EP0961819B1 - Ruckwinnungssystem mit katalytische distillation in olefin-anlage - Google Patents

Ruckwinnungssystem mit katalytische distillation in olefin-anlage Download PDF

Info

Publication number
EP0961819B1
EP0961819B1 EP97904257A EP97904257A EP0961819B1 EP 0961819 B1 EP0961819 B1 EP 0961819B1 EP 97904257 A EP97904257 A EP 97904257A EP 97904257 A EP97904257 A EP 97904257A EP 0961819 B1 EP0961819 B1 EP 0961819B1
Authority
EP
European Patent Office
Prior art keywords
processing
hydrogen
recited
hydrocarbons
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97904257A
Other languages
English (en)
French (fr)
Other versions
EP0961819A1 (de
Inventor
Stephen J. Stanley
Francis D. Mccarthy
Charles Sumner
Gary Robert Gildert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemical Research and Licensing Co
CB&I Technology Inc
Original Assignee
Chemical Research and Licensing Co
ABB Lummus Global Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemical Research and Licensing Co, ABB Lummus Global Inc filed Critical Chemical Research and Licensing Co
Publication of EP0961819A1 publication Critical patent/EP0961819A1/de
Application granted granted Critical
Publication of EP0961819B1 publication Critical patent/EP0961819B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • C10G70/02Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by hydrogenation

Definitions

  • the present invention relates to a process for the production of olefins and particularly to processing the charge gas feed to more effectively recover the product and process the by-products.
  • Ethylene, propylene and other valuable petrochemicals are produced by the thermal cracking of a variety of hydrocarbon feedstocks ranging from ethane to heavy vacuum gas oils.
  • hydrocarbon feedstocks ranging from ethane to heavy vacuum gas oils.
  • a wide variety of products are produced ranging from hydrogen to pyrolysis fuel oil.
  • the effluent from the cracking step commonly called charge gas or cracked gas, is made up of this full range of materials which must then be separated (fractionated) into various product and by-product streams followed by reaction (hydrogenation) of at least some of the unsaturated by-products.
  • the typical charge gas stream in addition to the desired products of ethylene and propylene, contains C 2 acetylenes, C 3 acetylenes and dienes and C 4 and heavier acetylenes, dienes and olefins as well as a significant quantity of hydrogen.
  • the C 2 acetylenes and C 3 acetylenes and dienes and the C 5 and heavier dienes, acetylenes and olefins are catalytically hydrogenated in fixed bed reactors using a series of commercially available catalysts.
  • the C 4 acetylenes, dienes, and olefins are also catalytically hydrogenated in fixed bed reactors.
  • the charge gas is compressed to between 2.76 and 4.14 MPa (400 and 600 psia). It is then progressively chilled condensing the C 2 and heavier components. Hydrogen is cryogenically recovered and methane is fractionated out of the stream. The remaining C 2 and heavier stream enters a series of fractionation towers.
  • the first tower produces an overhead stream containing the C 2 acetylenes, olefins, and paraffins. This stream is sent to a fixed bed, vapor phase reactor where the C 2 acetylene is selectively hydrogenated using the hydrogen cryogenically separated earlier from the charge gas stream.
  • the second tower in this sequence produces an overhead stream containing the C 3 acetylenes, dienes, olefins and paraffins.
  • This stream is sent to a fixed bed, vapor or liquid phase reactor where the C 3 acetylenes and dienes are selectively hydrogenated using the hydrogen cryogenically separated earlier from the charge gas stream.
  • the third tower in this first sequence produces an overhead stream containing the C 4 acetylenes, dienes, olefins, and paraffins. This stream is then sent either to battery limits as a final product or to a fixed bed, liquid phase reactor where the dienes, acetylenes, and in some instances the olefins are hydrogenated using the hydrogen cryogenically recovered previously from the charge gas.
  • the bottoms of the third tower contains the C 5 and heavier dienes, acetylenes, olefins and paraffins.
  • This stream is sent to a series of two fixed bed, liquid phase reactors.
  • the acetylenes and dienes are catalytically hydrogenated.
  • the olefins are catalytically hydrogenated in the second reactor. Both reactors utilize the hydrogen cryogenically recovered previously from the charge gas.
  • the third tower produces an overhead stream containing both the C 4 and C 5 acetylenes, dienes, olefins, and paraffins. These are hydrogenated as discussed previously for the C 4 's alone, in a single fixed bed, liquid phase reactor.
  • the C 6 and heavier dienes, acetylenes, olefins and paraffins exit in the bottoms of the third tower and are hydrogenated as discussed previously in two fixed bed, liquid phase reactors.
  • the cracked gas is compressed to between 2.07 and 3.45 MPa (300 and 500 psia) and sent to a fractionation tower.
  • the overhead of the tower is the C 3 and lighter portion of the charge gas. It is sent to a series of fixed bed, vapor phase reactors where the C 2 acetylene and a portion of the C 3 acetylenes and dienes are hydrogenated using a small portion (typically less than 10%) of the hydrogen contained in the C 3 and lighter stream.
  • the unhydrogenated portion of the C 3 acetylenes and dienes as well as the C 4 and heavier acetylenes, dienes, and olefins are hydrogenated in a fashion similar to that described above for the first process sequence. This still leaves over 90% of the hydrogen to be recovered cryogenically.
  • the C 2 and C 3 acetylenes and C 3 dienes are hydrogenated after the hydrogen separation/recovery step.
  • the hydrogenation of the C 4 and heavier acetylenes, dienes, and olefins always occurs after the hydrogen separation step and will consume up to 80% of the total available hydrogen. This hydrogenation also occurs in fixed bed catalytic reactors using catalysts chosen for the selectivity and degree of hydrogen saturation dictated by the particular process.
  • An object of the present invention is to hydrogenate in the liquid phase in a boiling point reactor the C 2 to C 5 and possibly heavier acetylenes and dienes in a feed stream without hydrogenating the C 2 and C 3 olefins in the feed stream. Additionally, the C 4 , C 5 and some or all of the heavier olefins may be hydrogenated still without hydrogenating the C 2 and C 3 olefins.
  • an object of the present invention is to provide a system and method for hydrogenating the cracked gas in an olefin plant prior to the separation of hydrogen and methane from the cracked gas in a manner so as to hydrogenate the by-products, C 2 acetylenes, C 3 acetylenes and dienes and C 4 and heavier acetylenes and dienes and, if desired, the C 4 and heavier olefins, without significant hydrogenation of the ethylene and propylene.
  • the hydrogenation of the C 4 and heavier acetylenes, dienes and olefins increases the hydrogen removal to between 70% and 100% and most typically 90% to 95%. This high removal of hydrogen reduces the hydrogen partial pressure thereby lowering the mechanical refrigeration requirements to chill and condense the C 2 and heavier material thereby saving energy and capital investment.
  • the cryogenic separation of the hydrogen from the cracked gas is eliminated. Since all of the hydrogenation reactions occur upstream of the hydrogen-methane separation steps, the hydrogen required for the hydrogenation reactions is already present in the charge gas. The elimination of the cryogenic separation of the hydrogen results in energy saving, lower capital investments and less complexity in the process.
  • the present invention can be employed for hydrogenating the acetylenes and dienes without significant hydrogenation of olefins.
  • fouling in the fractionation towers bottoms typically occurs due to the presence of acetylenes and dienes.
  • the bottoms operating temperatures of these towers are limited to minimize the fouling tendencies but often spare equipment must be provided to ensure continuity of plant operation.
  • Hydrogenating the dienes and acetylenes prior to the fractionation towers eliminates the fouling tendencies in the fractionation tower bottoms.
  • Figure 1 is a flow sheet for a conventional prior art olefin plant.
  • Figure 2 is a flow sheet for a portion of an olefin plant according to the present invention.
  • Figure 3 is a flow sheet for the remaining portion of an olefin plant according to the present invention illustrating the downstream processing of the olefin containing vapors.
  • Figure 4 is a flow sheet similar to the flow sheet of Figure 2 but illustrating an alternate embodiment of the present invention.
  • a charge gas 10 is first compressed at 12 up to a pressure of 2.76 to 4.14 MPa (400 to 600 psia). The majority of the compressed gas then undergoes cryogenic treatment at 14 to separate hydrogen followed by separation of methane at 16. A small portion of the C 3 and heavier material condenses in the compressor train and often bypasses the cryogenic demethanization and deethanization steps going directly to the depropanizer 30 as stream 31. The gas stream 18 is then deethanized at 20 with the C 2 gas stream being hydrogenated at 22 and fractionated at 24 to produce essentially ethylene 26 and ethane 28.
  • the bottoms from the deethanizer 20 are depropanized at 30 with the separated C 3 stream 32 being hydrogenated at 34 and fractionated at 36 to produce essentially propylene 38 and propane 40.
  • the bottoms from the depropanizer 30 are debutanized at 42 with the C 4 stream being hydrogenated at 44 and the C 5 + stream being hydrogenated at 46.
  • nearly the entire feed stream is subjected to cryogenic treatment and the separation of hydrogen before any hydrogenations or fractionations are carried out.
  • the separated hydrogen is then used downstream in the hydrogenation units 22, 24, 44 and 46. This scheme with its cryogenic treatment and hydrogen separation has the disadvantages previously discussed.
  • FIG. 2 illustrates the present invention where the charge gas 50 is compressed at 52 but only up to a pressure of 0.69 to 1.72 MPa (100 to 250 psia) and preferably to 1.21 MPa (175 psia).
  • the compressed charge gas stream is fed into the feed zone 54 of a catalytic distillation tower 56.
  • This catalytic distillation tower is a device which simultaneously carries out a catalytic reaction and distillation and comprises a stripping section 58 below the feed zone 54 and a rectifying/reaction section 60 above the feed zone 54.
  • the stripping section 58 contains any desired distillation internals such as conventional trays 62 illustrated in Figure 2.
  • Reboiler 63 returns heated bottoms to the column.
  • the rectifying/reaction section 60 of the column 56 has the dual function of reacting (hydrogenating) selected components of the feed and distilling the components. Therefore, this section contains beds of a conventional hydrogenating catalyst 64.
  • the criteria for this rectifying/reaction section is that conditions be created wherein the unsaturated hydrocarbons, with the exception of ethylene and propylene, are hydrogenated and wherein the requisite distillation is accomplished to separate essentially all of the C 4 and lighter material as overhead and essentially all of the C 6 and heavier materials as bottoms. A portion of the C 5 materials, 10 to 90% and typically 70%, exits the column overhead and the remaining portion, typically 30%, exits the column as bottoms.
  • the rectifying/reaction section 60 of the column 56 is operated such that there is a substantial concentration gradient of C 4 and C 5 materials relative to C 2 and C 3 materials in the liquid phase where the majority of the hydrogenation reaction occurs. In the preferred embodiment, this is accomplished by the use of a high liquid downflow, for example, by using a high reflux ratio and large intercondensing duties.
  • the column reflux which is produced by overhead condensers 86 and 88 and column intercoolers or intercondensers 80 also removes the high heat of reaction.
  • the catalyst is separated into a series of discrete beds 66, 68 and 70. Although three beds are shown, this is only by way of example and could be any number of beds depending on the dynamics of any particular plant. These catalyst beds are retained between the screens or perforated plates 72. Located between the catalyst beds are liquid collecting trays 74 which include vapor flow ports or chimneys 76. The liquid descending from a catalyst bed collects on the respective tray and drains into the sumps 78. The liquid is withdrawn from the sumps 78 as side streams through the intercondenser 80 and is then reinjected back into the column over the next lower catalyst bed through the distribution headers 82. This permits a portion of the heat of reaction to be removed in the intercondensers.
  • the cooling medium can be cooling water while the cooling medium in the overhead condensers may need to be partly by use of mechanical refrigeration.
  • the use of the intercondensers can significantly reduce the portion of the heat of reaction which needs to be removed by mechanical refrigeration.
  • the overhead 84 from the column is cooled in the overhead condenser 86 with cooling water and in the condenser 88 with refrigeration and the resulting vapor and liquid separated at 90.
  • the processing of the collected vapor in line 94 will be discussed hereinafter.
  • the resulting liquid from separator 90 is pumped through line 96 back into the column as reflux.
  • a number of trays are provided to fractionate out ethylene and propylene from the liquid phase preventing these from entering the catalyst beds in high concentrations relative to the C 4 and C 5 material.
  • the hydrogenation in the column 56 occurs mostly in the liquid phase.
  • the extent of the reaction is dependent upon the relative reactivity of the various components and the concentration of these components in the liquid phase at any particular point in the column.
  • the C 2 and C 3 acetylenes and dienes are far more reactive than ethylene and propylene so that they react first and rapidly.
  • the relative reactivities of ethylene, propylene and the C 4 and heavier olefins, dienes and acetylenes are much closer.
  • the concentration of the ethylene and propylene in the liquid phase must be minimized and the concentration and temperature profiles from top to bottom must be controlled. Since the hydrogenation occurs in a fractionation tower, this control can be accomplished by adjusting the overhead (external) reflux produced by the overhead condensers 86 and 88 and the side stream reflux from the intercondensers 80.
  • the feed 54 to the column at the previously mentioned pressure of 1.25 MPa (0.69 to 1.72 MPa) is in the temperature range of 25 to 120°C and preferably 70 - 90°C.
  • the concentration of the hydrogen is the highest
  • the temperature (in the rectifying/reaction section) is the highest
  • the concentration of ethylene and propylene in the liquid phase is the lowest.
  • the concentration of C 4 and C 6 components in the liquid phase relative to the concentration of propylene is maintained in the range of 10 to 80 and preferably about 25 while the concentration of C 4 and C 5 in the liquid phase relative to ethylene is maintained in the range of 30 to 100 and preferably about 80.
  • This low concentration of C 2 and C 3 in the rectifying/reaction section is achieved by a high liquid downflow ratio.
  • This high liquid downflow ratio can be achieved by a high overhead reflux ratio and/or by the reflux created by the intercondensers 80. As will be explained later with respect to Figure 4, this high liquid downflow ratio can also be provided by the recycle and cooling of heavies from the bottom of the column. More specifically, the liquid downflow ratio provided by the overhead reflux 96, the intercoolers 80 and the recycle of heavies (160 in Figure 4) is equivalent to the liquid downflow that would be provided by an overhead reflux ratio in the range of about 0.2 to 10 without intercondensers and heavies recycle. This compares to a reflux ratio of less than 0.2 for a conventional column operated to achieve a similar overhead product specification.
  • the ratio of C 4 and C 5 components to C 2 and C 3 components is similarly high.
  • the overhead reflux ratio and intercondenser temperatures are adjusted to maintain these operating parameters.
  • the bottoms 98 from the column 56 contain a portion of the C 5 material and essentially all of the C 6 and heavier material.
  • this bottoms product is sent to a second catalytic distillation hydrogenation column 100 for the production of hydrogenated pyrolysis gasoline.
  • the bottoms product can be burned in the plant fuel system or pumped and sent to a conventional fixed pyrolysis gasoline hydrotreater as previously described under prior art.
  • the total net overhead 94 from the column 56 containing a portion of the C 5 material and essentially all of the C 4 and lighter material, is first compressed at 102 and sent to a hydrogen recovery membrane devices 104.
  • Such membrane devices are commercially available for the separation of hydrogen.
  • the intent of the membrane is to recover most of the hydrogen remaining in the overhead stream 94.
  • the resulting hydrogen stream 106 is then fed to the pyrolysis gasoline hydrogenation column 100 along with the bottoms from the column 56.
  • the compression step may or may not be required depending on the specific composition of the cracked gas, hydrogen membrane selection, and operating condition of column 56.
  • a conventional fixed bed pyrolysis gasoline hydrotreater could be used without a membrane separator.
  • the hydrogen now significantly reduced in stream 94 by the hydrogenation reactions occurring in column 56 would be cryogenically recovered as previously discussed.
  • Pyrolysis gasoline is a complex mixture of hydrocarbons ranging from C 5 compounds through materials with a boiling point of about 200°C.
  • the raw feed to the pyrolysis gasoline column 100 is highly unstable due to its high content of diolefins. Therefore, in the production of the pyrolysis gasoline, the feed is hydrogenated in the column 100.
  • the column 100 is similar to the column 56 in that it has a typical bottom stripping section 108, a reboiler 110 and an upper rectifying/reaction section 112 containing the hydrogenation catalyst. It includes an overhead condenser 114 and separator 116 from which reflux 118 is returned to the column.
  • the column may or may not include intercoolers or intercondensers similar to the intercondensers for column 56.
  • this column 100 the feed of the remaining C 5 acetylenes, dienes and olefins and all of the C 6 and heavier acetylenes, dienes and olefins is hydrogenated.
  • This column operates between 0.21 and 0.86 MPa and preferably 0.34 MPa.
  • the C 8 and lighter materials in the feed enter the catalyst bed where the acetylenes, dienes and olefins are hydrogenated.
  • the C 9 and heavier material exits from the bottoms of column 100.
  • the heat of reaction is removed by the reflux stream 118.
  • the reflux stream 118 also serves to control the selectivity of the hydrogenation reaction.
  • ethylene in stream 106 and, as has been pointed out, this ethylene is a valuable product and its hydrogenation should be avoided.
  • ethylene concentration in the liquid phase in the column can be minimized. This is a technique which is preferable to upgrading the membrane separation process to essentially exclude ethylene from passing through with the hydrogen.
  • the passage of ethylene could be minimized by decreasing the pressure differential across the membrane and/or by increasing the membrane surface area. However, adding membrane surface area is a capital intensive cost and increasing the pressure differential is both energy and capital intensive.
  • the ability to selectively hydrogenate in the column 100 permits a lower capital cost, less energy intensive process.
  • the overhead vapor 120 from the column containing primarily C 4 and lighter material is recycled to the feed for the process.
  • the net overhead product condensed liquid is removed at 122 as pyrolysis gasoline.
  • FIG. 3 illustrates the processing of the overhead stream 94 after it passes through the hydrogen separation step at 104 and emerges as stream 124.
  • this system can be used to process the stream 94 directly in the event that the membrane separation and pyrolysis gasoline portions of the process described above were not used. In that event, additional provisions would be made for cryogenic hydrogen separation.
  • the vapor stream 124 is chilled at 128 as required to liquify the C 2 and heavier components.
  • the methane overhead 130 is then separated in the demethanizer tower 132 from the C 2 and heavier bottoms 134. These bottoms 134 are then separated in the deethanizer tower 136 to produce a C 2 overhead 138 and a C 3 and heavier bottoms 140.
  • the C 2 overhead 138 which may first go through a drying step (not shown), is then separated in tower 142 into ethane bottoms 144 and ethylene overhead 146.
  • the bottoms 140 from the deethanizer 136 is then separated in tower 148 into a C 4 and heavier bottoms 150 and a C 3 overhead 152. This overhead 152, which may also then be dried, is fed to the tower 154 for the separation of propane 156 and propylene 158.
  • FIG. 4 illustrates an alternate preferred embodiment of the present invention which incorporates recycles from the stripping section 58 of the column 56.
  • a recycle stream 160 from the stripping section 58 is recycled either to the column overhead 84 through line 161 and/or to the catalytic zone of the rectifying/reaction section 60 through line 163.
  • Recycle via line 163 to the catalyst zone only is usually preferable.
  • this recycle may be a portion 162 of the bottoms 98 and/or a portion 164 from within the stripping section.
  • This recycle 160 serves to recycle the heavies, C 5 +, to the overhead or to the catalytic zone of the column.
  • This increases the amount of dienes and acetylenes and perhaps some olefins which will be hydrogenated, thereby increasing the consumption of hydrogen. Also, it provides another control variable to increase the overhead temperature of the tower and/or of the catalyst bed. Increasing the overhead temperature of the tower is desirable since it will decrease or eliminate the refrigeration requirements for generating the reflux. Increasing the temperature of the catalyst bed provides another variable to control the reaction rate of the catalytic reaction beds. Although this embodiment achieves distillation internally in the column, it is not classic distillation since there is now some heavies in the overhead. In that case, some further distillation would be provided downstream to make the final desired separations.
  • the purpose of this embodiment is to improve the control of the reactions taking place in the tower 56 even though that also sacrifices some of the separation by distillation.
  • the catalytic distillation column is operated with a recycle of heavies to the overhead, the heavy stream is preferably cooled at 165. This cooling effect can be considerable, especially if a high recycle rate of these heavies is utilized. This reduces the reflux ratio of the catalytic distillation column at equal liquid downflow rates. The reflux rate is further reduced ' if side cooling is utilized. The net effect of all of these cooling steps is to significantly decrease the reflux ratio. This can reduce refrigeration requirements as some of the cooling required to condense reflux may be provided at higher condensing temperatures. This can be another benefit of recycling heavies from the bottom section to the upper section of the column especially recycling to the vapor outlet 84 since that will raise the overhead temperature and reduce the refrigeration requirements.
  • the overhead reflux ratio is in the range of 0.05 to 0.4 and preferably, 0.1 to 0.2 when the bottoms recycle is directed to the top of the catalyst bed through line 163.
  • the reflux ratio is 0.2 to 10.
  • the heavies recycle does not conform to what would be considered "classical" distillation since the recycle results in the loss of some of the net separation benefits of the distillation. However, this loss is outweighed by the benefit of minimizing ethylene and propylene concentrations in the liquid in the catalyst zone by the use of high liquid downflow rates and by the benefits of raising the temperature in the catalyst bed.
  • the ability of the present invention to remove 85 to almost 100%, typically 90%, of the hydrogen contained in the charge gas prior to chilling and condensation steps lowers the energy consumption and reduces capital costs.
  • the hydrogen contained in the charge gas as the source of hydrogen for the various hydrogenation reactions, the need for the separate cryogenic separation of hydrogen is eliminated.
  • the concentration profiles in the catalytic distillation hydrogenation column the C 4 and heavier olefins can be hydrogenated without any significant hydrogenation of either ethylene or propylene. Therefore, the hydrogenation reactions are combined into one or two reactor systems.

Claims (16)

  1. Ein Verfahren zur Verarbeitung eines thermisch gekrackten Zustroms, der Wasserstoff, Ethylen, Propylen und andere C2, C3, C4, C5, C6 sowie schwerere ungesättigte Kohlenwasserstoffe enthält, die in der besagten thermischen Spaltung hergestellt werden, um besagtes Ethylen und Propylen von zumindest einigen der besagten anderen ungesättigten Kohlenwasserstoffe zu trennen und um zumindest einige der besagten anderen ungesättigten Kohlenwasserstoffe mit dem im besagten Zustrom enthaltenen Wasserstoff zu hydrieren ohne vorherige Trennung des besagten Wasserstoffs hieraus und ohne signifikante Hydrierung des besagten Ethylens und Propylens, wobei folgende Schritte enthalten sind:
    a. Einleitung des besagten Zustroms in die Zufuhrzone einer Destillationsreaktionskolonne, die unterhalb der besagten Zufuhrzone eine Destillationsabstreiferzone und oberhalb der besagten Zufuhrzone eine Kombinationszone für Destillationsrektifizierung und katalytische Reaktion enthält;
    b. Parallel dazu:
    (i) Kontaktierung des besagten Zustroms in der besagten Destillationsreaktionskolonne mit einem vertikal ausgerichteten Hydrierkatalysator-Boden in der besagten Kombinationszone für Destillationsrektifizierung und katalytische Reaktion;
    (ii) Aufrechterhaltung eines hohen Verhältnisses der C4 und C5 Gesamt-Kohlenwasserstoffe zu den C2 und C3 Gesamt-Kohlenwasserstoffen am Boden des besagten vertikal ausgerichteten Hydrierkatalysator-Bodens, wobei das besagte hohe Verhältnis ausgewählt wird, indem besagtes Ethylen und Propylen im wesentlichen unhydriert bleiben und zumindest einige der besagten anderen ungesättigten Kohlenwasserstoffe hydriert werden;
    (iii) Fraktionierung der resultierenden Mischung aus hydrierten und unhydrierten Produkten;
    c. Entnahme eines obenliegenden Stroms, der im wesentlichen alle besagten C2, C3 und C4 Kohlenwasserstoffe sowie einen Teil der besagten C5 Kohlenwasserstoffe enthält, und Entnahme eines Bodenstroms, der im wesentlichen alle besagten C6 und schwerere Kohlenwasserstoffe sowie einen Teil der besagten C5 Kohlenwasserstoffe enthält; und
    d. Verarbeitung des besagten obenliegenden Stroms zur Gewinnung von Ethylen und Propylen.
  2. Ein Verarbeitungsverfahren wie in Anspruch 1 dargelegt, wobei der besagte Zustrom C9 und schwereres Material beinhaltet und der besagte Schritt (d) zur Verarbeitung des besagten obenliegenden Stroms folgende Schritte aufweist:
    a. Die Trennung von Wasserstoff vom besagten obenliegenden Strom;
    b. Die Einspeisung des besagten separierten Wasserstoffs und des besagten Bodenstroms aus der besagten Destillationsreaktionskolonne in eine Pyrolysebenzin-Destillationsreaktionskolonne mit Hydrierkatalysator;
    c. Reagieren des besagten getrennten Wasserstoffs mit dem besagten Bodenstrom in der besagten Pyrolysebenzin-Destillationsreaktionskolonne zur Herstellung einer obenliegenden hydrierten Flüssigkeit aus Pyrolysebenzin und einem Bodensatz aus C9 und schwererem Material.
  3. Ein Verarbeitungsverfahren wie in Anspruch 2 dargelegt, wobei der besagte Schritt der Wasserstofftrennung den Schritt der Wasserstofftrennung aus dem besagten obenliegenden Strom durch eine Wasserstoff-Trennmembran aufweist.
  4. Ein Verarbeitungsverfahren wie in Anspruch 1 dargelegt, wobei der besagte Schritt der Aufrechterhaltung eines hohen Verhältnisses den Schritt der Entnahme zumindest eines Teils der absteigenden Flüssigkeit als Seitenstrom an einem ausgewählten Punkt vom besagten Hydrierkatalysator-Boden beinhaltet, wobei der besagte Seitenstrom gekühlt und wieder in den besagten Hydrierkatalysator-Boden eingespritzt wird.
  5. Ein Verarbeitungsverfahren wie in Anspruch 4 dargelegt, wobei der besagte Seitenstrom in den besagten Boden an einem Punkt unterhalb des gewählten Punktes wieder eingespritzt wird.
  6. Ein Verarbeitungsverfahren wie in Anspruch 1 dargelegt, wobei die besagten Hydrierreaktionen im wesentlichen in der Flüssigphase in der besagten Destillationsreaktionskolonne stattfinden.
  7. Ein Verfahren zur Verarbeitung eines thermisch gekrackten Zustroms, der Wasserstoff, Ethylen, Propylen und andere C2, C3, C4 sowie schwerere ungesättigte Kohlenwasserstoffe enthält, um zumindest einige der besagten ungesättigten Kohlenwasserstoffe mit dem im besagten Zustrom enthaltenen Wasserstoff zu hydrieren ohne Hydrierung des besagten Ethylens und Propylens, wobei folgende Schritte enthalten sind:
    a. Einleitung des besagten Zustroms in die Zufuhrzone einer Destillationsreaktionskolonne, die unterhalb der besagten Zufuhrzone eine Destillationsabstreiferzone und oberhalb der besagten Zufuhrzone eine Kombinationszone für Destillationsrektifizierung und katalytische Reaktion enthält;
    b. Parallel dazu:
    (i) Kontaktierung des besagten Zustroms in der besagten Destillationsreaktionskolonne mit einem vertikal ausgerichteten Hydrierkatalysator-Boden in der besagten Kombinationszone für Destillationsrektifizierung und katalytische Reaktion;
    (ii) Aufrechterhaltung von Hydrierbedingungen im besagten Hydrierkatalysator-Boden einschliesslich eines hohen Verhältnisses der C4 und schwererer Kohlenwasserstoffe zu den C2 und C3 Kohlenwasserstoffen, wobei das besagte hohe Verhältnis ausgewählt wird, indem besagtes Ethylen und Propylen im wesentlichen unhydriert bleiben und im wesentlichen alle besagten anderen C2, C3 und C4 und schwereren ungesättigten Kohlenwasserstoffe hydriert werden;
    (iii) Fraktionierung der resultierenden Mischung aus hydrierten und unhydrierten Produkten;
    (iv) Rückführung schwerer Materialien aus der besagten Abstreiferzone an eine Stelle in der besagten Kolonne über der besagten katalytischen Reaktionszone zur Unterstützung der Aufrechterhaltung des besagten hohen Verhältnisses und zur Erhöhung der Temperatur in den besagten katalytischen Reaktionszonen sowie zur Bereitstellung zusätzlicher ungesättigter Verbindungen für die Hydrierung;
    c. Entnahme eines obenliegenden Stroms, der im wesentlichen alle besagten C2, C3 und C4 Kohlenwasserstoffe sowie einen Teil der schwereren Kohlenwasserstoffe enthält, und Entnahme eines Bodenstroms, der den verbleibenden Teil der schwereren Kohlenwasserstoffe enthält; und
    d. Verarbeitung des besagten obenliegenden Stroms zur Gewinnung von Ethylen und Propylen.
  8. Ein Verarbeitungsverfahren wie in Anspruch 7 dargelegt, wobei der besagte Schritt der Rückführung schwerer Materialien den Schritt der Kühlung der besagten schweren Materialien vor der Einleitung in die besagte Kolonne beinhaltet.
  9. Ein Verarbeitungsverfahren wie in Anspruch 8 dargelegt, wobei der besagte Schritt der Aufrechterhaltung eines hohen Verhältnisses den Schritt der Entnahme zumindest eines Teils der absteigenden Flüssigkeit als Seitenstrom an einem ausgewählten Punkt vom besagten Hydrierkatalysator-Boden beinhaltet, wobei der besagte Seitenstrom gekühlt und wieder in den besagten Hydrierkatalysator-Boden eingespritzt wird.
  10. Ein Verarbeitungsverfahren wie in Anspruch 9 dargelegt, wobei der besagte Schritt der Aufrechterhaltung eines hohen Verhältnisses ferner den Schritt der Aufrechterhaltung eines hohen Rückfluss-Verhältnisses zurück in die besagte Kombinationszone für Destillationsrektifizierung und katalytische Reaktion beinhaltet.
  11. Ein Verarbeitungsverfahren wie in Anspruch 10 dargelegt, wobei das besagte Rückfluss-Verhältnis im Bereich von 0,05 bis 0,4 liegt.
  12. Ein Verarbeitungsverfahren wie in Anspruch 10 dargelegt, wobei das besagte Rückfluss-Verhältnis im Bereich von 0,1 bis 0,2 liegt.
  13. Ein Verarbeitungsverfahren wie in Anspruch 7 dargelegt, wobei der besagte Schritt der Rückführung schwerer Materialien an eine Stelle in der besagten Kolonne oberhalb der besagten katalytischen Reaktionszone die Rückführung in den besagten entnommenen obenliegenden Strom umfasst.
  14. Ein Verarbeitungsverfahren wie in Anspruch 13 dargelegt, wobei der besagte Schritt der Aufrechterhaltung eines hohen Verhältnisses ferner den Schritt der Aufrechterhaltung eines hohen Rückfluss-Verhältnisses zurück in die besagte Kombinationszone für Destillationsrektifizierung und katalytische Reaktion beinhaltet.
  15. Ein Verarbeitungsverfahren wie in Anspruch 14 dargelegt, wobei das besagte Rückfluss-Verhältnis im Bereich von 0,5 bis 1,5 liegt.
  16. Ein Verarbeitungsverfahren wie in Anspruch 14 dargelegt, wobei das besagte Rückfluss-Verhältnis im Bereich von 0,2 bis 10 liegt.
EP97904257A 1995-05-17 1997-02-19 Ruckwinnungssystem mit katalytische distillation in olefin-anlage Expired - Lifetime EP0961819B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/442,954 US5679241A (en) 1995-05-17 1995-05-17 Olefin plant recovery system employing catalytic distillation
PCT/US1997/001932 WO1998037169A1 (en) 1995-05-17 1997-02-19 Olefin plant recovery system employing catalytic distillation

Publications (2)

Publication Number Publication Date
EP0961819A1 EP0961819A1 (de) 1999-12-08
EP0961819B1 true EP0961819B1 (de) 2001-09-26

Family

ID=23758851

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97904257A Expired - Lifetime EP0961819B1 (de) 1995-05-17 1997-02-19 Ruckwinnungssystem mit katalytische distillation in olefin-anlage

Country Status (10)

Country Link
US (1) US5679241A (de)
EP (1) EP0961819B1 (de)
KR (1) KR100312091B1 (de)
AU (1) AU739787B2 (de)
BR (1) BR9714506A (de)
CA (1) CA2281850C (de)
DE (1) DE69707018T2 (de)
ES (1) ES2165581T3 (de)
RU (1) RU2167188C1 (de)
WO (1) WO1998037169A1 (de)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169218B1 (en) * 1992-02-10 2001-01-02 Catalytic Distillation Technologies Selective hydrogenation of highly unsaturated compounds in hydrocarbon streams
US5925799A (en) * 1996-03-12 1999-07-20 Abb Lummus Global Inc. Catalytic distillation and hydrogenation of heavy unsaturates in an olefins plant
FR2770521B1 (fr) * 1997-10-31 1999-12-10 Inst Francais Du Petrole Procede de deshydrogenation d'hydrocarbures aliphatiques satures en hydrocarbures olefiniques
FR2770421B1 (fr) * 1997-10-31 1999-12-10 Inst Francais Du Petrole Procede de preparation de catalyseurs utilisables dans les reactions de transformation de composes organiques
FR2770520B1 (fr) * 1997-10-31 1999-12-10 Inst Francais Du Petrole Procede d'hydrogenation selective des composes insatures
US6179996B1 (en) 1998-05-22 2001-01-30 Membrane Technology And Research, Inc. Selective purge for hydrogenation reactor recycle loop
US6090270A (en) * 1999-01-22 2000-07-18 Catalytic Distillation Technologies Integrated pyrolysis gasoline treatment process
US6284104B1 (en) * 1999-03-04 2001-09-04 Catalytic Distillation Technologies Apparatus and process for hydrogenations
US6500309B1 (en) 1999-12-11 2002-12-31 Peter Tung Dimensions in reactive distillation technology
FR2806093B1 (fr) * 2000-03-08 2002-05-03 Inst Francais Du Petrole Procede d'hydrogenation selective comprenant une separation partielle d'hydrogene par membrane en amont d'une colonne reactive
US6420619B1 (en) 2001-01-25 2002-07-16 Robert J. Gartside Cracked gas processing and conversion for propylene production
US6846959B2 (en) 2002-10-07 2005-01-25 Air Products And Chemicals, Inc. Process for producing alkanolamines
FR2850664B1 (fr) * 2003-01-31 2006-06-30 Inst Francais Du Petrole Procede d'hydrogenation selective mettant en oeuvre un reacteur catalytique a membrane selective a l'hydrogene
US7045669B2 (en) 2003-08-05 2006-05-16 Catalytic Distillation Technologies Dual pressure catalytic distillation hydrogenation column system for the front end of an ethylene plant
CA2553962C (en) * 2004-01-20 2011-08-30 Abb Lummus Global Inc. Improved olefin plant recovery system employing a combination of catalytic distillation and fixed bed catalytic steps
US7301062B2 (en) * 2004-07-27 2007-11-27 Abb Lummus Global Inc. Process for the selective hydrogenation of alkynes and/or dienes in an olefin-containing hydrocarbon stream
US20060173224A1 (en) * 2005-02-01 2006-08-03 Catalytic Distillation Technologies Process and catalyst for selective hydrogenation of dienes and acetylenes
KR100825662B1 (ko) * 2006-07-19 2008-04-29 루머스 테크놀로지 인코포레이티드 촉매 증류단계와 고정층 촉매 단계를 조합하여 사용하는개선된 올레핀 플랜트 회수 시스템
US20090286090A1 (en) * 2008-05-19 2009-11-19 Ting Yuan-Ping R Enhance performance on current renewable film using functional polymer coatings
CN101337132B (zh) * 2008-08-04 2013-08-21 董保军 萃取精馏工艺
WO2010016815A2 (en) 2008-08-06 2010-02-11 Lummus Technology Inc. Method of cooling using extended binary refrigeration system
EP2199269A1 (de) * 2008-12-22 2010-06-23 Total Petrochemicals Research Feluy Verfahren zum Reinigen von olefinhaltigen Kohlenwasserstoffeinsätzen
CN102491865B (zh) * 2011-11-22 2014-06-11 北京昊诚油气科技有限公司 一种加氢试验方法
CN102491864B (zh) * 2011-11-22 2014-03-19 北京昊诚油气科技有限公司 一种加氢试验装置
AU2013207783B2 (en) 2012-01-13 2017-07-13 Lummus Technology Llc Process for providing C2 hydrocarbons via oxidative coupling of methane and for separating hydrocarbon compounds
CA2874526C (en) 2012-05-24 2022-01-18 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
US9598328B2 (en) 2012-12-07 2017-03-21 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US20150119615A1 (en) * 2013-10-25 2015-04-30 Uop Llc Pyrolysis gasoline treatment process
US20150119613A1 (en) * 2013-10-25 2015-04-30 Uop Llc Pyrolysis gasoline treatment process
US20150129461A1 (en) * 2013-11-14 2015-05-14 Uop Llc Apparatuses and methods for hydrotreating coker kerosene
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CA2935937A1 (en) 2014-01-08 2015-07-16 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CA3225180A1 (en) 2014-01-09 2015-07-16 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
CN106715368B (zh) * 2014-09-30 2022-09-09 陶氏环球技术有限责任公司 从丙烯装置增加乙烯和丙烯产量的方法
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
WO2016205411A2 (en) 2015-06-16 2016-12-22 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
US20170107162A1 (en) 2015-10-16 2017-04-20 Siluria Technologies, Inc. Separation methods and systems for oxidative coupling of methane
US9944573B2 (en) 2016-04-13 2018-04-17 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
EP3554672A4 (de) 2016-12-19 2020-08-12 Siluria Technologies, Inc. Verfahren und systeme für chemische abscheidungen
CN106753473A (zh) * 2017-02-08 2017-05-31 赵伯居 一种连续式外热热裂解与催化蒸馏耦合系统
CN108424788B (zh) * 2017-02-14 2020-10-13 中国石化工程建设有限公司 一种裂解气分离装置及工艺
ES2960342T3 (es) 2017-05-23 2024-03-04 Lummus Technology Inc Integración de procedimientos de acoplamiento oxidativo del metano
EP3649097A4 (de) 2017-07-07 2021-03-24 Lummus Technology LLC Systeme und verfahren zur oxidativen kopplung von methan
CN115335491A (zh) 2020-03-31 2022-11-11 埃克森美孚化学专利公司 含硅进料的烃热解
WO2023060035A1 (en) 2021-10-07 2023-04-13 Exxonmobil Chemical Patents Inc. Pyrolysis processes for upgrading a hydrocarbon feed

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670040A (en) * 1970-03-01 1972-06-13 Sun Oil Co Fractionation of c{11 {11 {11 bicyclic aromatic hydrocarbons di or trianhydride complex formation
US3692864A (en) * 1970-09-30 1972-09-19 Texaco Inc Hydrogenation process utilizing homogeneous metal catalysts
US4020119A (en) * 1973-08-23 1977-04-26 Phillips Petroleum Company Selective hydrogenation process
US4097370A (en) * 1977-04-14 1978-06-27 The Lummus Company Hydrotreating of pyrolysis gasoline
US4173529A (en) * 1978-05-30 1979-11-06 The Lummus Company Hydrotreating of pyrolysis gasoline
US4242530A (en) * 1978-07-27 1980-12-30 Chemical Research & Licensing Company Process for separating isobutene from C4 streams
US4250052A (en) * 1978-09-08 1981-02-10 Chemical Research & Licensing Company Catalyst structure and a process for its preparation
US4404124A (en) * 1981-05-06 1983-09-13 Phillips Petroleum Company Selective hydrogenation catalyst
US4443559A (en) * 1981-09-30 1984-04-17 Chemical Research & Licensing Company Catalytic distillation structure
US5087780A (en) * 1988-10-31 1992-02-11 Chemical Research & Licensing Company Hydroisomerization process
US4973790A (en) * 1989-11-16 1990-11-27 Mobil Oil Corporation Process for upgrading light olefinic streams
AU654757B2 (en) * 1992-02-10 1994-11-17 Chemical Research & Licensing Company Selective hydrogenation of C5 streams
WO1994004477A1 (en) * 1992-08-24 1994-03-03 Chemical Research & Licensing Company Selective hydrogenation of dienes and acetylenes in c3 streams
ZA945342B (en) * 1993-12-08 1995-03-01 Chemical Res & Licensin Selective hydrogenation of highly unsaturated compounds in hydrocarbon streams
EP0777710B1 (de) * 1994-08-26 1998-12-30 Exxon Chemical Patents Inc. Verfahren zum selektive hydrierung von vrackkohlenwasserstoffen

Also Published As

Publication number Publication date
AU739787B2 (en) 2001-10-18
RU2167188C1 (ru) 2001-05-20
KR100312091B1 (ko) 2001-11-03
WO1998037169A1 (en) 1998-08-27
AU1858597A (en) 1998-09-09
KR20000075477A (ko) 2000-12-15
DE69707018T2 (de) 2002-06-13
CA2281850A1 (en) 1998-08-27
EP0961819A1 (de) 1999-12-08
DE69707018D1 (de) 2001-10-31
US5679241A (en) 1997-10-21
BR9714506A (pt) 2000-04-18
ES2165581T3 (es) 2002-03-16
CA2281850C (en) 2003-12-30

Similar Documents

Publication Publication Date Title
EP0961819B1 (de) Ruckwinnungssystem mit katalytische distillation in olefin-anlage
US6759562B2 (en) Olefin plant recovery system employing a combination of catalytic distillation and fixed bed catalytic steps
US5414170A (en) Mixed phase front end C2 acetylene hydrogenation
US5925799A (en) Catalytic distillation and hydrogenation of heavy unsaturates in an olefins plant
EP1035094B1 (de) Integrierte Entethanisator/ Ethylenfraktionierungskolonne
US6291734B1 (en) Integrated low pressure depropanizer/debutanizer column
IL173542A (en) Dual pressure catalytic distillation hydrogenation column system for the front end of an ethylene plant
US6358399B1 (en) Process for separating ethane and ethylene by solvent absorption and hydrogenation of the solvent phase
US6410811B2 (en) Selective hydrogenation process comprising partial separation of hydrogen by a membrane upstream of a reactive column
CA2198634C (en) Process for selective hydrogenation of cracked hydrocarbons
US6340429B1 (en) Process and device for separating ethane and ethylene from a steam-cracking effluent by solvent absorption and hydrogenation of the solvent phase
CA2553962C (en) Improved olefin plant recovery system employing a combination of catalytic distillation and fixed bed catalytic steps
US5763715A (en) Butadiene removal system for ethylene plants with front end hydrogenation systems
JPS6140716B2 (de)
MXPA99007567A (en) Olefin plant recovery system employing catalytic distillation
CN1152946C (zh) 利用催化蒸馏的烯烃装置回收系统
WO1997033953A1 (en) Catalytic distillation and hydrogenation of heavy unsaturates in an olefins plant
WO2007018509A1 (en) Cryogenic fractionation process
CN116438002A (zh) 蒸汽裂解器与酸烷基化的整合
MXPA06008045A (es) Sistema de recuperacion de planta de olefina mejorado que emplea una combinacion de etapas cataliticas de lecho fijo y destilacion catalitica
MXPA00001657A (en) Catalytic distillation and hydrogenation of heavy unsaturates in an olefins plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990817

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001127

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 69707018

Country of ref document: DE

Date of ref document: 20011031

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2165581

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040311

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100223

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100202

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100209

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110219

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120228

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120227

Year of fee payment: 16

BERE Be: lapsed

Owner name: *CHEMICAL RESEARCH & LICENSING CY

Effective date: 20130228

Owner name: *ABB LUMMUS GLOBAL INC.

Effective date: 20130228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69707018

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903