EP0956173B1 - Metal powder granulates, method for their production and use of the same - Google Patents

Metal powder granulates, method for their production and use of the same Download PDF

Info

Publication number
EP0956173B1
EP0956173B1 EP96939034A EP96939034A EP0956173B1 EP 0956173 B1 EP0956173 B1 EP 0956173B1 EP 96939034 A EP96939034 A EP 96939034A EP 96939034 A EP96939034 A EP 96939034A EP 0956173 B1 EP0956173 B1 EP 0956173B1
Authority
EP
European Patent Office
Prior art keywords
metal powder
granulation
granulated
binder
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96939034A
Other languages
German (de)
French (fr)
Other versions
EP0956173A1 (en
Inventor
Matthias HÖHNE
Benno Gries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of EP0956173A1 publication Critical patent/EP0956173A1/en
Application granted granted Critical
Publication of EP0956173B1 publication Critical patent/EP0956173B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/148Agglomerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to metal powder granules composed of one or more the metals Co, Cu, Ni, W and Mo, a process for its production as well as its use.
  • Granules of the metals Co, Cu, Ni, W and Mo have a variety of uses as sintered materials.
  • copper metal granules suitable for making copper sliding contacts for motors tungsten granules find possible uses for the production of W / Cu drinking contacts, Ni and Mo granules can be used for corresponding semi-finished product applications.
  • Cobalt metal powder granules are used as binder components in Composite sintered bodies e.g. Hard metals and diamond tools.
  • DE-A 43 43 594 discloses that free-flowing metal powder granules by atomizing and sieving suitable grain areas can. However, these granules are for the manufacture of diamond tools not suitable.
  • EP-A-399 375 describes the production of a free-flowing tungsten carbide-cobalt metal powder granulate.
  • the fine components are the starting components Powder agglomerated together with a binder and a solvent.
  • the binder is then removed thermally and the agglomerate, in order to obtain the desired flowability, at 2500 ° C. in Aftertreated plasma.
  • Fine cobalt metal powders can be made using this process but do not granulate, because at temperatures above the melting point processing problems similar to those of processing atomized powders occur.
  • EP-A 0 659 508 describes the production of metal powder granules general formula RFeB or RCo, where R is for rare earth metals or compounds, B stands for boron and Fe for iron. After that, first an alloy of the components and these by grinding to the desired fineness brought. Then binders and solvents are added and the Slurry dried in a spray dryer. Disadvantage of this method - especially for the production of diamond tools - is that initially the Metals are alloyed and by melting fine cobalt metal powder their characteristic properties, as described in DE-A 43 43 594, lose. It is therefore the most suitable for the production of cobalt metal powder granules State of the art, e.g.
  • the granules obtained in this way have a rounded grain shape.
  • the surface is relatively dense with no large pores or gas outlet openings.
  • the bulk density determined according to ASTM B 329 is relatively high at 2.0-2.4 g / cm 3 (Table 2). 1 shows the scanning electronic (SEM) image of a commercially available granulate from Eurotungstene, Grenoble France, in FIG. 2 that of a commercially available granulate from Hoboken Overpelt, Belgium.
  • SEM scanning electronic
  • the compression behavior can be described quantitatively by measuring the compression factor F comp .
  • F comp ( ⁇ p - ⁇ O ) / ⁇ p with ( ⁇ 0 ), the bulk density in g / cm 3 of the cobalt metal powder granulate in the original state and ( ⁇ p ) the density in g / cm 3 after pressing.
  • Binder used granules remain in the granules (see Table 1).
  • binder is understood to mean a film-forming substance which, if appropriate, is dissolved in a solvent and is added to the starting components in a suitable granulation process in such a way that the powder surface is wetted, or if appropriate after removal of the solvent, by forming a surface film on the primary grains these are held together. This produces granules of sufficient mechanical strength.
  • substances can also be used as binders, which ensure the mechanical strength of the granulate particles through capillary forces.
  • the heating-up time can be extended. This can be a Reduce production by up to 25%.
  • the heating times not prolonged, carbon nests are observed in the hot-pressed segments through cracking processes of the binders. This often leads to one significant deterioration in tool quality.
  • Another disadvantage is the use of organic solvents, which after the granulation are carefully removed by evaporation. First of all, that is Removal of the solvents by the thermal treatment is expensive.
  • organic solvents has significant disadvantages with regard to environmental compatibility, plant safety and the energy balance. The Working with organic solvents often requires considerable equipment Expenditure on suction and disposal facilities, as well as on filters to prevent the emission of organic solvents during granulation.
  • the systems must be explosion-proof, which in turn increases investment costs.
  • a binder-free metal powder granulate which consists of one or more of the metals Co, Cu, Ni, W and Mo, with a maximum of 10% by weight ⁇ 50 ⁇ m according to ASTM B214 and the total carbon content less than 0. 1 wt .-%, particularly preferably less than 400 ppm.
  • This binder-free metal powder granulate is the subject of this invention.
  • the surface and grain shape of the product according to the invention has been significantly optimized.
  • 3 shows the SEM image of the metal powder granules according to the invention using the example of a cobalt metal powder granules according to the invention. It has a cracked, jagged structure that facilitates the formation of positive connections.
  • the granulate according to the invention is very porous. This significantly reduces the resistance to deformation during cold pressing.
  • the porous structure is reflected in the bulk weight.
  • the cobalt metal powder granulate preferably has a low bulk density between 0.5 to 1.5 g / cm 3 , determined according to ASTM B 329. In a particularly preferred embodiment, it has a compression factor F comp of at least 60% and at most 80%. This high compression factor leads to excellent compressibility.
  • cold pressed sintered bodies can be produced at a pressure of 667 kg / cm 2 , which have excellent mechanical edge stability.
  • Table 2 below shows the bulk density of the product according to the invention in its original state ( ⁇ 0 ), the density after pressing ( ⁇ p ) and the compression factor F comp in comparison to commercially available granules.
  • Typical bulk density in original condition ( ⁇ 0 ), after pressing with 667 kg / cm 2 ( ⁇ p ) and the compression factor of the cobalt metal powder granulate according to the invention in comparison to commercially available products Manufacturer HCST Goslar / Germany EUROTUNGSTENE Grenoble / France HOBOKEN Overpelt / Belgium HOBOKEN Overpelt / Belgium product cobalt metal powder granules according to the invention Cobalt metal powder granulate ultrafine Cobalt metal powder granules extrafein soft granulated Cobalt metal powder granules extrafine hard granulated Bulk density ( ⁇ 0 ) (g / cm 3 ) 1.03 2.13 2.4 2.4 Compression density ( ⁇ p ) (g / cm 3 ) 3.
  • the green compacts were produced in a uniaxial, hydraulic press with a load of 2.5 t and a square ram area of 2.25 cm 2 and a weight of 6 g
  • This invention further relates to a method for producing the metal powder granules according to the invention. It is a process for the production of binder-free metal powder granules from one or several of the metals Co, Cu, Ni, W and Mo, being the starting component a metal compound from one or more of the groups of metal oxides, hydroxides, carbonates, bicarbonates, oxalates, acetates and formates with Binder and optionally additionally with 40% - 80% solvent is granulated to the solids content and the granules thermally by addition in a hydrogen-containing gas atmosphere to the metal powder granules is reduced, the binder and optionally the solvent is removed without residue.
  • the method according to the invention thus opens up a possibility of solvents to use, which consist of organic compounds and / or water can, being particularly preferred, but not limited to, water as Solvent is used.
  • solvents consist of organic compounds and / or water can, being particularly preferred, but not limited to, water as Solvent is used.
  • the added binders are either without solvent or dissolved in the solvent or suspended or used emulsified.
  • the binders and solvents can be inorganic or be organic compounds consisting of one or more of the elements carbon, Hydrogen, oxygen, nitrogen and sulfur built up and free of Halogens and, with the exception of traces that are unavoidable due to manufacture, free of metals are.
  • binders and solvents can also be added Temperatures of less than 650 ° C are removed thermally without residue.
  • a binder one or more of the following compounds are particularly suitable: Paraffin oils, paraffin waxes, polyvinyl acetates, polyvinyl alcohols, polyacrylamides, Methyl cellulose, glycerin, polyetylene glycols, linseed oils, polyvinyl pyridine.
  • the use of polyvinyl alcohol as a binder is particularly preferred and water as a solvent.
  • the granulation of the starting component is achieved according to the invention in that the granulations as plates, build-up, Spray dryer, fluidized bed, press granulation or granulation in high speed Mixers is carried out.
  • the method according to the invention is particularly preferably carried out continuously or discontinuously in a ring mixer granulator.
  • granules are particularly preferably subsequently in a hydrogen containing gas atmosphere at temperatures from 400 ° C to 1100 ° C, especially from 400 - 650 ° C, reduced to metal powder granules.
  • a hydrogen containing gas atmosphere at temperatures from 400 ° C to 1100 ° C, especially from 400 - 650 ° C, reduced to metal powder granules.
  • Binder and, if necessary, the solvent are removed without residue.
  • Another embodiment variant of the method according to the invention consists in that the granulate after the granulation step first at temperatures of 50 ° C is dried to 400 ° C and then at temperatures from 400 ° C to 1100 ° C in a hydrogen-containing gas atmosphere to the metal powder granulate is reduced.
  • the metal powder granules according to the invention are ideal for Manufacture of sintered and composite sintered bodies. Subject of this invention is thus also the use of the metal powder granules according to the invention as Binder component in sintered bodies or composite sintered bodies made of hard powder and / or diamond powder and binders.
  • the compression factor F comp was determined with the aid of a uniaxial, hydraulic press with a load of 2.5 t with a press ram area of 2.25 m 2 and a weight of 6 g.
  • Properties of the granules containing cobalt described in the examples example Total carbon content (ppm) Bulk density (g / cm3) Sieve analysis according to ASTM B 214 (%) + 1000 ⁇ m - 1000 ⁇ m + 50 ⁇ m - 50 ⁇ m 1 200 1.4 3.4 90.5 6.1 2 360 1.2 6.9 91.0 2.1 3rd 310 0.8 4.5 89.9 5.6 4th 80 1.0 0.2 96.1 3.7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Glanulating (AREA)

Abstract

PCT No. PCT/EP96/04983 Sec. 371 Date May 27, 1998 Sec. 102(e) Date May 27, 1998 PCT Filed Nov. 14, 1996 PCT Pub. No. WO97/19777 PCT Pub. Date Jun. 5, 1997The invention concerns metal powder granulates comprising one or a plurality of the metals Co, Cu, Ni, W and Mo. The invention further concerns a method for the production of these granulates and the use thereof. The production method is characterized in that a metal compound comprising one or a plurality of the groups comprising oxides, hydroxides, carbonates, hydrogenocarbonates, oxalates, acetates, formiates with binder and optionally in addition between 40 and 80% solvent, relative to the solids content, is granulated as the starting component, and the granulates are thermally reduced in a hydrogen-containing gaseous atmosphere to form the metal powder granulates, the binder and the solvent, if used, being removed completely.

Description

Die vorliegende Erfindung betrifft ein Metallpulver-Granulat aus einem oder mehreren der Metalle Co, Cu, Ni, W und Mo, ein Verfahren zu seiner Herstellung sowie dessen Verwendung.The present invention relates to metal powder granules composed of one or more the metals Co, Cu, Ni, W and Mo, a process for its production as well as its use.

Granulate der Metalle Co, Cu, Ni, W und Mo haben vielfältige Verwendungsmöglichkeiten als Sinterwerkstoffe. Beispielsweise sind Kupfermetallgranulate geeignet, um Kupferschleif-kontakte für Motoren herzustellen, Wolframgranulate finden Einsatzmöglichkeiten zur Herstellung von W/Cu-Tränkkontakten, Ni- und Mo-Granulate können für entsprechende Halbzeuganwendungen eingesetzt werden. Kobaltmetallpulver-Granulate finden Verwendung als Bindemittelkomponenten in Verbundsinterkörpern z.B. Hartmetallen und Diamantwerkzeugen.Granules of the metals Co, Cu, Ni, W and Mo have a variety of uses as sintered materials. For example, copper metal granules suitable for making copper sliding contacts for motors, tungsten granules find possible uses for the production of W / Cu drinking contacts, Ni and Mo granules can be used for corresponding semi-finished product applications. Cobalt metal powder granules are used as binder components in Composite sintered bodies e.g. Hard metals and diamond tools.

In der DE-A 43 43 594 wird offenbart, daß freifließende Metallpulvergranulate durch Verdüsen und Aussieben geeigneter Kornbereiche hergestellt werden können. Diese Granulate sind jedoch für die Herstellung von Diamantwerkzeugen nicht geeignet.DE-A 43 43 594 discloses that free-flowing metal powder granules by atomizing and sieving suitable grain areas can. However, these granules are for the manufacture of diamond tools not suitable.

Die EP-A-399 375 beschreibt die Herstellung eines freifließenden Wolframcarbid-Kobaltmetallpulver-Granulats. Als Ausgangskomponenten werden die feinen Pulver mit einem Bindemittel und einem Lösungsmittel zusammen agglomeriert. In einem weiteren Verfahrensschritt wird dann das Bindemittel thermisch entfernt und das Agglomerat, um die gewünschte Fließfähigkeit zu erhalten, bei 2500°C im Plasma nachbehandelt. Feine Kobaltmetallpulver lassen sich nach diesem Verfahren aber nicht granulieren, da bei Temperaturen oberhalb des Schmelzpunktes ähnliche Verarbeitungsprobleme wie sie bei der Verarbeitung verdüster Pulver auftreten.EP-A-399 375 describes the production of a free-flowing tungsten carbide-cobalt metal powder granulate. The fine components are the starting components Powder agglomerated together with a binder and a solvent. In a further process step, the binder is then removed thermally and the agglomerate, in order to obtain the desired flowability, at 2500 ° C. in Aftertreated plasma. Fine cobalt metal powders can be made using this process but do not granulate, because at temperatures above the melting point processing problems similar to those of processing atomized powders occur.

Aus der DE-A 44 31 723 geht hervor, daß Pasten aus Oxidverbindungen erhalten werden können, wenn wasserverdünnbare, nichtionogene rheologische Additive zugemischt werden. Diese Additive können thermisch entfernt werden und auf diese Weise feste Schichten auf Substraten hergestellt werden. Dieses Verfahren zielt jedoch darauf ab, daß die Substrate mit feinteiligen, völlig agglomeratfreien Teilchen beschichtet werden. DE-A 44 31 723 shows that pastes are obtained from oxide compounds when water-dilutable, non-ionic rheological additives be added. These additives can be removed thermally and on in this way solid layers can be produced on substrates. This method aims however that the substrates with fine-particle, completely agglomerate-free Particles are coated.

Die EP-A 0 659 508 beschreibt die Herstellung von Metallpulvergranulaten der allgemeinen Formel RFeB bzw. RCo, wobei R für Seltenerdmetalle oder -Verbindungen, B für Bor und Fe für Eisen steht. Hiernach wird zunächst eine Legierung der Komponenten hergestellt und diese durch Mahlen auf die gewünschte Feinheit gebracht. Anschließend werden Binde- und Lösungsmittel zugegeben und die Ausschlämmung in einem Sprühtrockner getrocknet. Nachteil dieses Verfahrens - insbesondere für die Herstellung von Diamantwerkzeugen - ist, daß zunächst die Metalle legiert werden und durch das Aufschmelzen feine Kobaltmetallpulver ihre charakteristischen Eigenschaften, wie in der DE-A 43 43 594 beschrieben, verlieren. Für die Herstellung von Kobaltmetallpulver-Granulaten ist es daher der Stand der Technik, der z.B. aus den Prospekten über die Granuliermaschine G 10 der Firma Dr. Fritsch KG, Fellbach in Deutschland, oder den Solidprozessor der Firma PK-Niro in Soeborg/Dänemark zu entnehmen ist, das feine Kobaltmetallpulver mit Bindemitteln sowie organischen Lösungsmitteln zu versetzen und in geeigneten Granuliereinrichtungen entsprechende Granulate zu erzeugen. Die Lösungsmittel werden nach dem Granulieren vorsichtig durch Abdampfen entfernt, aber die Bindemittel verbleiben im Granulat und beeinflussen die Eigenschaften stark.EP-A 0 659 508 describes the production of metal powder granules general formula RFeB or RCo, where R is for rare earth metals or compounds, B stands for boron and Fe for iron. After that, first an alloy of the components and these by grinding to the desired fineness brought. Then binders and solvents are added and the Slurry dried in a spray dryer. Disadvantage of this method - especially for the production of diamond tools - is that initially the Metals are alloyed and by melting fine cobalt metal powder their characteristic properties, as described in DE-A 43 43 594, lose. It is therefore the most suitable for the production of cobalt metal powder granules State of the art, e.g. from the brochures on the granulating machine G 10 from Dr. Fritsch KG, Fellbach in Germany, or the solid processor of PK-Niro in Soeborg / Denmark shows the fine cobalt metal powder to mix with binders and organic solvents and in to produce suitable granulating devices suitable granules. The solvents are carefully removed by evaporation after granulation, but the binders remain in the granules and influence the properties strong.

Die so erhaltenen Granulate weisen eine abgerundete Kornform aus. Die Oberfläche ist verhältnismäßig dicht ohne große Poren oder Gasaustrittsöffnungen. Das Schüttgewicht ermittelt nach ASTM B 329 ist mit 2,0 - 2,4 g/cm3 (Tabelle 2) verhältnismäßig hoch. In Fig. 1 ist die rasterelektronische (REM)-Aufnahme eines handelsüblichen Granulats der Firma Eurotungstene, Grenoble Frankreich, in Fig. 2 die eines handelsüblichen Granulats der Firma Hoboken Overpelt, Belgien abgebildet. Die abgerundete Kornform sowie die hohen Schüttdichten führen zwar zu den gewünschten, verbesserten Fließeigenschaften des Kobalts, ergeben in der Praxis jedoch nicht unerhebliche Verarbeitungsprobleme.The granules obtained in this way have a rounded grain shape. The surface is relatively dense with no large pores or gas outlet openings. The bulk density determined according to ASTM B 329 is relatively high at 2.0-2.4 g / cm 3 (Table 2). 1 shows the scanning electronic (SEM) image of a commercially available granulate from Eurotungstene, Grenoble France, in FIG. 2 that of a commercially available granulate from Hoboken Overpelt, Belgium. The rounded grain shape and the high bulk densities lead to the desired, improved flow properties of the cobalt, but in practice they pose considerable processing problems.

Zum Beispiel müssen relativ hohe Preßkräfte beim Kaltpressen aufgewandt werden, um Grünlinge ausreichender Festigkeit und Kantenstabilität zu erhalten. Dies ist dadurch begründet, daß bei einer sphäischen oder abgerundeten Partikelkornform die für die Festigkeit der Grünlinge wichtige Ausbildung von formschlüssigen Verbindungen, d.h. vereinfacht ausgedrückt das Verhaken der einzelnen Partikel erschwert wird. Gleichzeitig bewirkt eine dichte geschlossene Struktur eine Erhöhung des Verformungswiderstands. Beide Faktoren führen zu der Erhöhung der notwendigen Preßkräfte beim Kaltpressen. Dies kann in der Praxis jedoch einen steigenden Verschleiß der Kaltpreßformen, d.h. einer geringeren Haltbarkeit der Kaltpreßformen bewirken, was wiederum zu erhöhten Produktionskosten führt.For example, relatively high press forces have to be applied during cold pressing in order to obtain green compacts with sufficient strength and edge stability. This is due to the fact that with a spherical or rounded particle shape the formation of positive locking, which is important for the strength of the green compacts Connections, i.e. to put it simply, the hooking of the individual particles is difficult. At the same time, a tight closed Structure an increase in deformation resistance. Both factors lead to the increase in the necessary pressing forces during cold pressing. This can be done in the In practice, however, there is increasing wear on the cold dies, i.e. a lesser Durability of the cold press molds result, which in turn leads to increased production costs leads.

Quantitativ läßt sich das Preßverhalten durch die Messung des Verdichtungsfaktor Fkomp beschreiben. Für Fkomp gilt: Fkomp = (ρp - ρo) / ρp mit (ρ0), der Schüttdichte in g/cm3 des Kobaltmetallpulvergranulats im Originalzustand sowie (ρp) der Dichte in g/cm3 nach dem Verpressen.The compression behavior can be described quantitatively by measuring the compression factor F comp . The following applies to F comp : F comp = (ρ p - ρ O ) / ρ p with (ρ 0 ), the bulk density in g / cm 3 of the cobalt metal powder granulate in the original state and (ρ p ) the density in g / cm 3 after pressing.

Der gravierendste Nachteil besteht jedoch darin, daß die bei der Herstellung der Granulate verwendeten Bindemittel im Granulat verbleiben (siehe Tabelle 1).The most serious disadvantage, however, is that the Binder used granules remain in the granules (see Table 1).

Unter Binder wird im folgenden eine filmbildende Substanz verstanden, die gegebenenfalls in einem Lösungsmittel gelöst wird und in einem geeigneten Granulierverfahren so den Ausgangskomponenten zugegeben wird, daß die Pulveroberfläche benetzt wird, bzw. gegebenenfalls nach dem Entfernen des Lösungsmittels, durch Ausbilden eines Oberflächenfilms auf den Primärkörnern diese zusammengehalten werden. Hierdurch entstehen Granulate ausreichender mechanischer Festigkeit. Alternativ kommen auch Substanzen als Binder in Betracht, die durch Kapilarkräfte für die mechanische Festigkeit der Granulat-Teilchen sorgen. Typische Gehalte an Kohlenstoff aus dem Bindemittel in handelsüblichen Kobaltmetallpulver-Granulaten EUROTUNGSTENE Grenoble / Frankreich HOBOKEN Overpelt / Belgien HOBOKEN Overpelt / Belgien Produkt Co ultrafine granulated Co extrafine soft granulate Co extrafine hard granulate Kohlenstoffgehalt ca. 1,5 % ca. 0,98 % ca. 0,96 % In the following, binder is understood to mean a film-forming substance which, if appropriate, is dissolved in a solvent and is added to the starting components in a suitable granulation process in such a way that the powder surface is wetted, or if appropriate after removal of the solvent, by forming a surface film on the primary grains these are held together. This produces granules of sufficient mechanical strength. As an alternative, substances can also be used as binders, which ensure the mechanical strength of the granulate particles through capillary forces. Typical levels of carbon from the binder in commercial cobalt metal powder granules EUROTUNGSTENE Grenoble / France HOBOKEN Overpelt / Belgium HOBOKEN Overpelt / Belgium product Co ultrafine granulated Co extrafine soft granules Co extrafine hard granules Carbon content 1.5% 0.98% 0.96%

Werden aus diesen Kobaltmetallpulver-Granulaten beispielsweise mit der am häufigsten angewandten Heißpreßtechnik hergestellt, so muß, um den organischen Binder restlos zu entfernen, die Aufheizzeit verlängert werden. Dies kann eine Produktionseinbuße von bis zu 25 % bewirken. Werden hingegen die Aufheizzeiten nicht verlängert, so beobachtet man in den heißgepreßten Segmenten Kohlenstoffnester durch Crackprozesse der Bindemittel. Dies führt häufig zu einer deutlichen Verschlechterung der Werkzeugqualität.Are these cobalt metal powder granules, for example with the Most commonly used hot press technology manufactured, so must to the organic To remove the binder completely, the heating-up time can be extended. This can be a Reduce production by up to 25%. However, the heating times not prolonged, carbon nests are observed in the hot-pressed segments through cracking processes of the binders. This often leads to one significant deterioration in tool quality.

Ein weiterer Nachteil liegt in der Verwendung organischer Lösungsmittel, die nach dem Granulieren vorsichtig durch Abdampfen entfernt werden. Zunächst ist das Entfernen der Lösungsmittel durch die thermische Behandlung kostenintensiv. Zusätzlich hat die Verwendung organischer Lösungsmittel wesentliche Nachteile bzgl. der Umweltverträglichkeit, der Anlagensicherheit und der Energiebilanz. Das Arbeiten mit organischen Lösungsmitteln erfordert häufig einen erheblichen apparativen Aufwand an Absaug- und Entsorgungseinrichtungen, sowie an Filtern, um die Emission organischer Lösungsmittel bei der Granulation zu verhindern. Ein weiterer Nachteil besteht darin, daß die Anlagen explosionsgeschützt sein müssen, was wiederum die Investitionskosten erhöht.Another disadvantage is the use of organic solvents, which after the granulation are carefully removed by evaporation. First of all, that is Removal of the solvents by the thermal treatment is expensive. In addition the use of organic solvents has significant disadvantages with regard to environmental compatibility, plant safety and the energy balance. The Working with organic solvents often requires considerable equipment Expenditure on suction and disposal facilities, as well as on filters to prevent the emission of organic solvents during granulation. On another disadvantage is that the systems must be explosion-proof, which in turn increases investment costs.

Die Nachteile beim Arbeiten mit organischen Lösungsmitteln können theoretisch dadurch vermieden werden, daß das Bindemittel in Wasser gelöst werden. Die feinen Kobaltmetallpulver werden in diesem Fall jedoch teilweise oxidiert und dadurch unbrauchbar.The disadvantages when working with organic solvents can theoretically can be avoided by dissolving the binder in water. The In this case, however, fine cobalt metal powders are partially oxidized and thereby unusable.

Es ist nun Aufgabe dieser Erfindung, ein Metallpulver-Granulat zur Verfügung zu stellen, welches die Nachteile der beschriebenen Pulver nicht aufweist.It is an object of this invention to provide a metal powder granulate make, which does not have the disadvantages of the powder described.

Es ist gelungen, ein binderfreies Metallpulver-Granulat bereitzustellen, das aus einem oder mehreren der Metalle Co, Cu, Ni, W und Mo besteht, wobei gemäß ASTM B214 maximal 10 Gew.-% < 50 µm sind und der Gesamtkohlenstoffgehalt weniger als 0,1 Gew.-%, besonders bevorzugt weniger als 400 ppm beträgt. Dieses Bindemittel-freie Metallpulvergranulat ist Gegenstand dieser Erfindung Desweiteren ist in dem erfindungsgemäßen Produkt die Oberfläche und Kornform wesentlich optimiert worden. Fig. 3 zeigt die REM-Aufnahme des erfindungsgemäßen Metallpulvergranulat am Beispiel eines erfindungsgemäßen Kobaltmetallpulvergranulats. Es weist eine rissige, zerklüftete Struktur auf, die die Ausbildung von formschlüssigen Verbindungen erleichtert. Desweiteren ist aus der REM Aufnahme ersichtlich, daß das erfindungsgemäße Granulat sehr porös ist. Hierdurch wird der Verformungswiderstand beim Kaltpressen deutlich verringert. Die poröse Struktur spiegelt sich in dem Schüttgewicht wieder. Das Kobaltmetallpulvergranulat hat bevorzugt ein niedriges Schüttgewicht zwischen 0,5 bis 1,5 g/cm3, ermittelt gemäß ASTM B 329. In einer besonders bevorzugten Ausführungsform weist es einen Verdichtungsfaktor Fkomp von mindestens 60 % und maximal 80 % auf. Dieser hohe Verdichtungsfaktor führt zu einer herausragenden Verpreßbarkeit. So lassen sich beispielsweise bei einem Druck von 667 kg/cm2 kaltgepreßte Sinterkörper herstellen, die eine hervorragende mechanische Kantenstabilität aufweisen.It has been possible to provide a binder-free metal powder granulate which consists of one or more of the metals Co, Cu, Ni, W and Mo, with a maximum of 10% by weight <50 μm according to ASTM B214 and the total carbon content less than 0. 1 wt .-%, particularly preferably less than 400 ppm. This binder-free metal powder granulate is the subject of this invention. Furthermore, the surface and grain shape of the product according to the invention has been significantly optimized. 3 shows the SEM image of the metal powder granules according to the invention using the example of a cobalt metal powder granules according to the invention. It has a cracked, jagged structure that facilitates the formation of positive connections. Furthermore, it can be seen from the SEM picture that the granulate according to the invention is very porous. This significantly reduces the resistance to deformation during cold pressing. The porous structure is reflected in the bulk weight. The cobalt metal powder granulate preferably has a low bulk density between 0.5 to 1.5 g / cm 3 , determined according to ASTM B 329. In a particularly preferred embodiment, it has a compression factor F comp of at least 60% and at most 80%. This high compression factor leads to excellent compressibility. For example, cold pressed sintered bodies can be produced at a pressure of 667 kg / cm 2 , which have excellent mechanical edge stability.

In der folgenden Tabelle 2 sind die Schüttdichte des erfindungsgemäßen Produktes im Originalzustand (ρ0), die Dichte nach dem Verpressen (ρp) sowie der Verdichtungsfaktor Fkomp im Vergleich zu handelsüblichen Granulaten aufgeführt. Typische Schüttdichte Originalzustand (ρ0), nach dem Verpressen mit 667 kg/cm2p) sowie der Verdichtunsfaktor vom erfindungsgemäßen Kobaltmetallpulvergranulat im Vergleich zu handelsüblichen Produkten Hersteller HCST Goslar / Deutschland EUROTUNGSTENE Grenoble / Frankreich HOBOKEN Overpelt / Belgien HOBOKEN Overpelt / Belgien Produkt erfindungsgemäßes Kobaltmetallpulver-Granulat Kobaltmetallpuler-Granulat ultrafine Kobaltmetallpulver-Granulat extrafein soft granulated Kobaltmetallpulver-Granulat extrafine hard granulated Schüttdicht (ρ0) (g/cm3) 1,03 2,13 2,4 2,4 Preßdichte (ρp) (g/cm3) 3,45 4,31 4,69 4,79 Verdichtungsfaktor Fkomp (%) 70,1 50,6 48,8 49,8 Beurteilung des Formkörpers stabil, ohne Kantenausbruch vermindete Kantenstabilität deutlichverminderte Kantenstabilität geringe Kantenstabilität Table 2 below shows the bulk density of the product according to the invention in its original state (ρ 0 ), the density after pressing (ρ p ) and the compression factor F comp in comparison to commercially available granules. Typical bulk density in original condition (ρ 0 ), after pressing with 667 kg / cm 2p ) and the compression factor of the cobalt metal powder granulate according to the invention in comparison to commercially available products Manufacturer HCST Goslar / Germany EUROTUNGSTENE Grenoble / France HOBOKEN Overpelt / Belgium HOBOKEN Overpelt / Belgium product cobalt metal powder granules according to the invention Cobalt metal powder granulate ultrafine Cobalt metal powder granules extrafein soft granulated Cobalt metal powder granules extrafine hard granulated Bulk density (ρ 0 ) (g / cm 3 ) 1.03 2.13 2.4 2.4 Compression density (ρ p ) (g / cm 3 ) 3.45 4.31 4.69 4.79 Compression factor F comp (%) 70.1 50.6 48.8 49.8 Assessment of the molded body stable, without edge break reduced edge stability significantly reduced edge stability low edge stability

Die Grünlinge wurden in einer uniaxialen, hydraulischen Presse mit 2,5 t Last bei einer quadratischen Preßstempelfläche von 2,25 cm2 und 6 g Einwaage hergestelltThe green compacts were produced in a uniaxial, hydraulic press with a load of 2.5 t and a square ram area of 2.25 cm 2 and a weight of 6 g

Gegenstand dieser Erfindung ist weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Metallpulvergranulate. Es handelt sich hierbei um ein Verfahren zur Herstellung von binderfreien Metallpulvergranulaten aus einem oder mehreren der Metalle Co, Cu, Ni, W und Mo, wobei als Ausgangskomponente eine Metallverbindung aus einer oder mehreren der Gruppen der Metalloxide, -hydroxide, -carbonate, -hydrogencarbonate, -oxalate, -acetate und -formiate mit Bindemittel und gegebenenfalls zusätzlich mit 40 % - 80 % Lösungsmittel, bezogen auf den Feststoffgehalt granuliert wird und das Granulat thermisch durch Zugabe in einer Wasserstoff enthaltenden Gasatmosphäre zum Metallpulver-Granulat reduziert wird, wobei das Bindemittel und gegebenenfalls das Lösungsmittel rückstandsfrei entfernt wird. Wird eine oder mehrere der genannten Metallverbindungen gewählt, so tritt während des Granulationsprozesses keine Oxidation der feinen Kobaltmetallpulves ein, wenn in wäßrigen Lösungen gearbeitet wird. Das erfindungsgemäße Verfahren eröffnet somit eine Möglichkeit, Lösungsmittel zu verwenden, die aus organischen Verbindungen und/oder Wasser bestehen können, wobei besonders bevorzugt, aber nicht darauf beschränkt, Wasser als Lösungsmittel eingesetzt wird. Die zugegebenen Bindemittel werden entweder ohne Lösungsmittel bzw. im Lösungsmittel gelöst oder aber suspendiert bzw. emulgiert eingesetzt. Die Bindemittel und Lösungsmittel können anorganische oder organische Verbindungen sein, die aus einem oder mehreren der Elemente Kohlenstoff, Wasserstoff, Sauerstoff, Stickstoff und Schwefel aufgebaut und frei von Halogenen und, bis auf herstellbedingt unvermeidlichen Spuren, frei von Metallen sind.This invention further relates to a method for producing the metal powder granules according to the invention. It is a process for the production of binder-free metal powder granules from one or several of the metals Co, Cu, Ni, W and Mo, being the starting component a metal compound from one or more of the groups of metal oxides, hydroxides, carbonates, bicarbonates, oxalates, acetates and formates with Binder and optionally additionally with 40% - 80% solvent is granulated to the solids content and the granules thermally by addition in a hydrogen-containing gas atmosphere to the metal powder granules is reduced, the binder and optionally the solvent is removed without residue. Will one or more of the metal compounds mentioned no oxidation occurs during the granulation process the fine cobalt metal powder when working in aqueous solutions. The method according to the invention thus opens up a possibility of solvents to use, which consist of organic compounds and / or water can, being particularly preferred, but not limited to, water as Solvent is used. The added binders are either without solvent or dissolved in the solvent or suspended or used emulsified. The binders and solvents can be inorganic or be organic compounds consisting of one or more of the elements carbon, Hydrogen, oxygen, nitrogen and sulfur built up and free of Halogens and, with the exception of traces that are unavoidable due to manufacture, free of metals are.

Des weiteren lassen sich die ausgewählten Bindemittel und Lösungsmittel bei Temperaturen von weniger als 650°C thermisch rückstandsfrei entfernt. Als Bindemittel sind insbesondere eine oder mehrere der folgenden Verbindungen geeignet: Paraffinöle, Paraffinwachse, Polyvinylacetate, Polyvinylalkohole, Polyacrylamide, Methylzellulose, Glycerin, Polyetylenglycole, Leinöle, Polyvinylpyridin.The selected binders and solvents can also be added Temperatures of less than 650 ° C are removed thermally without residue. As a binder one or more of the following compounds are particularly suitable: Paraffin oils, paraffin waxes, polyvinyl acetates, polyvinyl alcohols, polyacrylamides, Methyl cellulose, glycerin, polyetylene glycols, linseed oils, polyvinyl pyridine.

Besonders bevorzugt ist die Verwendung von Polyvinylalkohol als Bindemittel und Wasser als Lösungsmittel. Die Granulation der Ausgangskomponente wird erfindungsgemäß dadurch erreicht, daß die Granulations als Teller-, Aufbau-, Sprühtrockner-, Wirbelschicht-, Preß-Granulation oder Granulation im hochtourigen Mischern durchgeführt wird.The use of polyvinyl alcohol as a binder is particularly preferred and water as a solvent. The granulation of the starting component is achieved according to the invention in that the granulations as plates, build-up, Spray dryer, fluidized bed, press granulation or granulation in high speed Mixers is carried out.

Die besonders bevorzugte Durchführung des erfindungsgemäßen Verfahrens erfolgt kontinuierlich oder diskontinuierlich in einem Ringmischgranulator.The method according to the invention is particularly preferably carried out continuously or discontinuously in a ring mixer granulator.

Diese Granulate werden besonders bevorzugt anschließend in einer Wasserstoff enthaltenden Gasatmosphäre bei Temperaturen von 400°C bis 1100°C, besonders von 400 - 650°C, zum Metallpulvergranulat reduziert behandelt. Hierbei kann das Bindemittel und gegebenfalls das Lösungsmittel rückstandsfrei entfernt werden. Eine andere Ausführungsvariante des erfindungsgemäßen Verfahrens besteht darin, das das Granulat nach dem Granulationsschritt zuerst bei Temperaturen von 50°C bis 400°C getrocknet wird und anschließend bei Temperaturen von 400°C bis 1100°C in einer Wasserstoff enthaltenden Gasatmosphäre zum Metallpulvergranulat reduziert wird.These granules are particularly preferably subsequently in a hydrogen containing gas atmosphere at temperatures from 400 ° C to 1100 ° C, especially from 400 - 650 ° C, reduced to metal powder granules. Here it can Binder and, if necessary, the solvent are removed without residue. Another embodiment variant of the method according to the invention consists in that the granulate after the granulation step first at temperatures of 50 ° C is dried to 400 ° C and then at temperatures from 400 ° C to 1100 ° C in a hydrogen-containing gas atmosphere to the metal powder granulate is reduced.

Die erfindungsgemäßen Metallpulvergranulate eignen sich hervorragend für die Herstellung von Sinter- und Verbundsinterkörpern. Gegenstand dieser Erfindung ist somit auch die Verwendung der erfindungsgemäßen Metallpulvergranulate als Bindemittelkomponente in Sinterkörpern oder Verbundsinterkörpern, hergestellt aus Hartstoffpulver und/oder Diamantpulver und Bindemitteln.The metal powder granules according to the invention are ideal for Manufacture of sintered and composite sintered bodies. Subject of this invention is thus also the use of the metal powder granules according to the invention as Binder component in sintered bodies or composite sintered bodies made of hard powder and / or diamond powder and binders.

Im folgenden wird die Erfindung beispielhaft erläutert, ohne daß hierin eine Einschränkung zu sehen ist. In the following the invention will be explained by way of example without any Restriction can be seen.

Beispiel 1:Example 1:

In einem Intensivmischer RV 02 der Firma Eirich wurden 5 kg Kobaltoxid mit 25 Gew.-% einer 10 %-igen wässrigen Methylzelluloselösung versetzt und 8 Minuten bei 1500 U/min granuliert. Das entstandene Granulat wurde bei 600°C unter Wasserstoff reduziert. Nach dem Absieben über 1 mm entstand ein Kobaltmetallpulver-Granulat mit den in Tabelle 3 aufgeführten Werten.In an intensive mixer RV 02 from Eirich, 5 kg of cobalt oxide with 25 % By weight of a 10% aqueous methyl cellulose solution and 8 minutes granulated at 1500 rpm. The resulting granulate was under at 600 ° C. Reduced hydrogen. After sieving over 1 mm, a Cobalt metal powder granules with the values listed in Table 3.

Beispiel 2:Example 2:

In einem Kneter der Firma AMK wurden 100 kg Kobaltoxid mit 70 Gew.-% einer 3 %-igen Polyvinylalkohollösung vermengt. Das dabei gebildete stäbchenförmige Exdrudat wurde in einem Drehrohr bei 700°C direkt zum Kobaltmetallpulver-Granulat umgesetzt und anschließend über 1 mm abgesiebt. Es entstand ein Kobaltmetallpulver-Granulat mit den in Tabelle 3 aufgeführten Werten.100 kg of cobalt oxide with 70% by weight of a 3% polyvinyl alcohol solution mixed. The rod-shaped formed Exdrudate was turned directly into cobalt metal powder granules in a rotary tube at 700 ° C implemented and then sieved over 1 mm. It came into being Cobalt metal powder granules with the values listed in Table 3.

Beispiel 3:Example 3:

In einem 5-1-Labormischer der Firma Lödige wurden 2 kg Kobaltcarbonat mit 70 % einer 1 %-igen wässrigen Polyethylenglykolmischung bei 160 U/min granuliet. Das Ausgangsprodukt Granulat wurde bei 600 °C im Durchschubofen unter Wasserstoff reduziert. Es entstand ein Kobaltmetallpulver-Granulat mit den in Tabelle 3 aufgeführten Werten.In a 5-1 laboratory mixer from Lödige, 2 kg of cobalt carbonate with 70 % of a 1% aqueous polyethylene glycol mixture granulated at 160 rpm. The starting product granulate was at 600 ° C in a push-through furnace Reduced hydrogen. A cobalt metal powder granulate with the in Table 3 values.

Beispiel 4:Example 4:

In eine Ringmisch-Granulator RMG 10 der Firma Ruberg wurden 60 kg Kobaltoxid mit 54 Gew.-% einer 10 %-igen Polyvinylalkohollösung bei maximaler Umdrehungszahl des Granulators granuliert und das dabei gebildete Granulat bei 550°C in einem ruhenden Bett unter Wasserstoff zu Kobaltmetallpulver-Granulat reduziert. Es entstand nach dem Absieben ein Kobaltmetallpulver-Granulat mit den in Tabelle 3 aufgeführten Werten.60 kg were placed in an RMG 10 ring mixer granulator from Ruberg Cobalt oxide with 54 wt .-% of a 10% polyvinyl alcohol solution at maximum Number of revolutions of the granulator and the granulate formed in the process 550 ° C in a quiescent bed under hydrogen to cobalt metal powder granules reduced. After sieving, a cobalt metal powder granulate was formed with the values listed in Table 3.

Der Verdichtungsfaktor Fkomp wurde mit Hilfe eienr uniaxialen, hydraulischen Presse mit 2,5 t Last bei einer Preßstempelfläche von 2,25 m2 Fläche und 6 g Einwaage zu 70,1 % bestimmt. Eigenschaften der in den Beispielen beschriebenen Kobalt enthaltenden Granulate Beispiel Gesamt-Kohlenstoffgehalt (ppm) Schüttdichte (g/cm3) Siebanalyse nach ASTM B 214 (%) + 1000 µm - 1000 µm + 50 µm - 50 µm 1 200 1,4 3,4 90,5 6,1 2 360 1,2 6,9 91,0 2,1 3 310 0,8 4,5 89,9 5,6 4 80 1,0 0,2 96,1 3,7 The compression factor F comp was determined with the aid of a uniaxial, hydraulic press with a load of 2.5 t with a press ram area of 2.25 m 2 and a weight of 6 g. Properties of the granules containing cobalt described in the examples example Total carbon content (ppm) Bulk density (g / cm3) Sieve analysis according to ASTM B 214 (%) + 1000 µm - 1000 µm + 50 µm - 50 µm 1 200 1.4 3.4 90.5 6.1 2 360 1.2 6.9 91.0 2.1 3rd 310 0.8 4.5 89.9 5.6 4th 80 1.0 0.2 96.1 3.7

Claims (13)

  1. Granulated metal powder consisting of one or more of the metals Co, Cu, Ni, W and Mo, characterised in that it contains at maximum 10 wt.% of the fraction -50 µm in accordance with ASTM B 214 and the total carbon content is less than 0.1 wt.%.
  2. Granulated metal powder according to claim 1, characterised in that the total carbon content is particularly preferably less than 400 ppm.
  3. Granulated metal powder according to either of claims 1 or 2, characterised in that the granules have a porous, cracked, fissured structure.
  4. Granulated cobalt metal powder according to one or more of claims 1 to 3, characterised in that it has a bulk density in accordance with ASTM B 329 within the range of 0.5 to 1.5 g/cm3, particularly preferably 1.0 to 1.2 g/cm3.
  5. Granulated cobalt metal powder according to one or more of claims 1 to 4, characterised in that it has a compression factor Fcomp of at least 60% and at maximum 80%.
  6. Process for producing granulated metal powder according to one or more of claims 1 to 5, characterised in that, as parent component, a metal compound from among the oxides, hydroxides, carbonates, hydrogen carbonates, oxalates, acetates, formates, with binder and optionally in addition with 40% to 80% solvent, based on the solids content, is granulated and the granular material is reduced to the granulated metal powder thermally in a hydrogen-containing gaseous atmosphere, the binder and optionally the solvent being removed without leaving any residue.
  7. Process according to claim 6, characterised in that organic or inorganic compounds which are synthesised from one or more of the elements carbon, hydrogen, oxygen, nitrogen and sulfur and are free from halogens and metals are used as binder and optionally solvent.
  8. Process according to one or both of claims 6 and 7, characterised in that the binders and optionally solvent can be removed thermally at temperatures of less than 650°C without leaving any residue.
  9. Process according to one of claims 6 to 8, characterised in that the granulation is carried out in the form of pelletising granulation, spray-drying granulation, fluid-bed granulation, disk granulation, pressure granulation or granulation in high-speed mixers.
  10. Process according to claim 9, characterised in that the granulation in high-speed mixers is carried out in the form of a ring-mixed granulation.
  11. Process according to one or more of claims 6 to 10, characterised in that the granules are reduced to the granulated metal powder in a hydrogen-containing gaseous atmosphere at temperatures of 400°C to 1100°C, particularly preferably of 400°C to 650°C.
  12. Process according to one or more of claims 6 to 11, characterised in that the granular material is first dried thermally at temperatures of 50°C to 400°C and the granular material is then reduced to the granulated metal powder in a hydrogen-containing gaseous atmosphere at temperatures of 400°C to 1100°C.
  13. Use of the granulated metal powders according to one or more of claims 1 to 5 as binder components in sintered compacts or in laminated sintered compacts produced from powdered hard material and/or from diamond powder and binders.
EP96939034A 1995-11-27 1996-11-14 Metal powder granulates, method for their production and use of the same Expired - Lifetime EP0956173B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19544107A DE19544107C1 (en) 1995-11-27 1995-11-27 Metal powder granules, process for its preparation and its use
DE19544107 1995-11-27
PCT/EP1996/004983 WO1997019777A1 (en) 1995-11-27 1996-11-14 Metal powder granulates, method for their production and use of the same

Publications (2)

Publication Number Publication Date
EP0956173A1 EP0956173A1 (en) 1999-11-17
EP0956173B1 true EP0956173B1 (en) 2001-02-28

Family

ID=7778486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96939034A Expired - Lifetime EP0956173B1 (en) 1995-11-27 1996-11-14 Metal powder granulates, method for their production and use of the same

Country Status (13)

Country Link
US (1) US6126712A (en)
EP (1) EP0956173B1 (en)
JP (2) JP4240534B2 (en)
KR (1) KR100439361B1 (en)
CN (1) CN1090068C (en)
AT (1) ATE199340T1 (en)
AU (1) AU702983B2 (en)
CA (1) CA2238281C (en)
DE (2) DE19544107C1 (en)
ES (1) ES2155209T3 (en)
HK (1) HK1017630A1 (en)
PT (1) PT956173E (en)
WO (1) WO1997019777A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544107C1 (en) * 1995-11-27 1997-04-30 Starck H C Gmbh Co Kg Metal powder granules, process for its preparation and its use
JP2003524069A (en) * 2000-02-22 2003-08-12 オーエムジー アメリカズ, インコーポレイテッド Rapid conversion of metal-containing compounds to form metals or metal oxides
KR100374705B1 (en) * 2000-06-19 2003-03-04 한국기계연구원 A Process for Manufacturing WC/Co based Cemented Carbide
WO2003051562A1 (en) 2001-12-18 2003-06-26 Asahi Kasei Kabushiki Kaisha Metal oxide dispersion
US20060107792A1 (en) * 2004-11-19 2006-05-25 Michael Collins Method for producing fine, low bulk density, metallic nickel powder
EP1980632A1 (en) * 2007-04-02 2008-10-15 Ivona Janiczkova The agglomeration of metal production dust with geopolymer resin
JP5131098B2 (en) * 2008-09-04 2013-01-30 住友金属鉱山株式会社 Nickel fine powder and method for producing the same
DE102008042047A1 (en) * 2008-09-12 2010-03-18 Robert Bosch Gmbh Producing articles made of powder-metallurgy materials, comprises mixing powdered metal oxide with binder, granulating mixture obtained in the mixing step, removing binder from metal oxide granules and then reducing metal oxide granules
JP5917502B2 (en) * 2011-05-16 2016-05-18 株式会社東芝 Method for producing molybdenum granulated powder
JP5917503B2 (en) * 2011-05-19 2016-05-18 株式会社東芝 Method for producing molybdenum granulated powder
WO2012169258A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169256A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
WO2012169260A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum carbide granulated powder and molybdenum carbide granulated powder
WO2012169262A1 (en) * 2011-06-08 2012-12-13 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
JPWO2012169255A1 (en) * 2011-06-08 2015-02-23 株式会社東芝 Method for producing molybdenum granulated powder and molybdenum granulated powder
EP2939760A4 (en) 2012-12-27 2016-09-14 Showa Denko Kk Chemical conversion body for niobium capacitor positive electrode, and production method therefor
WO2015050637A1 (en) 2013-08-19 2015-04-09 University Of Utah Research Foundation Producing a titanium product
JP6568104B2 (en) 2014-05-13 2019-08-28 ザ ユニバーシティ オブ ユタ リサーチ ファウンデイション Production of substantially spherical metal powder
JP2018502218A (en) * 2014-12-02 2018-01-25 ザ ユニバーシティ オブ ユタ リサーチ ファウンデイション Deoxidation of powdered metal with molten salt
JP6468021B2 (en) * 2015-03-20 2019-02-13 株式会社リコー 3D modeling powder material, 3D modeling material set, 3D model, 3D model manufacturing method and manufacturing apparatus
CN107442771B (en) * 2017-09-12 2024-04-05 浙江奥真电子科技有限公司 Raw material conveying device for powder metallurgy products
KR20210012013A (en) 2018-05-30 2021-02-02 헬라 노벨 메탈스 엘엘씨 Method for producing fine metal powder from metal compound
CN110026560B (en) * 2018-08-27 2022-04-29 南方科技大学 Nano-copper particle and preparation method and application thereof
CN110079690B (en) * 2019-06-14 2020-11-06 安泰天龙钨钼科技有限公司 Molybdenum-copper alloy with high molybdenum content and preparation method thereof
CN110079691B (en) * 2019-06-14 2020-11-06 安泰天龙钨钼科技有限公司 Molybdenum-copper alloy with low molybdenum content and preparation method thereof
US10907239B1 (en) 2020-03-16 2021-02-02 University Of Utah Research Foundation Methods of producing a titanium alloy product
US11865609B2 (en) * 2020-03-23 2024-01-09 Seiko Epson Corporation Method for manufacturing powder-modified magnesium alloy chip
CN113427004B (en) * 2020-03-23 2023-09-01 精工爱普生株式会社 Method for producing thixotropic injection molding material
CN112872363A (en) * 2021-01-12 2021-06-01 江西理工大学 Preparation method of rare earth cobalt-nickel composite powder
CN115430839B (en) * 2022-08-25 2023-07-07 云南电网有限责任公司电力科学研究院 Preparation method of nickel-molybdenum intermetallic compound and prepared nickel-molybdenum intermetallic compound

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975217A (en) * 1974-03-29 1976-08-17 Sherritt Gordon Mines Limited Finely divided magnetic cobalt powder
DE3777670D1 (en) * 1986-02-03 1992-04-30 Voest Alpine Ind Anlagen METHOD FOR PRODUCING POWDER METAL IRON POWDER FROM FINE IRON OXIDE POWDER BY REDUCTION WITH HOT GASES.
JPS62185802A (en) * 1986-02-12 1987-08-14 ジ−・テイ−・イ−・プロダクツ・コ−ポレイシヨン Control of oxygen content of flocculated molybdenum powder
JPS6345310A (en) * 1986-08-12 1988-02-26 Tokyo Tungsten Co Ltd Molybdenum powder and its production
DE3802811A1 (en) * 1988-01-30 1989-08-10 Starck Hermann C Fa AGGLOMERED METAL COMPOSITE POWDER, METHOD FOR THE PRODUCTION AND USE THEREOF
JPH02104602A (en) * 1988-10-13 1990-04-17 Toshiba Corp Manufacture of alloy
FI83935C (en) * 1989-05-24 1991-09-25 Outokumpu Oy Ways to process and produce materials
JPH04314804A (en) * 1991-04-15 1992-11-06 Central Glass Co Ltd Production of molybdenum powder
US5185030A (en) * 1991-12-20 1993-02-09 Gte Products Corporation Method for producing extrafine pure metal powder
JP2611616B2 (en) * 1992-12-18 1997-05-21 日本新金属株式会社 Manufacturing method of uniformly fine metal tungsten powder
TW349984B (en) * 1993-09-13 1999-01-11 Starck H C Gmbh Co Kg Pastes for the coating of substrates, methods for manufacturing them and their use
DE4343594C1 (en) * 1993-12-21 1995-02-02 Starck H C Gmbh Co Kg Cobalt metal powder and a composite sintered body manufactured from it
US5575830A (en) * 1994-12-21 1996-11-19 Sumitomo Special Metals Co., Ltd. Fabrication methods and equipment for granulated powders
EP0659508B1 (en) * 1993-12-27 2001-12-05 Sumitomo Special Metals Company Limited Fabrication methods for granulated powders
DE19544107C1 (en) * 1995-11-27 1997-04-30 Starck H C Gmbh Co Kg Metal powder granules, process for its preparation and its use
US5713982A (en) * 1995-12-13 1998-02-03 Clark; Donald W. Iron powder and method of producing such

Also Published As

Publication number Publication date
PT956173E (en) 2001-08-30
KR100439361B1 (en) 2004-07-16
CA2238281C (en) 2006-04-11
CN1202846A (en) 1998-12-23
ES2155209T3 (en) 2001-05-01
KR19990071649A (en) 1999-09-27
CN1090068C (en) 2002-09-04
JP4240534B2 (en) 2009-03-18
HK1017630A1 (en) 1999-11-26
US6126712A (en) 2000-10-03
CA2238281A1 (en) 1997-06-05
AU7683896A (en) 1997-06-19
DE19544107C1 (en) 1997-04-30
JP2000500826A (en) 2000-01-25
WO1997019777A1 (en) 1997-06-05
ATE199340T1 (en) 2001-03-15
JP2008285759A (en) 2008-11-27
DE59606529D1 (en) 2001-04-05
EP0956173A1 (en) 1999-11-17
AU702983B2 (en) 1999-03-11

Similar Documents

Publication Publication Date Title
EP0956173B1 (en) Metal powder granulates, method for their production and use of the same
DE2365046C2 (en) Powder metallurgical processing of high temperature materials
DE60121242T2 (en) Molybdenum-copper composite powder and its production and processing into a pseudo alloy
DE60123102T2 (en) MODIFIED OXYGEN-REDUCED VALVE METAL OXIDES
EP1313581B1 (en) Method for producing composite components by powder injection molding
EP1242642B1 (en) method for production of powder mixture or composite powder
EP0648534B1 (en) Activated Raney metal fixed bed catalyst and process for preparing the same
EP1079950B1 (en) Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use
DE3621121C2 (en)
EP1927580B1 (en) Process for making iron powder or microalloyed steel powder from iron oxide powder by oxidation and reduction
DE2625214A1 (en) Process for the production of sintered molded bodies
DE4119695C2 (en) Aluminum nitride grains and process for their manufacture
EP2540445B1 (en) Method of manufacturing a tool made from bound abrasive agents
EP0431165A1 (en) Ceramic composite material and method of obtaining it
DE2625213A1 (en) Process for the production of sintered molded bodies
DE1583742B2 (en) Process for producing flowable metal powders and granulated carbonyl metal powder thus produced
DE1758400A1 (en) Dispersion hardened chromium alloys and process for their manufacture
WO2007033885A1 (en) Tungsten scrap
DE69636580T2 (en) PROCESS FOR PREPARING ALUMINUM NITRIDE
DE3011962A1 (en) Composite metallic material contg. metal nitride - such as mixt. of nickel and vanadium nitride, and used for adding nitrogen to molten steel or other alloys
DE19752805C2 (en) Dispersion-strengthened copper material
DE572523C (en) Aluminothermic mixture
WO2023062154A1 (en) Process for producing silicon pellets and for melting pellets produced
DE3100411A1 (en) &#34;PRESSINGS AND METHOD FOR THE PRODUCTION THEREOF FROM A MIXTURE OF PARTICLE MATERIAL AND VOLATILE BINDING AGENT&#34;
WO2024089236A1 (en) Granular mixture for additive manufacturing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FI FR IT PT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20000714

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FI FR IT PT

REF Corresponds to:

Ref document number: 199340

Country of ref document: AT

Date of ref document: 20010315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59606529

Country of ref document: DE

Date of ref document: 20010405

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2155209

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131106

Year of fee payment: 18

Ref country code: FR

Payment date: 20131108

Year of fee payment: 18

Ref country code: PT

Payment date: 20130514

Year of fee payment: 18

Ref country code: AT

Payment date: 20131028

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20131112

Year of fee payment: 18

Ref country code: IT

Payment date: 20131108

Year of fee payment: 18

Ref country code: ES

Payment date: 20131011

Year of fee payment: 18

Ref country code: BE

Payment date: 20131113

Year of fee payment: 18

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20150514

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606529

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 199340

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150514

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141114

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141115