4 gelegt wird (Figur 2a). Die Dimmfrequenz f2 ist rechteckförmig und in ihrer Pulsweite W2 ebenfalls veränderbar. Die Pulsweite W2 der Dimmfrequenz f2 bestimmt die Einschaltdauer des Gegentaktwandlers und damit der Leuchtstofflampe KL, wie später noch genauer beschrieben werden wird. Die Pulsweite W2 der Dimmfrequenz f2 ist z.B. entweder automatisch in Abhängigkeit der Umgebungshelligkeit oder manuell je nach gewünschter Helligkeit der Leuchtstofflampe KL einstellbar.If the lamp current IL becomes larger, the pulse width W3 becomes shorter, with a smaller one Electricity correspondingly longer. The current setpoint can be set by the level of the triangular voltage can be set in Figure 2b. The output voltage U3 of the comparator K1 is connected to an input of the AND gate A led while to the second input of the AND gate A the dimming frequency f2 is set with the voltage curve U4 (Figure 2a). The dimming frequency f2 is rectangular and its pulse width W2 also changeable. The pulse width W2 of the dimming frequency f2 is determined the duty cycle of the push-pull converter and thus the fluorescent lamp KL, as will be described in more detail later. The Pulse width W2 of the dimming frequency f2 is e.g. either automatically depending the ambient brightness or manually depending on the desired Brightness of the fluorescent lamp KL adjustable.

Am Ausgang des UND-Gliedes A steht die Spannung U5 an: Sie weist während der Pulsweite W2 der Dimmfrequenz f2 Schaltimpulse der Pulsweite W3 mit der Schaltfrequenz f3 auf. Somit wird der Transistor S3 während der Schaltimpulse mit der Pulsweite W3 durchgesteuert. Mit dem ersten Impuls mit der Pulsweite W3 während einer Pulsweite W2 der Dimmfrequenz f2 wird der Transistor S3 durchgeschaltet. Während dieser Zeit kann der Strom IB aus der Versorgungsspannungsquelle + UB in den Schwingkreis fließen. Der Schwingkreis beginnt mit seiner Resonanzfrequenz zu schwingen. Wenn nach dem ersten Impuls der Pulsweite W3 zum Zeitpunkt t2 der Transistor S3 sperrt, schwingt der Schwingkreis weiter und der im Schwingkreis gespeicherte Strom fließt durch die Vorschaltdrossel Lv und die als Freilaufdiode geschaltete Diode D in den Schwingkreis zurück, nimmt aber entsprechend ab.The voltage U5 is present at the output of the AND gate A: It points during the pulse width W2 of the dimming frequency f2 switching pulses of the pulse width W3 with the switching frequency f3. Thus, the transistor S3 is turned on the switching pulses are controlled with the pulse width W3. With the first pulse with the pulse width W3 during a pulse width W2 Dimming frequency f2, the transistor S3 is turned on. During this The current IB can flow from the supply voltage source + UB into the time Resonant circuit flow. The resonant circuit begins at its resonance frequency to swing. If after the first pulse the pulse width W3 at time t2 transistor S3 blocks, the resonant circuit oscillates further and the current stored in the resonant circuit flows through the series choke Lv and the diode D connected as a freewheeling diode in the Resonant circuit back, but decreases accordingly.

Mit dem nächsten Schaltimpuls der Pulsweite W3 zum Zeitpunkt t3 schaltet der Transistor S3 wieder durch: Es kann erneut Strom aus der Versorgungsspannungsquelle + UB in den Resonanzkreis fließen und der Strom IB nimmt während der Einschaltdauer zu.With the next switching pulse of pulse width W3 at time t3 transistor S3 switches through again: current can flow out of the Supply voltage source + UB flow into the resonance circuit and the Current IB increases during the duty cycle.

Der Strom schwankt so während der Pulsweite W2 der Dimmfrequenz f2 um seinen Mittelwert IM (Figur 2 f). Mit sich vergrößernder bzw. verkleinernder Impulsweite W3 wird entsprechend der Strom IB vergrößert bzw. verkleinert und über den Trafo entsprechend der Lampenstrom IL. Wenn die Pulsweite W2 der Dimmfrequenz f2 beendet ist und der letzte Impuls der Impulsfolge der Frequenz f3 zum Zeitpunkt t4 am Transistor S3 angelegen hat, wird der Transistor S3 während der Pausenzeit P der Frequenz f2 gesperrt. Der Schwingkreis schwingt aufgrund seiner Belastung durch die Lampe KL und eigener Verluste aus, die Ströme IB und IL werden wieder zu 0 und die Leuchtstofflampe verlischt. Mit Beginn des nächsten Impulses der Dimmfrequenz f2 beginnt sie wieder zu leuchten wie zuvor beschrieben. Da die Dimmfrequenz f2 oberhalb der menschlichen Sehfrequenz liegt, erscheint dem menschlichen Auge die Leuchtstofflampe je nach Pulsweite W2 verschieden hell.The current fluctuates during the pulse width W2 of the dimming frequency f2 around its mean IM (Figure 2 f). With increasing or decreasing Pulse width W3 is increased or current IB reduced and the lamp current IL via the transformer. If the pulse width W2 of the dimming frequency f2 has ended and the last pulse the pulse sequence of frequency f3 at transistor t4 at time t4 has transistor S3 during the pause time P of the frequency f2 locked. The resonant circuit vibrates due to its load by the lamp KL and own losses, which become currents IB and IL back to 0 and the fluorescent lamp goes out. With the beginning of the next Pulse of the dimming frequency f2, it begins to light up again previously described. Since the dimming frequency f2 is above human The fluorescent lamp appears to the human eye depending on the pulse width W2 differently bright.

Die Leuchtstofflampe KL kann bei genügend großer Versorgungsspannung auch im Primärstromkreis z.B. parallel zum Kondensator C angeordnet werden, so daß auf die Sekundärspule L2 verzichtet werden kann. Weiterhin kann auch über einen Shunt im Primärstromkreis die Spannung für den Gleichrichter G abgegriffen werden.The fluorescent lamp KL can with a sufficiently large supply voltage also in the primary circuit e.g. arranged parallel to the capacitor C. are so that the secondary coil L2 can be dispensed with. Furthermore, the voltage can also be set via a shunt in the primary circuit can be tapped for the rectifier G.

Die Schaltung aus Figur 3 weist ebenfalls einen Schwingkreis bestehend aus dem Kondensator C und der Spule L auf, der mit der positiven Versorgungsspannung verbunden ist und über die Transistoren S4, S5 abwechselnd mit dem Masse Potential verbindbar ist. Die Steuereinrichtung SE ist über jeweils eine Steuerleitung SL1, SL2 mit der Basis der Transistoren S4, S5 verbunden.The circuit from FIG. 3 also has an oscillating circuit from the capacitor C and the coil L on that with the positive supply voltage is connected and alternately via transistors S4, S5 is connectable to ground potential. The control device SE is via a control line SL1, SL2 with the base of the transistors S4, S5 connected.

Über die Steuerleitungen SL1, SL2 werden die Transistoren S4, S5 während der Pulsweite W2 der Dimmfrequenz f2 (Figur 4a) mit den Pulsfolgen mit der Schaltfrequenz f3 abwechselnd angesteuert, wobei die Dauer T5 der einzelnen aneinander hängenden Impulse für einen Transistor S4, S5 die Hälfte der Schwingungsdauer T1 des Schwingkreises beträgt (Figur 4b, c). So erhält der Schwingkreis die Frequenz f1 = 1:T1 aufgeprägt (Figur 4d).Via the control lines SL1, SL2, the transistors S4, S5 during the pulse width W2, the dimming frequency f2 (FIG. 4a) with the pulse sequences controlled with the switching frequency f3 alternately, the duration T5 of the individual contiguous pulses for a transistor S4, S5 half of the oscillation period T1 of the resonant circuit is (Figure 4b, c). The resonant circuit thus receives the frequency f1 = 1: T1 (Figure 4d).

Sofern die Frequenz f1 gleich der Resonanzfrequenz des Schwingkreises ist, schwingt der Schwingkreis nahezu sinusförmig, so daß nur geringe störende Oberwellen auftreten. Deshalb ist es ebenso vorteilhaft, wenn die Schwingungsdauer T der Resonanzfrequenz ein gradzahliges Vielfaches der Schwingungsdauer T3 der Schaltfrequenz f3 ist.If the frequency f1 is equal to the resonance frequency of the resonant circuit is, the resonant circuit oscillates almost sinusoidally, so that only small disturbing harmonics occur. Therefore it is also advantageous if the oscillation period T of the resonance frequency is an even multiple the oscillation period T3 is the switching frequency f3.

In Figur 4 entspricht die Schwingungsdauer T1 des Schwingkreises der vierfachen Schwingungsdauer T3 der einzelnen Impulse. Durch die Pulsweite W3 der einzelnen Impulse wird der mittlere Strom IM im Primärkreis und damit auch der Lampenstrom IL im Sekundärkreis eingestellt. In Figure 4, the oscillation period T1 of the resonant circuit corresponds to four times the oscillation period T3 of the individual pulses. Through the pulse width W3 of the individual pulses becomes the average current IM in the primary circuit and thus also the lamp current IL in the secondary circuit.

Sofern man am Ende des Dimmimpulses zum Zeitpunkt t5 beide Transistoren S4, S5 gleichzeitig durchsteuert (Figur 2b, c), wird der im Schwingkreis vorhandene Strom kurzgeschlossen, so daß er rasch auf einen Nullpunkt sinkt und so die Leuchtstofflampe KL ohne unkontrolliertes Nachleuchten ausschaltet.Provided you have both transistors at the end of the dimming pulse at time t5 S4, S5 controlled simultaneously (Figure 2b, c), that in the resonant circuit existing current short-circuited so that it quickly reaches a zero point decreases and so the fluorescent lamp KL without uncontrolled afterglow off.

Die Dimmfrequenz f2 ist nur in der Steuereinrichtung SE intern vorhanden. Ihre Pulsweite W2 bestimmt die Einschaltdauer des Schwingkreises und damit die Einschaltdauer der Leuchtstofflampe KL. Die in Figur 3 dargestellte Schaltung entspricht einer Steuerung. Hierzu können einzelne Pulsweitenwerte W2 der Dimmfrequenz f2 für verschiedene gewünschte Helligkeiten und/oder Betriebstemperaturen in die Speichereinrichtungen abgelegt sein, die in der Speichereinrichtung SE direkt vorhanden sind oder auf die die Steuereinrichtung SE zugreifen kann.The dimming frequency f2 is only present internally in the control device SE. Your pulse width W2 determines the duty cycle of the resonant circuit and so that the duty cycle of the fluorescent lamp KL. The one shown in Figure 3 Circuit corresponds to a control. Individuals can do this Pulse width values W2 of the dimming frequency f2 for various desired ones Brightnesses and / or operating temperatures in the storage devices be stored, which are directly present in the memory device SE or which the control device SE can access.

Auch ist es möglich, eine Regelung dadurch aufzubauen, daß z.B. die Ströme IB oder IL gemessen werden und der Lampenstrom entsprechend ausgeregelt wird.It is also possible to set up a control system by e.g. the Currents IB or IL are measured and the lamp current accordingly is settled.

Figur 5 zeigt eine Leuchtstofflampe L, die einen Hochspannungskondensator Z mit dem Sekundärkreis L2 eines Transformators verbunden ist. Der Transformator wird in seinem Primärkreis L von zwei im Gegentakt schaltenden MOSFET-Transistoren S6 und S7 bestromt, welche von einer Steuereinrichtung SL angesteuert werden, wobei der Primärkreis L des Transformators gleichzeitig mit der Betriebsspannung UB verbunden ist. Dabei ist jedes Gate G der Transistoren S6, S7 mit der Steuerungseinrichtung SL verbunden. Der Drain D jedes Transistors S6, S7 führt an die Primärwicklung L des Transformators, wobei die Sources S der MOSFET-Transistoren S6, S7 gemeinsam an einen Shuntwiderstand R1 führen, der an Masse liegt. FIG. 5 shows a fluorescent lamp L, which is connected to a high-voltage capacitor Z with the secondary circuit L2 of a transformer. The transformer is energized in its primary circuit L by two push-pull switching MOSFET transistors S6 and S7, which are controlled by a control device SL, the primary circuit L of the transformer being connected to the operating voltage U B at the same time. Each gate G of the transistors S6, S7 is connected to the control device SL. The drain D of each transistor S6, S7 leads to the primary winding L of the transformer, the sources S of the MOSFET transistors S6, S7 leading together to a shunt resistor R1 which is connected to ground.

Die Steuerungseinrichtung SL verarbeitet als Eingangssignal einen Spannungsabfall über dem Shuntwiderstand R1. Der Spannungsabfall wird dem invertierenden Eingang eines Komparators K zugeführt, an dessen nichtinvertierendem Eingang eine Referenzspannung UREF mit konstantem Wert anliegt. Der Ausgang des Komparators K ist mit der Steuerungseinrichtung SL verbunden.The control device SL processes a voltage drop across the shunt resistor R1 as an input signal. The voltage drop is fed to the inverting input of a comparator K, at the non-inverting input of which there is a reference voltage U REF with a constant value. The output of the comparator K is connected to the control device SL.

Die Funktion der Ansteuerung der Kaltkathodenleuchtstofflampe KL wird im folgenden unter Bezugnahme auf Figur 6a und b erläutert. Dabei sind über der Zeit aufgetragen

Signal 1
Ansteuersignal am MOSFET-Transistor S6
Signal 2
Ansteuersignal am MOSFET-Transistor S7
Signal 3
Strom durch die Kaltkathodenleuchtstofflampe KL
Signal 4
Spannung über der Kaltkathodenleuchtstofflampe KL
The function of the control of the cold cathode fluorescent lamp KL is explained below with reference to FIGS. 6a and b. Here are plotted over time
Signal 1
Control signal at the MOSFET transistor S6
Signal 2
Control signal at the MOSFET transistor S7
Signal 3
Current through the cold cathode fluorescent lamp KL
Signal 4
Voltage across the cold cathode fluorescent lamp KL

Die beiden MOSFET-Transistoren S6, S7 werden nacheinander jeweils mit einem Impuls 1 einmalig angesteuert. Dadurch wird der Schwingkreis, bestehend aus der Sekundärspule L2, dem Hochspannungskondensator Z und der Leuchtstofflampe KL angestoßen. Der Schwingkreis klingt nach einer e-Funktion ab (vergl. Signal 4, Punkt 2). Das Gas in der Kaltkathodenleuchtstofflampe KL kann sich in dieser Zeit ionisieren und organisieren. Nach einer bestimmten Zeit nach dem erstmaligen Anstoßen des Schwingkreises, z. B. nach 80 µsec., werden die Transistoren S6, S7 kontinuierlich wechselseitig angesteuert (Signal 1 und 2, Punkt 4). Die Kaltkathodenleuchtstofflampe KL gibt ab diesem Zeitpunkt sofort Licht ab (wie Signal 4 in Punkt 3 zu entnehmen ist).The two MOSFET transistors S6, S7 are successively each triggered once with a pulse 1. This is the resonant circuit, consisting of the secondary coil L2, the high-voltage capacitor Z and the fluorescent lamp KL triggered. The resonant circuit reverberates an e-function (see signal 4, point 2). The gas in the cold cathode fluorescent lamp KL can ionize and organize itself during this time. After a certain time after toasting the first time Resonant circuit, e.g. B. after 80 microseconds, the transistors S6, S7 continuously controlled alternately (signal 1 and 2, point 4). The Cold cathode fluorescent lamp KL emits light immediately from this point in time (as signal 4 can be seen in point 3).

Die Steuereinrichtung SL steuert die MOSFET-Transistoren S6, S7 impulsförmig an (Figur 6a, Signal 1 und 2). Der durch die MOSFET-Transistoren S6, S7 fließende Strom wird als Spannungsabfall über dem Shuntwiderstand R1 gemessen und durch den Komparator K2 ausgewertet, der je nachdem, ob die gemessene Spannung den Referenzwert überschreitet oder nicht, ein Low- oder High-Signal abgibt. Das Ausgangssignal des Komparators K2 wird in der Steuereinrichtung SL logisch mit dem Signal 1 verknüpft. Dies führt dazu, daß die MOSFET-Transistoren S6, S7 während der Ansteuerung durch die Steuerlogik im Takt des Ausgangssignals des Komparators K durchgesteuert oder gesperrt werden.The control device SL controls the MOSFET transistors S6, S7 in a pulsed manner on (Figure 6a, signal 1 and 2). The one through the MOSFET transistors S6, S7 current flowing is considered voltage drop across the Shunt resistance R1 measured and evaluated by comparator K2, which depends on whether the measured voltage is the reference value exceeds or not, emits a low or high signal. The output signal of the comparator K2 becomes logical in the control device SL linked with signal 1. This causes the MOSFET transistors S6, S7 during control by the control logic in the Clock of the output signal of the comparator K controlled or blocked become.

Nach der gewünschten Anzahl von Ansteuerimpulsen werden die beiden MOSFET-Transistoren S6, S7 gleichzeitig angesteuert, wie aus Figur 6b, Signal 1 und 2 zum Zeitpunkt 5 hervorgeht. Dem Schwingkreis L2, Z, KL wird dadurch schlagartig die Energie entzogen und die Lichtabgabe der Kaltkathodenleuchtstofflampe bricht sofort ab.After the desired number of control pulses, the two MOSFET transistors S6, S7 driven simultaneously, as in FIG. 6b, Signal 1 and 2 emerges at time 5. The resonant circuit L2, Z, KL the energy is suddenly withdrawn and the light emission of the Cold cathode fluorescent lamp breaks off immediately.

Diese Vorrichtung hat den Vorteil, daß der flackerfreie Betrieb der Leuchtstofflampe L nur durch die spezielle Ansteuerung der MOSFET-Transistoren S6, S7 erreicht wird. Auf umfangreiche Steuerschaltungen, wie sonst üblich, kann verzichtet werden.This device has the advantage that the flicker-free operation of the fluorescent lamp L only through the special control of the MOSFET transistors S6, S7 is reached. On extensive control circuits, as usual, you can do without.

Claims (19)

  1. Circuit arrangement for the dimmable operation of a fluorescent lamp at a specific operating frequency (f1), having an apparatus for switching the operating frequency (f1) on and off at a dimming frequency (f2), the pulse width (W2) of the dimming frequency (f2) being variable, and the dimming frequency (f2) being less than the operating frequency (f1), characterized in that the fluorescent lamp current during the duration of the pulse width (W2) of the dimming frequency (f2) is adjustable by the supply voltage being switched on and off at a switching frequency (f3) with a variable pulse width (W3), the switching frequency (f3) being greater than the operating frequency (f1).
  2. Circuit arrangement according to Claim 1, characterized in that it has a push-pull converter for generating the operating frequency (f1).
  3. Circuit arrangement according to Claim 2,
    characterized in that the push-pull converter has a resonant circuit with a capacitance element and an inductance element (L),
    in that the resonant circuit is connected to a first pole of the supply voltage,
    in that the resonant circuit can be connected alternately via a first and second switch (S1, S2, S4, S5), which are each connected to a terminal of the inductance element (L) and/or of the capacitance element (C), to the second pole of the supply voltage directly or via a third switch (S3),
    in that the first and second switches (S1, S2, S4, S5) are connected, in each case by a power terminal, in each case to a terminal of the inductance element (L) and/or of the capacitance element (C),
    in that the fluorescent lamp (KL) is arranged in parallel with the inductance element (L) and capacitance element (C) or can be supplied with the operating frequency (f1) via a transformer, a primary winding of the transformer advantageously forming the inductance element (L) of the resonant circuit.
  4. Circuit arrangement according to Claim 3, characterized in that the switches (S1, S2, S3, S4, S5) are electronic switches.
  5. Circuit arrangement according to Claim 3 or 4, characterized in that the first and second switches (S1, S2) can be connected, by their respective power terminal, via the third switch (S3) to the second pole of the supply voltage,
    in that the third switch (S3) is connected to the first pole of the supply voltage via a current valve (D),
    in that the current valve (D) serves as a freewheeling diode when the third switch is not in the on state,
    in that the control terminals of the first and second switches (S1, S2) are connected to a positive feedback device,
    in that the third switch can be actuated by pulse trains in which the individual pulses have a switching period (T3 = 1 : f3) and are enabled for the duration of the pulse widths (W2) of the dimming frequency (f2).
  6. Circuit arrangement according to Claim 5, characterized in that the output of an AND element (U) is connected to the control terminal of the third switch, to one input of which AND element the dimming frequency (f2) is applied and to the other input of which AND element the output of a comparator (K) is applied, to the positive input of which comparator a sawtooth- or triangular-waveform signal at the switching frequency (f3) is applied and to the negative input of which comparator a signal is applied which corresponds to the actual or assumed lamp current (IL) or to the primary current (IB).
  7. Circuit arrangement according to Claim 5 or 6, characterized in that the positive feedback device comprises a coil (L1), which is wound onto the same coil former as the inductance element (L) and whose respective terminals are connected to the control terminals of the first and second switch (S1, S2), respectively.
  8. Circuit arrangement according to one of the preceding claims, characterized in that the lamp-current desired value (IL) is predetermined as a function of the temperature of the fluorescent lamp or of the surroundings.
  9. Circuit arrangement according to one of Claims 1 to 3, characterized in that the first and second switches (S4, S5) are connected, in each case by a power terminal, to the second pole of the supply voltage, in that the first and second switches (S4, S5) are connected by their respective control terminal to a control device (SE), in that the control device (SE) alternately drives the switches (S4, S5) with pulse trains whose individual pulses have the switching period (T3), the duration (T5) of the individual consecutive pulses for a switch (S4, S5) amounting to half the oscillation duration (T1) of the resonant circuit.
  10. Circuit arrangement according to Claim 9, characterized in that the switching frequency (f3) is an even multiple of the operating frequency (f1).
  11. Circuit arrangement according to Claim 9 or 10, characterized in that the operating frequency (f1) approximately corresponds to the resonant frequency of the resonant circuit.
  12. Circuit arrangement according to Claim 1 or 2, characterized in that two power switches (S6, S7) are arranged in the primary circuit of a transformer, and can be driven in a push-pull manner by a control device (SL), in that a shunt resistor (R1) is arranged between the switches (S6, S7) and earth, the voltage drop of which resistor is used for the purpose of current regulation.
  13. Circuit arrangement according to Claim 12, characterized in that the voltage drop is passed via a comparator (K2) to the control device (SL), the voltage drop being applied to a first input of the comparator (K2), to whose second input a reference voltage is passed.
  14. Circuit arrangement according to Claim 12 or 13, characterized in that the switches (S6, S7) are MOSFET transistors whose drains (D) are connected to the primary circuit (L) of the transformer and whose gates (G) are connected to the control logic unit (SL), the sources (S) of the two transistors (S6, S7) being connected both to the shunt resistor (R1) and to the comparator (K2).
  15. Circuit arrangement according to one of Claims 9 to 14, characterized in that, before or at the beginning of the pulse train intermission, the control device (SE, SL) simultaneously switches the two switches (S4, S5, S6, S7) on and then off again.
  16. Circuit arrangement according to one of Claims 9 to 11 or 15, characterized in that the control device (SE) regulates the pulse widths (W3) of the switching frequency (f3) as a function of the lamp current.
  17. Circuit arrangement according to one of Claims 9 to 11 or 15 to 16, characterized in that the control device (SE) controls the pulse widths (W3) of the switching frequency (f3) on the basis of the temperature of the lamp or of the surroundings.
  18. Circuit arrangement according to one of Claims 9 to 11 or 15 to 17, characterized in that the control device controls the pulse width (W2) of the dimming frequency (f2) as a function of the ambient brightness or a desired value transmitter.
  19. Circuit arrangement according to one of Claims 9 to 11 or 15 to 18, characterized in that a series inductor (Lv) is arranged between one pole of the supply voltage and the resonant circuit.
EP98924143A 1997-04-24 1998-04-17 Circuitry for dimming a fluorescent lamp Expired - Lifetime EP0978221B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19717309 1997-04-24
DE1997117309 DE19717309A1 (en) 1997-04-24 1997-04-24 Fluorescent lamp dimming circuit
DE19733939 1997-08-06
DE19733939A DE19733939A1 (en) 1997-08-06 1997-08-06 Fluorescent lamp dimming circuit
PCT/EP1998/002290 WO1998048597A1 (en) 1997-04-24 1998-04-17 Circuitry for dimming a fluorescent lamp

Publications (2)

Publication Number Publication Date
EP0978221A1 EP0978221A1 (en) 2000-02-09
EP0978221B1 true EP0978221B1 (en) 2004-12-22

Family

ID=26036062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98924143A Expired - Lifetime EP0978221B1 (en) 1997-04-24 1998-04-17 Circuitry for dimming a fluorescent lamp

Country Status (5)

Country Link
US (1) US6351080B1 (en)
EP (1) EP0978221B1 (en)
JP (1) JP4116092B2 (en)
DE (1) DE59812414D1 (en)
WO (1) WO1998048597A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946806B1 (en) 2000-06-22 2005-09-20 Microsemi Corporation Method and apparatus for controlling minimum brightness of a fluorescent lamp
US6307765B1 (en) * 2000-06-22 2001-10-23 Linfinity Microelectronics Method and apparatus for controlling minimum brightness of a fluorescent lamp
US7304439B2 (en) 2001-09-06 2007-12-04 E. Energy Technology Limited Phase-controlled dimmable electronic ballasts for fluorescent lamps with very wide dimming range
US6969958B2 (en) * 2002-06-18 2005-11-29 Microsemi Corporation Square wave drive system
US6979959B2 (en) * 2002-12-13 2005-12-27 Microsemi Corporation Apparatus and method for striking a fluorescent lamp
US7061191B2 (en) * 2003-07-30 2006-06-13 Lutron Electronics Co., Inc. System and method for reducing flicker of compact gas discharge lamps at low lamp light output level
DE10340198B4 (en) * 2003-08-27 2009-03-12 Institut für Mikroelektronik- und Mechatronik-Systeme gGmbH Circuit arrangement for dimming gas discharge lamps and method for their operation
US7187139B2 (en) * 2003-09-09 2007-03-06 Microsemi Corporation Split phase inverters for CCFL backlight system
US7183727B2 (en) * 2003-09-23 2007-02-27 Microsemi Corporation Optical and temperature feedbacks to control display brightness
US6969955B2 (en) * 2004-01-29 2005-11-29 Axis Technologies, Inc. Method and apparatus for dimming control of electronic ballasts
US7468722B2 (en) * 2004-02-09 2008-12-23 Microsemi Corporation Method and apparatus to control display brightness with ambient light correction
WO2005099316A2 (en) * 2004-04-01 2005-10-20 Microsemi Corporation Full-bridge and half-bridge compatible driver timing schedule for direct drive backlight system
US7755595B2 (en) 2004-06-07 2010-07-13 Microsemi Corporation Dual-slope brightness control for transflective displays
US7569998B2 (en) * 2006-07-06 2009-08-04 Microsemi Corporation Striking and open lamp regulation for CCFL controller
US8093839B2 (en) 2008-11-20 2012-01-10 Microsemi Corporation Method and apparatus for driving CCFL at low burst duty cycle rates

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358716A (en) 1980-04-14 1982-11-09 White Castle System, Inc. Adjustable electrical power control for gas discharge lamps and the like
DE3528838A1 (en) 1985-08-10 1987-02-12 Diehl Gmbh & Co IGNITION AND DIMMING CONTROL FOR A FLUORESCENT TUBE
FR2649277B1 (en) 1989-06-30 1996-05-31 Thomson Csf METHOD AND DEVICE FOR GRADING LIGHT FOR A FLUORESCENT LAMP FOR THE REAR LIGHTING OF A LIQUID CRYSTAL SCREEN
JPH03112096A (en) 1989-09-26 1991-05-13 Matsushita Electric Works Ltd Lighting device for discharge lamp
JP3196206B2 (en) 1990-09-25 2001-08-06 東芝ライテック株式会社 Discharge lamp lighting device
US5272327A (en) 1992-05-26 1993-12-21 Compaq Computer Corporation Constant brightness liquid crystal display backlight control system
JPH06333695A (en) * 1993-05-26 1994-12-02 Sharp Corp Dimming device
DE4326415B4 (en) 1993-08-06 2006-04-13 Siemens Ag Method for controlling a fluorescent lamp and arrangement for carrying out the method
DE69533681D1 (en) 1994-03-16 2004-12-02 Linear Techn Inc Ballast with large effective range for fluorescent lamps
DE4437204A1 (en) 1994-08-31 1996-03-07 Vdo Schindling Method of operating vehicle instrument fluorescent lamps over wide range of settings
KR100420233B1 (en) 1995-07-10 2004-06-24 코닌클리케 필립스 일렉트로닉스 엔.브이. Circuit device
JPH09245976A (en) 1996-03-01 1997-09-19 Mitsubishi Electric Corp Dimmed lighting device for discharge lamp
US5920155A (en) * 1996-10-28 1999-07-06 Matsushita Electric Works, Ltd. Electronic ballast for discharge lamps

Also Published As

Publication number Publication date
DE59812414D1 (en) 2005-01-27
JP2002511181A (en) 2002-04-09
WO1998048597A1 (en) 1998-10-29
EP0978221A1 (en) 2000-02-09
US6351080B1 (en) 2002-02-26
JP4116092B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
EP0978221B1 (en) Circuitry for dimming a fluorescent lamp
EP0548342B1 (en) Fluorescent lamp ballast for pulsed-mode operation
EP0264765B1 (en) Circuit arrangement for operating low-voltage halogen incandescent lamps
EP2420107B1 (en) Power regulation of led by means of an average value the led current and bidirectional counter
DE4332059B4 (en) Ballast for brightness control of discharge lamps
EP0356818B1 (en) Circuitry for driving a load
DE102005007346A1 (en) Circuit arrangement and method for operating gas discharge lamps
EP0439240B1 (en) Electronic ballast
DE19821351A1 (en) Circuit arrangement for operating electric lamps
EP0868115B1 (en) Circuit for ignition of a HID lamp
DE19729768B4 (en) Circuit arrangement for igniting and operating a fluorescent lamp
DE69911493T2 (en) Discharge lamp lighting system with overcurrent protection for the switches of an inverter
EP1376844A2 (en) Supply circuit, in particular for discharge lamp
EP1635620B1 (en) Electronic ballast with charge pump for discharge lamps with pre-heated electrodes
DE102012007450A1 (en) Converter for a light source, LED converter and method of operating an LLC resonant converter
EP1696713A2 (en) Electronic ballast with current measuring means for high-pressure discharge lamps
EP0657091B1 (en) Freely oscillating inverter with pulse width control
DE3338464A1 (en) High-frequency brightness control for fluorescent lamps
DE4238388C2 (en) Electronic circuit arrangement for controlling a UV radiation source
EP0682464A1 (en) Circuit for operating electric lamps
DE3701805A1 (en) Circuit arrangement for supplying electrical power to low-voltage loads
DE102005022591A1 (en) Electronic ballast for a low-pressure discharge lamp with a micro-controller
DD267617A1 (en) CIRCUIT ARRANGEMENT OF A SEMICONDUCTOR INVERTER
DE102018110696B3 (en) Operating device and method for operating a lamp arrangement
EP0496040B1 (en) AC Ballast for discharge lamps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19991027

17Q First examination report despatched

Effective date: 20010214

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59812414

Country of ref document: DE

Date of ref document: 20050127

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090414

Year of fee payment: 12

Ref country code: DE

Payment date: 20090422

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090421

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100417

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430