JP5148911B2 - Hardener composition and method for producing the same. - Google Patents

Hardener composition and method for producing the same. Download PDF

Info

Publication number
JP5148911B2
JP5148911B2 JP2007097797A JP2007097797A JP5148911B2 JP 5148911 B2 JP5148911 B2 JP 5148911B2 JP 2007097797 A JP2007097797 A JP 2007097797A JP 2007097797 A JP2007097797 A JP 2007097797A JP 5148911 B2 JP5148911 B2 JP 5148911B2
Authority
JP
Japan
Prior art keywords
curing agent
amine
powder coating
reaction
agent composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007097797A
Other languages
Japanese (ja)
Other versions
JP2008255197A (en
Inventor
伸司 対馬
政示 小畑
公介 野浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2007097797A priority Critical patent/JP5148911B2/en
Publication of JP2008255197A publication Critical patent/JP2008255197A/en
Application granted granted Critical
Publication of JP5148911B2 publication Critical patent/JP5148911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、新規な硬化剤を含有する粉体塗料に関する。



The present invention relates to a powder coating containing a novel curing agent .



塗料業界にとって有機溶剤の揮散による地球環境汚染を回避することができる塗料の開発は現在の最重要課題である。環境汚染の少ない塗料としては粉体塗料がまず挙げられる。しかし従来粉体塗料用硬化剤として多用されてきたTGIC(トリグリシジルイソシアヌレート)はかぶれなどの皮膚刺激性、毒性の問題があり、エポキシ樹脂では微量に含有されるビスフェノールAが外因性内分泌撹乱化学物質(俗称:環境ホルモン)である疑いが持たれており、又ブロックイソシアネートは硬化時に脱離するブロック剤がVOCとなり焼付炉や環境を汚染する、という問題点がある。そのためそれら毒性の問題が少なくかつ硬化時の揮散物が水である2-ヒドロキシアルキルアミド型の硬化剤が広く用いられて来ている。
カルボキシ基含有ポリエステルに硬化剤として2−ヒドロキシアルキルアミドを用いた熱硬化性塗料は公知である(特許文献1)また、この組み合わせを用いて、主にポリエステル粉体塗料として多くの発明がなされている(特許文献2〜6)
:特開昭51−17970号公報 :特許2594346号公報 :特表平8-512077号公報 :特開昭63−090580号公報 :特開平04−247058号公報 :特開2000−038372号公報
The most important task for the paint industry is the development of paint that can avoid pollution of the global environment due to the volatilization of organic solvents. A powder paint is first mentioned as a paint with little environmental pollution. However, TGIC (triglycidyl isocyanurate), which has been widely used as a curing agent for powder coatings, has problems of skin irritation and toxicity such as rash. In epoxy resins, bisphenol A contained in a trace amount is exogenous endocrine disrupting chemistry. There is a suspicion that it is a substance (generic name: environmental hormone), and block isocyanate has a problem that the blocking agent that is released during curing becomes VOC and contaminates the baking furnace and the environment. For this reason, 2-hydroxyalkylamide type curing agents, which have few problems of toxicity and have a volatilization product at the time of curing as water, have been widely used.
Thermosetting coatings using 2-hydroxyalkylamide as a curing agent for carboxy group-containing polyesters are known (Patent Document 1). Also, many inventions have been made mainly as polyester powder coatings using this combination. (Patent Documents 2 to 6)
: JP-A-51-17970 : Japanese Patent No. 2594346 : Japanese National Patent Publication No. 8-512077 : JP-A-63-090580 : Japanese Patent Laid-Open No. 04-247058 : JP 2000-038372 A

特許文献1は溶液型塗料に関する特許であり、実施例中にはトリメリット酸と2−メチルアミノエタノールとの反応物(トリアミド)が記載されているが、それは粘調液体であった。2−ヒドロキシアルキルアミドを側鎖にもつモノマーを共重合してなる自己硬化性アクリル樹脂による粉体塗料の例が開示されているが、2-ヒドロキシアルキルアミド型の硬化剤をカルボン酸基含有樹脂と組み合わせた粉体塗料実施例はない。また特許文献2〜6の実施例を見ると2-ヒドロキシアルキルアミド型の硬化剤はBis−ジ(2−ヒドロキシアルキル)アミドの構造となっている。これは2−ヒドロキシアルキルアミド化合物の中でも対称構造を持つBis−ジ(2−ヒドロキシアルキル)アミドが、結晶性が高く常温で固体であるため、従来粉体塗料の硬化剤として多用されてきたTGIC(トリグリシジルイソシアヌレート)に代わる、無毒で人体に安全な硬化剤として利用できるためである。   Patent Document 1 is a patent relating to a solution-type paint. In the examples, a reaction product (triamide) of trimellitic acid and 2-methylaminoethanol is described, but it was a viscous liquid. An example of a powder coating material using a self-curing acrylic resin obtained by copolymerizing a monomer having 2-hydroxyalkylamide in the side chain is disclosed, but a 2-hydroxyalkylamide type curing agent is used as a carboxylic acid group-containing resin. There is no powder coating example in combination with. In addition, according to Examples of Patent Documents 2 to 6, a 2-hydroxyalkylamide type curing agent has a Bis-di (2-hydroxyalkyl) amide structure. This is because, among 2-hydroxyalkylamide compounds, Bis-di (2-hydroxyalkyl) amide having a symmetric structure is highly crystalline and solid at room temperature, so TGIC has been widely used as a curing agent for powder coatings. This is because it can be used as a curing agent that is non-toxic and safe for the human body instead of (triglycidyl isocyanurate).

現在主に使用されているBis−ジヒドロキシアルキルアミドはアジピン酸の両端にジアルカノールアミンが縮合した構造の4官能型のものである。例として、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)アジパミド(商品名:PrimidXL552;CAS 6334−25−4)やN,N,N’,N’−テトラキス(2−ヒドロキシプロピル)アジパミド(商品名:PrimidQM1260;CAS 57843−53−5)が挙げられる(いずれもEMS社製)。これらのアルキル鎖の両端にジヒドロキシアルキルアミンが縮合したBis−ジ(2−ヒドロキシアルキル)アミド構造を持つ硬化剤(以下、その商標名から「プリミド」硬化剤と呼称することがある)は結晶性が高く粉体塗料用途に非常に適しており、また低温硬化性もあり(160℃で30分間焼付けで硬化)良好な塗膜性能を示す。しかしこれら従来用いられてきたBis−ジ(2−ヒドロキシアルキル)アミド型の「プリミド」硬化剤は吸湿性が非常に高く、そのためか硬化塗膜が高湿度環境に長期に渡り晒された場合にハガレが生じることがあるなど、耐湿負荷後の下地付着性が不足するという問題点があった。そのため、より硬化性が高くまた疎水性がより高い2-ヒドロキシアルキルアミド型の硬化剤が求められていた。   Bis-dihydroxyalkylamides mainly used at present are tetrafunctional types having a structure in which dialkanolamine is condensed on both ends of adipic acid. Examples include N, N, N ′, N′-tetrakis (2-hydroxyethyl) adipamide (trade name: PrimidXL552; CAS 6334-25-4) and N, N, N ′, N′-tetrakis (2-hydroxy). Propyl) adipamide (trade name: PrimidQM1260; CAS 57843-53-5) (all manufactured by EMS). A curing agent having a Bis-di (2-hydroxyalkyl) amide structure in which dihydroxyalkylamine is condensed at both ends of these alkyl chains (hereinafter, sometimes referred to as “primide” curing agent from its trade name) is crystalline. It is highly suitable for powder coating applications and has low-temperature curability (cured by baking at 160 ° C. for 30 minutes), showing good coating film performance. However, these conventionally used Bis-di (2-hydroxyalkyl) amide type “primide” curing agents have a very high hygroscopic property, which is why the cured coating film is exposed to a high humidity environment for a long time. There has been a problem that the adhesion to the substrate after moisture resistance load is insufficient, such as peeling. Therefore, a 2-hydroxyalkylamide type curing agent having higher curability and higher hydrophobicity has been demanded.

本発明は人体に安全であり、粉体塗料の硬化剤として用いた時に硬化性が高くまた硬化後の塗膜が耐湿負荷後の下地付着性が優れたものとなる硬化剤組成物およびその製造方法を提供する。   The present invention is safe for the human body, has a high curability when used as a curing agent for powder coatings, and a cured agent composition in which the cured coating film has excellent base adhesion after a moisture resistance load and its production Provide a method.

発明者らは鋭意研究の結果、疎水性の高い原料からなり、直鎖ジカルボン酸ジエステルと、ジ(2−ヒドロキシアルキル)アミンの配合比をアミン不足として合成する事により得られる1分子あたりの官能基数が4よりも大きい2−ヒドロキシアルキルアミド型硬化剤組成物が硬化性が高くまた硬化後の塗膜が耐湿負荷後の下地付着性が優れたものとなることを見出し、また該硬化剤組成物は直鎖ジカルボン酸ジエステルと、ジ(2−ヒドロキシアルキル)アミンのアミド化反応を一定の条件下で行う事により製造出来る事を見出し、本発明を完成するに至った。   As a result of diligent research, the inventors have a highly hydrophobic raw material, and the functional ratio per molecule obtained by synthesizing the mixture ratio of the linear dicarboxylic acid diester and di (2-hydroxyalkyl) amine as insufficient of the amine. It has been found that a 2-hydroxyalkylamide type curing agent composition having a number of radicals greater than 4 has high curability and that the cured coating film has excellent undercoat adhesion after moisture resistance loading, and the curing agent composition It was found that the product can be produced by performing an amidation reaction of a linear dicarboxylic acid diester and di (2-hydroxyalkyl) amine under certain conditions, and the present invention has been completed.

本発明は以下に示す硬化剤組成物およびその製造方法に関する。
1.一般式(I)で表される直鎖ジカルボン酸ジエステル(A)と、一般式(II)で表されるジ(2−ヒドロキシアルキル)アミン(B)を(A)のエステル基の総モル数に対する(B)のアミノ基の総モル数の割合を0.60〜0.95にてアミド化反応させてなる、1分子あたりの平均官能基数が4よりも大でかつ8よりも小である硬化剤組成物。
The present invention relates to the following curing agent composition and method for producing the same.
1. The total number of moles of the ester group of (A) from the linear dicarboxylic acid diester (A) represented by the general formula (I) and the di (2-hydroxyalkyl) amine (B) represented by the general formula (II) The average number of functional groups per molecule formed by amidation reaction at a ratio of the total number of moles of amino group (B) to 0.60 to 0.95 is less than 8 and less than 8 Hardener composition.

Figure 0005148911
(式中Rはそれぞれ同一又は異なって、炭素数1〜5の脂肪族炭化水素基を表し、nは5〜8の整数である。)
Figure 0005148911
(In the formula, each R 1 is the same or different and represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and n is an integer of 5 to 8).

Figure 0005148911
(式中R及びRは同一であっても異なっていてもよい水素原子または炭素数1〜5の脂肪族炭化水素基を表す。)
2.ジ(2−ヒドロキシアルキル)アミン(B)が一般式(II)においてR及びRが同一である対称構造のジアルカノールアミンである項1に記載の硬化剤組成物。
3.20℃における水溶解度が0〜50g/100gHOである項1または2に記載の硬化剤組成物。
4.一般式(I)で表される直鎖ジカルボン酸ジエステル(A)と、一般式(II)で表されるジ(2−ヒドロキシアルキル)アミン(B)を(A)のエステル基の総モル数に対する(B)のアミノ基の総モル数の割合を0.60〜0.95にてアミド化反応させ、1分子あたりの平均官能基数が4よりも大かつ8よりも小とすることを特徴とする硬化剤組成物の製造方法。
Figure 0005148911
(In the formula, R 2 and R 3 represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms which may be the same or different.)
2. Item 2. The curing agent composition according to Item 1, wherein the di (2-hydroxyalkyl) amine (B) is a dialkanolamine having a symmetrical structure in which R 2 and R 3 are the same in the general formula (II).
Water solubility at 3.20 ° C. curing agent composition according to claim 1 or 2 which is 0~50g / 100gH 2 O.
4). The total number of moles of the ester group of (A) from the linear dicarboxylic acid diester (A) represented by the general formula (I) and the di (2-hydroxyalkyl) amine (B) represented by the general formula (II) The ratio of the total number of moles of the amino group of (B) to 0.60 to 0.95 is amidated, and the average number of functional groups per molecule is larger than 4 and smaller than 8. A method for producing a curing agent composition.

Figure 0005148911
(式中Rはそれぞれ同一又は異なって炭素数1〜5の脂肪族炭化水素基を表し、nは5〜8の整数である。)
Figure 0005148911
(In the formula, each R 1 is the same or different and represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and n is an integer of 5 to 8).

Figure 0005148911
(式中R及びRは同一であっても異なっていてもよい水素原子または炭素数1〜5の脂肪族炭化水素基を表す。)
5.アミド化反応温度が60〜120℃である項4に記載の硬化剤組成物の製造方法。
6.項1〜3のいずれか1項に記載の硬化剤組成物とポリカルボン酸樹脂を含む粉体塗料組成物。
Figure 0005148911
(In the formula, R 2 and R 3 represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms which may be the same or different.)
5. Item 5. The method for producing a curing agent composition according to Item 4, wherein the amidation reaction temperature is 60 to 120 ° C.
6). Item 4. A powder coating composition comprising the curing agent composition according to any one of Items 1 to 3 and a polycarboxylic acid resin.

本発明の硬化剤組成物は原料として疎水性の高い物質を用い、直鎖ジカルボン酸ジエステルと、ジ(2−ヒドロキシアルキル)アミンを、直鎖ジカルボン酸ジエステルのエステル基の総モル数に対するジ(2−ヒドロキシアルキル)アミンのアミノ基の総モル数の割合を0.60〜0.95にてアミド化反応させてなる、1分子あたりの官能基数が4よりも大きい硬化剤組成物である。1分子あたりの官能基数を4よりも大きくする事により従来市販されていた2−ヒドロキシアルキルアミド型硬化剤が持っていた硬化後の塗膜の耐湿負荷後の下地付着性が不足する問題点を解決できる。また本発明の硬化剤組成物の製造方法においてはエネルギー消費が殆んど無い熟成工程を採用して目的とする組成物を得る事が出来るので省エネルギーの面からもすぐれている。   The curing agent composition of the present invention uses a highly hydrophobic substance as a raw material, and di (2-hydroxyalkyl) amine is converted into di (2) with respect to the total number of ester groups of the linear dicarboxylic acid diester. 2-Hydroxyalkyl) A curing agent composition having a functional group number per molecule larger than 4 obtained by amidation reaction at a ratio of the total number of moles of amino groups in the amine of 0.60 to 0.95. By increasing the number of functional groups per molecule to more than 4, there is a problem that the adhesion of the base after the moisture resistance load of the coating film after curing that the 2-hydroxyalkylamide type curing agent that has been commercially available has been insufficient. Solvable. In addition, the method for producing a curing agent composition of the present invention is excellent in terms of energy saving because a target composition can be obtained by employing a aging step that consumes little energy.

本発明者らは対策として硬化剤自体の疎水性を上げることを考え、まず、原料として用いるジカルボン酸ジエステルを幹部のメチレン鎖長が4であるアジピン酸ジエステルからそれよりもメチレン鎖長の長いジカルボン酸ジエステルに置き換える事を試みたが、充分な疎水性を得るためにはメチレン鎖長を9〜10(ノナンジカルボン酸〜ドデカン二酸)以上のものにする必要があり、この場合硬化剤は常温で液状となり粉体塗料に用いる事は出来なかった。   The present inventors consider increasing the hydrophobicity of the curing agent itself as a countermeasure. First, dicarboxylic acid diester used as a raw material is changed from an adipic acid diester having a methylene chain length of 4 to a dicarboxylic acid having a longer methylene chain length. Although an attempt was made to replace it with an acid diester, in order to obtain sufficient hydrophobicity, the methylene chain length must be 9 to 10 (nonanedicarboxylic acid to dodecanedioic acid) or more. It became liquid and could not be used for powder coatings.

又上述の「プリミド」硬化剤は4官能硬化剤であるが、官能基数を増やし架橋密度を上げれば耐湿性を改良出来るとも本発明者らは考え、多官能化を試みた。まずジエタノールアミンとジエチレントリアミンを併用し、ジカルボン酸ジエステル3分子をジエチレントリアミンに縮合させたトリアミドの末端カルボン酸エステルに夫々ジエタノールアミンが縮合したTris−ジヒドロキシアルキルアミドの合成を試みたが、合成途中で結晶化してしまい目的とする物質を製造する事は出来なかった。   The above-mentioned “primid” curing agent is a tetrafunctional curing agent, but the present inventors have considered that moisture resistance can be improved by increasing the number of functional groups and increasing the crosslinking density, and have attempted polyfunctionalization. First, we tried to synthesize Tris-dihydroxyalkylamides in which diethanolamine was condensed to the terminal carboxylic acid ester of triamide in which diethanolamine and diethylenetriamine were used in combination, and 3 molecules of dicarboxylic acid diester were condensed to diethylenetriamine. The target substance could not be produced.

またトリカルボン酸エステルを用いた合成も試みたが酸が密集した構造であるクエン酸トリブチルをジエタノールアミンと反応させた場合は2つの酸エステルとアミンの縮合反応は進行するが3つめの酸エステルとの縮合反応は立体障害が生じるためか進行せずTris−ジヒドロキシアルキルアミドは合成できなかった。一方カルボン酸エステルが互いに離れた位置にあるポリカルボン酸エステルとジエタノールアミンとの反応を試みたが途中生成した2−ヒドロキシエチルアミドのヒドロキシ基と未反応の酸エステル基とのエステル交換反応が起こり系が増粘してしまいこれも合成が出来なかった。   Although synthesis using tricarboxylic acid ester was also attempted, when tributyl citrate, which has a dense structure of acid, was reacted with diethanolamine, the condensation reaction of the two acid esters and amine proceeded, but the third acid ester The condensation reaction did not proceed due to steric hindrance, and Tris-dihydroxyalkylamide could not be synthesized. On the other hand, a reaction between a polycarboxylic acid ester in which the carboxylic acid esters are separated from each other and diethanolamine was attempted, but a transesterification reaction occurred between the hydroxy group of 2-hydroxyethylamide formed during the reaction and the unreacted acid ester group. The viscosity increased and this could not be synthesized.

本発明者らは以上の経過をふまえ、鋭意研究を重ねた結果、アジピン酸よりも疎水性が高い、幹部のメチレン鎖長が5〜8の脂肪族ジカルボン酸エステルとジ−(2−ヒドロキシアルキル)アミンを原料として用い、かつエステル基の総モル数に対するアミノ基の総モル数の割合を特定の範囲で仕込み反応させることにより合成された(2−ヒドロキシアルキル)アミドが適度な結晶性があるので常温で固体であり、かつ疎水性がありかつ官能基数が多く硬化性にすぐれるので粉体塗料用硬化剤としての適性があり、また硬化塗膜の耐湿負荷後の下地付着性が優れたものとなる事を見出し本発明を完成するに到った。   Based on the above process, the present inventors have conducted extensive research. As a result, aliphatic dicarboxylic acid esters having a higher methylene chain length of 5 to 8 and di- (2-hydroxyalkyl) having higher hydrophobicity than adipic acid. ) (2-Hydroxyalkyl) amide synthesized by using amine as a raw material and charging and reacting the ratio of the total number of moles of amino groups to the total number of moles of ester groups within a specific range has appropriate crystallinity. Therefore, it is solid at room temperature, is hydrophobic, has many functional groups, and is excellent in curability, so it is suitable as a curing agent for powder coatings, and has excellent base adhesion after moisture resistance loading of a cured coating film As a result, the present invention has been completed.

以下に本発明の硬化剤組成物、その製造方法およびそれを用いた粉体塗料組成物について説明する。   The curing agent composition of the present invention, the production method thereof, and the powder coating composition using the same will be described below.

本発明の硬化剤組成物は平均官能基数が1分子あたり4個よりも大きく8個以下である。従来からの市販硬化剤(「プリミド」)と本発明の硬化剤組成物は、原料として直鎖ジカルボン酸ジエステル(A)及びジ(2−ヒドロキシアルキル)アミン(B)を用いる点では共通である。従来の硬化剤の合成方法でもカルボン酸(エステル)とアミンを等モル量ではない仕込み比で合成する方法はあったが、それらは目的とする物質はBis−ジ(2−ヒドロキシアルキル)アミドであった(注1)。本発明の硬化性組成物は製造時にアミンの量をカルボン酸の化学当量よりも少なく仕込み穏やかに反応させる事により平均官能基数が多く、即ち硬化性がより高く、直鎖ジカルボン酸ジエステルの幹部のメチレン鎖長が5〜8である事による疎水性との相乗効果により硬化後の塗膜の耐湿負荷後の下地付着性に優れる硬化剤組成物を得る事が可能となった。   The curing agent composition of the present invention has an average functional group number of more than 4 and 8 or less per molecule. The conventional commercially available curing agent ("primid") and the curing agent composition of the present invention are common in that linear dicarboxylic acid diester (A) and di (2-hydroxyalkyl) amine (B) are used as raw materials. . There was a method of synthesizing a carboxylic acid (ester) and an amine with a charge ratio which is not an equimolar amount even in a conventional method of synthesizing a curing agent, but these were intended to be Bis-di (2-hydroxyalkyl) amide. (Note 1). In the curable composition of the present invention, the amount of amine is less than the chemical equivalent of the carboxylic acid at the time of manufacture, and the reaction is gently reacted to increase the average number of functional groups, that is, the curability is higher, and the backbone of the linear dicarboxylic acid diester is higher. Due to the synergistic effect of hydrophobicity due to the methylene chain length being 5 to 8, it was possible to obtain a curing agent composition having excellent adhesion to the substrate after the moisture resistance load of the coated film after curing.

注1:例えば特許文献4(実施例G)、特許文献5(実施例1、3)、特許文献6(請求項1)はアミン過剰で仕込み従来型の4官能硬化剤が合成された後にも未反応の余剰アミンを除去する方法である。   Note 1: For example, Patent Document 4 (Example G), Patent Document 5 (Examples 1 and 3), and Patent Document 6 (Claim 1) are charged with an excess of amine even after a conventional tetrafunctional curing agent is synthesized. In this method, unreacted excess amine is removed.

平均官能基数について
まず始めに硬化剤組成物の平均官能基数の計算方法と製造上の問題点について述べる。
Regarding the average functional group number First, the calculation method of the average functional group number of the curing agent composition and the problems in production will be described.

硬化剤の製造に当たり初期仕込みとして(A)直鎖ジカルボン酸ジエステルをaモルと(B)ジ(2−ヒドロキシアルキル)アミンをbモル仕込むとする。このとき(A)によるカルボン酸エステルの化学当量は2a、(B)によるアミンの化学当量はb、ヒドロキシル基の化学当量は2bである。このときアミンの化学当量はカルボン酸エステルの化学当量に等しい(従来技術)かそれよりも少ない(本発明)ので、2a≧bである。   Assume that a mole of (A) linear dicarboxylic acid diester and b mole of (B) di (2-hydroxyalkyl) amine are charged as initial preparations in the production of the curing agent. At this time, the chemical equivalent of the carboxylic acid ester by (A) is 2a, the chemical equivalent of the amine by (B) is b, and the chemical equivalent of the hydroxyl group is 2b. At this time, since the chemical equivalent of the amine is equal to the chemical equivalent of the carboxylic acid ester (prior art) or less (the present invention), 2a ≧ b.

実際の反応はまず(A)のカルボン酸エステルと(B)のアミンの活性水素(アミノ基およびヒドロキシル基)の間の縮合反応が先行する。つまりカルボン酸エステルとアミノ基の反応によるアミド化反応と、カルボン酸エステルとヒドロキシル基との間のエステル交換反応である。また縮合物は分子内のアミド−エステル転移反応が起こる。アミンとしてジエタノールアミンを用いた場合のアミド−エステル転移反応を式IIIに示す。   The actual reaction is first preceded by a condensation reaction between the carboxylic acid ester of (A) and the active hydrogen (amino group and hydroxyl group) of the amine of (B). That is, an amidation reaction by a reaction between a carboxylic acid ester and an amino group, and a transesterification reaction between the carboxylic acid ester and a hydroxyl group. The condensate undergoes an intramolecular amide-ester transfer reaction. The amide-ester transfer reaction using diethanolamine as the amine is shown in Formula III.

Figure 0005148911
(III)
(ここでRは直鎖カルボン酸残基を示す。)
この平衡はアミド側が安定であるので通常は縮合物はアミド構造が優位となる。この段階を段階1とする。計算上の簡単のため仮に(A)のカルボン酸エステルと(B)のアミンの縮合では生成物は全てアミドとなると仮定する。
Figure 0005148911
(III)
(Here, R represents a linear carboxylic acid residue.)
Since this equilibrium is stable on the amide side, the condensate usually has an amide structure. This stage is referred to as stage 1. For the sake of simplicity of calculation, it is assumed that in the condensation of the carboxylic acid ester (A) and the amine (B), the product is all an amide.

段階1でアミド化反応が完了した時点での系の状態を記述する。このときアミンは全て消費されてしまうのでアミンの残量は0モル、カルボン酸エステルはbモルがアミンとの反応で消費されるので残量は(2a−b)モル、そしてヒドロキシル基は反応していないので2bモルがそのまま残存している。また系中の分子数は(B)のアミンが全量(A)に結合しているのでaモルである。   The state of the system when the amidation reaction is completed in Step 1 is described. At this time, all of the amine is consumed, so the remaining amount of amine is 0 mol, b mol of carboxylic acid ester is consumed by reaction with amine, so the remaining amount is (2a-b) mol, and the hydroxyl group reacts. 2 b mol remains as it is. The number of molecules in the system is a mole because the amine of (B) is bonded to the total amount (A).

段階2として残存しているカルボン酸エステルと段階1で生成した2−ヒドロキシアルキルアミドのヒドロキシル基とのエステル交換縮合反応が起こる。この段階2により残存しているカルボン酸エステルは全量消費され目的とする硬化剤が得られた状態を記述する。このときヒドロキシル基は(2a−b)モルがカルボン酸エステルとの反応により消費されるので残量は2b−(2a−b)即ち(3b−2a)モルである。そして系中の分子数は2×(2a−b)モルの分子が反応により結合し(2a−b)モルの分子となるので、差し引きa−(2a−b)即ち(b−a)モルである。   A transesterification condensation reaction between the remaining carboxylic acid ester in Step 2 and the hydroxyl group of the 2-hydroxyalkylamide produced in Step 1 occurs. Describe the state in which the remaining amount of the carboxylic acid ester is consumed by this step 2 and the desired curing agent is obtained. At this time, since the hydroxyl group (2a-b) mol is consumed by the reaction with the carboxylic acid ester, the remaining amount is 2b- (2a-b), that is, (3b-2a) mol. The number of molecules in the system is 2 x (2a-b) moles of molecules bonded by reaction to form (2a-b) moles of molecules, so subtracting a- (2a-b) or (ba) moles is there.

つまり平均官能基数は残存するヒドロキシル基のモル数を分子数で割ったものであるので式IVで表される。

平均官能基数(モル/分子)=(3b−2a)/(b−a) (IV)

実際の製造工程では(A)と(B)の分子間の縮合反応であるアミド化反応とエステル交換反応は分子内アミド/エステル転移反応(アミド優位)を伴いながら進行し、同時に、生成したジ(2−ヒドロキシアルキル)アミドのヒドロキシル基と未反応のジカルボン酸エステルとの縮合反応も起こる。後者の反応において官能基数が2よりも大であるアミド化物(Bis−ジ(2−ヒドロキシアルキル)アミドなど)とジカルボン酸エステルが反応して3次元網目をつくり系がゲル化してしまうことも起こる。従来の技術はアミンの配合量を等量以上にすることや生成したBis−ジ(2−ヒドロキシアルキル)アミドの溶解性、結晶性を利用して反応系から単離することによりこの不都合な反応(ゲル化)を回避していた。
That is, the average number of functional groups is represented by Formula IV because it is the number of moles of hydroxyl groups remaining divided by the number of molecules.

Average number of functional groups (mol / molecule) = (3b-2a) / (ba) (IV)

In the actual production process, the amidation reaction and transesterification reaction, which are condensation reactions between the molecules (A) and (B), proceed with an intramolecular amide / ester transfer reaction (amide superiority), and at the same time, the produced diesters. A condensation reaction between the hydroxyl group of (2-hydroxyalkyl) amide and an unreacted dicarboxylic acid ester also occurs. In the latter reaction, an amidated compound having a functional group number greater than 2 (such as Bis-di (2-hydroxyalkyl) amide) and a dicarboxylic acid ester may react to form a three-dimensional network and the system may gel. . In the conventional technique, this inconvenient reaction is achieved by making the compounding amount of the amine equal to or more, and isolating the produced Bis-di (2-hydroxyalkyl) amide from the reaction system by utilizing the solubility and crystallinity. (Gelation) was avoided.

本発明の硬化性組成物は仕込み配合のエステル基のモル数/アミノ基のモル数が0.60〜0.95でありカルボン酸過剰で合成するが、穏やかな反応条件、例えば反応温度が60〜120℃で系のゲル化を回避しながら反応を進める。そのため本発明の方法では分子内アミド−エステル互変異性体のうちエステル構造体が少量残る。反応式IIIからも明らかなようにエステル構造体は2級アミンによるアミン価をもっており、残留アミン濃度(アミン価から判明)はエステル構造となる事により2−ヒドロキシアルキルアミド構造が減少してしまった濃度と等しい。   The curable composition of the present invention is synthesized with an excess of carboxylic acid having a mole ratio of ester groups / moles of amino groups of from 0.60 to 0.95 in the feed formulation, but under mild reaction conditions such as a reaction temperature of 60. The reaction is allowed to proceed while avoiding gelation of the system at ~ 120 ° C. Therefore, a small amount of ester structure remains in the intramolecular amide-ester tautomer in the method of the present invention. As is apparent from Reaction Formula III, the ester structure has an amine value due to secondary amine, and the residual amine concentration (obtained from the amine value) decreased to 2-hydroxyalkylamide structure due to the ester structure. Equal to concentration.

そのため実際の硬化剤組成物の平均官能基数は式IVから算出される値をアミン価により補正した値となる。計算例は実施例に記載する。   Therefore, the average number of functional groups of the actual curing agent composition is a value obtained by correcting the value calculated from Formula IV with the amine value. Calculation examples are described in the examples.

表1に従来の(プリミド)硬化剤の製造条件と本発明の製造条件で得られる硬化剤組成物の式IVから算出した平均官能基数を比較して示す。(本発明の実際の硬化剤組成物は残存アミン価がある場合計算値よりも小さい値となる。)
表1

Figure 0005148911
Table 1 shows a comparison of the average number of functional groups calculated from Formula IV of the curing agent composition obtained under the manufacturing conditions of the conventional (primid) curing agent and the manufacturing conditions of the present invention. (The actual curing agent composition of the present invention has a smaller value than the calculated value when there is a residual amine value.)
Table 1
Figure 0005148911

水溶解度について
水溶解度は物質の水との親和力の指標である。本発明の硬化剤組成物疎水性の幹部を持つ事及びは水溶解度が従来の「プリミド」硬化剤よりも低い事が特徴である。一般にアミド化合物は水素結合により水との親和力が高く、例えば代表的な「プリミド」硬化剤であるN,N,N’,N’−テトラキス(2−ヒドロキシエチル)アジパミド(商品名:PrimidXL552)は20℃において100gの水に対して80g以上溶解する。硬化塗膜の耐湿負荷後の下地付着性が不足する原因として硬化剤の水溶解性の影響が大きい。硬化塗膜の耐湿負荷後の下地付着性を改善するためには硬化剤組成物の水溶解性が0〜50g/100gH0の範囲にあることが好ましい。
About water solubility Water solubility is a measure of the affinity of a substance for water. The curing agent composition of the present invention is characterized by having a hydrophobic trunk and lower water solubility than the conventional “Primid” curing agent. In general, an amide compound has a high affinity with water due to hydrogen bonding. For example, N, N, N ′, N′-tetrakis (2-hydroxyethyl) adipamide (trade name: PrimidXL552), which is a typical “primid” curing agent, Dissolve 80 g or more in 100 g of water at 20 ° C. The influence of the water solubility of the curing agent is large as a cause of insufficient adhesion of the base after the moisture resistance load of the cured coating film. Water solubility of the curing agent composition in order to improve the underlying adhesion after humidity load of the cured film is preferably in the range of 0~50g / 100gH 2 0.

硬化剤組成物の原料について
本発明の硬化剤組成物は直鎖ジカルボン酸ジエステル(A)と、ジ−(2−ヒドロキシアルキル)アミン(B)を出発原料とするものである。
About the raw material of a hardening | curing agent composition The hardening | curing agent composition of this invention uses a linear dicarboxylic acid diester (A) and di- (2-hydroxyalkyl) amine (B) as a starting material.

直鎖ジカルボン酸ジエステル(A)
本発明の(A)成分は下記化学式Iに構造を示す直鎖脂肪族ジカルボン酸のジエステルである。
Linear dicarboxylic acid diester (A)
The component (A) of the present invention is a diester of a linear aliphatic dicarboxylic acid having a structure represented by the following chemical formula I.

Figure 0005148911
(I)
(式中R1は炭素数1〜5の脂肪族炭化水素基を表し、nは5〜8の整数である。)
かかる化合物としては、ピメリン酸、スベリン酸、アゼライン酸及びセバシン酸のジメチル、ジエチル、ジプロピル、ジブチル、ジペンチルエステル化合物などが挙げられる。これらのうちで特にセバシン酸ジエステル化合物が製造された硬化剤の疎水性を高くする観点から好ましく、両末端の脂肪族炭化水素基Rについては製造時の容易性からメチル基またはエチル基であるのが好ましく特にメチル基が好ましい。また、化合物(A)として1種のみを用いてもよいし、2種以上を併用してもよい。
Figure 0005148911
(I)
(In the formula, R1 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and n is an integer of 5 to 8).
Such compounds include dimethyl, diethyl, dipropyl, dibutyl, dipentyl ester compounds of pimelic acid, suberic acid, azelaic acid and sebacic acid. Of these, sebacic acid diester compounds are particularly preferred from the viewpoint of increasing the hydrophobicity of the curing agent produced, and the aliphatic hydrocarbon groups R 1 at both ends are methyl groups or ethyl groups for ease of production. Of these, a methyl group is particularly preferable. Moreover, only 1 type may be used as a compound (A) and it may use 2 or more types together.

ジ−(2−ヒドロキシアルキル)アミン(B)
本発明の(B)成分はジ−(2−ヒドロキシアルキルアミン)であり、その構造を下記化学式IIに示す。
Di- (2-hydroxyalkyl) amine (B)
The component (B) of the present invention is di- (2-hydroxyalkylamine), and its structure is shown in the following chemical formula II.

Figure 0005148911
(II)
(式中R及びRは同じであっても異なっていてもよい水素原子または炭素数1〜5の脂肪族炭化水素基を表す。)
かかる物質としてはジ−2−ヒドロキシエチルアミン(ジエタノールアミン)、N−2−ヒドロキシエチル−N−2−ヒドロキシプロピルアミン、ジ−2−ヒドロキシプロピルアミン(ジイソプロパノールアミン)、N−2−ヒドロキシエチル−N−2−ヒドロキシブチルアミン、ジ−2−ヒドロキシブチルアミン(ジ−2―ブタノールアミン)などのジアルカノール型の2級アミンが挙げられる。中でも2つの2−ヒドロキシアルキル基が互いに同じものである、対称構造を持つジアルカノールアミンが好ましい。特にジエタノールアミンもしくはジイソプロパノールアミンである事が好ましい。また、ジ−2−ヒドロキシアルキルアミン(B)として1種のみを用いてもよいし、2種以上のものを併用してもよい。
Figure 0005148911
(II)
(In the formula, R 2 and R 3 represent the same or different hydrogen atom or C 1-5 aliphatic hydrocarbon group.)
Such materials include di-2-hydroxyethylamine (diethanolamine), N-2-hydroxyethyl-N-2-hydroxypropylamine, di-2-hydroxypropylamine (diisopropanolamine), N-2-hydroxyethyl-N. Examples include dialkanol-type secondary amines such as 2-hydroxybutylamine and di-2-hydroxybutylamine (di-2-butanolamine). Among them, dialkanolamine having a symmetrical structure in which two 2-hydroxyalkyl groups are the same is preferable. Particularly preferred is diethanolamine or diisopropanolamine. Moreover, only 1 type may be used as di-2-hydroxyalkylamine (B), and 2 or more types may be used together.

硬化剤組成物の製造(アミド化反応)
直鎖ジカルボン酸ジエステル(A)と、ジ−(2−ヒドロキシアルキル)アミン(B)を反応させて目的とする硬化剤組成物を製造する。このとき(A)のエステル基の総モル数に対する(B)のアミノ基の総モル数の仕込み割合を1.0又はそれよりも大(化学量論的にアミノ基が過剰)にすると、従来から知られたBis−ジ−(2−ヒドロキシアルキル)アミド構造を持つ4官能の硬化剤(「プリミド」硬化剤)を得る事が出来る。しかし本発明では(A)のエステル基の総モル数に対する(B)のアミノ基の総モル数の割合を0.60〜0.95、好ましくは0.75〜0.92、より好ましくは0.80〜0.90の化学量論的にアミノ基不足とすることで、アミド化反応と同時に一部のβ-ヒドロキシル基とエステル基のエステル交換反応を進行させて、従来用いられてきた4官能硬化剤よりも官能数の多い多官能硬化剤を製造する。
このとき一般式(I)で表される化合物(A)の幹部分のアルキル基の長さ(硬さ)とジ−(2−ヒドロキシアルキル)アミン(B)の構造、仕込み量によって製造できる多官能硬化剤の融点が変動して常温で液状〜固体状のものが得られる。そのうち粉体塗料用硬化剤として常温固体のものを得る組み合わせとしては、(A)のアルキレン基が短く(例えば一般式(I)においてn=5:ピメリン酸誘導体)、かつ(B)が対称構造であるジアルカノールアミン、特にジエタノールアミンの場合には(A)に対する(B)の仕込み量が0.60程度であっても固体物が製造できる。一方(A)のアルキル基が長く(例えば一般式(I)においてn=8:セバシン酸誘導体)、かつ(B)が非対称構造のジ−アルカノールアミン(例えばN−2−ヒドロキシエチル−N−2−ヒドロキシブチルアミン)の場合には(A)に対する(B)の仕込み量がたとえ1.0であっても常温で固体の物は製造できない。一般的に目的とする粉体塗料用硬化剤を製造するには、直鎖ジカルボン酸ジエステル(A)の幹部分がn=7または8のものと組み合わせる場合には、ジ−(2−ヒドロキシアルキル)アミン(B)は対称構造を持つジアルカノールアミンであることが好ましく、ジエタノールアミンであることが特に好ましい。
(A)のエステル基の総モル数に対する(B)のアミノ基の総モル数の割合を0.60〜0.95、好ましくは0.75〜0.92、より好ましくは0.80〜0.90とする事によって目的とする常温で固体である粉体塗料用硬化剤を製造する事が出来る。
Production of curing agent composition (amidation reaction)
A linear dicarboxylic acid diester (A) is reacted with di- (2-hydroxyalkyl) amine (B) to produce a desired curing agent composition. At this time, when the charge ratio of the total number of moles of the amino group of (B) to the total number of moles of the ester group of (A) is 1.0 or more (stoichiometric excess of amino groups), Can be used to obtain a tetrafunctional curing agent having a Bis-di- (2-hydroxyalkyl) amide structure ("primid" curing agent). However, in the present invention, the ratio of the total number of moles of the amino group (B) to the total number of moles of the ester group (A) is 0.60 to 0.95, preferably 0.75 to 0.92, more preferably 0. By making the amino group deficient stoichiometrically in the range of 80 to 0.90, the transesterification reaction of some β-hydroxyl groups and ester groups proceeds simultaneously with the amidation reaction. A polyfunctional curing agent having a higher functional number than that of the functional curing agent is produced.
At this time, the length (hardness) of the alkyl group in the trunk part of the compound (A) represented by the general formula (I), the structure of di- (2-hydroxyalkyl) amine (B), and the amount charged The melting point of the functional curing agent fluctuates to obtain a liquid to solid state at normal temperature. Among them, as a combination for obtaining a solid at room temperature as a curing agent for powder coating, (A) has a short alkylene group (for example, n = 5: pimelic acid derivative in general formula (I)), and (B) has a symmetrical structure. In the case of dialkanolamine, particularly diethanolamine, a solid product can be produced even if the charge amount of (B) to (A) is about 0.60. On the other hand, the alkyl group of (A) is long (for example, n = 8 in the general formula (I): sebacic acid derivative) and (B) is an asymmetrical di-alkanolamine (for example, N-2-hydroxyethyl-N-2). In the case of -hydroxybutylamine), a solid product cannot be produced at room temperature even if the charge amount of (B) to (A) is 1.0. In general, in order to produce a desired curing agent for powder coating, when the trunk part of the linear dicarboxylic acid diester (A) is combined with one having n = 7 or 8, di- (2-hydroxyalkyl) The amine (B) is preferably a dialkanolamine having a symmetric structure, particularly preferably diethanolamine.
The ratio of the total number of moles of the amino group (B) to the total number of moles of the ester group (A) is 0.60 to 0.95, preferably 0.75 to 0.92, more preferably 0.80 to 0. It is possible to produce a powder coating curing agent that is solid at room temperature.

本発明の硬化剤組成物は原料(A)と(B)を混合し加熱する事により(A)のエステル基と(B)のアミノ基をエステル−アミド交換させることにより製造される。これは例えば特開昭51−017970号公報にも記載された公知の工程である。この反応は無溶剤で行ってもよく、両原料をよく溶解する溶媒中で行ってもよいが、粉体塗料に用いる無溶剤硬化剤組成物を得るためには無溶剤で行うほうが好ましい。またこのときアミド化反応の触媒を加えてもよい。用いられる触媒はアミド化を促進するものであれば種類を問わないが、塩基性物質が好ましく、そのようなものとして金属アルコラート、例えばナトリウムメチラートが例として挙げられる。   The hardening | curing agent composition of this invention is manufactured by carrying out ester-amide exchange of the ester group of (A), and the amino group of (B) by mixing and heating raw material (A) and (B). This is a known process described in, for example, Japanese Patent Laid-Open No. 51-017970. This reaction may be performed in the absence of a solvent, or may be performed in a solvent that dissolves both raw materials well. However, in order to obtain a solvent-free curing agent composition for use in a powder coating, it is preferable to perform the reaction without a solvent. At this time, a catalyst for the amidation reaction may be added. The catalyst used is not particularly limited as long as it promotes amidation, but is preferably a basic substance, and examples thereof include metal alcoholates such as sodium methylate.

このとき反応は平衡反応であるのでアミド化を進めるためにアミド化時に生成するアルコールを系外に除く事により反応を進める。このとき化学式(I)に示した直鎖ジカルボン酸ジエステルの末端の炭化水素基が相当するアルコールとして除去されるが反応温度が高いと下式IIIに示した脱離物を伴わないアミド−エステル交換反応がエステル側に寄り、生成物の2−ヒドロキシアルキルアミド構造のヒドロキシル官能基ヒドロキシル官能基が消費され硬化性が損なわれてしまう。(2−ヒドロキシアルキルアミン構造のヒドロキシル官能基は200℃を下回るような低温条件ではカルボン酸と反応しない。)そのため穏やかに反応を進行させることが重要で、反応温度は60〜120℃が好ましく、70〜100℃がより好ましい。   At this time, since the reaction is an equilibrium reaction, in order to proceed with the amidation, the reaction is advanced by removing the alcohol produced during the amidation out of the system. At this time, the hydrocarbon group at the end of the linear dicarboxylic acid diester represented by the chemical formula (I) is removed as the corresponding alcohol, but if the reaction temperature is high, amide-ester exchange without the leaving product represented by the following formula III The reaction is closer to the ester side, the hydroxyl function of the product 2-hydroxyalkylamide structure is consumed, and the curability is impaired. (The hydroxyl functional group of 2-hydroxyalkylamine structure does not react with carboxylic acid under low temperature conditions below 200 ° C.) Therefore, it is important to proceed the reaction gently, and the reaction temperature is preferably 60 to 120 ° C., 70-100 degreeC is more preferable.

Figure 0005148911
(III)
この平衡はアミド側が優勢であるので反応物を溶融状態または固体単離してから固層で熟成する事によりアミド構造体を選択的に得る事が出来る。
Figure 0005148911
(III)
Since this equilibrium is dominant on the amide side, an amide structure can be selectively obtained by aging in a solid layer after the reaction product is melted or solid-isolated.

直鎖ジカルボン酸ジエステル(A)と、ジ−(2−ヒドロキシアルキル)アミン(B)とのアミド生成反応及び式IIIに示すアミド−エステル交換反応はアミン価により追跡できる。   The amide formation reaction between the linear dicarboxylic acid diester (A) and the di- (2-hydroxyalkyl) amine (B) and the amide-ester exchange reaction shown in Formula III can be followed by the amine value.

また反応時に系に加えた触媒は式IIIの平衡反応の触媒としても作用し、得られた硬化剤組成物を粉体塗料に用いた場合、焼付け硬化を行うときに触媒が残存していると式IIIの平衡をエステル側に戻し結果として硬化性を低下させる作用を示す事がある。そのため本製造方法ではまず(A)と(B)によるアミド−エステル交換反応が所望の反応率まで達したとアミン価測定により確認できた時点で触媒を除去または失活させる工程を入れることが好ましい。ここで反応率は任意に設定できるが、一般的には85%以上である事が好ましく、90%以上であることがより好ましい。また触媒を除去する方法は特に限らないが例えば反応混合物を溶剤または水により洗浄する方法や限外ろ過による方法などがある。同様に触媒を失活させる方法も用いる触媒に応じて選ぶ事が出来るが例えば金属アルコラートを用いた場合などはブレンステット酸により中和する方法が簡便である。この場合系のアミン価の測定は加えた触媒量/中和に用いた酸の量により補正される。なお、本発明の系は出発物質としてアミンに対してカルボン酸エステルを過剰に配合しているのでアミン価が下がり易い(反応が早い)ことも利点の一つである。   The catalyst added to the system during the reaction also acts as a catalyst for the equilibrium reaction of formula III. When the obtained curing agent composition is used in a powder coating, the catalyst remains when baking and curing is performed. The equilibrium of formula III may be returned to the ester side, resulting in an effect of reducing curability. For this reason, in this production method, it is preferable to first include a step of removing or deactivating the catalyst when it is confirmed by amine value measurement that the amide-ester exchange reaction by (A) and (B) has reached the desired reaction rate. . Although the reaction rate can be arbitrarily set here, it is generally preferably 85% or more, and more preferably 90% or more. The method for removing the catalyst is not particularly limited, and examples thereof include a method for washing the reaction mixture with a solvent or water and a method for ultrafiltration. Similarly, the method of deactivating the catalyst can be selected according to the catalyst to be used. For example, when a metal alcoholate is used, a method of neutralizing with Brensted acid is simple. In this case, the amine value of the system is corrected by the amount of catalyst added / the amount of acid used for neutralization. One advantage of the system of the present invention is that the carboxylic acid ester is excessively added to the amine as a starting material, so that the amine value tends to decrease (reaction is fast).

アミン価測定により所望の反応率に達した事を確認した後、系は冷却され粘調な溶融状態もしくは固体状態となる。このとき式IIIに示した平衡反応はアミド側が優勢であるので徐々に系は目的とするアミド構造の硬化剤の濃度が高くなってくる。この平衡の移動は非常にゆっくりと進む熟成反応であるので熟成工程として反応容器中で熟成を進める事が硬化剤組成物の汚染や水の吸着等を防止するために好ましい。ここでのアミド/エステルの比率は核磁気共鳴分光法や赤外分光法により追跡する事ができる。但し実用上はアミド構造が対称性があるため結晶性により硬質な固体となるので、系がその後の加工、即ち粉体塗料として用いるための微粒化・粉末化が可能な程度の硬さになった時点で次工程に移ってもよい。   After confirming that the desired reaction rate has been reached by measuring the amine value, the system is cooled to a viscous molten or solid state. At this time, since the equilibrium reaction shown in Formula III is dominant on the amide side, the concentration of the curing agent having the target amide structure gradually increases in the system. Since this equilibrium shift is an aging reaction that proceeds very slowly, it is preferable to proceed with aging in the reaction vessel as an aging step in order to prevent contamination of the curing agent composition, adsorption of water, and the like. The ratio of amide / ester here can be traced by nuclear magnetic resonance spectroscopy or infrared spectroscopy. However, since the amide structure is symmetrical in practice, it becomes a hard solid due to crystallinity, so that the system is hard enough to enable subsequent processing, that is, atomization / powdering for use as a powder coating. You may move on to the next process at that time.

微粒化・粉末化は例えばハンマーミル等の衝撃型粉砕機、ジェットミル等の気流粉砕機等によって粉砕するなどの公知の方法で行う事ができる。   Atomization and pulverization can be performed by a known method such as pulverization by an impact pulverizer such as a hammer mill or an airflow pulverizer such as a jet mill.

本発明の製造方法により製造された硬化化剤組成物は粉末化された後でも熟成がすすみアミド構造の比率が同じか又は徐々に増加する。そのため貯蔵によっても硬化性が低下しない事が特徴である.   In the curing agent composition produced by the production method of the present invention, the ratio of the amide structure is the same or gradually increased after aging even after being powdered. Therefore, it is a feature that the curability does not decrease by storage.

以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。なお、以下、「部」及び「%」はいずれも重量基準によるものとする。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Hereinafter, both “parts” and “%” are based on weight.

実施例1
1000mL四つ口フラスコにジエタノールアミン359.6g(3.42モル)、セバシン酸ジメチル414.5g(1.80モル)及び触媒として28%ナトリウムメトキシドメタノール溶液7.0g(0.036モル)を仕込み、窒素雰囲気下で90℃まで加熱した。白色懸濁液が無色透明液へ変化した後、温度を70℃まで下げ1.5時間撹拌した後、50mmHgまで減圧し脱メタノールを行ないながら70℃で4時間撹拌した。次いで酢酸2.2g(0.036モル)を加え触媒を失活させた後15分撹拌した。フラスコの内容物を冷却することで、残存アミン濃度が0.16ミリモル/g(アミン価=9.0)の白色固体状硬化剤組成物を得た。この白色固体状硬化剤組成物を密封容器に入れ室温で3週間密封貯蔵した後の残存アミン濃度は0.09ミリモル/g(アミン価=5.0)であった。貯蔵後の硬化剤組成物の外観性状に変化は無かった。またその水溶解性は製造直後で12g/100gHO、貯蔵後で10g/100gHOであった。本硬化剤組成物の式IVに従い計算した平均官能基数は4.11であるが、式IIIのアミド−エステル交換反応により2−ヒドロキシアルキルアミド構造の一部はエステル構造となり、その分のヒドロキシル官能基は硬化反応に寄与できない。2−ヒドロキシアルキルアミド構造の減少量、即ち平均官能基数の低下分は残存しているアミンの量から計算することができる。
Example 1
A 1000 mL four-necked flask was charged with 359.6 g (3.42 mol) of diethanolamine, 414.5 g (1.80 mol) of dimethyl sebacate and 7.0 g (0.036 mol) of 28% sodium methoxide methanol solution as a catalyst. And heated to 90 ° C. under a nitrogen atmosphere. After the white suspension changed to a colorless transparent liquid, the temperature was lowered to 70 ° C. and stirred for 1.5 hours, and then the pressure was reduced to 50 mmHg and the mixture was stirred at 70 ° C. for 4 hours while removing methanol. Next, 2.2 g (0.036 mol) of acetic acid was added to deactivate the catalyst, followed by stirring for 15 minutes. By cooling the contents of the flask, a white solid curing agent composition having a residual amine concentration of 0.16 mmol / g (amine number = 9.0) was obtained. The residual amine concentration after this white solid curing agent composition was sealed in a sealed container and stored for 3 weeks at room temperature was 0.09 mmol / g (amine number = 5.0). There was no change in the appearance properties of the curing agent composition after storage. Its water solubility was 12 g / 100 g H 2 O immediately after production and 10 g / 100 g H 2 O after storage. The average number of functional groups calculated according to Formula IV of this curing agent composition is 4.11, but a portion of the 2-hydroxyalkylamide structure becomes an ester structure due to the amide-ester exchange reaction of Formula III, and the hydroxyl functionality corresponding to that portion. The group cannot contribute to the curing reaction. The amount of decrease in 2-hydroxyalkylamide structure, that is, the amount of decrease in the average number of functional groups can be calculated from the amount of remaining amine.

本実施例の場合硬化剤組成物は359.6(ジエタノールアミン)+414.5(セバシン酸ジメチル)−115.3(3.6モルのメタノールが脱離する)=658.8g生成する。3週間貯蔵後のアミン濃度0.09ミリモル/gから計算すると658.8×0.09/1000=0.059モルのエステル構造が存在している。そしてエステル構造1つ当たりで硬化性のある2−ヒドロキシアルキルアミド構造のヒドロキシル官能基が2つ減少する。式IVの誘導過程で述べたとおりこの仕込み配合で生成した硬化剤組成物の分子数は3.42−1.80=1.62モルであるので、硬化剤組成物1分子当たりでは平均して0.059/1.62=0.0364個のエステル構造があり、そのため0.0364×2=0.073個の官能基(2−ヒドロキシアルキルアミド構造のヒドロキシル官能基)が減少している。よって本硬化剤の平均官能基数は4.11−0.07=4.04(個/1分子)となる。   In the case of this example, the curing agent composition yields 359.6 (diethanolamine) +414.5 (dimethyl sebacate) -115.3 (3.6 mol of methanol is released) = 658.8 g. When calculated from the amine concentration of 0.09 mmol / g after storage for 3 weeks, there is 658.8 × 0.09 / 1000 = 0.059 mol of ester structure. Then, the hydroxyl function of the curable 2-hydroxyalkylamide structure is reduced by two per ester structure. As described in the induction process of Formula IV, the number of molecules of the curing agent composition produced by this charge blending is 3.42-1.80 = 1.62 mol, so that it averages per molecule of the curing agent composition. There are 0.059 / 1.62 = 0.0364 ester structures, so that 0.0364 × 2 = 0.073 functional groups (hydroxyl functional groups of 2-hydroxyalkylamide structure) are reduced. Therefore, the average number of functional groups of the present curing agent is 4.11-0.07 = 4.04 (pieces / molecule).

比較例1
1000mL四つ口フラスコにジエタノールアミン378.5g(3.60モル)、セバシン酸ジメチル414.5g(1.80モル)及び触媒として28%ナトリウムメトキシドメタノール溶液7.0g(0.036モル)を仕込み、窒素雰囲気下で90℃まで加熱した。白色懸濁液が無色透明液へ変化した後、温度を70℃まで下げ1.5時間撹拌した。次いで酢酸2.2g(0.036モル)を加え触媒を失活させた後15分撹拌した。フラスコの内容物をアルミニウム皿に移し真空オーブンを用い50mmHgで減圧乾燥することで、残存アミン濃度が0.21ミリモル/g(アミン価=11.8)の白色固体状硬化剤組成物を得た。この白色固体状硬化剤組成物を密封容器に入れ室温で3週間密封貯蔵した後の残存アミン濃度は0.13ミリモル/g(アミン価=7.3)であった。貯蔵後の硬化剤組成物の外観性状に変化は無かった。またその水溶解性は製造直後で11g/100gHO、貯蔵後で10g/100gHOであった。本硬化剤組成物の式IVに従い計算した平均官能基数は4.00である。また上記実施例1と同様にして残存アミン量から補正した貯蔵3週間後の平均官能基数は3.90個である。
Comparative Example 1
A 1000 mL four-necked flask was charged with 378.5 g (3.60 mol) of diethanolamine, 414.5 g (1.80 mol) of dimethyl sebacate and 7.0 g (0.036 mol) of 28% sodium methoxide methanol solution as a catalyst. And heated to 90 ° C. under a nitrogen atmosphere. After the white suspension changed to a colorless transparent liquid, the temperature was lowered to 70 ° C. and stirred for 1.5 hours. Next, 2.2 g (0.036 mol) of acetic acid was added to deactivate the catalyst, followed by stirring for 15 minutes. The contents of the flask were transferred to an aluminum pan and dried under reduced pressure at 50 mmHg using a vacuum oven to obtain a white solid curing agent composition having a residual amine concentration of 0.21 mmol / g (amine number = 11.8). . The residual amine concentration after this white solid curing agent composition was sealed in a sealed container and stored for 3 weeks at room temperature was 0.13 mmol / g (amine number = 7.3). There was no change in the appearance properties of the curing agent composition after storage. Its water solubility was 11 g / 100 g H 2 O immediately after production and 10 g / 100 g H 2 O after storage. The average number of functional groups calculated according to Formula IV of the hardener composition is 4.00. Further, the average number of functional groups after 3 weeks of storage, corrected from the amount of residual amine in the same manner as in Example 1, was 3.90.

実施例2〜8及び比較例2〜4
以下に実質的な製造条件は上記と同様に行い、原料(A)としてアジピン酸ジメチル(一般式(I)におけるn=4)、ピメリン酸ジメチル(n=5)、スベリン酸ジメチル(n=6)、セバシン酸ジメチル(炭素数n=8)、ウンデカン二酸ジメチル(n=9)を用いて(A)のエステル基の総モル数に対する(B)のアミノ基の総モル数の割合を表2に示す割合で実施例2〜8及び比較例2〜4を製造した。なお表中には式IVを用いて原料(A)と(B)の初期配合モル数から計算した平均官能基数、及び3週間貯蔵後の残存アミン量から補正した平均官能基数も記入した。
Examples 2-8 and Comparative Examples 2-4
Substantial production conditions are as described above, and the raw material (A) is dimethyl adipate (n = 4 in the general formula (I)), dimethyl pimelate (n = 5), dimethyl suberate (n = 6). ), Dimethyl sebacate (carbon number n = 8), dimethyl undecanedioate (n = 9), the ratio of the total number of moles of amino groups in (B) to the total number of moles of ester groups in (A) Example 2-8 and Comparative Examples 2-4 were manufactured in the ratio shown in 2. In the table, the average number of functional groups calculated from the initial blending moles of raw materials (A) and (B) using Formula IV and the average number of functional groups corrected from the amount of residual amine after storage for 3 weeks were also entered.

表2

Figure 0005148911
Table 2
Figure 0005148911

残存アミン濃度(ミリモル/g):塩酸を用いた滴定法により決定した。 Residual amine concentration (mmol / g): determined by titration with hydrochloric acid.

硬化剤の評価結果
上記で得た硬化剤組成物の水溶解性及びタック性評価結果を表3に示す。
表3

Figure 0005148911
Evaluation Results of Curing Agent Table 3 shows the evaluation results of water solubility and tackiness of the curing agent composition obtained above.
Table 3
Figure 0005148911

水溶解性:容量200mlのガラス製ビーカーに20℃の純水100gを入れ、静かに撹拌しながら硬化剤を少量ずつ加えていった。不溶物が出るまでに加える事が出来た硬化剤の重量(g)を表に示した。尚同一条件下で、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)アジパミドは80g入れても水溶液は透明であった。 Water solubility : 100 g of pure water at 20 ° C. was put into a glass beaker having a capacity of 200 ml, and the curing agent was added little by little while gently stirring. The table shows the weight (g) of the curing agent that could be added before the insoluble material appeared. Under the same conditions, even when 80 g of N, N, N ′, N′-tetrakis (2-hydroxyethyl) adipamide was added, the aqueous solution was transparent.

硬化剤の不粘着性:合成してから3週間貯蔵後の少量の硬化剤粉末を時計皿に取り、人差し指を押し付けべたつき度合いを評価した
○:さらさらしていて全く指につかない
△:指を押し付けると少量指につくがすぐとれる。
×:ベタベタしていて指に粘着する。
Hardener non-tackiness : A small amount of hardener powder after storage for 3 weeks after synthesis was placed on a watch glass, and the index finger was pressed to evaluate the degree of stickiness. I put it on a small amount of fingers and can take it right away.
X: It is sticky and sticks to a finger.

粉体塗料の製造例1
カルボキシル基含有ポリエステル樹脂(ダイセル・サイテック株式会社製、商品名CRYLCOAT4642−3、酸価33mgKOH/g、ガラス転移点温度62℃)94.4部、上記実施例1で得られた硬化剤組成物5.6部、JR605(テイカ株式会社製、酸化チタン)45.0部、硫酸バリウム100(堺化学工業社製,沈降性硫酸バリウム)10.0部、ニカライトXK−81(日本カーバイド工業社製、表面調整剤)1.0部、ベンゾイン0.5部を混合し、エクストルーダによって溶融混練し、冷却後、アトマイザーによって微粉砕し、150メッシュ篩で濾過してポリエステル樹脂粉体塗料1を製造した。
Powder coating production example 1
94.4 parts of carboxyl group-containing polyester resin (manufactured by Daicel-Cytec Co., Ltd., trade name CRYLCOAT4642-3, acid value 33 mgKOH / g, glass transition temperature 62 ° C.), curing agent composition 5 obtained in Example 1 above .6 parts, JR605 (manufactured by Teika Co., Ltd., titanium oxide) 45.0 parts, barium sulfate 100 (manufactured by Sakai Chemical Industry Co., Ltd., precipitated barium sulfate) 10.0 parts, Nicalite XK-81 (manufactured by Nippon Carbide Industries, Inc.) (Surface conditioner) 1.0 part and 0.5 part of benzoin were mixed, melt-kneaded by an extruder, cooled, finely pulverized by an atomizer, and filtered through a 150 mesh sieve to produce a polyester resin powder coating 1.

粉体塗料の製造例2〜13
ポリエステル樹脂と硬化剤の種類、配合量を表3に従う以外は上記粉体塗料の製造例1と同様にし粉体塗料2〜13を製造した。なお13に用いた硬化剤はPrimidXL552(商品名、EMS社製、N,N,N’,N’−テトラキス(2−ヒドロキシエチル)アジパミド)である。なお、粉体塗料の製造例1〜13において、ポリエステル樹脂のカルボキシル基と硬化剤組成物のヒドロキシ基が等量となるように配合した。
Production Examples 2-13 of Powder Coating
Powder coating materials 2 to 13 were manufactured in the same manner as in the above powder coating manufacturing example 1 except that the types and blending amounts of the polyester resin and the curing agent were in accordance with Table 3. The curing agent used in 13 was PrimidXL552 (trade name, manufactured by EMS, N, N, N ′, N′-tetrakis (2-hydroxyethyl) adipamide). In addition, in Production Examples 1 to 13 of the powder coating material, they were blended so that the carboxyl group of the polyester resin and the hydroxy group of the curing agent composition were equivalent.

表4

Figure 0005148911
Table 4
Figure 0005148911

実施例及び比較例
上記粉体塗料の製造例に従い製造した粉体塗料の耐ブロッキング性及び硬化塗膜の性能を評価した。硬化塗膜の性能評価に用いた試験塗板は上記した粉体塗料をSPCC−SD PB−3118リン酸亜鉛処理鋼板(0.8×70×150mm)に硬化膜厚が60〜80μmになるように静電粉体塗装し、160℃で30分間加熱して作成した。得られたそれぞれの試験塗板について種々の性能試験を行なった。結果を表5に示す。
表5

Figure 0005148911
Examples and Comparative Examples Blocking resistance and performance of cured coatings of powder coatings manufactured according to the above-described powder coating manufacturing examples were evaluated. The test coating plate used for the performance evaluation of the cured coating film was prepared by applying the above powder coating to a SPCC-SD PB-3118 zinc phosphate-treated steel plate (0.8 × 70 × 150 mm) with a cured film thickness of 60 to 80 μm. It was prepared by applying electrostatic powder and heating at 160 ° C. for 30 minutes. Various performance tests were performed on each of the obtained test coated plates. The results are shown in Table 5.
Table 5
Figure 0005148911

塗料の耐ブロッキング性:ポリカップに入れた粉体塗料を40℃×10日間放置後、ポリカップから取り出して塗料の状態を目視及び指触で観察した。
○:貯蔵前と変化なくサラサラとした粉末状。
△:サラサラ感はなく一見固まっているように見えるが、指でさわると
容易に崩れ、直ぐに貯蔵前の状態に戻る。
×:固まりがほぐれず粉体塗料として使用できない。
Blocking resistance of paint : The powder paint placed in a polycup was allowed to stand at 40 ° C. for 10 days, and then taken out from the polycup, and the state of the paint was observed visually and by touch.
○: A powdery form that is smooth and unchanged before storage.
△: It does not feel smooth and seems to be solid at first glance, but it easily collapses when touched with a finger and immediately returns to the state before storage.
X: The mass does not loosen and cannot be used as a powder coating.

塗膜外観:塗膜の外観を目視で評価した。
○:平滑性・ツヤ感が良好な塗膜である。
×:ガタガタ・ザラザラ・ツヤビケなど塗膜外観が劣る。
Appearance of coating film : The appearance of the coating film was visually evaluated.
A: A coating film with good smoothness and gloss.
X: Coating film appearance such as rattling, roughness, and glossiness is inferior.

光沢:JIS K−5600−4−7に従い硬化塗膜の60度鏡面光沢度を測
定した。
Gloss : The 60-degree specular gloss of the cured coating film was measured according to JIS K-5600-4-7.

鉛筆硬度:JIS K−5600−5−4に記載の鉛筆硬度試験に基づいて行った。(破れ法)。 Pencil hardness : Based on the pencil hardness test described in JIS K-5600-5-4. (Broken law).

初期付着:JIS K−5600−5−6に従い、塗膜にカッターを用いて素地まで達する切り込みを1mmの間隔を空けて縦横各6本入れ、24mm巾のセロハンテープによる碁盤目付着試験を行った。
◎:全く剥がれない。
○:剥がれが観測されるが、剥離面積が5%よりも小である。
△:剥がれが観測されるが、剥離面積が5〜15%である。
×:剥がれが観測されるが、剥離面積が15%よりも大である。
Initial adhesion : According to JIS K-5600-5-6, a cut was made in the coating film using a cutter, and 6 incisions reaching the substrate were made at 1 mm intervals both vertically and horizontally, and a cross-cut adhesion test using a 24 mm wide cellophane tape was performed. .
(Double-circle): It does not peel at all.
○: Peeling is observed, but the peeled area is smaller than 5%.
Δ: Peeling is observed, but the peeled area is 5 to 15%.
X: Peeling is observed, but the peeled area is larger than 15%.

耐湿二次付着:試験片を50℃、98〜100%RHの耐湿性試験箱の中に500時間置いた後とり出し、室温にて2時間放置した後、付着性を評価した。付着性の評価方法は初期付着性と同じ。
◎:全く剥がれない。
○:剥がれが観測されるが、剥離面積が5%よりも小である。
△:剥がれが観測されるが、剥離面積が5〜15%である。
×:剥がれが観測されるが、剥離面積が15%よりも大である。
本発明の硬化剤組成物は水溶解性が低くべたつきが無いため粉体塗料として好適に利用する事が出来る。本発明の硬化剤組成物を用いた粉体塗料は硬化性が高くまた硬化後の塗膜の耐湿負荷後の下地付着性が優れている。
Moisture resistance secondary adhesion : The test piece was taken out after being placed in a moisture resistance test box at 50 ° C. and 98 to 100% RH for 500 hours, and left at room temperature for 2 hours, and then the adhesion was evaluated. The evaluation method for adhesion is the same as that for initial adhesion.
(Double-circle): It does not peel at all.
○: Peeling is observed, but the peeled area is smaller than 5%.
Δ: Peeling is observed, but the peeled area is 5 to 15%.
X: Peeling is observed, but the peeled area is larger than 15%.
Since the curing agent composition of the present invention has low water solubility and no stickiness, it can be suitably used as a powder coating. The powder coating using the curing agent composition of the present invention has high curability and excellent base adhesion after moisture resistance loading of the cured coating film.

実施例1で得られた硬化剤組成物のH−NMRチャートを表す図である。1 is a diagram illustrating a 1 H-NMR chart of a curing agent composition obtained in Example 1. FIG. 実施例2で得られた硬化剤組成物のH−NMRチャートを表す図である。3 is a diagram illustrating a 1 H-NMR chart of a curing agent composition obtained in Example 2. FIG.

H−NMRはサンプル濃度0.5重量%の重水溶液で測定したものである。チャートの横軸は化学シフトの値(単位:PPM)縦軸は共鳴スペクトルの強度(単位:無名数)を示す。 1 H-NMR is measured with a heavy aqueous solution having a sample concentration of 0.5% by weight. The horizontal axis of the chart indicates the value of chemical shift (unit: PPM) and the vertical axis indicates the intensity (unit: anonymous number) of the resonance spectrum.

Claims (6)

カルボキシル基含有ポリエステル樹脂、下記特徴の硬化剤組成物を含有する粉体塗料。
一般式(I)で表される直鎖ジカルボン酸ジエステル(A)と、一般式(II)で表されるジ(2−ヒドロキシアルキル)アミン(B)を(A)のエステル基の総モル数に対する(B)のアミノ基の総モル数の割合を0.60〜0.95にてアミド化反応させてなる、1分子あたりの平均官能基数が4よりも大でかつ8よりも小である硬化剤組成物。
Figure 0005148911

(式中Rはそれぞれ同一又は異なって炭素数1〜5の脂肪族炭化水素基を表し、nは5〜8の整数である。)
Figure 0005148911
(式中R及びRは同一であっても異なっていてもよい水素原子または炭素数1〜5の脂肪族炭化水素基を表す。)
A powder coating containing a carboxyl group-containing polyester resin and a curing agent composition having the following characteristics.
The total number of moles of the ester group of (A) from the linear dicarboxylic acid diester (A) represented by the general formula (I) and the di (2-hydroxyalkyl) amine (B) represented by the general formula (II) The average number of functional groups per molecule formed by amidation reaction at a ratio of the total number of moles of amino group (B) to 0.60 to 0.95 is less than 8 and less than 8 Hardener composition.
Figure 0005148911

(In the formula, each R 1 is the same or different and represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and n is an integer of 5 to 8).
Figure 0005148911
(In the formula, R 2 and R 3 represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms which may be the same or different.)
ジ(2−ヒドロキシアルキル)アミン(B)が一般式(II)においてR及びRが同一である対称構造のジアルカノールアミンである請求項1に記載の粉体塗料。 The powder coating material according to claim 1, wherein the di (2-hydroxyalkyl) amine (B) is a dialkanolamine having a symmetrical structure in which R 2 and R 3 are the same in the general formula (II) . 20℃における水溶解度が0〜50g/100gHOである請求項1または2に記載の粉体塗料。 The powder coating material according to claim 1 or 2, wherein the water solubility at 20 ° C is 0 to 50 g / 100 gH 2 O. 下記の製造方法によって得られた硬化剤組成物である請求項1〜3のいずれか1項に記載の粉体塗料。
一般式(I)で表される直鎖ジカルボン酸ジエステル(A)と、一般式(II)で表されるジ(2−ヒドロキシアルキル)アミン(B)を(A)のエステル基の総モル数に対する(B)のアミノ基の総モル数の割合を0.60〜0.95にてアミド化反応させ、1分子あたりの平均官能基数が4よりも大でかつ8よりも小とすることを特徴とする硬化剤組成物の製造方法。
Figure 0005148911

(式中Rはそれぞれ同一又は異なって炭素数1〜5の脂肪族炭化水素基を表し、nは5〜8の整数である。)
Figure 0005148911

(式中R及びRは同一であっても異なっていてもよい水素原子または炭素数1〜5の脂肪族炭化水素基を表す。)
It is a hardening | curing agent composition obtained by the following manufacturing method, The powder coating material of any one of Claims 1-3.
The total number of moles of the ester group of (A) from the linear dicarboxylic acid diester (A) represented by the general formula (I) and the di (2-hydroxyalkyl) amine (B) represented by the general formula (II) The ratio of the total number of moles of the amino group (B) to 0.60 to 0.95, and the average number of functional groups per molecule is larger than 4 and smaller than 8. A method for producing a hardener composition.
Figure 0005148911

(In the formula, each R 1 is the same or different and represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and n is an integer of 5 to 8).
Figure 0005148911

(In the formula, R 2 and R 3 represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms which may be the same or different.)
アミド化反応温度が60〜120℃である請求項4に記載の粉体塗料The powder coating material according to claim 4, wherein the amidation reaction temperature is 60 to 120 ° C. 請求項1〜3のいずれか1項に記載の硬化剤組成物とポリカルボン酸樹脂を含む粉体塗料組成物。 A powder coating composition comprising the curing agent composition according to any one of claims 1 to 3 and a polycarboxylic acid resin.
JP2007097797A 2007-04-03 2007-04-03 Hardener composition and method for producing the same. Active JP5148911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097797A JP5148911B2 (en) 2007-04-03 2007-04-03 Hardener composition and method for producing the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097797A JP5148911B2 (en) 2007-04-03 2007-04-03 Hardener composition and method for producing the same.

Publications (2)

Publication Number Publication Date
JP2008255197A JP2008255197A (en) 2008-10-23
JP5148911B2 true JP5148911B2 (en) 2013-02-20

Family

ID=39979104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097797A Active JP5148911B2 (en) 2007-04-03 2007-04-03 Hardener composition and method for producing the same.

Country Status (1)

Country Link
JP (1) JP5148911B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211307B2 (en) * 2011-03-04 2013-06-12 東洋インキScホールディングス株式会社 Photosensitive composition
JP2013151639A (en) * 2011-12-28 2013-08-08 Toyo Ink Sc Holdings Co Ltd Crosslinkable composition
JP6161122B2 (en) * 2014-01-09 2017-07-12 関西ペイント株式会社 Film formation method for heat exchanger aluminum fins
CN109535024B (en) * 2018-11-27 2021-08-31 黄山华惠科技有限公司 Anti-yellowing beta-hydroxyalkylamide curing agent and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1489485A (en) * 1974-03-25 1977-10-19 Rohm & Haas Method for curing polymers
DE3124885A1 (en) * 1981-06-25 1983-01-13 Bayer Ag, 5090 Leverkusen Novel poly-N,N-hydroxyalkylamides of polybasic carboxylic acids, their preparation and their use as cell openers in the production of elastic polyurethane foams
CA1336112C (en) * 1987-12-30 1995-06-27 Paul Herschel Pettit, Jr. Powder coating composition
US5101073A (en) * 1990-08-27 1992-03-31 Rohm And Haas Company Production of β-hydroxyalkylamides
DE19823925C2 (en) * 1998-05-28 2001-01-11 Inventa Ag Process for the preparation of beta-hydroxyalkylamides

Also Published As

Publication number Publication date
JP2008255197A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
EP1852453B1 (en) Acid functional phosphorus-containing polyester powder compositions and powder coatings made therefrom
EP2085436B1 (en) Acrylic coating powders comprising hydrophobic particles and powder coatings therefrom having filliform corrosion resistance
EP3110894B1 (en) Acrylic resins and powder coating compositions and powder coated substrates including the same
JPH05505841A (en) Coating composition
NZ212803A (en) Water-based paint containing metallic pigment and phosphorus gas-inhibiting agent
JP5148911B2 (en) Hardener composition and method for producing the same.
JP2010236074A (en) Surface treating agent, method of manufacturing plated steel sheet using the surface treating agent, and plated steel sheet
JP6326875B2 (en) Thioether-containing (meth) acrylate derivative and adhesion improver containing the same
EP0548493B1 (en) Aqueous epoxy resin composition
WO2015186617A1 (en) Thioether-containing (meth)acrylate derivative and adhesion improver containing same
JP2011136985A (en) Thioether-containing alkoxysilane derivative and use thereof
JP2011099152A (en) Rust preventive agent, rust preventive coating film, and surface-treated metal material
JP5671885B2 (en) Adhesion improver
JP2003155454A (en) Aqueous coating agent for steel, coating method, and coated steel
EP0024119A1 (en) Chemically modified imidazole curing catalysts for epoxy resins and powder coatings containing them
KR20140039758A (en) Adhesion promoter composition for coating and a coating composition including the same
EP3430069B1 (en) Hardener composition for epoxy resin based coating compositions, process for their preparation and use thereof
JPH04202481A (en) Composition for treating metal surface
JP2012197233A (en) Thioether-containing alkoxysilane derivative, and application thereof
JP2009298925A (en) Thermosetting powder coating composition and coated article
JPH11124544A (en) Metal surface treatment composition and surface-treated metal plate
US3415779A (en) Thermocurable precondensates from polyepoxy compounds and aromatic amines and process for their manufacture
JPH10204329A (en) Powder epoxy resin coating composition
JP2000109728A (en) Powder coating composition capable of being cured at wide baking temperature range and its coating application
JP3646320B2 (en) Thermal latent acid catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R150 Certificate of patent or registration of utility model

Ref document number: 5148911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250