EP0960878A2 - Process for the preparation of beta-hydroxyalkylamides - Google Patents

Process for the preparation of beta-hydroxyalkylamides Download PDF

Info

Publication number
EP0960878A2
EP0960878A2 EP99109940A EP99109940A EP0960878A2 EP 0960878 A2 EP0960878 A2 EP 0960878A2 EP 99109940 A EP99109940 A EP 99109940A EP 99109940 A EP99109940 A EP 99109940A EP 0960878 A2 EP0960878 A2 EP 0960878A2
Authority
EP
European Patent Office
Prior art keywords
hydroxyalkylamides
alkyl
basic catalyst
alcohol
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99109940A
Other languages
German (de)
French (fr)
Other versions
EP0960878A3 (en
EP0960878B1 (en
Inventor
Andreas Dr.Rer.Nat. Kaplan
René Gisler
Albert Reich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMS Chemie AG
Original Assignee
EMS Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMS Chemie AG filed Critical EMS Chemie AG
Publication of EP0960878A2 publication Critical patent/EP0960878A2/en
Publication of EP0960878A3 publication Critical patent/EP0960878A3/en
Application granted granted Critical
Publication of EP0960878B1 publication Critical patent/EP0960878B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines

Definitions

  • the following invention describes a method for Production, purification and isolation of ⁇ -hydroxyalkylamides, which as chemical intermediates and as chemical crosslinkers for carboxyl functional Polyester and acrylates in solvent-based paints, Water and powder coatings are used. Especially when used in powder coatings are very high Requirements for the appearance of the ⁇ -hydroxyalkylamides set. Free flowing powders only, i.e. not soft, sticky or waxy, are for the Suitable for use in powder coatings.
  • ⁇ -Hydroxyalkylamides are obtained by aminolysis of Alkyl esters with ⁇ -amino alcohols in the presence of basic catalysts, e.g. Caustic soda or Sodium methylate made, the ⁇ -amino alcohols in most cases due to the selectivity the reaction can be used in excess.
  • basic catalysts e.g. Caustic soda or Sodium methylate made
  • liquid ⁇ -hydroxyalkylamides With liquid ⁇ -hydroxyalkylamides, they do not have to reacted ⁇ -amino alcohols from the reaction mixture be removed before being applied can be.
  • Solid ⁇ -hydroxyalkylamides are used the isolation and purification of the ⁇ -hydroxyalkylamides either by crystallization in one Solvents (J. Coat. Tech., 50 (643), 49-55 (1978), US 4,076,917, US 4,727,111) or especially for solid ⁇ -Hydroxyethylamides solvent-free in a so-called slurry process (US 5,101,073) directly the reaction mixture.
  • the production of solid ⁇ -hydroxyethylamides can be carried out in the melt without solvent in a so-called slurry process.
  • the slurry process (US Pat. No. 5,101,073) is based on the fact that the equilibrium reactions taking place in the production of ⁇ -hydroxyethylamides are shifted in the direction of the desired end product ⁇ -hydroxyethylamide in that the desired ⁇ -hydroxyethylamide precipitates out of the melt by tempering in a certain temperature range thereby crystallizing the melt.
  • the slurry process fails for substances in which the desired ⁇ -hydroxyalkylamide does not precipitate out of the melt, for example ⁇ -hydroxypropylamides.
  • the slurry process is limited to the use of equimolar amounts of alkyl esters and ⁇ -hydroxyethylamides.
  • the slurry process in the case of an equimolecular use of dialkyl esters with ⁇ -hydroxyethylamines in the presence of basic catalysts, such as sodium hydroxide solution or sodium methylate, so-called dimers (II) and esteramides (III) are formed as by-products in addition to the desired monomeric ⁇ -hydroxyethylamides (I),
  • the reaction product also contains ⁇ -hydroxyethylamine.
  • m 0 to 10 and R is a C1-C5 lower alkyl group.
  • a process for the preparation of ⁇ -hydroxyalkylamides (IV) is claimed.
  • A can be hydrogen or a monovalent organic group, the mono- or polyvalent organic group being selected from saturated or unsaturated (C1-C60) alkyl- , Cycloalkyl, aryl, carboxyalkenyl, alkoxycarbonylalkenyl or trialkylene amino groups, lower alkenyly groups, ie alkenyl groups having 1 to 20 carbon atoms, being preferred in the last three groups mentioned.
  • R1 is hydrogen or a C1-C5 alkyl group
  • R2 is hydrogen, a C1-C5 alkyl group or: n is an integer with a value from 1 to 10 and n 'is an integer with a value from 0 to 2.
  • the Ratio of ester equivalent to amine equivalent is 1: 1.001 to 8. It is preferred that the amine alcohol is converted into an excess of 5 to 600%. This results in a ratio of ester equivalent to amine equivalent of 1.05: 6.
  • a ratio of 1: 1.1 to 1: 2 is particularly preferred.
  • the alcohol formed in the reaction is removed from the reaction mixture at suitable temperatures, possibly under reduced pressure.
  • the unreacted ⁇ -amino alcohol is removed from the reaction mixture by distillation, preferably short-path, thin-film or falling-film distillation.
  • Liquid ⁇ -hydroxyalkylamides can be used without a further purification step.
  • Solid ⁇ -hydroxyalkylamides are isolated by crystallization, possibly at elevated temperature, directly from the reaction mixture or from a suitable solvent. The process can be carried out batchwise and / or continuously.
  • R1 is hydrogen or a C1-C5-alkyl group such as methyl, ethyl, n-propyl, n-butyl , sec-butyl, tert-butyl, pentyl, etc.
  • R2 is hydrogen, a C1-C5-alkyl group or: n is an integer from 1 to 10, preferably 1 or 2, and n 'is an integer from 0 to 2.
  • ⁇ -hydroxyalkylamides of the formula IV where A is an alkylene group, preferably C2 to C14.
  • ⁇ -hydroxyalkylamides according to Formula V are N, N, N, 'N'-tetrakis (2-hydroxyethyl) adipic acid amide and N, N, N, 'N'-tetrakis (2-hydroxypropyl) adipic acid amide.
  • the ⁇ -hydroxyalkylamides (IV) are prepared according to the invention without solvents by aminolysis of esters of the formula VI with an excess of the amines of the formula VII at suitable temperatures up to 200 ° C. in the presence of basic catalysts.
  • the following equation illustrates the process: A, R1 and R2 have the same meaning as above.
  • Y 1 to 20
  • R3 is an alkyl radical with 1-5 carbon atoms, such as methyl, ethyl, propyl, n-butyl, tert-butyl, pentyl etc.
  • the esters are known products which are obtained by esterification of the corresponding acids using standard esterification processes which are known to the person skilled in the art.
  • Preferred acids and mixtures thereof are oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azealic acid, sebacic acid, dodecanedioic acid, 1,4-cyclohexanedicarboxylic acid and their alkyl-substituted derivatives etc.
  • Dimeric and trimeric acids and mixtures thereof can also be used by polymerizing fatty acids such as dimer acid with 2 carboxyl groups, 36 carbon atoms and an approximate molecular weight of 565 or trimer acid with 3 carboxyl groups, 54 carbon atoms and an approximate molecular weight of 850.
  • amino of the formula VII according to the invention are 2-aminoethanol, 2-methylaminoethanol, 2-ethylaminoethanol, 2-n-propylaminoethanol, 2,2'-iminodiethanol, 2-aminopropanol, 2,2'-iminodiisopropanol, 2-aminocyclohexanol, 2-aminocyclopentanol, 2-aminomethyl-2-methylethanol 2-n-butylaminoethanol, 2-methylamino-1,2-dimethylethanol, 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-hydroxymethyl-1,3-propanediol and 1-amino-2-propanol.
  • the alcohols of the formula IX formed in the aminolysis are removed from the reaction mixture by distillation, if appropriate under vacuum, from the reaction mixture.
  • a molar excess of ⁇ -amino alcohols is necessary, the ratio of ester equivalent to amine equivalent being 1: 1.001 to 8, preferably 1: 1.05 to 6, particularly preferably 1: 1.1 to 1: 2.
  • This excess suppresses side reactions, such as the formation of only partially aminated compounds when using esters of polybasic carboxylic acids, for example the formation of so-called half esters of formula X when using esters of polybasic carboxylic acids.
  • dimer Another example of by-products, the formation of which can be suppressed by an excess of ⁇ -amino alcohols, is the compound of the formula XI referred to as dimer, which occurs as a by-product in addition to the pure monomeric ⁇ -hydroxyalkylamides of the formula IV.
  • Dimer Monomer, dimer and ⁇ -amino alcohol are in balance. where A and R1 have the meaning given above.
  • Aminolysis reactions are also the control of the water content the reaction partner.
  • the water content of the reactants is less than 0.5%, preferably less than 0.1%, to hydrolysis the ester and the reduction in catalyst activity to prevent.
  • Basic catalysts from Type alkali hydroxide or alcoholate including the quaternary ammonium compounds used, such as e.g. Sodium hydroxide, tetramethylammonium hydroxide, Sodium methylate, sodium tert. butylate, tertramethylammonium methylate.
  • the amount of catalysts used is 0.001 to 5.0 mol%, based on that Weight of the esters used.
  • the catalyst becomes destroyed, e.g. by adding inorganic or organic acids such as hydrochloric acid or acetic acid. Then the excess ⁇ -amino alcohol by distillation, optionally under Vacuum removed from the reaction mixture. Will before distillation the catalyst is not removed, so formation again occurs during distillation by-products, e.g. forms from the monomer IV in the presence of basic catalysts the dimer XI. This dimer formation can be caused by destruction of the catalyst suppressed before distillation become.
  • Diisopropanalamine are short path, thin film or falling film distillation, because with these types of distillation due to the short-term temperature load ⁇ -hydroxyalkylamides are least damaged. It was also shown that the distilled off ⁇ -amino alcohol due to its high purity without further processing steps in turn as a starting component used for further implementations can be. Liquid ⁇ -hydroxyalkylamides can be used without further processing step can be processed further. Solid ⁇ -hydroxyalkylamides are obtained by crystallization possibly directly at elevated temperature the reaction mixture or from a suitable solvent isolated. The crystallization shows that the purer the ⁇ -hydroxyalkylamides are, these crystallize all the better and faster. The procedure can be carried out batchwise and / or continuously become.
  • a mixture of 133.00 g diisopropanolamine and 1.62 g of sodium methylate are in a 500 ml glass apparatus heated to 100 ° C under nitrogen. After Applying a vacuum of 300 mbar is within 174.00 g of dimethyl adipate were added dropwise in one hour and the methanol released in the reaction continuously distilled off. After a post-reaction time from 1 hour the product is in a Aluminum bowl drained.
  • a mixture of 239.40 g of diisopropanolamine and 1.62 g of sodium methylate is heated to 100 ° C. in a 500 ml glass apparatus under nitrogen. After applying a vacuum of 300 mbar, 174.00 g of dimethyl adipate are added dropwise within one hour and the methanol liberated in the reaction is continuously distilled off. After a reaction time of 1 hour, 1.80 g of acetic acid are added to the reaction mixture and then the excess diisopropanolamine is removed in the UD short path distillation apparatus from UIC at a vacuum of 5 mbar and a jacket temperature of 130 ° C.
  • the amine-free reaction mixture is then crystallized at 90 ° C and then the crystal slurry is drained into an aluminum bowl.
  • Comparative example example aspect Highly viscous yellow liquid. After weeks of storage, waxy, sticky mass. Free-flowing white crystals. Melting point [° C] not definable 118 Monomer content [%] 73 97.9 Dimer content [%] 15 2.1 Half-highest [%] 3rd - Diisopropanolamine [%] 9 -

Abstract

Preparation of beta -hydroxyalkylamide from the corresponding alkyl ester and beta -amino alcohol in the absence of solvent but in the presence of a basic catalyst involves (i) using a ratio of ester equivalents:amine equivalents of 1:1.001-8, (ii) decomposing the basic catalyst after the aminolysis and (iii) separating off any unreacted amino alcohol. Preparation of beta -hydroxyalkylamides of formula (I) comprises reacting the corresponding alkyl ester and beta -amino alcohol in the absence of solvent but in the presence of a basic catalyst and removing the alcohol produced. The ratio of ester equivalemts:amine equivalents is 1:1.001-8. The basic catalyst is decomposed after the aminolysis and unreacted amino alcohol is separated off. (HO-C(H)(R1)-CH2-N(R2)-C(=O)-)n-A-(-C(=O)-N(R2)-CH2-C(H)(R1)-OH)n' (I) A = a bond or a polyvalent organic group selected from (optionally unsaturated) 1-60 alkyl, cycloalkyl, aryl, carboxyalkenyl, alkoxycarbonylalkenyl or trialkylenamino, or, when n' = 0, H or a monovalent group; R1 = H or 1-5C alkyl; R2 = H, 1-5C alkyl or HO-C(H)(R1)-CH2-; n = 1-10; and n' = 0-2.

Description

Die folgende Erfindung beschreibt ein Verfahren zur Herstellung, Reinigung und Isolation von β-Hydroxyalkylamiden, die als chemische Zwischenprodukte und als chemische Vernetzer für carboxylfunktionelle Polyester und Acrylate in lösemittelhaltigen Lacken, Wasser- und Pulverlacken eingesetzt werden. Besonders bei der Verwendung in Pulverlacken werden sehr hohe Anforderungen an die Erscheinungsform der β-Hydroxyalkylamide gesetzt. Nur freifließende Pulver, d.h. nicht weiche, klebrige oder wachsartige, sind für den Einsatz in Pulverlacken geeignet.The following invention describes a method for Production, purification and isolation of β-hydroxyalkylamides, which as chemical intermediates and as chemical crosslinkers for carboxyl functional Polyester and acrylates in solvent-based paints, Water and powder coatings are used. Especially when used in powder coatings are very high Requirements for the appearance of the β-hydroxyalkylamides set. Free flowing powders only, i.e. not soft, sticky or waxy, are for the Suitable for use in powder coatings.

β-Hydroxyalkylamide werden durch Aminolyse von Alkylestern mit β-Aminoalkoholen in Gegenwart von basischen Katalysatoren, wie z.B. Natronlauge oder Natriummethylat hergestellt, wobei die β-Aminoalkohole in den meisten Fällen aufgrund der Selektivität der Reaktion im Überschuß eingesetzt werden. β-Hydroxyalkylamides are obtained by aminolysis of Alkyl esters with β-amino alcohols in the presence of basic catalysts, e.g. Caustic soda or Sodium methylate made, the β-amino alcohols in most cases due to the selectivity the reaction can be used in excess.

Bei flüssigen β-Hydroxyalkylamiden müssen die nicht umgesetzten β-Aminoalkohole aus dein Reaktionsgemisch entfernt werden, bevor sie der Anwendung zugeführt werden können. Bei festen β-Hydroxyalkylamiden erfolgt die Isolation und die Reinigung der β-Hydroxyalkylamide entweder durch Kristallisation in einem Lösemittel (J. Coat. Tech., 50(643), 49-55 (1978), US 4,076,917, US 4,727,111) oder speziell bei festen β-Hydroxyethylamiden lösemittelfrei in einem sogenannten slurry-Verfahren (US 5,101,073) direkt aus dem Reaktionsgemisch.With liquid β-hydroxyalkylamides, they do not have to reacted β-amino alcohols from the reaction mixture be removed before being applied can be. Solid β-hydroxyalkylamides are used the isolation and purification of the β-hydroxyalkylamides either by crystallization in one Solvents (J. Coat. Tech., 50 (643), 49-55 (1978), US 4,076,917, US 4,727,111) or especially for solid β-Hydroxyethylamides solvent-free in a so-called slurry process (US 5,101,073) directly the reaction mixture.

Bei der Kristallisation in Lösemittel werden im allgemeinen in der Wärme entweder die β-Hydroxyalkylamide zu einem Lösemittel, wie z.B. Methanol und/oder Aceton oder das Lösemittel zu den β-Hydroxyalkylamiden gegeben. Nach Abkühlung der Lösung und Kristallisation werden dann anschließend die β-Hydroxyalkylamide abfiltriert und durch Trocknen vom Lösemittel befreit. Die Ausbeute wird durch die Löslichkeit in dem verwendeten Lösemittel verringert. Zudem kann der im Reaktionsgemisch verbleibende Katalysator zu unerwünschten Nebenreaktionen führen, wie z.B. zu Diacetonalkolhol bei der Verwendung von Aceton als Lösemittel, wodurch auch Verluste bei der Rückgewinnung des verwendeten Lösemittels auftreten. Weiterhin zeigt sich, daß nicht umgesetzte β-Aminoalkohole bei der Kristallisation als unerwünschte Verunreinigungen mit ausfallen und zudem wirken β-Aminoalkohole als Lösevermittler, die die Kristallisation negativ beeinflussen. Dadurch wird die Ausbeute an β-Hydroxyalkylamiden nochmals verringert.During the crystallization in solvents generally in heat either the β-hydroxyalkylamides to a solvent, e.g. Methanol and / or acetone or the solvent for the β-hydroxyalkylamides given. After cooling the solution and The β-hydroxyalkylamides then become crystallization filtered off and by drying the solvent exempted. The yield is due to the solubility reduced in the solvent used. In addition can the remaining catalyst in the reaction mixture lead to undesirable side reactions, e.g. to Diacetone alcohol when using acetone as Solvent, which also causes losses in recovery of the solvent used occur. Farther shows that unreacted β-amino alcohols crystallization as undesirable impurities fall out with and also act as β-amino alcohols Solubilizers, the crystallization negative influence. This will increase the yield β-hydroxyalkylamides reduced again.

Speziell die Herstellung von festen β-Hydroxyethylamiden kann lösemittelfrei in der Schmelze in einem sogenannten slurry-Verfahren erfolgen. Das slurry-Verfahren (US 5,101,073) beruht darauf, daß die bei der Herstellung von β-Hydroxyethylamiden ablaufenden Gleichgewichtsreaktionen in Richtung des gewünschten Endproduktes β-Hydroxyethylamid dadurch verschoben werden, daß durch Tempern in einem bestimmten Temperaturbereich das gewünschte β-Hydroxyethylamid aus der Schmelze ausfällt und dadurch die Schmelze kristallisiert. Bei Substanzen, bei denen das gewünschte β-Hydroxyalkylamid nicht aus der Schmelze ausfällt, z.B. bei β-Hydroxypropylamiden, versagt das slurry-Verfahren. Zudem ist das slurryVerfahren auf den Einsatz von equimolaren Mengen an Alkylestern und β-Hydroxy-ethylamiden beschränkt. Beim slurry process entstehen bei einem äquimolekularen Einsatz von Dialkylestern mit β-Hydroxyethylaminen in Gegenwart von basischen Katalysatoren, wie z.B. Natronlauge oder Natriummethylat, neben den gewünschten monomeren β-Hydroxyethylamiden (I) als Nebenprodukte auch sogenannte Dimere (II) und Esteramide (III), Ferner enthält das Reaktionsprodukt noch β-Hydroxyethylamin.

Figure 00030001
wobei m=0 bis 10 und R eine C1-C5-Niederalkylgruppe ist. In particular, the production of solid β-hydroxyethylamides can be carried out in the melt without solvent in a so-called slurry process. The slurry process (US Pat. No. 5,101,073) is based on the fact that the equilibrium reactions taking place in the production of β-hydroxyethylamides are shifted in the direction of the desired end product β-hydroxyethylamide in that the desired β-hydroxyethylamide precipitates out of the melt by tempering in a certain temperature range thereby crystallizing the melt. The slurry process fails for substances in which the desired β-hydroxyalkylamide does not precipitate out of the melt, for example β-hydroxypropylamides. In addition, the slurry process is limited to the use of equimolar amounts of alkyl esters and β-hydroxyethylamides. In the slurry process, in the case of an equimolecular use of dialkyl esters with β-hydroxyethylamines in the presence of basic catalysts, such as sodium hydroxide solution or sodium methylate, so-called dimers (II) and esteramides (III) are formed as by-products in addition to the desired monomeric β-hydroxyethylamides (I), The reaction product also contains β-hydroxyethylamine.
Figure 00030001
where m = 0 to 10 and R is a C1-C5 lower alkyl group.

Ein wichtiger Verfahrensschritt bei der Herstellung von β-Hydroxyalkylamiden durch Aminolyse von Alkylestern mit β-Aminoalkoholen in Gegenwart von basischen Katalysatoren wie z.B. Natronlauge oder Natriummethylat, ist die Entfernung von nicht umgesetzten β-Aminoalkoholen aus dem Reaktionsgemisch.An important step in the manufacturing process of β-hydroxyalkylamides by aminolysis of Alkyl esters with β-amino alcohols in the presence of basic catalysts such as Caustic soda or Sodium methylate, is the removal of unreacted β-amino alcohols from the reaction mixture.

Bekannt aus der oben genannten Literatur ist bisher die Abtrennung des überschüssigen β-Aminoalkohols durch Lösen in einem geeigneten Lösemittel, wie z.B. Methanol und anschließende Entfernung des β-Aminoalkohols mit Hilfe eines Ionenaustauschers. Danach wird durch Abdestillieren des Lösemittels das gewünschte β-Hydroxyalkylamid enthalten. Allerdings ist diese Methode nur für den Laboratoriumsmaßstab geeignet. Die Abtrennung von Nebenprodukten mittels Ionenaustauscher eignet sich nämlich nur für die Abtrennung von geringen Mengen an Nebenprodukten. Bei einem hohen Anteil an Nebenprodukten, d.h. bei Verwendung eines großen Überschusses von β-Aminoalkohol bei der Reaktion ist ein solches Verfahren technisch sehr aufwendig und unwirtschaftlich.So far is known from the above literature the removal of the excess β-amino alcohol by dissolving in a suitable solvent, e.g. Methanol and subsequent removal of the β-amino alcohol with the help of an ion exchanger. After that is by distilling off the solvent contain desired β-hydroxyalkylamide. Indeed this method is only for the laboratory scale suitable. The separation of by-products by means of Ion exchanger is only suitable for Separation of small amounts of by-products. At a high proportion of by-products, i.e. Using a large excess of β-amino alcohol in the reaction, such a process is technical very complex and uneconomical.

Ausgehend von der US 5,101,073 ist es die Aufgabe der vorliegenden Erfindung ein verbessertes Verfahren in bezug auf die Reinheit, Ausbeutung und Variabilität der herzustellenden β-Hydroxyalkylamide anzugeben, sowie deren Verwendung aufzuzeigen. Die Aufgabe wird durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Die Unteransprüche zeigen vorteilhafte Weiterbildungen auf.Starting from US 5,101,073, it is the task of present invention an improved method in in terms of purity, exploitation and variability specify the β-hydroxyalkylamides to be prepared, and demonstrate their use. The task is by the characterizing features of claim 1 solved. The sub-claims show advantageous Further training.

Überraschenderweise wurde nun gefunden, daß bei der Herstellung von β-Hydroxyalkylamiden durch Aminolyse von Alkylestern mit einem Überschuß an β-Aminoalkoholen in Gegenwart von basischen Katalysatoren, wie z.B. Natronlauge oder Natriummethylat, nicht umgesetzte β-Aminoalkohole direkt aus dem Reaktionsgemisch durch Destillation entfernt werden können, nachdem zuvor der basische Katalysator zerstört wurde, z.B. durch eine anorgansiche oder organische Säure, wie z.B. Salzsäure oder Essigsäure. Ein Überschuß an β-Aminodialkohol bei der Herstellung der β-Hydroxyalkylamiden erhöht die Selektivität der Reaktion in Richtung des gewünschten monomeren Endproduktes. Dadurch wird ein noch reineres Produkt erhalten, dies zeigt sich bei festen β-Hydroxyalkylamiden auch im Anstieg des Schmelzpunktes und in einem verbesserten Kristallisationsverhalten. Die so hergestellten β-Hydroxyalkylamide zeichnen sich durch eine sehr hohe Reinheit aus. Für die Entfernung des nicht umgesetzten Aminalkohols eignen sich neben der klassischen Destillation bei Normaldruck oder unter Vakuum besonders die Kurzweg-, die Dünnschicht und die Fallfilmdestillation, da diese Destillationsverfahren besonders produkteschonend sind, wodurch unerwünschte Nebenreaktionen durch zu lange Temperaturbelastung vermieden werden können. Ohne Zerstörung des Katalysators können bei der Destillation unerwünschte Nebenreaktionen stattfinden, es können sich z.B. die oben beschriebenen Dimeren (III) wieder bilden, die sich negativ auf die Produkteeigenschaften der β-Hydroxyalkylamide, wie z.B. bei festen β-Hydroxyalkylamide auf den Schmelzpunkt oder das Kristallisationsverhalten, auswirken. Ein weiterer Vorteil der Zerstörung des Katalysators liegt darin, daß die überschüssigen β-Aminoalkohole in reiner Form ohne Nebenprodukte zurückgewonnen werden können und für weitere Umsetzungen genutzt werden können. Flüssige β-Hydroxyalkylamide können ohne weiteren Aufarbeitungsschritt direkt verwendet werden. Die Isolation des Endproduktes bei festen β-Hydroxyalkylamiden erfolgt entweder direkt durch Kristallisation des Reaktionsproduktes oder durch Kristallisation aus einem Lösemittel, da die oben genannten Nachteile bei der Kristallisation nach der Zerstörung des Katalysators und der Entfernung von nicht umgesetztem β-Aminoalkohol nicht mehr auftreten. Das Verfahren kann batchweise und/oder kontinuierlich durchgeführt werden.Surprisingly, it has now been found that the Production of β-hydroxyalkylamides by aminolysis of alkyl esters with an excess of β-amino alcohols in the presence of basic catalysts, such as e.g. Sodium hydroxide solution or sodium methylate, unreacted β-amino alcohols directly from the reaction mixture can be removed by distillation, after the basic catalyst is destroyed e.g. through an inorganic or organic Acid such as Hydrochloric acid or acetic acid. A Excess β-aminodialcohol in the preparation of the β-hydroxyalkylamides increases the selectivity of the Reaction in the direction of the desired monomer End product. This makes an even purer product obtained, this is evident from solid β-hydroxyalkylamides also in the rise of the melting point and in an improved crystallization behavior. The so β-hydroxyalkylamides produced are notable for a very high purity. For the removal of the unreacted aminal alcohol are suitable in addition to classic distillation at normal pressure or below Vacuum especially the short path, thin film and the falling film distillation as this distillation process are particularly gentle on the product, making undesirable Side reactions due to excessive temperature exposure can be avoided. Without destruction of the catalyst can be undesirable during distillation Side reactions take place, it can e.g. form the dimers (III) described above, which negatively affects the product properties the β-hydroxyalkylamides, e.g. at fixed β-hydroxyalkylamides to the melting point or that Crystallization behavior, impact. Another The advantage of destroying the catalyst is that the excess β-amino alcohols in pure form can be recovered without by-products and can be used for further implementations. Liquid β-hydroxyalkylamides can be processed without a further work-up step can be used directly. The Isolation of the end product with solid β-hydroxyalkylamides are carried out either directly Crystallization of the reaction product or by Crystallization from a solvent since the above Disadvantages mentioned in the crystallization after Destruction of the catalyst and the removal of unreacted β-amino alcohol no longer occur. The process can be carried out batchwise and / or continuously be performed.

Beansprucht wird ein Verfahren zur Herstellung von β-Hydroxyalkylamiden (IV)

Figure 00060001
wobei A eine chemische Bindung oder eine mehrwertige organische Gruppe ist oder, wenn n'=0 ist kann A Wasserstoff oder eine einwertige organische Gruppe sein, wobei die ein- oder mehrwertige organische Gruppe ausgewählt ist aus gesättigten oder ungesättigten (C1-C60) Alkyl-, Cycloalkyl-, Aryl-, Carboxyalkenyl-, Alkoxycarbonylalkenyl- oder Trialkylenaminogruppen, wobei bei den drei letzt genannten Gruppen niedere Alkenylyruppen, d.h. Alkenylgruppen mit 1 bis 20 C-Atomen bevorzugt sind. R1 ist Wasserstoff oder eine C1-C5-Alkylgruppe, R2 ist Wasserstoff, eine C1-C5-Alkylgruppe oder:
Figure 00060002
n ist eine ganze Zahl mit einem Wert von 1 bis 10 und n' ist eine ganze Zahl mit einem Wert von 0 bis 2. In Abwesenheit von Lösemitteln werden Alkylester mit β-Aminoalkoholen in Gegenwart von basischen Katalysatoren umgesetzt, wobei zur Verbesserung der Selektivität das Verhältnis Esteräquivalent zu Aminäquivalent 1 : 1,001 bis 8 beträgt. Bevorzugt ist es dabei, daß der Aminalkohol in einen Überschuß von 5 bis 600 % umgesetzt wird. Daraus resultiert ein Verhältnis Esteräquivalent zu Aminäquivalent von 1,05 : 6. Besonders bevorzugt ist ein Verhältnis von 1 : 1,1 bis 1 : 2. Der bei der Reaktion entstehende Alkohol wird bei geeigneten Temperaturen eventuell unter vermindertem Druck aus dem Reaktionsgemisch entfernt. Nach Zerstörung des basischen Katalysators, z.B. durch eine geeignete anorganische oder organische Säure, wird der nicht umgesetzte β-Aminoalkohol aus dem Reaktionsgemisch durch Destillation, bevorzugt Kurzweg-, Dünnschicht- oder Fallfilmdestillation, entfernt. Flüssige β-Hydroxyalkylamide können ohne weiteren Reinigungsschritt verwendet werden. Feste β-Hydroxyalkylamide werden durch Kristallisation eventuell bei erhöhter Temperatur direkt aus den Reaktionsgemisch oder aus einem geeigneten Lösemittel isoliert. Das Verfahren kann batchweise und/oder kontinuierlich durchgeführt werden.A process for the preparation of β-hydroxyalkylamides (IV) is claimed.
Figure 00060001
where A is a chemical bond or a polyvalent organic group or, if n '= 0, A can be hydrogen or a monovalent organic group, the mono- or polyvalent organic group being selected from saturated or unsaturated (C1-C60) alkyl- , Cycloalkyl, aryl, carboxyalkenyl, alkoxycarbonylalkenyl or trialkylene amino groups, lower alkenyly groups, ie alkenyl groups having 1 to 20 carbon atoms, being preferred in the last three groups mentioned. R1 is hydrogen or a C1-C5 alkyl group, R2 is hydrogen, a C1-C5 alkyl group or:
Figure 00060002
n is an integer with a value from 1 to 10 and n 'is an integer with a value from 0 to 2. In the absence of solvents, alkyl esters are reacted with β-amino alcohols in the presence of basic catalysts, the Ratio of ester equivalent to amine equivalent is 1: 1.001 to 8. It is preferred that the amine alcohol is converted into an excess of 5 to 600%. This results in a ratio of ester equivalent to amine equivalent of 1.05: 6. A ratio of 1: 1.1 to 1: 2 is particularly preferred. The alcohol formed in the reaction is removed from the reaction mixture at suitable temperatures, possibly under reduced pressure. After the basic catalyst has been destroyed, for example by a suitable inorganic or organic acid, the unreacted β-amino alcohol is removed from the reaction mixture by distillation, preferably short-path, thin-film or falling-film distillation. Liquid β-hydroxyalkylamides can be used without a further purification step. Solid β-hydroxyalkylamides are isolated by crystallization, possibly at elevated temperature, directly from the reaction mixture or from a suitable solvent. The process can be carried out batchwise and / or continuously.

Nach dem erfindungsgemäßen Verfahren können β-Hydroxyalkylamide nach Formel IV hergestellt werden:

Figure 00070001
wobei A eine chemische Bindung oder eine mehrwertige organische Gruppe ist oder, wenn n'=0, kann A Wasserstoff oder eine einwertige organische Gruppe sein, wobei die ein- oder mehrwertige organische Gruppe ausgewählt ist aus gesättigten oder ungesättigten Alkylgruppen einschließlich substituierter Alkylgruppen, mit 1 bis 60 Kohlenstoffatomen, wie z.B. Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Eicosyl, Triacontyl, Tetracontyl, Pentacontyl, Hexacontyl; Cycloalkylgruppen, wie z.B. Cyclopentyl, Cyclohexyl; aromatische Kohlenwasserstoffgruppen, die einen oder mehrere Kerne enthalten, wie z.B. Phenyl, Naphthyl usw.; ungesättigte Gruppen, die eine oder mehrere ethylenische Gruppen (-C=C-) enthalten, wie z.B. Ethenyl, 1-Methylethenyl, 3-Butenyl-1,3-diyl, 2-Propenyl-1,2-diyl; Carboxynideralkenylgruppen, wie z.B. 3-Carboxy-2-propenyl usw.; Niederalkoxycarbonyl-Niederalkenylgruppen, wie z.B. 3-Methoxycarbonyl-2-propenyl usw., Niedertrialkylenaminogruppen, wie z.B. Trimethylenamino, Triethylenamino usw.. R1 ist Wasserstoff oder eine C1-C5-Akylgruppe, wie z.B. Methyl, Ethyl, n-Propyl, n-Butyl, sek-Butyl, tert.-Butyl, Pentyl usw. R2 ist Wasserstoff, eine C1-C5-Alkylgruppe oder:
Figure 00080001
n ist eine ganze Zahl von 1 bis 10, bevorzugt 1 oder 2, und n' ist eine ganze Zahl von 0 bis 2.Β-Hydroxyalkylamides of the formula IV can be prepared by the process according to the invention:
Figure 00070001
where A is a chemical bond or a polyvalent organic group or, if n '= 0, A can be hydrogen or a monovalent organic group, the mono- or polyvalent organic group being selected from saturated or unsaturated alkyl groups including substituted alkyl groups, with 1 up to 60 carbon atoms, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, eicosyl, triacontyl, tetracontyl, pentacontyl, hexacontyl; Cycloalkyl groups such as cyclopentyl, cyclohexyl; aromatic hydrocarbon groups containing one or more nuclei such as phenyl, naphthyl, etc .; unsaturated groups containing one or more ethylenic groups (-C = C-), such as ethenyl, 1-methylethenyl, 3-butenyl-1,3-diyl, 2-propenyl-1,2-diyl; Carboxynideralkenyl groups such as 3-carboxy-2-propenyl, etc .; Lower alkoxycarbonyl-lower alkenyl groups such as 3-methoxycarbonyl-2-propenyl etc., lower trialkylene amino groups such as trimethyleneamino, triethyleneamino etc. R1 is hydrogen or a C1-C5-alkyl group such as methyl, ethyl, n-propyl, n-butyl , sec-butyl, tert-butyl, pentyl, etc. R2 is hydrogen, a C1-C5-alkyl group or:
Figure 00080001
n is an integer from 1 to 10, preferably 1 or 2, and n 'is an integer from 0 to 2.

Bevorzugt sind β-Hydroxyalkylamide der Formel IV, wobei A eine Alkylengruppe, bevorzugt C2 bis C14, ist. Besonders bevorzugte β-Hydroxyalkylamide werden durch die vereinfachte Formel V wiedergegeben:

Figure 00090001
wobei m=2 bis 14 ist und R1 die bereits oben genannte Bedeutung hat.Preferred are β-hydroxyalkylamides of the formula IV, where A is an alkylene group, preferably C2 to C14. Particularly preferred β-hydroxyalkylamides are represented by the simplified formula V:
Figure 00090001
where m = 2 to 14 and R1 has the meaning already mentioned above.

Spezifische Beispiele für β-Hydroxyalkylamide nach Formel V sind N,N,N,'N'-Tetrakis(2-hydroxyethyl)adipinsäureamid und N,N,N,'N'-Tetrakis (2-hydroxpropyl)-adipinsäureamid.Specific examples of β-hydroxyalkylamides according to Formula V are N, N, N, 'N'-tetrakis (2-hydroxyethyl) adipic acid amide and N, N, N, 'N'-tetrakis (2-hydroxypropyl) adipic acid amide.

Die β-Hydroxyalkylamide (IV) werden erfindungsgemäß hergestellt ohne Lösemittel durch Aminolyse von Estern der Formel VI mit einen Überschuß der Amine der Formel VII bei geeigneten Temperaturen bis zu 200 °C in Gegenwart von basischen Katalysatoren. Die folgende Gleichung verdeutlicht den Prozeß:

Figure 00090002
A, R1 und R2 haben dieselbe Bedeutung wie oben. Y=1 bis 20, R3 ist eine Alkylrest mit 1-5 Kohlenstoffatomen, wie z.B. Methyl, Ethyl, Propyl, n-Butyl, Tert.-butyl, Pentyl usw. Die Ester sind bekannte Produkte, die durch Veresterung der entsprechenden Säuren mittels Standardveresterungsverfahren, die dem Fachmann bekannt sind, hergestellt sind. Bevorzugte Säuren und Mischungen davon sind Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azealinsäure, Sebazinsäure, Dodecandisäure, 1,4-Cyclohexandicarbonsäure und deren alkylsubstituierte Derivate usw. Verwendet werden können auch dimere und trimere Säuren und deren Mischungen, hergestellt durch Polymerisation von Fettsäuren, wie z.B. Dimersäure mit 2 Carboxylgruppen, 36 Kohlenstoffatomen und einem ungefähren Molekulargewicht von 565 oder Trimersäure mit 3 Carboxylgruppen, 54 Kohlenstoffatomen und einen ungefähren Molekulargewicht von 850.The β-hydroxyalkylamides (IV) are prepared according to the invention without solvents by aminolysis of esters of the formula VI with an excess of the amines of the formula VII at suitable temperatures up to 200 ° C. in the presence of basic catalysts. The following equation illustrates the process:
Figure 00090002
A, R1 and R2 have the same meaning as above. Y = 1 to 20, R3 is an alkyl radical with 1-5 carbon atoms, such as methyl, ethyl, propyl, n-butyl, tert-butyl, pentyl etc. The esters are known products which are obtained by esterification of the corresponding acids using standard esterification processes which are known to the person skilled in the art. Preferred acids and mixtures thereof are oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azealic acid, sebacic acid, dodecanedioic acid, 1,4-cyclohexanedicarboxylic acid and their alkyl-substituted derivatives etc. Dimeric and trimeric acids and mixtures thereof can also be used by polymerizing fatty acids such as dimer acid with 2 carboxyl groups, 36 carbon atoms and an approximate molecular weight of 565 or trimer acid with 3 carboxyl groups, 54 carbon atoms and an approximate molecular weight of 850.

Beispiele für erfindungsgemäße Amino der Formel VII sind 2-Aminoethanol, 2-Methylaminoethanol, 2-Ethylaminoethanol, 2-n-Propylaminoethanol, 2,2'-Iminodiethanol, 2-Aminopropanol, 2,2'-Iminodiisopropanol, 2-Aminocyclohexanol, 2-Aminocyclopentanol, 2-Aminomethyl-2-methylethanol 2-n-Butylaminoethanol, 2-Methylamino-1,2-dimethylethanol, 2-Amino-2-methyl-1-propanol, 2-Amino-2-methyl-1, 3-propandiol, 2-Amino-2-ethyl-1,3-propandiol, 2-Amino-2-hydroxymethyl-1,3-propandiol und 1-Amino-2-propanol.Examples of amino of the formula VII according to the invention are 2-aminoethanol, 2-methylaminoethanol, 2-ethylaminoethanol, 2-n-propylaminoethanol, 2,2'-iminodiethanol, 2-aminopropanol, 2,2'-iminodiisopropanol, 2-aminocyclohexanol, 2-aminocyclopentanol, 2-aminomethyl-2-methylethanol 2-n-butylaminoethanol, 2-methylamino-1,2-dimethylethanol, 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-hydroxymethyl-1,3-propanediol and 1-amino-2-propanol.

Die bei der Aminolyse (Reaktion von VI mit VII) entstehenden Alkohole der Formel IX werden aus dem Reaktionsgemisch durch Destillation, gegebenenfalls unter Vakuum aus dem Reaktionsgemisch entfernt. Aus Gründen der Selektivität ist ein molarer Überschuß an β-Aminoalkoholen notwendig, wobei das Verhältnis Esteräquivalent zu Aminäquivalent 1 : 1,001 bis 8, bevorzugt 1 : 1,05 bis 6, besonders bevorzugt 1 : 1,1 bis 1 : 2 beträgt. Durch diesen Überschuß werden Nebenreaktionen unterdrückt, wie z.B. die Bildung von nur teilweise aminierten Verbindung beim Einsatz von Estern von mehrbasigen Carbonsäuren, als Beispiel sei die Bildung von sogenannten Halbestern der Formel X beim Einsatz von Estern von mehrbasischen Carbonsäuren genannt.

Figure 00110001
wobei A, R1, R2 und n die oben genannte Bedeutung haben und y=1 bis 5 ist.The alcohols of the formula IX formed in the aminolysis (reaction of VI with VII) are removed from the reaction mixture by distillation, if appropriate under vacuum, from the reaction mixture. For reasons of selectivity, a molar excess of β-amino alcohols is necessary, the ratio of ester equivalent to amine equivalent being 1: 1.001 to 8, preferably 1: 1.05 to 6, particularly preferably 1: 1.1 to 1: 2. This excess suppresses side reactions, such as the formation of only partially aminated compounds when using esters of polybasic carboxylic acids, for example the formation of so-called half esters of formula X when using esters of polybasic carboxylic acids.
Figure 00110001
where A, R1, R2 and n have the meaning given above and y = 1 to 5.

Als weiteres Beispiel für Nebenprodukte, deren Bildung durch einen Überschuß von β-Aminoalkoholen unterdrückt werden können, sei die als Dimer bezeichnete Verbindung der Formel XI genannt, die als Nebenprodukt neben dem reinen monomeren β-Hydroxyalkylamiden der Formel IV auftritt. Monomer, Dimer und β-Aminoalkohol stehen im Gleichgewicht.

Figure 00110002
wobei A und R1 die oben genannte Bedeutung haben.Another example of by-products, the formation of which can be suppressed by an excess of β-amino alcohols, is the compound of the formula XI referred to as dimer, which occurs as a by-product in addition to the pure monomeric β-hydroxyalkylamides of the formula IV. Monomer, dimer and β-amino alcohol are in balance.
Figure 00110002
where A and R1 have the meaning given above.

Wichtig zur Unterdrückung von Nebenreaktionen bei Aminolysereaktionen ist auch die Kontrolle des Wassergehaltes der Reaktionspartner. Typischerweise beträgt der Wassergehalt der Reaktionspartner weniger als 0,5 % bevorzugt weniger als 0,1 %, um die Hydrolyse der Ester und die Verringerung der Katalysatoraktivität zu verhindern.Important to suppress side reactions Aminolysis reactions are also the control of the water content the reaction partner. Typically the water content of the reactants is less than 0.5%, preferably less than 0.1%, to hydrolysis the ester and the reduction in catalyst activity to prevent.

Als Katalysatoren werden basische Katalysatoren vom Typ Alkalihydroxid oder -alkoholat, inklusive der quatärnären Ammoniumverbindungen, eingesetzt, wie z.B. Natriumhydroxid, Tetramethylammoniumhydroxid, Natriummethylat, Natrium-tert. butylat, Tertramethylammoniummethylat. Die eingesetzte Menge an Katalysatoren beträgt 0,001 bis 5,0 Mol.-%, bezogen auf das Gewicht der eingesetzten Ester.Basic catalysts from Type alkali hydroxide or alcoholate, including the quaternary ammonium compounds used, such as e.g. Sodium hydroxide, tetramethylammonium hydroxide, Sodium methylate, sodium tert. butylate, tertramethylammonium methylate. The amount of catalysts used is 0.001 to 5.0 mol%, based on that Weight of the esters used.

Nachdem die Reaktion beendet ist, wird der Katalysator zerstört, z.B. durch Zugabe von anorganischen oder organischen Säuren, wie Salzsäure oder Essigsäure. Anschließend wird der überschüssige β-Aminoalkohol durch Destillation, gegebenenfalls unter Vakuum aus dem Reaktionsgemisch entfernt. Wird vor der Destillation der Katalysator nicht entfernt, so kommt es bei der Destillation wiederum zur Bildung von Nebenprodukten, z.B. bildet sich aus dem Monomer IV in Gegenwart von basischen Katalysatoren wiederum das Dimer XI. Diese Dimerbildung kann durch Zerstörung des Katalysators vor der Destillation unterdrückt werden. Bevorzugte Destillationsarten vor allem bei schwerflüchtigen β-Aminoalkoholen, die einen hohen Siedepunkt aufweisen, wie z.B. Diisopropanalamin, sind die Kurzweg-, Dünnfilm- oder Fallfilmdestillation, da bei diesen Arten der Destillation aufgrund der kurzfristigen Temperaturbelastung die β-Hydroxyalkylamide am wenigsten geschädigt werden. Ferner zeigte sich, daß der so abdestillierte β-Aminoalkohol aufgrund seiner hohen Reinheit ohne weitere Aufarbeitungsschritte wiederum als Ausgangskomponente für weitere Umsetzungen verwendet werden kann. Flüssige β-Hydroxyalkylamide können ohne weiteren Aufarbeitungsschritt weiterverarbeitet werden. Feste β-Hydroxyalkylamide werden durch Kristallisation eventuell bei erhöhter Temperatur direkt aus dem Reaktionsgemisch oder aus einem geeigneten Lösemittel isoliert. Bei der Kristallisation zeigt sich, daß je reiner die β-Hydroxyalkylamide sind, diese umso besser und schneller kristallisieren. Das Verfahren kann batchweise und/oder kontinuierlich durchgeführt werden.After the reaction is over, the catalyst becomes destroyed, e.g. by adding inorganic or organic acids such as hydrochloric acid or acetic acid. Then the excess β-amino alcohol by distillation, optionally under Vacuum removed from the reaction mixture. Will before distillation the catalyst is not removed, so formation again occurs during distillation by-products, e.g. forms from the monomer IV in the presence of basic catalysts the dimer XI. This dimer formation can be caused by destruction of the catalyst suppressed before distillation become. Preferred types of distillation above all in the case of semi-volatile β-amino alcohols, some have a high boiling point, e.g. Diisopropanalamine, are short path, thin film or falling film distillation, because with these types of distillation due to the short-term temperature load β-hydroxyalkylamides are least damaged. It was also shown that the distilled off β-amino alcohol due to its high purity without further processing steps in turn as a starting component used for further implementations can be. Liquid β-hydroxyalkylamides can be used without further processing step can be processed further. Solid β-hydroxyalkylamides are obtained by crystallization possibly directly at elevated temperature the reaction mixture or from a suitable solvent isolated. The crystallization shows that the purer the β-hydroxyalkylamides are, these crystallize all the better and faster. The procedure can be carried out batchwise and / or continuously become.

Die Herstellung und die Eigenschaften der erfindungsgemäßen β-Hydroxyalkylamide werden nachfolgend beispielhaft dargestellt.The preparation and the properties of the invention β-hydroxyalkylamides are shown below shown as an example.

VergleichsbeispielComparative example

Eine Mischung von 133,00 g Diisopropanolamin und 1,62 g Natriummethylat werden in einer 500 ml Glasapparatur unter Stickstoff auf 100 °C erhitzt. Nach Anlegen eines Vakuums von 300 mbar wird innerhalb einer Stunde 174,00 g Dimethyladipat zugetropft und das bei der Reaktion freiwerdende Methanol kontinuierlich abdestilliert. Nach einer Nachreaktionszeit von 1 Stunde wird das Produkt in eine Aluminiumschüssel abgelassen. A mixture of 133.00 g diisopropanolamine and 1.62 g of sodium methylate are in a 500 ml glass apparatus heated to 100 ° C under nitrogen. After Applying a vacuum of 300 mbar is within 174.00 g of dimethyl adipate were added dropwise in one hour and the methanol released in the reaction continuously distilled off. After a post-reaction time from 1 hour the product is in a Aluminum bowl drained.

Beispielexample

Eine Mischung von 239,40 g Diisopropanolamin und 1,62 g Natriummethylat werden in einer 500 ml Glasapparatur unter Stickstoff auf 100 °C erhitzt. Nach Anlegen eines Vakuums von 300 mbar wird innerhalb einer Stunde 174,00 g Dimethyladipat zugetropft und das bei der Reaktion freiwerdende Methanol kontinuierlich abdestilliert. Nach einer Nachreaktionszeit von 1 Stunde werden 1,80 g Essigsäure zum Reaktionsgemisch gegeben und anschließend wird das überschüssige Diisopropanolamin in der Kurzwegdestillationsapparatur KDL-5 der Fa. UIC bei einem Vakuum von 5 mbar und einer Manteltemperatur von 130 °C entfernt. Das aminfreie Reaktionsgemisch wird anschließend bei 90 °C kristallisiert und danach wird der Kristallbrei in eine Aluminiumschüssel abgelassen. Vergleichsbeipiel Beispiel Aspekt Hochsviskose gelbe Flüssigkeit. Nach wochenlangerLagerung wachsartige, klebrige Masse. Freifliessende weisse Kristalle. Schmelzpunkt [°C] nicht bestimmbar 118 Monomergehalt [%] 73 97.9 Dimergehalt [%] 15 2.1 Halbester [%] 3 - Diisopropanolamin [%] 9 - A mixture of 239.40 g of diisopropanolamine and 1.62 g of sodium methylate is heated to 100 ° C. in a 500 ml glass apparatus under nitrogen. After applying a vacuum of 300 mbar, 174.00 g of dimethyl adipate are added dropwise within one hour and the methanol liberated in the reaction is continuously distilled off. After a reaction time of 1 hour, 1.80 g of acetic acid are added to the reaction mixture and then the excess diisopropanolamine is removed in the UD short path distillation apparatus from UIC at a vacuum of 5 mbar and a jacket temperature of 130 ° C. The amine-free reaction mixture is then crystallized at 90 ° C and then the crystal slurry is drained into an aluminum bowl. Comparative example example aspect Highly viscous yellow liquid. After weeks of storage, waxy, sticky mass. Free-flowing white crystals. Melting point [° C] not definable 118 Monomer content [%] 73 97.9 Dimer content [%] 15 2.1 Half-highest [%] 3rd - Diisopropanolamine [%] 9 -

Claims (10)

Verfahren zur Herstellung von β-Hydroxyalkylamiden der allgemeinen Formel IV:
Figure 00150001
wobei A eine chemische Bindung oder eine mehrwertige organische Gruppe oder, wenn n'=0 Wasserstoff oder eine einwertige Gruppe ist, wobei die ein- oder mehrwertige organische Gruppe ausgewählt ist aus gesättigten oder ungesättigten (C1-C60) Alkyl-, Cycloalkyl-, Aryl-, Carboxyalkenyl-, Alkoxycarbonylalkenyl- oder Trialkylenaminogruppen und wobei R1 Wasserstoff oder eine C1-C5-Alkylgruppe und R2 Wasserstoff, eine C1-C5-Alkylgruppe oder:
Figure 00150002
und wobei n eine ganze Zahl mit einem Wert von 1 bis 10 und n' eine ganze Zahl mit einem Wert von 0 bis 2 ist, bei dem in Abwesenheit von Lösemitteln die entsprechenden Alkylester mit den entsprechenden β-Aminoalkoholen in Gegenwart von basischem Katalysator umgesetzt und der entstehende Alkohol entfernt wird,
dadurch gekennzeichnet,
daß zur Verbesserung der Selektivität das Verhältnis Esteräquivalent zu Aminäquivalent 1:1,001 bis 8 beträgt, der basische Katalysator nach der Aminolyse zerstört und der nicht umgesetzte Aminoalkohol entfernt wird.
Process for the preparation of β-hydroxyalkylamides of the general formula IV:
Figure 00150001
where A is a chemical bond or a polyvalent organic group or, if n '= 0 is hydrogen or a monovalent group, the mono- or polyvalent organic group being selected from saturated or unsaturated (C1-C60) alkyl, cycloalkyl, aryl -, carboxyalkenyl, alkoxycarbonylalkenyl or trialkylene amino groups and where R1 is hydrogen or a C1-C5 alkyl group and R2 is hydrogen, a C1-C5 alkyl group or:
Figure 00150002
and wherein n is an integer from 1 to 10 and n 'is an integer from 0 to 2, in which, in the absence of solvents, the corresponding alkyl esters are reacted with the corresponding β-amino alcohols in the presence of a basic catalyst and the alcohol is removed,
characterized by
that to improve the selectivity the ratio of ester equivalent to amine equivalent is 1: 1.001 to 8, the basic catalyst is destroyed after the aminolysis and the unreacted amino alcohol is removed.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis 1 : 1,05 bis 1 : 6 beträgt.A method according to claim 1, characterized in that the ratio is 1: 1.05 to 1: 6 is. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der nicht umgesetzte β-Aminoalkohol aus dem Reaktionsgemisch durch Destillation entfernt wird.A method according to claim 1 or 2, characterized characterized that the unreacted β-amino alcohol from the reaction mixture Distillation is removed. Verfahren nach einen der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur Zerstörung des basischen Katalysators anorganische Säuren, bevorzugt Salzsäure oder organische Säuren, bevorzugt Essigsäure oder Phenylessigsäure verwendet werden.Method according to one of claims 1 to 3, characterized in that to destroy the basic catalyst inorganic acids, preferably hydrochloric acid or organic acids, preferably acetic acid or phenylacetic acid used become. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß basische Katalysatoren von Typ Alkalihydroxid oder -alkoholat, inklusive der quartanären Ammoniumverbindungen, eingesetzt werden, wie Natriumhydroxid, Tetramethylammoniumhydroxid, Natriummethylat, Natriumtert.butylat, Tertramethylammoniummethylat. Method according to at least one of claims 1 to 4, characterized in that basic Alkali hydroxide or alcoholate type catalysts, including the quaternary ammonium compounds, be used, such as sodium hydroxide, Tetramethylammonium hydroxide, sodium methylate, Sodium tert-butylate, tertramethylammonium methylate. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die eingesetzte Menge an Katalysatoren 0,001 bis 5,0 Mol.-% bezogen auf das Gewicht der Ester, beträgt.Method according to one of claims 1 to 5, characterized in that the used Amount of catalysts 0.001 to 5.0 mol% based on the weight of the esters. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der bei der Reaktion entstehende Alkohol bei einer Temperatur von 50-150 °C und einem Vakuum von 650 mbar bis 0,1 mbar entfernt wird.Method according to at least one of claims 1 to 6, characterized in that the at Reaction alcohol formed at a temperature of 50-150 ° C and a vacuum of 650 mbar up to 0.1 mbar is removed. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es kontinuierlich durchgeführt wird.Method according to at least one of claims 1 to 7, characterized in that it is continuous is carried out. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß bevorzugte β-Hydroxyalkylamiden nach Formel IV N,N,N,'N'-Tetrakis (2-hydroxyethyl)-adipinsäureamid und N,N,N,'N'-Tetrakis(2-hydroxypropyl)-adipinsäureamid sind.Method according to one of claims 1 to 8, characterized in that preferred β-hydroxyalkylamides according to formula IV N, N, N, 'N' tetrakis (2-hydroxyethyl) adipic acid amide and N, N, N, 'N'-tetrakis (2-hydroxypropyl) adipic acid amide are. Verwendung der nach einem der Ansprüche 1 bis 9 hergestellten β-Hydroxyalkylamide als chemische Zwischenprodukte und als chemische Vernetzer für carboxylfunktionelle Polyester und Acrylate in lösemittelhaltigen Lacken, Wasser- und Pulverlacken.Use of the according to one of claims 1 to 9 prepared β-hydroxyalkylamides as chemical Intermediates and as chemical crosslinkers for carboxyl functional polyesters and acrylates in solvent-based paints, water and powder paints.
EP99109940A 1998-05-28 1999-05-20 Process for the preparation of beta-hydroxyalkylamides Expired - Lifetime EP0960878B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823925A DE19823925C2 (en) 1998-05-28 1998-05-28 Process for the preparation of beta-hydroxyalkylamides
DE19823925 1998-05-28

Publications (3)

Publication Number Publication Date
EP0960878A2 true EP0960878A2 (en) 1999-12-01
EP0960878A3 EP0960878A3 (en) 2002-04-17
EP0960878B1 EP0960878B1 (en) 2006-03-22

Family

ID=7869215

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99109940A Expired - Lifetime EP0960878B1 (en) 1998-05-28 1999-05-20 Process for the preparation of beta-hydroxyalkylamides

Country Status (16)

Country Link
US (1) US6235933B1 (en)
EP (1) EP0960878B1 (en)
JP (1) JP3674828B2 (en)
KR (1) KR100345170B1 (en)
CN (1) CN1160311C (en)
AT (1) ATE321021T1 (en)
AU (1) AU735633B2 (en)
CA (1) CA2273030C (en)
DE (2) DE19823925C2 (en)
ES (1) ES2262268T3 (en)
HK (1) HK1023558A1 (en)
IL (1) IL130176A (en)
NO (1) NO325515B1 (en)
NZ (1) NZ336011A (en)
TW (1) TW580488B (en)
ZA (1) ZA993608B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098257A1 (en) * 2000-06-19 2001-12-27 Perstorp Specialty Chemicals Ab NOVEL β-HYDROXYAMIDES
WO2011110624A2 (en) 2010-03-11 2011-09-15 Evonik Degussa Gmbh β-HYDROXYALKYLAMIDES, METHOD FOR THEIR PRODUCTION AND USE THEREOF
EP2937332A1 (en) * 2014-04-22 2015-10-28 Cromogenia Units, S.A. Process for preparing a solid hydroxyalkylamide

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050043560A1 (en) * 2000-06-19 2005-02-24 Pergo (Europe) Ab Novel beta-hydroxyamides
DE10053194A1 (en) * 2000-10-26 2002-05-16 Ems Chemie Ag β-hydroxyalkylamides, process for their preparation and their use
MXPA04011699A (en) * 2002-05-31 2005-02-14 Grace Gmbh & Co Kg Powder coating matting agent comprising ester amide condensation product.
US20050288450A1 (en) * 2003-05-23 2005-12-29 Tim Fletcher Coating matting agent comprising amide condensation product
JP4686197B2 (en) * 2005-01-07 2011-05-18 ライオン・アクゾ株式会社 Method for producing carboxylic acid amide, carboxylic acid amide derivative and method for producing the same
JP5148911B2 (en) * 2007-04-03 2013-02-20 関西ペイント株式会社 Hardener composition and method for producing the same.
CN101139520B (en) * 2007-09-17 2012-03-07 徐方俊 Method for preparing alkanolamide and its application in teritary oil extraction
KR100977251B1 (en) * 2008-04-22 2010-08-23 전남대학교산학협력단 Cycloalkane dicarboxamide compounds, their preparation and application
CN101704762B (en) * 2009-11-13 2013-01-09 六安市捷通达化工有限责任公司 Production technology of beta-hydroxyalkylamide
JP5211307B2 (en) * 2011-03-04 2013-06-12 東洋インキScホールディングス株式会社 Photosensitive composition
US20120277444A1 (en) * 2011-04-27 2012-11-01 Shivkumar Mahadevan Synthesis of hydroxyalkyl amides from esters
US10450525B2 (en) * 2014-08-27 2019-10-22 Chevron Oronite Company Llc Process for alaknolamide synthesis
CN105384654B (en) * 2015-12-11 2017-08-25 六安市捷通达化工有限责任公司 A kind of crystallization purifications of hydroxyalkyl amide
CN105646268A (en) * 2016-03-02 2016-06-08 沈阳化工大学 Method for synthesis of N,N,N',N'-tetra(beta-hydroxypropyl)hexanediamide with carrier solid base catalyst
CN106565513B (en) * 2016-10-11 2019-03-15 沈阳化工大学 The method for preparing beta-hydroxy alkylamide using microwave heating
CN106565514A (en) * 2016-10-11 2017-04-19 沈阳化工大学 Process method for catalytic synthesis of beta-hydroxyalkyl amide by using tetramethylammonium hydroxide
CN106986786A (en) * 2017-02-27 2017-07-28 沈阳化工大学 A kind of process of synthesis β hydroxyalkyl amides
CN106946723A (en) * 2017-02-27 2017-07-14 沈阳化工大学 A kind of process that hydroxyethyl acrylamide is catalyzed and synthesized with quaternary ammonium base
CN107266331B (en) * 2017-07-04 2020-02-14 黄山华惠科技有限公司 Tri-functionality β -hydroxyalkylamide, preparation method thereof and powder coating composition containing same
CN109134278B (en) * 2018-11-07 2021-01-12 南京科技职业学院 Preparation method of polyalcohol amine
CN109553547B (en) * 2018-12-03 2021-07-09 南京红宝丽醇胺化学有限公司 Preparation method of N, N, N ', N' -tetra (beta-hydroxypropyl) adipamide
EP3894485A1 (en) * 2018-12-13 2021-10-20 PPG Industries Ohio Inc. Polyhydroxyalkylamide materials for use as crosslinkers
EP3763356A1 (en) 2019-07-12 2021-01-13 Ludwig-Maximilians-Universität München Excipient for biotherapeutics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076917A (en) * 1974-03-25 1978-02-28 Rohm And Haas Company Method for curing polymers containing one or more carboxy or anhydride functions and compositions
US4493909A (en) * 1981-06-25 1985-01-15 Bayer Aktiengesellschaft Poly-N,N-hydroxyalkylamides of polybasic carboxylic acids and a process for the production thereof
US4727111A (en) * 1986-09-29 1988-02-23 Ppg Industries, Inc. Powder coating compositions based on mixtures of acid group-containing materials and beta-hydroxyalkylamides
US5101073A (en) * 1990-08-27 1992-03-31 Rohm And Haas Company Production of β-hydroxyalkylamides
US5646318A (en) * 1995-04-26 1997-07-08 Akzo Nobel Nv Process for the preparation of hydroxyalkylamides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076917A (en) * 1974-03-25 1978-02-28 Rohm And Haas Company Method for curing polymers containing one or more carboxy or anhydride functions and compositions
US4493909A (en) * 1981-06-25 1985-01-15 Bayer Aktiengesellschaft Poly-N,N-hydroxyalkylamides of polybasic carboxylic acids and a process for the production thereof
US4727111A (en) * 1986-09-29 1988-02-23 Ppg Industries, Inc. Powder coating compositions based on mixtures of acid group-containing materials and beta-hydroxyalkylamides
US5101073A (en) * 1990-08-27 1992-03-31 Rohm And Haas Company Production of β-hydroxyalkylamides
US5646318A (en) * 1995-04-26 1997-07-08 Akzo Nobel Nv Process for the preparation of hydroxyalkylamides

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098257A1 (en) * 2000-06-19 2001-12-27 Perstorp Specialty Chemicals Ab NOVEL β-HYDROXYAMIDES
WO2011110624A2 (en) 2010-03-11 2011-09-15 Evonik Degussa Gmbh β-HYDROXYALKYLAMIDES, METHOD FOR THEIR PRODUCTION AND USE THEREOF
DE102011005332A1 (en) 2010-03-11 2011-12-01 Evonik Degussa Gmbh beta-hydroxyalkylamides, a process for their preparation and use
EP2937332A1 (en) * 2014-04-22 2015-10-28 Cromogenia Units, S.A. Process for preparing a solid hydroxyalkylamide
EP2937333A1 (en) 2014-04-22 2015-10-28 Cromogenia Units, S.A. Process for preparing a solid hydroxyalkylamide

Also Published As

Publication number Publication date
CN1160311C (en) 2004-08-04
EP0960878A3 (en) 2002-04-17
AU3123499A (en) 1999-12-09
KR19990088606A (en) 1999-12-27
DE19823925C2 (en) 2001-01-11
KR100345170B1 (en) 2002-07-24
IL130176A0 (en) 2000-06-01
JP2000038372A (en) 2000-02-08
DE59913238D1 (en) 2006-05-11
TW580488B (en) 2004-03-21
NO992539L (en) 1999-11-29
ZA993608B (en) 1999-11-26
ATE321021T1 (en) 2006-04-15
ES2262268T3 (en) 2006-11-16
NZ336011A (en) 2000-08-25
NO325515B1 (en) 2008-06-02
CN1237576A (en) 1999-12-08
JP3674828B2 (en) 2005-07-27
HK1023558A1 (en) 2000-09-15
CA2273030A1 (en) 1999-11-28
IL130176A (en) 2004-06-01
US6235933B1 (en) 2001-05-22
DE19823925A1 (en) 1999-12-02
AU735633B2 (en) 2001-07-12
EP0960878B1 (en) 2006-03-22
NO992539D0 (en) 1999-05-26
CA2273030C (en) 2004-07-27

Similar Documents

Publication Publication Date Title
EP0960878B1 (en) Process for the preparation of beta-hydroxyalkylamides
EP0512211B1 (en) Process for the preparation of substituted malonic ester anilides and malonic acid monoanilides
DE60012491T2 (en) PROCESS FOR PREPARING HYDROXYMETHYLBUTTERIC ACID ESTERS
EP0673915B1 (en) Process for the preparation of hydroxyphenylcarboxylic acids
DE102009002239A1 (en) Process for the continuous production of alkylamino (meth) acrylamides
DE60107191T2 (en) Preparation of 2-hydrocarbyl-2-adamantyl acrylates
DE1155115B (en) Process for the preparation of N-monoalkylamides of O, O-dimethyldithiophosphorylacetic acid
AT396361B (en) METHOD FOR PRODUCING SUCCINYLCHOLINE HALOGENIDES
EP0275470B1 (en) N-substituted acryl amides containing ester groups
DE19610323C2 (en) Process for the preparation of N-lauroyl-L-glutamic acid di-n-butylamide
EP0676390A1 (en) Process for the preparation of 1-aminocyclopropane carboxylic acid hydrochloride
DE866193C (en) Process for the preparation of carboxylic acid amides substituted in the amide group
EP1252134A1 (en) Method for producing acetoacetylated aromatic amines
DE112006002975B4 (en) Process for the preparation of menthyl benzoate
EP0131801A1 (en) Process for the preparation of substituted ethylene ureas, and N-vinyl ethylene ureas
EP0697399B1 (en) Process for the preparation of N-alkenyl carboxylic acid amide
DE3009318C2 (en) Process for the preparation of aminoaryl thiophosphates and aminoaryl phosphates
EP0764651A1 (en) Process for the purification of tertiary phosphine oxides
DE1000824B (en) Process for the preparation of 6-halo-3-oxy-benzoic acid-ªÏ-haloalkyl esters
DEP0008221MA (en)
WO2004005263A1 (en) Method for producing 1-methylcyclopropylguanidine
DD215313A1 (en) PROCESS FOR PREPARING NEW 1,3-OXATHIOLE
EP3326999A1 (en) Salicyloylcarnitin sulfonates
DD209618A5 (en) PROCESS FOR PREPARING ALPHA HALOGEN N, N-DIMETHYL PROPIONAMIDES
DE10237285A1 (en) Production of 3-amino-4,4,4-trifluorocrotonate ester for use in synthesis of plant protection agents involves reacting alkyl trifluoroacetate with alkyl acetate and metal alcoholate to form an enolate which is then reacted with amine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020604

AKX Designation fees paid

Free format text: AT BE CH DE ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 20030707

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59913238

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060530

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2262268

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180522

Year of fee payment: 20

Ref country code: CH

Payment date: 20180427

Year of fee payment: 20

Ref country code: ES

Payment date: 20180625

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180522

Year of fee payment: 20

Ref country code: NL

Payment date: 20180518

Year of fee payment: 20

Ref country code: IT

Payment date: 20180530

Year of fee payment: 20

Ref country code: AT

Payment date: 20180522

Year of fee payment: 20

Ref country code: BE

Payment date: 20180518

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180518

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59913238

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20190519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190519

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20190520

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 321021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190519

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190521