EP0974802B1 - Procédé d'échange thermique avec récupération d'énergie à partir d'un fluide vaporisable et installation mettant en oeuvre ce procédé - Google Patents

Procédé d'échange thermique avec récupération d'énergie à partir d'un fluide vaporisable et installation mettant en oeuvre ce procédé Download PDF

Info

Publication number
EP0974802B1
EP0974802B1 EP99401868A EP99401868A EP0974802B1 EP 0974802 B1 EP0974802 B1 EP 0974802B1 EP 99401868 A EP99401868 A EP 99401868A EP 99401868 A EP99401868 A EP 99401868A EP 0974802 B1 EP0974802 B1 EP 0974802B1
Authority
EP
European Patent Office
Prior art keywords
enclosure
fluid
transfer
additional
vaporised
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99401868A
Other languages
German (de)
English (en)
Other versions
EP0974802A1 (fr
Inventor
Roger Roux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0974802A1 publication Critical patent/EP0974802A1/fr
Application granted granted Critical
Publication of EP0974802B1 publication Critical patent/EP0974802B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
    • F28B9/06Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid with provision for re-cooling the cooling water or other cooling liquid

Definitions

  • the present invention relates to an exchange method of energy in thermal recovery using a fluid vaporizable and involving cooling of said fluid in liquid phase with production of the same fluid at the state of vapor under pressure. It also concerns a installation designed for the implementation of this process.
  • the invention is particularly applicable advantageous for cooling a utility fluid by leaving an industrial unit where it was used, by example, to cool the machines and equipment, or on the contrary as a heating, possibly brought to the state of vapor in a boiler.
  • the vaporizable fluid in question is therefore fluent water, so that in the description detailed which will be given later, we will place our for the essential in the typical case where the vaporizable fluid considered is water, or at least an aqueous vehicle.
  • a fluid such as water, milk, fruit juices, chemical solutions, etc.
  • the invention can find practical in many other situations whenever you want to cool a fluid, such as water, milk, fruit juices, chemical solutions, etc., being in the liquid state at hot temperature, or at least lukewarm, compared to a liquid temperature cold that one wishes to reach to reject it, or, more often to recirculate it at the entrance of the installation in which he warmed up.
  • the installation includes a final condenser, on the steam circuit, which is produced in the form of a surface heat exchanger, that is, hot steam and cold liquid water circulate on either side of a material wall (in general metallic for efficient exchanges through which the transfer takes place thermal.
  • a final condenser on the steam circuit, which is produced in the form of a surface heat exchanger, that is, hot steam and cold liquid water circulate on either side of a material wall (in general metallic for efficient exchanges through which the transfer takes place thermal.
  • the present invention essentially aims to improve conditions thermodynamics and recovery efficiency of thermal energy, to simplify the construction of necessary materials, to reduce costs, both those related to design and installation than those related to operation and maintenance. It applies in particular that we have to recover for recycling the condensed fluid at the state of cooled liquid, or the fluid in gas phase, or both.
  • the invention plans to proceed without the least surface exchanger, for at least one last stage of a thermal energy recovery installation from a vaporizable fluid, causing a partial vaporization of the liquid to be cooled in a vacuum chamber where the vapor is compressed to a pressure vessel, and ensuring recovery of energy by mechanical coupling between two circuits connecting the two speakers which operate in turn repeatedly a mass transfer of the vapor phase fluid from the vacuum vessel to the pressure vessel.
  • a device allowing the implementation of the process which is the subject of the invention therefore comprises two enclosures where different pressures prevail.
  • the organ of mechanical coupling ensuring the transfer is essentially consisting of a double-acting piston cylinder.
  • the piston there separate two complementary rooms which communicate both with the two speakers. Valves admission and refoulement establish a transfer unidirectional from the first to the second enclosure at during the reciprocating movement of the piston.
  • thermal energy is extracted from the hot liquid by mass transfer from the fluid in gas phase, which passes from the first enclosure to the second enclosure, in which this fluid, always in gas phase, is under pressure.
  • the cooled liquid extract from the first enclosure. It can be recycled.
  • the device 1 essentially comprises three parts: two tanks 2 and 3, respectively delimiting one first chamber called vacuum 20 and a second chamber said to be under pressure 30, due to the fact that in operation, maintains the enclosure 20 under vacuum relative to the second enclosure 30, and a fluid transfer member 4 allowing the two speakers 20 and 30 to communicate according to modalities which will be explained below.
  • a hot fluid in the liquid state that to fix the ideas, we will assume to be hot water, or at least lukewarm, from a downstream installation not shown.
  • a pump 210 ensures the circulation of the liquid in the supply line 21. This opens, inside the enclosure 20 by a nozzle spray 22 or similar boom. Water vaporizes partially in the depressed atmosphere. Water no vaporized 23 meets in the bottom of the enclosure 20, however that part of the mass of water injected into found in the form of water vapor 23 '.
  • enclosure 30 of the second tank 3 communicates with the enclosure 20 of the first tank 2, by means of mechanical coupling illustrated by a cylinder 40 in which a double piston effect 41 moves in translation alternately in one direction and in the other, completed by a set of pipes allowing a double mass transfer from the first enclosure 20 to the second enclosure 30.
  • the piston 41 divides, at any time during its stroke, the internal enclosure of the cylinder 40 in two chambers complementary, respectively an upper room 400 and a lower room 401.
  • Upper room 400 communicates with the upper part of the first enclosure 20, by a first line 24 and an inlet valve 42, disposed at the inlet of the upper chamber 400, and with the upper part of the enclosure 30, by a second pipe 31 and a valve exhaust 43 at the outlet of the upper chamber 400.
  • the lower chamber 401 communicates with the lower part of the first enclosure 20, by a third pipe 25 and a inlet valve 44, arranged at the inlet of the lower chamber 401, and with the lower part of the enclosure 30, by a fourth line 32 and an exhaust valve 45 in exit from the lower chamber 401.
  • the set of intake valves and exhaust requires fluid transfer unidirectional, from the first enclosure 20 to the second enclosure 30, respectively through each chambers of cylinder 40.
  • the piston 41 is driven by machinery 5, comprising a motor (not shown) driving in turn a flywheel 50.
  • the flywheel 50 is mechanically coupled to the piston 41 by a conventional connecting rod assembly 52 and crank 51, connected by an axis 510, so that the piston 41 performs a repetitive displacement of translations backward and forwardward alternatives inside of cylinder 40.
  • FIG. 1A a phase of the cycle has been represented during which the piston 41 is pulled down.
  • the valves 42 and 45 are open and valves 43 and 44 closed.
  • the water vapor 23 'produced under reduced pressure is sucked by the piston 41 of the enclosure 20 to the upper chamber 400, via line 24 and the valve intake 42 which contributes to depression in enclosure 20.
  • the contents of the room bass 401 is driven back to enclosure 30 by the movement of the piston down, via the exhaust valve 45 and the conduct 32.
  • FIG. 1B a phase of the cycle has been represented for which the piston 41 is pushed up, the valves 43 and 44 open and valves 42 and 45 closed. he this is a fully dual state from that described opposite of Figure 1B.
  • the process and the effects obtained are quite similar to those just described, at the only exception is that upper house 400 plays the role of the lower house 401, and vice versa. It follows that it is lines 25 and 31 which become active in mass transfer from the first to the second enclosure.
  • Line 25 opens into enclosure 20 at a suitable level so as not to suck the liquid at the bottom of tank 23.
  • the shape of its mouth is provided for not to receive a direct flow of liquid, by sprinkling. he is possible, to do this, to give it a form of whistle, the bevelled part of which faces downwards, as suggested by Figures 1A and 1B, or a form similar.
  • the water vapor 23 '(or more generally the fluid in gas phase) extracted from the enclosure 20 is transferred to enclosure 30. It is found in this pregnant, still in gaseous form, but at pressure higher than the pressure in enclosure 20.
  • the enclosure 30 opens onto a steam outlet pipe 33. This advantageously leads into the lower zone of this enclosure, near the bottom where condensates are collected potential.
  • a drain 34 makes it possible to remove these condensates.
  • FIG. 2A The industrial installation shown in FIG. 2A essentially comprises three parts: a boiler room Ch producing steam, a unit U in which this steam is used and a device 1 according to the invention, such as that of FIGS. 1A and 1B.
  • FIG. 2A shows only the elements necessary for a good understanding of the invention. The elements common to the previous figures have the same references and will only be described again as necessary.
  • the steam is transmitted from the boiler room Ch to the unit U by one or more supply pipes Ce and the condensates are returned to the boiler room Ch through one or more recycling pipes Cs .
  • Unit U includes a number of machines or devices using the steam produced.
  • the steam supplies a battery of condensers C 1 to C n , arranged in cascade, n being an arbitrary number which depends on the specific application.
  • the condensers C 1 to C n are all similar to the condenser 7.
  • the temperature of the vapor in the pipe Ce entering the condenser C 1
  • the water leaving this condenser via line 21 is typically at a temperature of the order of 40 ° C.
  • this device 1 The operation of this device 1 is identical to what has been described with reference to FIGS. 1A and 1B, and it is unnecessary to repeat it in detail.
  • the hot water, at the outlet of the condenser bank, C 1 to C n is introduced into the enclosure 20 of the tank 2, where it is vaporized at 22.
  • the remaining liquid part 23, at low temperature, is returned to the condenser bank via line 26, fitted with the vacuum extraction device 6 (FIGS. 1A and 1B: pump 60 and non-return valve 61). It traverses these condensers in series in the opposite direction to the supply steam.
  • the pressure prevailing in the enclosure 20 is very below atmospheric pressure, i.e. 0.017 atm (i.e. 1.72 kPa) for the above conditions.
  • the enthalpy of water vapor at 15 ° C being equal to 588.8 kcal / kg, the amount of steam produced per hour is equal to (750,000 / 588.8), or 1,273 kg / h. It is performed equivalent water make-up in the return circuit (line 26).
  • the steam in the enclosure 30 is under a pressure close to atmospheric pressure, therefore much greater than the pressure prevailing in the enclosure 20.
  • the temperature of the steam 23 "in the enclosure 30 rises and can reach values typically between 75 and 100 ° C. This 23 "vapor can therefore be recycled by re-injection at the inlet of the unit U (line Ce), via line 33.
  • the boiler Ch produces steam at a temperature of 75 ° C, under a pressure of 0.39 atm (or 39.5 kPa). After an initialization period, that is to say when the "cruising" regime is reached, with the losses nearly compensated by a production of steam by the boiler Ch , the steam recovered may be sufficient to supply the unit U .
  • the tanks 2 and 3 are produced according to the usual boilermaking techniques in the form of ferrules cylindrical closed by domed bottoms and lids.
  • the diameter of each enclosure is 480 mm and height 1.5 m.
  • the diameter of the pipes 24, 25, 31 and 32 is typically 200 mm.
  • the tanks, 2 and 3, must be waterproof and withstand operating pressures.
  • the diameter of the enclosure of the piston 41, and therefore of the enclosure of the cylinder 40, is 630 mm, and the height of this enclosure is 610 mm.
  • the piston 41 can be animated at a speed of 2 revolutions per second by a drive motor 8 capable of developing a power of the order of 100 kW. A standard 115 kW electric motor can be used.
  • Power is heard here in terms of water flow to be treated per unit of time, or more generally useful fluid circulating in the circuit primary.
  • the device now referenced 1 ′, included two rows of four transfer members.
  • the cylinders of each row are marked a to d , and the two rows are marked arbitrarily, d and g , for "right" and "left".
  • the same conventions have been adopted for the other elements of the device 1 ′ which relate to one or the other of the eight transfer members.
  • the elements common to the previous figures have the same references and they will be described again only as necessary.
  • the first tank is divided into two: tanks 2a and 2b, delimiting the enclosures 20a and 20b. More specifies, in the illustrated configuration, the tank 2a is arranged vertically and it plays the role of tank 2 of the previously described device. Line 21 enters the enclosure and it comprises a spray nozzle 22, as before also.
  • the tank 2b is in the form of a cylinder horizontal opening into the enclosure 20a. 20b speaker the tank 2b can have the same diameter as that of the enclosure 20a of the tank 2a. In the same way, the tank 3 is advantageously arranged horizontally, parallel in tank 2b. In reality, the tank 2b constitutes an extension of tank 2a, which allows easier coupling of tanks "primary” and “secondary”, taking into account the structure particular of fluid transfer members.
  • FIG. 3A which shows the "straight" part of the device 1 ′
  • four transfer elements have been shown, referenced 4 ad to 4 dd
  • FIG. 3B in front view, shows the two extreme transfer members, belonging to the right and left rows, that is to say the members 4dd and 4 dg .
  • Each of these transfer members, 4 ad to 4 dg is quite similar to the single transfer member in FIGS. 1A and 2A. Only the configuration of the supply and extraction pipes is adapted to the particular arrangement in the space of the tanks 2b and 3, on the one hand, and to the location of the transfer members, 4 ad to 4 dg, relative to these tanks, on the other hand.
  • FIG. 1A Only the configuration of the supply and extraction pipes is adapted to the particular arrangement in the space of the tanks 2b and 3, on the one hand, and to the location of the transfer members, 4 ad to 4 dg, relative to these tanks, on the other hand.
  • 3B illustrates the pipes associated with the transfer members 4 dd and 4 dg , namely the pipes 24 dd and 25 dd making the enclosure 20b communicate with the cylinder of the transfer member 4 dd , the pipes 31 dd and 32 dd causing the enclosure 30 to communicate with the cylinder of this same transfer member 4 dd, the pipes 24 dg and 25 dg making the enclosure 20b communicate with the cylinder of the transfer member 4 dg , and the pipes 31 dg and 32 dg making the enclosure 30 communicate with the cylinder of this same transfer member 4 dg .
  • these transfer members, 4 ad to 4 dg include a double-acting cylinder and piston, as well as two pairs of intake and exhaust valves, one pair for the upper chamber and the other for the chamber. lower. In order not to overload the drawing, these elements have not been referenced individually.
  • the pistons are driven by a four-stage machinery (actually two times four stages), 5 ad to 5 dg , comprising "rod-crank" systems (not referenced explicitly) and flywheels, 53 ad to 53 dg .
  • a single motor 8 drives the assembly, for example and in a conventional manner per se, by means of belts, alternately arranged to the right and to the left of the device 1 ": belts on the right 55 and 57, and on the left 56 and 58.
  • the flywheels, 53 ad to 53 dg are arranged in pairs on common trees, 500 a to 500 d . These trees rotate in pairs of bearings, right and left, 53 ad to 53 dg .
  • the bearings, 53 ad to 53 dg , and the motor 8 are fixed to a lower support Sup of the device 1 ", which can itself be fixed to the ground by any suitable means (not shown).
  • the overall operation of the device 1 " is quite similar to that of the device 1, as explained with reference to FIGS. 1A to 1B, and it is unnecessary to rewrite it in detail.
  • the essential advantage of the configuration of the 1 "device, due to the parallel connection of several transfer members, is to be able to process a higher useful fluid flow rate, without being obliged to inconsiderately increase the dimensions of the constituent elements, at least those of the transfer members, 4ad to 4 dg , of the piping, and of the parts of the machinery, 5 ad to 5 dg , actuating the pistons.
  • FIG. 4 illustrates, in side view, such a mode of production.
  • the elements common to the previous figures have the same references and will only be described again as needed.
  • the device now referenced 1 ", comprises two parts, or cascade compression stages: e I and e II .
  • the stage e I comprises all the elements of the device 1 ′, with the exception that in the example illustrated in FIG. 4, only three stages of transfer members per row have been provided, for example the members 4 ad to 4 cd , for the right-hand side, except for this operation of this stage e I is strictly identical to that of the device 1 'in FIGS. 2A and 2B.
  • the tank of the "secondary" circuit is also divided into two tanks, referenced 3a and 3b.
  • the vaporized water 23 ' is transferred into the enclosure 20b of the tank 2b towards the enclosure 30a of this tank 3a, under a higher pressure than that prevailing in enclosure 20a.
  • the last stage of transfer members that is to say the pair of right and left members, of which only the right member 4'd is visible in the figure 4, has a special role. It connects the enclosure 30a of the tank 3a with the enclosure 30b of the tank 3b. The transfer of steam 23 "a takes place again with an increase in the compression ratio (steam 23" b). Also, the upper and lower chambers (not shown) of the cylinders of the pair of transfer members of the last stage e II , communicate with the enclosure 30a via two conduits, 24'd and 25'd, respectively . Similarly, these upper and lower chambers communicate with the enclosure 30b via two pipes, 31'd and 32'd, respectively.
  • the driving machinery is strictly identical to that described with reference to FIGS. 3A and 3B.
  • the process of the invention is entirely compatible with installations of medium or small powers, even with domestic installations and / or appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

La présente invention concerne un procédé d'échange d'énergie en récupération thermique mettant en oeuvre un fluide vaporisable et impliquant un refroidissement dudit fluide en phase liquide avec production du même fluide à l'état de vapeur sous pression. Elle concerne également une installation conçue pour la mise en oeuvre de ce procédé.
L'invention s'applique de manière particulièrement avantageuse au refroidissement d'un fluide utilitaire en sortie d'une unité industrielle où il a été utilisé, par exemple, pour assurer le refroidissement des machines et équipements, ou au contraire en tant que fluide de chauffage, éventuellement amené à l'état de vapeur dans une chaudière.
Le fluide vaporisable en question est donc couramment de l'eau, de sorte que dans la description détaillée qui sera donnée plus loin, on se placera pour l'essentiel dans le cas typique où le fluide vaporisable considéré est de l'eau, ou du moins un véhicule aqueux. Toutefois, on doit admettre que l'invention peut trouver application dans bien d'autres situations, de façon pratique à chaque fois que l'on veut refroidir un fluide, tel que de l'eau, du lait, des jus de fruits, des solutions chimiques, etc., se trouvant à l'état liquide à température chaude, ou du moins tiède, par rapport à une température de liquide froid que l'on désire atteindre pour le rejeter, ou, plus souvent, pour le recirculer à l'entrée de l'installation dans laquelle il s'est échauffé.
L'art antérieur à la présente invention se trouve illustré en particulier par les documents de brevet US 4 413 669 ou GB 967 548. Suivant ces documents, qui se placent spécifiquement dans le cadre du refroidissement d'eau de chaudière, on fait passer le fluide chaud à refroidir à travers une série d'enceintes constituant des évaporateurs en cascade, dans lesquels il se refroidit par paliers à des pressions progressivement décroissantes, avec vaporisation partielle. Les différents flux de vapeur en provenance des étages successifs sont soit extraits en parallèle et réunis pour être réutilisés, soit regroupés en cascade suivant un circuit passant d'une enceinte à l'autre, en sens inverse du fluide chaud.
Dans tous les cas, l'installation comporte un condenseur final, sur le circuit de la vapeur, qui est réalisé sous la forme d'un échangeur de chaleur à surface, c'est-à-dire que la vapeur chaude et l'eau liquide froide circulent de part et d'autre d'une paroi matérielle (en général métallique pour l'efficacité des échanges thermiques) à travers laquelle s'effectue le transfert thermique.
Dans ce genre d'installation, la présente invention vise essentiellement à améliorer les conditions thermodynamiques et le rendement de la récupération d'énergie thermique, à simplifier la construction des matériels nécessaires, à réduire les coûts, tant ceux liés à la conception et à l'installation qu'à ceux liés au fonctionnement et à l'entretien. Elle s'applique notamment que l'on ait à récupérer pour recyclage le fluide condensé à l'état de liquide refroidi, ou le fluide en phase gazeuse, ou encore l'un et l'autre.
Elle a aussi le remarquable avantage de limiter la consommation d'un fluide de refroidissement nécessaire au fonctionnement d'une unité de production industrielle, par rapport à ce que l'on connaít de ce qu'il est convenu d'appeler des tours de refroidissement, dans lesquelles un courant d'air entraíne de la vapeur d'eau qui est rejetée à l'atmosphère. Pour l'essentiel, l'invention conduit alors à rejeter à l'atmosphère une vapeur comprimée, se trouvant donc à une température supérieure à la température de 100 °C prévalant à la pression atmosphérique ambiante.
Pour ce faire, l'invention prévoit de procéder sans le moindre échangeur à surface, pour au moins un dernier étage d'une installation de récupération d'énergie thermique à partir d'un fluide vaporisable, en provoquant une vaporisation partielle du liquide à refroidir dans une enceinte sous vide d'où la vapeur est comprimée vers une enceinte sous pression, et en assurant une récupération d'énergie par couplage mécanique entre deux circuits reliant les deux enceintes qui opèrent à tour de rôle répétitivement un transfert de masse du fluide en phase vapeur de l'enceinte sous vide à l'enceinte sous pression.
De manière avantageuse, le couplage mécanique est réalisé au moyen d'un piston en déplacement alternatif en limitation de deux chambres complémentaires, dans lesquelles un jeu de valves approprié commande un double transfert de masse, de manière alternative et répétitive, en admettant la vapeur hors de la première enceinte et en la refoulant au retour du piston dans la seconde enceinte.
Un dispositif suivant l'invention, permettant la mise en oeuvre du procédé objet de l'invention comprend donc deux enceintes où règnent des pressions différentes. On admet dans la première le fluide à refroidir, en phase liquide et chaud. Une fraction de celui-ci est vaporisée, ce qui provoque un refroidissement. De la vapeur est extraite de cette première enceinte et transférée dans la seconde enceinte où elle est recueillie comprimée. L'organe de couplage mécanique assurant le transfert est essentiellement constitué par un cylindre à piston à double effet. Le piston y sépare deux chambres complémentaires qui communiquant l'une et l'autre avec les deux enceintes. Des valves d'admission et de refoulement établissent un transfert unidirectionnel de la première à la seconde enceinte au cours du déplacement alternatif du piston.
De la sorte, les mêmes mouvements du piston contribuent à l'obtention de la dépression dans la première enceinte et assurent la compression de la vapeur dans la seconde enceinte. Egalement, selon une caractéristique importante du procédé de l'invention, l'énergie thermique est extraite du liquide chaud par transfert de masse du fluide en phase gazeuse, qui passe de la première enceinte à la seconde enceinte, dans laquelle ce fluide, toujours en phase gazeuse, est sous pression. Le liquide refroidi extrait de la première enceinte. Il peut être recyclé. On peut aussi utiliser la vapeur comprimée disponible en sortie de la seconde enceinte.
L'invention sera mieux comprise et d'autres caractéristiques et avantages apparaítront à la lecture de la description qui suit en référence aux figures annexées, parmi lesquelles :
  • les figures 1A et 1B illustrent schématiquement le fonctionnement d'un dispositif de mise en oeuvre du procédé selon l'invention, dans deux états de fonctionnement ;
  • la figure 2A illustre schématiquement l'application d'un dispositif selon l'invention à une installation industrielle nécessitant le refroidissement d'une masse d'eau importante ;
  • la figure 2B illustre schématiquement un condenseur utilisé dans une installation industrielle du type de celle décrite sur la figure 2A ;
  • les figures 3A et 3B illustrent un exemple de réalisation pratique d'un dispositif selon l'invention, comprenant plusieurs étages ;
  • et la figure 4 illustre un dispositif de ce type, selon mode de réalisation supplémentaire permettant d'obtenir un fluide en phase gazeuse sous pression élevée.
Le procédé selon l'invention va maintenant être décrit par référence aux figures 1A et 1B. Ces figures illustrent de façon schématique un exemple de réalisation d'un dispositif assurant la mise en oeuvre de ce procédé.
Le dispositif 1 comprend essentiellement trois parties : deux cuves 2 et 3, délimitant respectivement une première enceinte dite sous vide 20 et une seconde enceinte dite sous pression 30, du fait qu'en fonctionnement, on maintient l'enceinte 20 sous vide relativement à la seconde enceinte 30, et un organe de transfert de fluide 4 permettant de faire communiquer les deux enceintes 20 et 30 selon des modalités qui vont être explicitées ci-après.
En pratique, on comprendra que par là, on réalise un couplage mécanique entre deux circuits qui font passer le fluide en phase vapeur de l'enceinte de production de vapeur à la seconde enceinte de compression de cette vapeur, lesdits transferts ayant lieu de manière répétitive à tour de rôle tels qu'ils sont commandés par le mouvement de translation en va-et-vient d'un piston à double effet dans un cylindre dans lequel il délimite deux chambres complémentaires appartenant respectivement à chacun des deux circuits.
Dans l'enceinte 20 de la cuve 2, on admet en tête, par une canalisation 21, un fluide chaud à l'état liquide, que pour fixer les idées, on supposera être de l'eau chaude, ou pour le moins tiède, provenant d'une installation en aval non représentée. Une pompe 210 assure la circulation du liquide dans la conduite d'alimentation 21. Celle-ci débouche, à l'intérieur de l'enceinte 20 par une buse de pulvérisation 22 ou rampe similaire. L'eau se vaporise partiellement dans l'atmosphère en dépression. L'eau non vaporisée 23 se réunit dans le fond de l'enceinte 20, cependant qu'une partie de la masse d'eau injectée dans se retrouve sous forme de vapeur d'eau 23'.
La fraction d'eau 23 non vaporisée 23 peut être récupérée, refroidie du fait de la détente subie, dans le fond de l'enceinte 20. Elle en est extraite soit pour la réutiliser dans l'installation aval où elle se réchauffe et la ré-injecter par le circuit d'entrée 21, soit pour la rejeter, mais à basse température. La conduite d'évacuation 26 est symbolisée par un simple trait plein sur les figures. On dispose sur cette conduite 26 un système d'extraction 6, illustré par une pompe 60 et un clapet anti-retour 61.
Comme il a été indiqué, l'enceinte 30 de la deuxième cuve 3 communique avec l'enceinte 20 de la première cuve 2, par l'intermédiaire de moyens de couplage mécanique illustrés par un cylindre 40 dans lequel un piston à double effet 41 se meut en translation alternativement dans un sens et dans l'autre, complété par un jeu de conduites autorisant un double transfert de masse de la première enceinte 20 vers la deuxième enceinte 30.
Le piston 41 divise, à tout moment de sa course, l'enceinte interne du cylindre 40 en deux chambres complémentaires, respectivement une chambre haute 400 et une chambre basse 401. La chambre haute 400 communique avec la partie haute de la première enceinte 20, par une première conduite 24 et une valve d'admission 42, disposée en entrée de la chambre haute 400, et avec la partie haute de l'enceinte 30, par une deuxième conduite 31 et une valve d'échappement 43 en sortie de la chambre haute 400. De même, la chambre basse 401 communique avec la partie basse de la première enceinte 20, par une troisième conduite 25 et une valve d'admission 44, disposée en entrée de la chambre basse 401, et avec la partie basse de l'enceinte 30, par une quatrième conduite 32 et une valve d'échappement 45 en sortie de la chambre basse 401. Le jeu de valves d'admission et d'échappement impose un transfert de fluide unidirectionnel, de la première enceinte 20 vers la seconde enceinte 30, respectivement par l'intermédiaire de chacune des chambres du cylindre 40.
Le piston 41 est entraíné par une machinerie 5, comprenant un moteur (non représenté) entraínant à son tour un volant 50. Le volant 50 est couplé mécaniquement au piston 41 par un ensemble classique à bielle 52 et manivelle 51, reliées par un axe 510, de manière à ce que le piston 41 exécute un déplacement répétitif de translations alternatives en sens aller et en sens retour à l'intérieur du cylindre 40.
Sur la figure 1A, on a représenté une phase du cycle au cours de laquelle le piston 41 est tiré vers le bas. Les valves 42 et 45 sont ouvertes et les valves 43 et 44 fermées. Dans cet état, la vapeur d'eau 23', produite sous pression réduite, est aspirée par le piston 41 de l'enceinte 20 vers la chambre haute 400, via la conduite 24 et la valve d'admission 42, ce qui contribue à créer une dépression dans l'enceinte 20. Dans le même temps, le contenu de la chambre basse 401 est refoulé vers l'enceinte 30 par le mouvement du piston vers le bas, via la valve d'échappement 45 et la conduite 32. Il s'agit, comme il le sera décrit ci-après, de vapeur d'eau aspirée au cycle précédent, qui se trouve ainsi expulsée comprimée vers l'enceinte sous pression. En effet, la valve d'admission 44 étant fermée, le mouvement du piston 41 s'accompagne d'une compression dans la chambre basse 401.
Sur la figure 1B, on a représenté une phase du cycle pour laquelle le piston 41 est poussé vers le haut, les valves 43 et 44 ouvertes et les valves 42 et 45 fermées. Il s'agit d'un état entièrement dual de celui décrit en regard de la figure 1B. Le processus et les effets obtenus sont tout à fait similaires à ceux qui viennent d'être décrits, à la seule exception près que la chambre haute 400 joue le rôle de la chambre basse 401, et inversement. Il s'ensuit que ce sont les conduites 25 et 31 qui deviennent actives en transfert de masse de la première à la seconde enceinte.
La conduite 25 débouche dans l'enceinte 20 à un niveau approprié pour ne pas aspirer le liquide en fond de cuve 23. De plus, la forme de son embouchure est prévue pour ne pas recevoir un flux direct de liquide, par aspersion. Il est possible, pour ce faire, de lui donner une forme de sifflet, dont la partie biseautée est orientée vers le bas, comme suggéré par les figures 1A et 1B, ou une forme similaire.
La vapeur d'eau 23' (ou de façon plus générale le fluide en phase gazeuse) extraite de l'enceinte 20 est transférée dans l'enceinte 30. Elle se retrouve dans cette enceinte, toujours sous forme gazeuse, mais à une pression plus élevée que la pression régnant dans l'enceinte 20. L'enceinte 30 s'ouvre sur une conduite de sortie de vapeur 33. Celle-ci débouche avantageusement en zone basse de cette enceinte, près du fond où sont collectés les condensats éventuels. Une purge 34 permet d'évacuer ces condensats.
Selon l'application spécifique, la vapeur d'eau 23", présente dans l'enceinte 30, peut être soit éjectée à pression atmosphérique, si la conduite de sortie 33 est ouverte, soit disponible sous pression pour une utilisation ultérieure (installation en amont non représentée).
On va maintenant décrire un exemple d'installation industrielle utilisant un dispositif selon l'invention pour le refroidissement d'eau, par référence aux figures 2A et 2B.
L'installation industrielle représentée sur la figure 2A comprend essentiellement trois parties : une chaufferie Ch produisant de la vapeur d'eau, une unité U dans laquelle cette vapeur est utilisée et un dispositif 1 selon l'invention, tel que celui des figures 1A et 1B. On n'a représenté sur la figure 2A que les éléments nécessaires à la bonne compréhension de l'invention. Les éléments communs aux figures précédentes portent les mêmes références et ne seront redécrits qu'en tant que de besoin.
La vapeur est transmise de la chaufferie Ch à l'unité U par une ou plusieurs conduites d'alimentation Ce et les condensats sont retournés à la chaufferie Ch par une ou plusieurs conduites de recyclage Cs. L'unité U comprend un certain nombre de machines ou dispositifs utilisant la vapeur produite. Dans l'exemple décrit, la vapeur alimente une batterie de condenseurs C 1 à Cn , disposés en cascade, n étant un nombre arbitraire qui dépend de l'application spécifique. En exemple d'application, on peut citer les étages successifs de concentration de petit-lait en sous-produit d'une fromagerie.
La figure 2B illustre schématiquement la structure d'un tel condenseur, référencé 7. Il s'agit d'un échangeur à surface, de type à tubes. Il reçoit de la vapeur par une conduite d'arrivée 70 et les condensats sont retournés par une conduite 71. De l'eau froide est introduite dans le circuit tubulaire par une conduite d'arrivée 73, elle s'y réchauffe par échange thermique avec la vapeur présente dans le condenseur, et ressort par la conduite 72.
Dans l'exemple illustré par la figure 2A, les condenseurs C 1 à Cn sont tous similaires au condenseur 7. Pour fixer les idées, on va considérer que la température de la vapeur dans la conduite Ce (entrant dans le condenseur C 1) est à une température de 75 °C, et qu'elle entre dans le dernier condenseur, par exemple le quatrième si n = 4, à une température de 40 °C. Compte tenu que les échanges thermiques ne sont pas parfaits, l'eau quittant ce condenseur par la conduite 21 est typiquement à une température de l'ordre de 40 °C.
Elle doit être refroidie, qu'elle soit recyclée ou non (rejet en rivière par exemple). Dans une installation selon l'art connu, on utilise pour ce faire une tour de refroidissement, avec les inconvénients propres à ce type d'installation qui ont été précédemment rappelés. La tour de refroidissement, ou toute installation similaire, est avantageusement remplacée par un dispositif 1 conforme à l'invention, comme illustré sur la figure 2A.
Le fonctionnement de ce dispositif 1 est identique à ce qui a été décrit en regard des figures 1A et 1B, et il est inutile de le rappeler en détail. L'eau chaude, en sortie de la batterie de condenseurs, C 1 à Cn , est introduite dans l'enceinte 20 de la cuve 2, où elle est vaporisée en 22. La partie restant liquide 23, à basse température, est retournée vers la batterie de condenseurs par l'intermédiaire de la conduite 26, équipée du dispositif d'extraction sous vide 6 (figures 1A et 1B : pompe 60 et clapet anti-retour 61). Elle parcourt ces condenseurs en série en sens inverse de la vapeur d'alimentation.
La partie de l'eau pulvérisée (en 22) se transformant en vapeur d'eau 23' est transférée dans l'enceinte 30 de la seconde cuve 3, sous une pression plus élevée que la pression régnant dans l'enceinte 20. Sa température s'élève également. La vapeur comprimée 23" peut alors être recyclée par la conduite 33 et ré-injectée en entrée de la batterie de condenseurs, C 1 à Cn , plutôt que d'être rejetée à l'atmosphère.
En compensation des pertes liées à la vaporisation, on prévoit un appoint en eau dans le circuit de re-circulation (conduite 26). Cet appoint d'eau est assuré par une conduite supplémentaire 27 branchée sur un réseau de distribution d'eau à basse température. Par ailleurs, on a fait figurer sur la figure un moteur 8, par exemple un moteur électrique, qui commande la machinerie 5 d'entraínement du piston 41.
Pour fixer les idées, et sans que cela limite en quoi que ce soit la portée de l'invention, on va donner maintenant un exemple numérique relatif à une installation de refroidissement d'eau typique.
On suppose que le débit d'eau entrant dans la cuve 2 via la conduite 21 est de 30 000 1/h et que sa température est de 40 °C. Par le processus de vaporisation par détente et compression de la vapeur produite, en coopération avec l'action de l'organe de transfert de fluide sous couplage mécanique 4, qui fait passer la vapeur de l'enceinte sous vide 20, fonctionnant en vaporisation partielle de l'eau et production de froid, à l'enceinte sous pression 30 fonctionnant en compression de vapeur, on peut obtenir un refroidissement du liquide entrant qui soit tel que la température du liquide 23, récupéré en fond de l'enceinte 20 et recyclé par la conduite 26, soit typiquement de l'ordre de 15 °C. Avec une tour de refroidissement atmosphérique, on ne descendrait pas en dessous de 20 à 25 °C.
La pression régnant dans l'enceinte 20 est très inférieure à la pression atmosphérique, soit 0,017 atm (soit 1,72 kPa) pour les conditions précitées. Dans ces mêmes conditions, compte tenu de la différence de température obtenue, la quantité de calories dégagées est 30.000 × (40-15) = 750 000 kcal (soit 179 135 kJ). L'enthalpie de la vapeur d'eau à 15 °C étant égale à 588,8 kcal/kg, la quantité de vapeur produite par heure est égale à (750 000 / 588,8), soit 1 273 kg/h. Il est effectué un appoint équivalent en eau dans le circuit de retour (conduite 26).
La vapeur d'eau dans l'enceinte 30 est sous une pression proche de la pression atmosphérique, donc beaucoup plus importante que la pression régnant dans l'enceinte 20. En outre, la température de la vapeur d'eau 23" dans l'enceinte 30 s'élève et peut atteindre des valeurs typiquement comprises entre 75 et 100 °C. Cette vapeur 23" peut donc être recyclée par ré-injection en entrée de l'unité U (conduite Ce), via la conduite 33. On suppose, en effet, que la chaudière Ch produit de la vapeur à une température de 75 °C, sous une pression de 0,39 atm (soit 39,5 kPa). Après une période d'initialisation, c'est-à-dire lorsque le régime de "croisière" est atteint, aux pertes près compensées par une production de vapeur par la chaudière Ch, la vapeur récupérée peut être suffisante pour alimenter l'unité U.
Les cuves 2 et 3 sont réalisées suivant les techniques de chaudronnerie usuelles sous forme de viroles cylindriques fermées par des fonds et couvercles bombés. Le diamètre de chaque enceinte est de 480 mm et la hauteur 1,5 m. Le diamètre des conduites 24, 25, 31 et 32 est typiquement de 200 mm. Les cuves, 2 et 3, doivent être étanches et résister aux pressions de fonctionnement. Le diamètre de l'enceinte du piston 41, et donc de l'enceinte du cylindre 40, est de 630 mm, et la hauteur de cette enceinte est de 610 mm. Le piston 41 peut être animé à une vitesse de 2 tours par seconde par un moteur d'entraínement 8 capable de développer une puissance de l'ordre de 100 kW. On peut utiliser un moteur électrique standard de 115 kW.
Le dispositif 1, tel qu'il a été plus particulièrement décrit en regard des figures 1A et 1B, convient pour des installations de faible ou moyenne puissance. Le mot "puissance" est entendu ici en termes de débit d'eau à traiter par unité de temps, ou plus généralement de fluide utile circulant dans le circuit primaire.
Compte tenu que le volume spécifique de la vapeur d'eau sous faible pression est très important, il est nécessaire d'obtenir un débit de transfert de fluide par l'organe 4 (figures 1A et 1B) également important. Ceci peut naturellement être obtenu, du moins théoriquement, en augmentant les dimensions du dispositif 1, à savoir les capacités des cuves, les diamètres des conduites, les volumes des cylindres, etc.
Cependant, cette solution devient vite impraticable, en particulier en ce qui concerne les organes de transfert, et plus particulièrement les pièces en mouvement que sont les valves et les pistons. Aussi, dans le mode de réalisation préféré, un débit nominal important peut être obtenu en prévoyant une succession d'organes de transfert (cylindres et pistons), disposés en parallèle. Un exemple pratique d'un tel mode de réalisation est illustré par les figures 3A et 3B, en vue de côté et de face, respectivement.
Pour fixer les idées, on a supposé que le dispositif, référencé désormais 1', comprenait deux rangées de quatre organes de transfert. Les cylindres de chaque rangée sont repérés a à d, et les deux rangées sont repérées arbitrairement, d et g, pour "droite" et "gauche". Les mêmes conventions ont été adoptées pour les autres éléments du dispositif 1' qui sont relatifs à l'un ou à l'autre des huit organes de transfert. En outre, Les éléments communs aux figures précédentes portent les mêmes références et ils ne seront à nouveau décrits qu'en tant que de besoin.
Dans l'exemple décrit, on a supposé que l'eau chaude, en provenance de l'unité industrielle (figure 2A : U), était stockée dans l'enceinte 90 d'une cuve intermédiaire 9 et injectée dans le dispositif proprement dit par un système comprenant une pompe 210 et un clapet anti-retour 211, et la conduite 21.
Selon une première caractéristique de ce mode de réalisation, la première cuve est divisée en deux : cuves 2a et 2b, délimitant les enceintes 20a et 20b. De façon plus précise, dans la configuration illustrée, la cuve 2a est disposée verticalement et elle joue le rôle de la cuve 2 du dispositif décrit précédemment. La conduite 21 pénètre dans l'enceinte et elle comporte une buse de pulvérisation 22, comme précédemment également.
Une partie de l'eau chaude injectée se transforme en phase vapeur, 23', tandis que le reste de l'eau, 23, qui est refroidi, remplit le fond de l'enceinte 20a de la cuve 2a, pour être rejeté ou recyclé par le circuit habituel : conduite 26, pompe 60 et clapet anti-retour 61. Selon les applications, on prévoit ou non un appoint d'eau froide par la conduite 27.
La cuve 2b se présente sous la forme d'un cylindre horizontal débouchant dans l'enceinte 20a. L'enceinte 20b de la cuve 2b peut avoir le même diamètre que celui de l'enceinte 20a de la cuve 2a. De la même manière, la cuve 3 est disposée avantageusement horizontalement, parallèlement à la cuve 2b. En réalité, la cuve 2b constitue une extension de la cuve 2a, ce qui permet un couplage plus aisé des cuves "primaire" et "secondaire", compte tenu de la structure particulière des organes de transfert de fluide.
En effet, de part et d'autre de ces deux cuves parallèles, 2b et 3, on dispose deux rangées d'organes de transfert, avec leurs tuyauteries associées. Ainsi, sur la figure 3A, qui montre la partie "droite" du dispositif 1', on a fait figurer quatre éléments de transfert, référencés 4ad à 4dd. La figure 3B, en vue de face, montre les deux organes de transfert extrêmes, appartenant aux rangées droite et gauche, c'est-à-dire les organes 4dd et 4dg.
Chacun de ces organes de transfert, 4ad à 4dg, est tout-à-fait similaire à l'organe de transfert unique des figures 1A et 2A. Seule la configuration des conduites d'alimentation et d'extraction est adaptée à la disposition particulière dans l'espace des cuves 2b et 3, d'une part, et à la localisation des organes de transfert, 4ad à 4dg, par rapport à ces cuves, d'autre part. La figure 3B illustre les conduites associées aux organes de transferts 4dd et 4dg, à savoir les conduites 24dd et 25dd faisant communiquer l'enceinte 20b avec le cylindre de l'organe de transfert 4dd, les conduites 31dd et 32dd faisant communiquer l'enceinte 30 avec le cylindre de ce même organe de transfert 4dd, les conduites 24dg et 25dg faisant communiquer l'enceinte 20b avec le cylindre de l'organe de transfert 4dg, et les conduites 31dg et 32dg faisant communiquer l'enceinte 30 avec le cylindre de ce même organe de transfert 4dg.
On retrouve une organisation identique pour les autres étages (par exemple figure 3A : 4ad à 4cd).
Comme précédemment, ces organes de transfert, 4ad à 4dg, comprennent un cylindre et un piston double effet, ainsi que deux paires de valves d'admission et d'échappement, une paire pour la chambre supérieure et l'autre pour la chambre inférieure. Pour ne pas surcharger le dessin, ces éléments n'ont pas été référencés individuellement.
Les pistons sont entraínés par une machinerie à quatre étages (en réalité deux fois quatre étages), 5ad à 5dg, comprenant des systèmes "bielles-manivelles" (non référencés explicitement) et des volants, 53ad à 53dg. Un moteur unique 8 entraíne l'ensemble, par exemple et de façon classique en soi, par le biais de courroies, alternativement disposées à droite et à gauche du dispositif 1" : courroies de droite 55 et 57, et de gauche 56 et 58. Les volants, 53ad à 53dg, sont disposés par paires sur des arbres communs, 500a à 500d. Ces arbres tournent dans des paires de paliers, droits et gauches, 53ad à 53dg. Les paliers, 53ad à 53dg, et le moteur 8 sont fixés à un support inférieur Sup du dispositif 1", qui peut lui-même être fixé au sol par tout moyen approprié (non représenté).
Pour obtenir un fonctionnement équilibré du dispositif 1", notamment pour éviter les vibrations et les à-coups, il est avantageux de décaler temporellement les positions des pistons dans les cylindres, par paires, d'une part, et par étages d'une même rangée, d'autre part, comme le suggère les figures 3A et 3B.
Le fonctionnement global du dispositif 1", selon le mode de réalisation qui vient d'être décrit, est tout à fait similaire à celui du dispositif 1, tel qu'il a été explicité en regard des figures 1A à 1B, et il est inutile de le redécrire en détail. L'avantage essentiel de la configuration du dispositif 1", du fait de la mise en parallèle de plusieurs organes de transfert, est de pouvoir traiter un débit de fluide utile plus important, sans être pour autant obligé d'augmenter inconsidérément les dimensions des éléments constitutifs, du moins celles des organes de transferts, 4ad à 4dg, de la tuyauterie, et des pièces de la machinerie, 5ad à 5dg, actionnant les pistons.
Pour certaines applications, il est nécessaire de disposer de vapeur sous haute pression. Tout en conservant l'architecture de base du dispositif des figures 2A et 2B, il est possible d'obtenir un tel résultat.
Pour ce faire, selon un mode de réalisation supplémentaire, on partitionne le dispositif en deux étages en cascade, et plus particulièrement la cuve "secondaire" recevant la vapeur sous pression.
La figure 4 illustre, en vue de côté, un tel mode de réalisation. Les éléments communs aux figures précédentes portent les mêmes références et ne seront redécrits qu'en tant que de besoin.
Le dispositif, désormais référencé 1", comprend deux parties, ou étages de compression en cascade : eI et eII. L'étage eI comprend tous les éléments du dispositif 1', à l'exception du fait que, dans l'exemple illustré sur la figure 4, on n'a prévu que trois étages d'organes de transfert par rangée, par exemple les organes 4ad à 4cd, pour la partie droite. A cette exception près, le fonctionnement de cet étage eI est strictement identique à celui du dispositif 1' des figures 2A et 2B.
Selon une autre caractéristique de ce mode de réalisation, la cuve du circuit "secondaire" est également divisée en deux cuves, référencées 3a et 3b.
L'eau vaporisée 23' est transférée dans l'enceinte 20b de la cuve 2b vers l'enceinte 30a de cette cuve 3a, sous une pression plus élevée que celle régnant dans l'enceinte 20a.
Selon une autre caractéristique encore de ce mode de réalisation, le dernier étage d'organes de transfert, c'est-à-dire la paire d'organes droit et gauche, dont seul l'organe droit 4'd est visible sur la figure 4, a un rôle particulier. Il met en communication l'enceinte 30a de la cuve 3a avec l'enceinte 30b de la cuve 3b. Le transfert de la vapeur 23"a s'effectue de nouveau avec une augmentation du taux de compression (vapeur 23"b). Aussi, les chambres haute et basse (non représentées) des cylindres de la paire d'organes de transfert du dernier étage eII, communiquent avec l'enceinte 30a par l'intermédiaire de deux conduites, 24'd et 25'd, respectivement. De même, ces chambres haute et basse communiquent avec l'enceinte 30b par l'intermédiaire de deux conduites, 31'd et 32'd, respectivement.
La machinerie d'entraínement est strictement identique à celle décrite en regard des figures 3A et 3B.
Il est encore possible de généraliser le fonctionnement du dispositif 1", en lui adjoignant un ou plusieurs étages de surcompression supplémentaires, c'est-à-dire en prévoyant trois cuves "secondaires", ou plus, et non deux comme illustré par la figure 4. On dispose entre chaque cuve un organe de transfert ou une paire d'organes de transfert. A chaque étage, la pression de la vapeur obtenue augmente, ainsi d'ailleurs que sa température.
Compte tenu que la vapeur, même après un seul transfert, est sous une pression beaucoup plus élevée que celle régnant dans les enceintes du circuit "primaire", par exemple dans l'enceinte 23b, il est généralement inutile de prévoir plusieurs étages d'organes de transfert, car le volume spécifique de la vapeur a fortement diminué. Selon le débit de vapeur à obtenir, un organe de transfert unique peut d'ailleurs s'avérer suffisant, au lieu d'une paire.
A la lecture de ce qui précède, on constate aisément que l'invention atteint bien les buts qu'elle s'est fixés.
Il doit être clair cependant que l'invention n'est pas limitée aux seuls exemples de réalisations explicitement décrits, notamment en relation avec les figures 1A à 4. En particulier, les valeurs numériques n'ont été précisées que pour fixer les idées. Elles dépendent essentiellement de l'application précise visée. De même, lorsqu'il en existe plusieurs, le nombre d'organes de transfert n'est pas limité à deux paires de quatre organes en parallèle. Ce nombre dépend essentiellement de la quantité instantanée de fluide à traiter. Bien que la configuration par paires soit avantageuse, on peut également adopter une autre configuration, par exemple en ligne.
Il doit être clair aussi que, bien que particulièrement adaptée à des applications de refroidissement et de recyclage d'eau chaude ou tiède, provenant d'installations industrielles (centrale nucléaire, etc.), on ne saurait cantonner l'invention à ce seul type d'applications. L'invention trouve application à chaque fois qu'il s'agit de refroidir un fluide sous forme liquide et de récupérer les calories emmagasinées, avec recyclage ou non de ce fluide, et utilisation éventuelle de la vapeur générée conformément au procédé, sous une forme plus ou moins comprimée, selon le type de dispositif mis en oeuvre. A titre d'exemples non exhaustifs, on peut citer le refroidissement du lait, des jus de fruits divers, des solutions chimiques, refroidissement d'eau provenant d'une source chaude en vue de produire de la vapeur, etc.
Enfin, bien que particulièrement adaptée pour des installations de grandes puissances, le procédé de l'invention est tout à fait compatible avec des installations de moyennes ou petites puissances, voire avec des installations et/ou des appareils domestiques.

Claims (11)

  1. Procédé de récupération d'énergie thermique à partir d'un fluide vaporisable suivant lequel, dans au moins un étage de mise en oeuvre :
    on admet ledit fluide à l'état de liquide chaud dans une première enceinte (20) sous pression réduite où il se vaporise partiellement en provoquant le refroidissement de la fraction de fluide non vaporisée (23) que l'on récupère en phase liquide ;
    et on admet de la vapeur produite dans ladite première enceinte en la comprimant dans une seconde enceinte (30) sous pression d'où elle est extraite en phase gazeuse chaude ;
    caractérisé en ce que l'on assure le transfert de la vapeur de la première enceinte à la seconde enceinte, par deux circuits sous couplage mécanique passant respectivement par deux chambres complémentaires séparées par un piston entraíné en déplacement de translation alternatif, ces deux circuits étant ainsi opératifs répétitivement en alternance pour aspirer la vapeur hors de la première enceinte et la refouler dans ladite deuxième enceinte (30).
  2. Procédé selon la revendication 1, caractérisé en ce que ledit fluide vaporisable est un fluide utilitaire provenant d'une unité industrielle (U) dans laquelle il a subi un réchauffement et en ce que ledit fluide refroidi en phase liquide (23) est renvoyé, par un circuit de recyclage de fluide froid (26, 6), dans ladite unité industrielle (U), et réintroduit dans ladite première enceinte (20) après réchauffement
  3. Procédé selon la revendication 2, caractérisé en ce qu'il comprend une étape supplémentaire consistant à amener une quantité supplémentaire dudit fluide utilitaire vaporisable dans ledit circuit de fluide froid, de masse égale à ladite fraction de fluide vaporisée transférée de ladite première enceinte dans ladite deuxième enceinte, de manière à compenser cette quantité de fluide transférée.
  4. Procédé selon l'une quelconque des revendications 2 et 3, caractérisé en ce que ladite unité industrielle (U) comprenant un générateur (Ch) de fluide en phase gazeuse, sous pression et température déterminées, et des moyens (C 1-Cn ) d'échange thermique entre cette vapeur et un circuit (21-26) dans lequel circule ledit fluide utilitaire à refroidir, ledit fluide comprimé en phase gazeuse (23") présent dans ladite deuxième enceinte (30) est renvoyé (33) vers l'unité industrielle (U) et lesdits moyens d'échange (C 1-Cn ).
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend au moins une étape supplémentaire consistant à transférer ledit fluide comprimé en phase gazeuse (23") de ladite seconde enceinte (30a) vers une enceinte supplémentaire (30b), par l'intermédiaire de moyens de couplage mécanique supplémentaires (4'd) aspirant le fluide comprimé en phase gazeuse (23"a) hors de la deuxième enceinte (30a) et le refoulant, avec un taux de compression supplémentaire, dans ladite enceinte supplémentaire (30b).
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit fluide utilitaire vaporisable est de l'eau.
  7. Installation pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend au moins :
    une première enceinte (20) munie, dans une zone supérieure, d'une conduite (21) d'alimentation en fluide à refroidir, de moyens de vaporisation (22) du fluide admis et, dans une zone inférieure, une conduite d'extraction (26) dudit fluide refroidi en phase liquide (23) ;
    une deuxième enceinte (30), munie d'une conduite d'évacuation (33) dudit fluide comprimé en phase gazeuse (23") ;
    et des moyens de transfert (4) de la vapeur produite (23') sous compression dans la deuxième enceinte, alternativement et de manière répétitive en passant par deux chambres complémentaires (400, 401) de part et d'autre d'un même piston (41) en déplacement alternatif, lesdites chambres étant équipées de valves d'aspiration en communication avec la première enceinte (20) et de valves de refoulement en communication avec la deuxième enceinte (30).
  8. Installation selon la revendication 7, caractérisée en ce que ladite première enceinte est double et constituée d'une enceinte verticale (20a), munie desdites conduites d'amenée (21) dudit fluide utilitaire à refroidir et d'évacuation (26) dudit fluide refroidi en phase liquide (23), et d'une enceinte horizontale (20b), débouchant en une de ses extrémités dans ladite enceinte verticale (20a), en ce que ladite deuxième enceinte (30) contenant ledit fluide comprimé en phase gazeuse (23") est également horizontale, et en ce qu'il est prévu une pluralité de moyens de transfert (4ad-4dg) couplant lesdites enceintes horizontales (20b, 30).
  9. Installation selon la revendication 7 ou 8, caractérisée en ce que lesdits moyens de transfert (4) comprennent un cylindre (40) à piston à double effet (41) effectuant des mouvements d'allers et retours à l'intérieur dudit cylindre (40), ledit piston (41) définissant à l'intérieur dudit cylindre (40) une chambre haute (400) et une chambre basse (401), en ce que lesdites chambres haute (400) et basse (401) communiquent, chacune, lesdites première (20) et deuxième (30) enceintes, par l'intermédiaire d'une paire de conduites (24-25, 31-32) débouchant dans ces enceintes (20, 30), et en ce que ces chambres (400, 401) sont munies de valves d'admission (42,44) sur lesdites conduites (24, 25) débouchant dans la première enceinte (20) et de valves d'échappement (43, 45) sur lesdites conduites (31-32) débouchant dans la deuxième enceinte (30), de manière à permettre ledit transfert de fluide vaporisé (23'), de la première enceinte (20) vers la deuxième enceinte (30), avec ledit taux de compression déterminé.
  10. Installation selon la revendication 9, caractérisée en ce que chacun desdits pistons à double effet (41) est mu par un système à bielle et manivelle (51-52) entraíné par un moteur à vitesse variable (8).
  11. Installation selon l'une quelconque des revendications 7 à 10, caractérisée en ce que, ladite deuxième enceinte (30a) étant close, elle comprend au moins une enceinte supplémentaire (30b) et des moyens de transfert supplémentaires (4'd) couplant mécaniquement la deuxième enceinte (30a) à ladite enceinte supplémentaire (30b), de manière à transférer ledit fluide comprimé en phase gazeuse (23"a) de la deuxième enceinte (30a) vers ladite enceinte supplémentaire (30b), sous un taux de compression plus élevé.
EP99401868A 1998-07-23 1999-07-23 Procédé d'échange thermique avec récupération d'énergie à partir d'un fluide vaporisable et installation mettant en oeuvre ce procédé Expired - Lifetime EP0974802B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9809404A FR2781563B1 (fr) 1998-07-23 1998-07-23 Procede de transfert d'energie thermique a partir d'un fluide et installation mettant en oeuvre ce procede
FR9809404 1998-07-23

Publications (2)

Publication Number Publication Date
EP0974802A1 EP0974802A1 (fr) 2000-01-26
EP0974802B1 true EP0974802B1 (fr) 2003-02-19

Family

ID=9528931

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99401868A Expired - Lifetime EP0974802B1 (fr) 1998-07-23 1999-07-23 Procédé d'échange thermique avec récupération d'énergie à partir d'un fluide vaporisable et installation mettant en oeuvre ce procédé

Country Status (4)

Country Link
EP (1) EP0974802B1 (fr)
AT (1) ATE232958T1 (fr)
DE (1) DE69905433D1 (fr)
FR (1) FR2781563B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008009005B3 (de) * 2008-02-13 2009-04-09 Ferngas Nordbayern Gmbh Vorrichtung zur Umwandlung von in einem Fluid enthaltener thermodynamischer Energie in mechanische Arbeit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008027825A1 (de) * 2008-06-11 2009-12-17 Thermea. Energiesysteme Gmbh Verfahren und Anordnung zur Erzeugung von Wasserdampf

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR719413A (fr) * 1931-07-02 1932-02-05 Metallgesellschaft Ag Installation pour la réfrigération de liquides par auto-évaporation fractionnée dans le vide
GB687548A (en) * 1948-04-17 1953-02-18 Rateau Soc Improvements in or relating to gas turbine plants
GB967675A (en) * 1961-11-08 1964-08-26 Shell Int Research Method of cooling water and apparatus therefore
US4323109A (en) * 1979-08-27 1982-04-06 General Electric Company Open cycle heat pump system and process for transferring heat
US4413669A (en) * 1980-05-20 1983-11-08 Escher Wyss Limited Method of heat extraction from an aqueous carrier medium
JPS5710081A (en) * 1980-06-18 1982-01-19 Mitsubishi Gas Chem Co Inc Heat recovering method
DK148990B (da) * 1981-04-13 1985-12-09 Sabroe & Co As Fremgangsmaade ved drift af et varmepumpeanlaeg til udnyttelse af koldt vand, og varmepumpeanlaeg til udoevelse af fremgangsmaaden
IL64871A (en) * 1982-01-26 1985-08-30 Israel Desalination Eng Ltd Vapor compression heat pumps
US4779427A (en) * 1988-01-22 1988-10-25 E. Squared Incorporated Heat actuated heat pump
CH686115A5 (de) * 1994-08-18 1996-01-15 Franz Disler Abdampf/Bruden-Verdichter fur Wormeruckgewinnung in Eindampfanlagen.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008009005B3 (de) * 2008-02-13 2009-04-09 Ferngas Nordbayern Gmbh Vorrichtung zur Umwandlung von in einem Fluid enthaltener thermodynamischer Energie in mechanische Arbeit
DE102008009005B9 (de) * 2008-02-13 2009-07-30 Ferngas Nordbayern Gmbh Vorrichtung zur Umwandlung von in einem Fluid enthaltener thermodynamischer Energie in mechanische Arbeit

Also Published As

Publication number Publication date
FR2781563A1 (fr) 2000-01-28
EP0974802A1 (fr) 2000-01-26
DE69905433D1 (de) 2003-03-27
ATE232958T1 (de) 2003-03-15
FR2781563B1 (fr) 2000-10-06

Similar Documents

Publication Publication Date Title
WO2015110760A1 (fr) Installation et procede de traitement par evaporation/condensation d'eau pompee en milieu naturel
EP2203967A1 (fr) Installation et procedes de stockage et restitution d'energie electrique a l'aide d'une unite de compression et detente de gaz a pistons
CA2323941A1 (fr) Installation de pompage de chaleur, notamment a fonction frigorifique
FR3016025A1 (fr) Combinaison d'une unite de stockage d'energie par air comprime et d'une centrale thermique
WO2005100252A1 (fr) Procede et installation de dessalement d’eau de mer par distillation a effets multiples et thermocompression de vapeur fonctionnant avec differentes pressions de vapeur motrice
EP0148756B1 (fr) Système pour le revalorisation d'énergie thermique à bas niveau mettant en oeuvre des phénomènes d'évaporation et de mélange de deux fluides en équilibre de pression de vapeur sous des températures différentes
EP3510257B1 (fr) Système mécanique de production d'énergie mécanique à partir d'azote liquide, et procédé correspondant
EP0072305B1 (fr) Procédé de stockage sous forme chimique d'une énergie mécanique ou thermique et de récupération sous forme mécanique d'une partie au moins de ladite énergie stockée et dispositif pour la mise en oeuvre de ce procédé
EP0974802B1 (fr) Procédé d'échange thermique avec récupération d'énergie à partir d'un fluide vaporisable et installation mettant en oeuvre ce procédé
BE1024466B1 (fr) Unité de dessalement d'eau par compression mécanique de vapeur
WO2014096736A1 (fr) Dispositif et procede d'evaporation d'un liquide et leurs applications
FR2577614A1 (fr) Procede de stockage sous forme chimique d'une energie mecanique ou thermique et de recuperation sous forme mecanique d'une partie au moins de ladite energie stockee et installation pour la mise en oeuvre de ce procede
FR3079511A1 (fr) Dispositif de purification d'eau notamment d'eau salee, par evaporation en basse-pression
EP0133095A1 (fr) Procédé pour relever le niveau thermique des calories contenues dans un fluide caloporteur et utilisation des calories résultantes pour le chauffage d'un fluide
WO2006010238A1 (fr) Compresseur a pistons a action double
FR2757905A1 (fr) Convertisseurs d'energie hydrodynamiques asymetriques
FR2607581A1 (fr) Convertisseur de chaleur ambiante
WO2022268830A1 (fr) Procede de stockage et de recuperation d'energie avec stockage de chaleur indirect a la compression
WO2004079194A2 (fr) Pompe hydraulique et installation hydraulique comportant une telle pompe
EP0014630A1 (fr) Machine thermodynamique et son utilisation comme moteur ou comme machine frigorifique
FR2515727A1 (fr) Machine destinee a produire de l'energie mecanique ou electrique a partir d'une turbine a vapeur fonctionnant sous pression inferieure a la pression atmospherique
BE341438A (fr)
WO2013054020A1 (fr) Procede thermique mettant en oeuvre une pluralite de reacteurs de sorption
FR2952404A1 (fr) Moteur stirling a puissance amelioree et/ou variable
CH509096A (fr) Installation de traitement d'un liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000407

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020213

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030219

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030219

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030219

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030219

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030219

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69905433

Country of ref document: DE

Date of ref document: 20030327

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030519

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030519

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030723

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030828

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 0974802E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110715

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ROGER ROUX, FR

Effective date: 20120827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120820

Year of fee payment: 14

BERE Be: lapsed

Owner name: *ROGER ROUX

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731