EP0951371B1 - Method of producing a cooling plate for iron and steel-making furnaces - Google Patents

Method of producing a cooling plate for iron and steel-making furnaces Download PDF

Info

Publication number
EP0951371B1
EP0951371B1 EP98904032A EP98904032A EP0951371B1 EP 0951371 B1 EP0951371 B1 EP 0951371B1 EP 98904032 A EP98904032 A EP 98904032A EP 98904032 A EP98904032 A EP 98904032A EP 0951371 B1 EP0951371 B1 EP 0951371B1
Authority
EP
European Patent Office
Prior art keywords
preform
ducts
cooling plate
plate
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98904032A
Other languages
German (de)
French (fr)
Other versions
EP0951371A1 (en
Inventor
Marc Solvi
Roger Thill
Yrjö LEPPÄNEN
Pertti MÄKINEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luvata Pori Oy
Paul Wurth SA
Original Assignee
Outokumpu Poricopper Oy
Paul Wurth SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from LU90003A external-priority patent/LU90003B1/en
Application filed by Outokumpu Poricopper Oy, Paul Wurth SA filed Critical Outokumpu Poricopper Oy
Publication of EP0951371A1 publication Critical patent/EP0951371A1/en
Application granted granted Critical
Publication of EP0951371B1 publication Critical patent/EP0951371B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/009Continuous casting of metals, i.e. casting in indefinite lengths of work of special cross-section, e.g. I-beams, U-profiles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form

Definitions

  • the present invention relates to a method for producing a Cooling plate with integrated coolant channels for furnaces for iron or steel production, such as Blast furnaces, from a block of copper.
  • Such cooling plates for blast furnaces are also called “staves”. She are arranged on the inside of the furnace shell and have internal Coolant channels connected to the cooling system of the shaft furnace become. The surface facing the inside of the furnace is mostly with lined with a refractory material.
  • the first attempt was to cast copper cooling plates by molding produce, the internal coolant channels through a sand core in the Mold are formed.
  • this procedure has been used in practice not proven, since the cast copper plates often voids and porosities have an extremely negative impact on the life of the panels, the molding sand is difficult to remove from the cooling channels and / or Cooling channel in the copper is poorly designed.
  • a cooling plate which consists of a forged or rolled copper block.
  • the coolant channels are blind holes that are caused by mechanical deep drilling in the rolled copper block.
  • Voids and porosities in the plate are practically excluded.
  • Manufacturing costs of these cooling plates are, however, relatively high, because in particular that Deep drilling the cooling channels is complicated, time consuming and expensive.
  • the invention is therefore based on the object of a method to propose with the particularly high quality Have copper cooling plates manufactured cheaper. This task is accomplished by a Method according to claim 1 solved.
  • a preform is formed by means of a continuous casting mold Continuous casting cooling plate, inserts in the casting channel of the continuous casting mold in Generate continuous channels in the preform that in the finished cooling plate form coolant channels.
  • a continuously cast Preform can then be relatively easily, without complex deep drilling, a Complete the long-length cooling plate.
  • cavities and porosities in continuous casting are far greater can be prevented more effectively than when molding.
  • the mechanical strength of a continuously cast cooling plate is much higher than that of a molded cooling plate.
  • the heat transfer is optimal because the continuously cast channels are formed directly in the cast body. Since the cross section of the continuously cast channels is not necessarily circular must be, new advantageous possibilities regarding the design and arrangement of the coolant channels opened. It was also found that the special nature of the surface of a continuous cast Cooling plate is a good basis for the adhesion of a refractory spray compound brings with it.
  • the tines in the pouring channel can Continuous casting mold in a continuous direction grooves in one surface of the preform. These grooves enlarge the cooled surface the finished cooling plate and form anchors for a refractory Lining out.
  • such grooves can also be retrofitted into one Surface of the continuously cast preform incorporated, for example be milled. This procedure is necessary, for example, if the Grooves should run transverse to the continuous casting direction.
  • the thickness is the continuously cast preform is advantageously reduced by rolling.
  • the crystal structure of the copper becomes finer, which is beneficial to the mechanical and thermal properties of the finished cooling plate.
  • the reduction in rolling increases the manufacturing cost of the cooling plate, it can therefore be advantageous to use also continuously cast preforms for thicker ones Roll cooling plates.
  • the channels cast into the preform Surprisingly, this is not a major obstacle to subsequent rolling the preform. This is especially true if the cast in Channels have an elongated, for example oval cross section.
  • the continuously cast and, if necessary, rolled preform is transformed into two Cut a plate across the casting direction, two End faces are formed transversely to the casting direction, the distance between them in essentially corresponds to the desired length of the cooling plate. It is It should be noted that it is advantageous to have several from a continuously cast preform Cooling plates of the same or different lengths can be produced. The Manufacturing particularly long cooling plates is also without additional effort possible.
  • the plates separated from the preform have several parallel through channels that extend in the casting direction and in the two ends each form a junction.
  • the cross section of the cast channels advantageously has an elongated one Form that has its smallest dimension perpendicular to the cooling plate.
  • cooling plates can be produced with a smaller plate thickness than Cooling plates with drilled channels, which saves copper.
  • channels with elongated cross sections are also easier are to be produced during continuous casting.
  • Another advantage is that at Channels with elongated cross-sections have larger exchange surfaces on the coolant side can be achieved in the cooling plate.
  • Channels with elongated (such as Example oval) cross sections behave as already above indicated, also much more advantageous when rolling the preform than channels with circular cross sections.
  • connection holes opening connection holes for preliminary and Return lines drilled perpendicular to the back surface in the plate, and the frontal openings of the channels closed.
  • Connection holes can then be used to connect the one from the furnace shell with a cooling plate mounted on the furnace shell be brought out.
  • Each continuously cast channel can have its own lead and Have return connection. Multiple continuous cast channels can however, they can also be connected to one another by means of transverse bores. This Cross bores are then arranged and closed, for example, that a serpentine channel with a flow connection and a Return connection per cooling plate results.
  • the cooling plate can advantageously be bent and centered in such a way that their curvature is adapted to the curvature of the furnace. This is especially the case when cooling plates with a large width are used. This is also the case for cooling plates that are used in the blast furnace frame. Such cooling plates for the frame must indeed be as close as possible to the Nestle tanks around the pressures acting on the frame lining to record.
  • FIG. 1 and Figure 2 show schematically the structure of a continuous casting mold 10 for the method according to the invention.
  • This continuous casting mold 10 consists of Example of four cooled mold plates 12, 14, 16 and 18, one cooled Pour 20 for a melt, for example a low alloy Form copper melt.
  • the arrows 22 and 24 in Figure 1 indicate Flow connections and return connections for a coolant in the side Form plates 12 and 14.
  • the arrow 25 in Figure 1 shows the pouring direction.
  • each of these rod-shaped inserts 28 advantageously consists of an outer tube 32 which is closed at the end and an open one at the end Inner tube 34 which are arranged such that they have an annular gap 36 for the Train coolant.
  • the coolant overflows in the collector 30 a flow chamber 38 into the annular gap 36. It cools the outer tube 32 its entire length and emerges from the annular gap 36 in the lower end Inner tube 34 a. This inner tube 34 directs the coolant into a Return chamber 40 back in the collector 30.
  • the rod-shaped inserts 28 can also be designed as uncooled graphite rods.
  • the front mold plate 16 has a plurality of tines 26 having. The latter extend essentially over the entire length of the Molding plate 16 and protrude perpendicularly to the casting direction into the pouring channel 20 inside.
  • the above-described continuous casting mold 10 is used in accordance with the invention Cast strand, which forms a preform of the cooling plate to be produced.
  • the rod-shaped inserts 28 produce in the continuous cast Preform channels running in the continuous casting direction, the cross section of which the cross section of the rod-shaped inserts 28 is determined.
  • the tines 26 in of the mold plate 18 produce in the continuously cast preform in Longitudinal grooves running in the casting direction.
  • FIGS. 3 to 4 show a finished cooling plate 50 based on a continuously cast preform.
  • the preform of the cooling plate 50 was cast with a continuous mold that had no tines 26 so that the original preform essentially had a rectangular cross section without grooves.
  • Figure 3 are with Dashed lines indicated the three channels 52 according to the invention Continuous casting through which inserts were created in the continuous casting mold. This The inserts had an oval shape, as can be seen in FIG. 5.
  • ducts 52 opened Connection holes 62 for flow and return ports 64, 66 perpendicular to Plate surface drilled in the back 68 of the plate. Before the front The mouths 58 of the channels 52 are definitely closed by plugs 70 If necessary, the channels could be mechanically reworked become. To finalize the cooling plate 50 only had to Flow and return spout 64, 66, and mounting spigot 72 and Spacer 74 are attached to the plate.
  • FIG. 6 shows an arrangement of cooling plates 80 in which the grooves 82 were produced in this way directly during continuous casting.
  • the cooling plates 80 which are produced during the continuous casting extend Cooling channels 84 (see FIG. 7) are therefore parallel to the grooves 82.
  • the cooling plates 80 are arranged horizontally in the oven, i.e. that in the built-in cooling plates 80, the cooling channels 84 and the grooves 82 horizontally run.
  • the cooling plates 80 are bent and centered such that their Curvature adapted to the curvature of the blast furnace shell (not shown) is.
  • FIG. 7 shows with dashed lines an advantageous arrangement of the coolant channels in one of the cooling plates 80.
  • Three continuously cast channels 84 1 , 84 2 and 84 3 and two short transverse bores 86 and 88 can be seen.
  • the bore 86 connects the channels 84 1 and 84 2 at one end of the plate 80 and is closed with a plug 90.
  • the bore 88 connects the channels 84 2 and 84 3 at the other end of the plate 80 and is closed with a plug 92.
  • the channels 84 1 , 84 2 and 84 3 in the end faces 54, 56 of the plate 80 are also closed by plugs 70.
  • the reference number 94 shows a flow connection which opens into the channel 84 1
  • the reference number 96 shows a return connection which opens into the channel 84 3 .
  • the coolant that enters the plate 80 via the supply connection 94 must flow through the latter in a serpentine fashion before it can leave it again via the return connection 96.
  • FIG. 6 shows schematically how the supply and return connections 94, 96 of the individual cooling plates 80 are connected to one another via pipe bridges 98.
  • the cooling plate 80 like the cooling plate 50, could also have a flow and return connection for each cooling channel 84 1 , 84 2 and 84 3 .
  • the cooling plates in the furnace above the Blow molds are advantageously attached to the inside of the furnace facing the side with a fireproof spray compound.
  • the grooves 60, 82 are designed, for example, as dovetail grooves become. It is also advantageous to have the edges and corners of the grooves 60, 82 to round off generously. This will in fact increase the risk of cracking the refractory mass is reduced.
  • cooling plates for the frame of the blast furnace advantageously have one smooth front and back on. They are thinner than the cooling plates shown with grooves and are advantageous from a continuously cast preform manufactured, the thickness of which was reduced by rolling. You will be on the Diameter of the shell centered in the area of the frame, so that it Form-fit against the blast furnace shell with its smooth rear surface.
  • the frame lining with shaped stones made of carbon lies here form-fitting on the likewise smooth front of the cooling plates. This ensures that relatively thin cooling plates can withstand the high pressures that act on the frame lining without problems on the blast furnace can transmit.
  • All cooling plates shown have three continuously cast channels. Of course, you can also use the method according to the invention Cooling plates with more or less than three continuously cast channels getting produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Continuous Casting (AREA)
  • Blast Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

A method for production of a cooling plate (50, 80) with integrated coolant ducts (52, 84) for iron and steel making furnaces, in particular blast furnaces, is described. A preform of the cooling plate (50, 80) is continuously cast by a continuous casting mould (10), wherein rod-shaped inserts (28) in the casting duct (20) of the continuous casting mould (10) produce in this preform ducts (52, 84) running in the continuous casting direction, which form coolant ducts in the finished cooling plate.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen einer Kühlplatte mit integrierten Kühlmittelkanälen für Öfen zur Eisen- oder Stahlerzeugung, wie zum Beispiel Hochöfen, aus einem Kupferblock.The present invention relates to a method for producing a Cooling plate with integrated coolant channels for furnaces for iron or steel production, such as Blast furnaces, from a block of copper.

Solche Kühlplatten für Hochöfen werden auch noch "Staves" genannt. Sie werden auf der Innenseite des Ofenpanzers angeordnet und weisen interne Kühlmittelkanäle auf, die an das Kühlsystem des Schachtofens angeschlossen werden. Ihre dem Inneren des Ofens zugekehrte Oberfläche ist meistens mit einem feuerfesten Material ausgekleidet.Such cooling plates for blast furnaces are also called "staves". she are arranged on the inside of the furnace shell and have internal Coolant channels connected to the cooling system of the shaft furnace become. The surface facing the inside of the furnace is mostly with lined with a refractory material.

Die meisten dieser Kühlplatten werden heute noch aus Gußeisen hergestellt. Da Kupfer jedoch eine weitaus bessere Wärmeleitfähigkeit als Gußeisen hat, wäre es wünschenswert auch kupferne Kühlplatten einzusetzen. Es wurden bis jetzt verschieden Herstellungsverfahren für kupferne Kühlplatten vorgeschlagen.Most of these cooling plates are still made of cast iron today manufactured. However, since copper has a much better thermal conductivity than Cast iron, it would be desirable to use copper cooling plates. So far, there have been various manufacturing processes for copper cooling plates suggested.

Zuerst wurde versucht, kupferne Kühlplatten durch Formgießen herzustellen, wobei die internen Kühlmittelkanäle durch einen Sandkern in der Gießform ausgebildet werden. Dieses Verfahren hat sich in der Praxis jedoch nicht bewährt, da die gegossenen Kupferplatten öfters Lunker und Porositäten aufweisen, die sich äußerst negativ auf die Lebensdauer der Platten auswirken, der Formsand aus den Kühlkanälen schwierig zu entfernen ist und/oder der Kühlkanal im Kupfer mangelhaft ausgebildet ist.The first attempt was to cast copper cooling plates by molding produce, the internal coolant channels through a sand core in the Mold are formed. However, this procedure has been used in practice not proven, since the cast copper plates often voids and porosities have an extremely negative impact on the life of the panels, the molding sand is difficult to remove from the cooling channels and / or Cooling channel in the copper is poorly designed.

Aus der GB-A-1571789 ist bekannt beim Formgießen der Kühlplatten den Sandkern durch eine vorgeformte metallische Rohrschlange aus Kupfer oder Edelstahl zu ersetzen. Letztere wird in der Gießform in den Kühlplattenkörper eingegossen und bildet einen schlangenförmigen Kühlmittelkanal aus. Auch dieses Verfahren hat sich in der Praxis nicht bewährt. Zwischen dem Kühlplattenkörper aus Kupfer und der eingegossenen Rohrschlange besteht nämlich, durch verschiedene Ursachen bedingt, ein hoher Wärmeübergangswiderstand, so daß sich eine relativ schlechte Kühlung der Platte ergibt. Weiterhin können auch bei diesem Verfahren Lunker und Porositäten im Kupfer nicht wirksam verhindert werden.From GB-A-1571789 is known in the molding of the cooling plates Sand core through a preformed metallic pipe coil made of copper or Stainless steel to replace. The latter is in the mold in the cooling plate body poured in and forms a serpentine coolant channel. Also this method has not proven itself in practice. Between the Cooling plate body made of copper and the cast pipe coil namely, due to various causes, a high heat transfer resistance, so that there is a relatively poor cooling of the plate. Furthermore, voids and porosities in the copper can also occur with this method cannot be effectively prevented.

Aus der DE-A-2907511 ist eine Kühlplatte bekannt, die aus einem geschmiedeten oder gewalzten Kupferblock gefertigt ist. Die Kühlmittelkanäle sind hierbei Sackbohrungen, die durch mechanisches Tiefbohren in den gewalzten Kupferblock eingebracht werden. Bei diesen Kühlplatten werden die vorerwähnten Nachteile des Formgießens vermieden. Insbesondere sind Lunker und Porositäten in der Platte praktisch ausgeschlossen. Leider sind die Herstellungskosten dieser Kühlplatten jedoch relativ hoch, da insbesondere das Tiefbohren der Kühlkanälen kompliziert, zeitaufwendig und teuer ist.From DE-A-2907511 a cooling plate is known which consists of a forged or rolled copper block. The coolant channels are blind holes that are caused by mechanical deep drilling in the rolled copper block. With these cooling plates, the the aforementioned disadvantages of die casting avoided. In particular are Voids and porosities in the plate are practically excluded. Unfortunately they are Manufacturing costs of these cooling plates, however, relatively high, because in particular that Deep drilling the cooling channels is complicated, time consuming and expensive.

Der Erfindung liegt folglich die Aufgabe zugrunde, ein Verfahren vorzuschlagen mit dem sich insbesondere qualitativ hochwertige Kupferkühlplatten billiger herstellen lassen. Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst.The invention is therefore based on the object of a method to propose with the particularly high quality Have copper cooling plates manufactured cheaper. This task is accomplished by a Method according to claim 1 solved.

Erfindungsgemäß wird mittels einer Stranggießform eine Vorform der Kühlplatte stranggegossen, wobei Einsätze im Gießkanal der Stranggießform in Stranggießrichtung verlaufende Kanäle in der Vorform erzeugen, die in der fertigen Kühlplatte Kühlmittelkanäle ausbilden. Aus der stranggegossenen Vorform läßt sich dann relativ einfach, ohne aufwendiges Tiefbohren, eine einsatzfähige Kühlplatte großer Länge fertigstellen. Hierzu ist insbesondere anzumerken, daß Lunker und Porositäten beim Stranggießen weitaus wirksamer verhindert werden können, als beim Formgießen. Weiterhin ist die mechanische Festigkeit einer stranggegossenen Kühlplatte weitaus höher, als die einer formgegossenen Kühlplatte. Der Wärmeübergang ist optimal, da die stranggegossenen Kanäle unmittelbar im gegossenen Körper ausgebildet sind. Da der Querschnitt der stranggegossenen Kanäle nicht unbedingt kreisrund sein muß, werden neue vorteilhafte Möglichkeiten betreffend die Gestaltung und Anordnung der Kühlmittelkanäle eröffnet. Es wurde weiterhin festgestellt, daß die spezielle Beschaffenheit der Oberfläche einer stranggegossenen Kühlplatte gute Voraussetzungen für die Haftung einer feuerfesten Spritzmasse mit sich bringt. According to the invention, a preform is formed by means of a continuous casting mold Continuous casting cooling plate, inserts in the casting channel of the continuous casting mold in Generate continuous channels in the preform that in the finished cooling plate form coolant channels. From the continuously cast Preform can then be relatively easily, without complex deep drilling, a Complete the long-length cooling plate. This is in particular It should be noted that cavities and porosities in continuous casting are far greater can be prevented more effectively than when molding. Furthermore, the mechanical strength of a continuously cast cooling plate is much higher than that of a molded cooling plate. The heat transfer is optimal because the continuously cast channels are formed directly in the cast body. Since the cross section of the continuously cast channels is not necessarily circular must be, new advantageous possibilities regarding the design and arrangement of the coolant channels opened. It was also found that the special nature of the surface of a continuous cast Cooling plate is a good basis for the adhesion of a refractory spray compound brings with it.

Beim Stranggießen können durch Zinken im Gießkanal der Stranggießform in Stranggießrichtung verlaufende Nuten in einer Oberfläche der Vorform erzeugt werden. Diese Nuten vergrößern die gekühlte Oberfläche der fertigen Kühlplatte und bilden Verankerungen für eine feuerfeste Auskleidung aus. Solche Nuten können jedoch auch nachträglich in eine Oberfläche der stranggegossenen Vorform eingearbeitet, zum Beispiel eingefräst werden. Diese Vorgehensweise ist zum Beispiel erforderlich, falls die Nuten quer zu Stranggießrichtung verlaufen sollen.During continuous casting, the tines in the pouring channel can Continuous casting mold in a continuous direction grooves in one surface of the preform. These grooves enlarge the cooled surface the finished cooling plate and form anchors for a refractory Lining out. However, such grooves can also be retrofitted into one Surface of the continuously cast preform incorporated, for example be milled. This procedure is necessary, for example, if the Grooves should run transverse to the continuous casting direction.

Sollen besonders dünne Kühlplatten hergestellt werden, so wird die Dicke der stranggegossenen Vorform vorteilhaft durch Walzen reduziert. Durch das Walzen wird die Kristallstruktur des Kupfers feiner, was sich günstig auf die mechanischen und thermischen Eigenschaften der fertigen Kühlplatte auswirkt. Obwohl die Walzreduktion die Herstellungskosten der Kühlplatte erhöht, kann es somit von Vorteil sein, auch stranggegossene Vorformen für dickere Kühlplatten zu walzen. In diesem Zusammenhang ist besonders hervorzuheben, daß die in die Vorform eingegossenen Kanäle überraschenderweise kein wesentliches Hindernis für das nachträgliche Walzen der Vorform darstellen. Dies gilt insbesondere dann, falls die eingegossenen Kanäle einen länglichen, zum Beispiel ovalen Querschnitt aufweisen.If particularly thin cooling plates are to be produced, the thickness is the continuously cast preform is advantageously reduced by rolling. By the Rolling the crystal structure of the copper becomes finer, which is beneficial to the mechanical and thermal properties of the finished cooling plate. Although the reduction in rolling increases the manufacturing cost of the cooling plate, it can it can therefore be advantageous to use also continuously cast preforms for thicker ones Roll cooling plates. In this context it is special to emphasize that the channels cast into the preform Surprisingly, this is not a major obstacle to subsequent rolling the preform. This is especially true if the cast in Channels have an elongated, for example oval cross section.

Aus der stranggegossenen und ggf. gewalzten Vorform wird durch zwei Schnitte quer zur Gießrichtung ein Platte herausgetrennt, wobei zwei Stirnflächen quer zur Gießrichtung ausgebildet werden, deren Abstand im wesentlichen der gewünschten Länge der Kühlplatte entspricht. Es ist anzumerken, daß aus einer stranggegossenen Vorform vorteilhaft mehrere Kühlplatten gleicher oder verschiedener Länge hergestellt werden können. Das Herstellen besonders langer Kühlplatten ist ebenfalls ohne Mehraufwand möglich. Die aus der Vorform herausgetrennten Platten weisen mehrere parallele Durchgangskanäle auf, die sich in Gießrichtung erstrecken und in den zwei Stirnseiten jeweils eine Einmündung ausbilden.The continuously cast and, if necessary, rolled preform is transformed into two Cut a plate across the casting direction, two End faces are formed transversely to the casting direction, the distance between them in essentially corresponds to the desired length of the cooling plate. It is It should be noted that it is advantageous to have several from a continuously cast preform Cooling plates of the same or different lengths can be produced. The Manufacturing particularly long cooling plates is also without additional effort possible. The plates separated from the preform have several parallel through channels that extend in the casting direction and in the two ends each form a junction.

Der Querschnitt der eingegossenen Kanäle weist vorteilhaft eine längliche Form auf, die ihre kleinste Ausdehnung senkrecht zur Kühlplatte hat. Hierdurch können Kühlplatten mit einer geringeren Plattendicke hergestellt werden als Kühlplatten mit gebohrten Kanälen, wodurch Kupfer eingespart wird. Es ist ebenfalls anzumerken, daß Kanäle mit länglichen Querschnitten auch einfacher beim Stranggießen herzustellen sind. Ein weiterer Vorteil besteht darin, daß bei Kanälen mit länglichen Querschnitten größere kühlmittelseitige Austauschflächen in der Kühlplatte zu erzielen sind. Kanäle mit länglichen (wie zum Beispiel ovalen) Querschnitten verhalten sich, wie weiter oben bereits angedeutet, auch weitaus vorteilhafter beim Walzen der Vorform als Kanäle mit kreisrunden Querschnitten.The cross section of the cast channels advantageously has an elongated one Form that has its smallest dimension perpendicular to the cooling plate. Hereby cooling plates can be produced with a smaller plate thickness than Cooling plates with drilled channels, which saves copper. It is also note that channels with elongated cross sections are also easier are to be produced during continuous casting. Another advantage is that at Channels with elongated cross-sections have larger exchange surfaces on the coolant side can be achieved in the cooling plate. Channels with elongated (such as Example oval) cross sections behave as already above indicated, also much more advantageous when rolling the preform than channels with circular cross sections.

In dem nächsten Herstellungsschritt werden vorteilhaft in die Durchgangskanäle einmündende Anschlußbohrungen für Vor- und Rücklaufleitungen senkrecht zur Rückfläche in die Platte gebohrt, und die stirnseitigen Einmündungen der Kanäle verschlossen. In diese Anschlußbohrungen können anschließend Anschlußstutzen eingesetzt werden, die bei einer am Ofenpanzer montierten Kühlplatte aus dem Ofenpanzer herausgeführt werden.In the next manufacturing step, the Through holes opening connection holes for preliminary and Return lines drilled perpendicular to the back surface in the plate, and the frontal openings of the channels closed. In these Connection holes can then be used to connect the one from the furnace shell with a cooling plate mounted on the furnace shell be brought out.

Jeder stranggegossene Kanal kann seinen eigenen Vorlauf- und Rücklaufanschluß aufweisen. Mehrere stranggegossenen Kanäle können jedoch auch mittels Querbohrungen miteinander verbunden werden. Diese Querbohrungen sind dann zum Beispiel derart angeordnet und verschlossen, daß sich ein schlangenförmiger Kanal mit einem Vorlaufanschluß und einem Rücklaufanschluß pro Kühlplatte ergibt.Each continuously cast channel can have its own lead and Have return connection. Multiple continuous cast channels can however, they can also be connected to one another by means of transverse bores. This Cross bores are then arranged and closed, for example, that a serpentine channel with a flow connection and a Return connection per cooling plate results.

Die Kühlplatte kann vorteilhaft derart gebogen und zentriert werden, daß ihre Krümmung der Krümmung des Hochofenpanzers angepaßt ist. Dies ist besonders der Fall, wenn Kühlplatten mit großer Breite eingesetzt werden. Dies ist ebenfalls der Fall für Kühlplatten die im Hochofengestell eingesetzt werden. Solche Kühlplatten für das Gestell müssen sich in der Tat möglichst eng an den Panzer anschmiegen, um die auf die Gestellauskleidung wirkenden Drücke aufzunehmen. The cooling plate can advantageously be bent and centered in such a way that their curvature is adapted to the curvature of the furnace. This is especially the case when cooling plates with a large width are used. This is also the case for cooling plates that are used in the blast furnace frame. Such cooling plates for the frame must indeed be as close as possible to the Nestle tanks around the pressures acting on the frame lining to record.

Zwecks besserer Veranschaulichung der Erfindung und ihrer Vorteile, werden verschiedene Ausführungsbeispiele anhand der beigefügten Zeichnungen näher beschrieben.In order to better illustrate the invention and its advantages, are different embodiments with reference to the accompanying Drawings described in more detail.

Es zeigen:

Figur 1:
einen schematischen Längsschnitt durch eine Stranggießform für das erfindungsgemäße Verfahren;
Figur 2:
einen schematischen Querschnitt entlang der Schnittlinie 2-2 durch die Stranggießform nach Figur 1;
Figur 3:
eine Draufsicht auf die Rückseite einer fertigen Kühlplatte, die mit dem erfindungsgemäßen Verfahren hergestellt wurde;
Figur 4:
einen Längsschnitt entlang der Schnittlinie 4-4 durch die Kühlplatte der Figur 3;
Figur 5:
einen Querschnitt entlang der Schnittlinie 5-5 durch die Kühlplatte der Figur 3;
Figur 6:
eine perspektivische Ansicht einer Anordnung von Kühlplatten in einem Schachtofen;
Figur 7:
eine Draufsicht auf die Rückseite einer Kühlplatte die besonders für die Anordnung nach Figur 6 geeignet ist und mit dem erfindungsgemäßen Verfahren hergestellt wurde.
Show it:
Figure 1:
a schematic longitudinal section through a continuous casting mold for the inventive method;
Figure 2:
a schematic cross section along the section line 2-2 through the continuous casting mold according to Figure 1;
Figure 3:
a plan view of the back of a finished cooling plate, which was produced with the inventive method;
Figure 4:
a longitudinal section along section line 4-4 through the cooling plate of Figure 3;
Figure 5:
a cross section along section line 5-5 through the cooling plate of Figure 3;
Figure 6:
a perspective view of an arrangement of cooling plates in a shaft furnace;
Figure 7:
a plan view of the back of a cooling plate which is particularly suitable for the arrangement of Figure 6 and was produced with the inventive method.

Figur 1 und Figur 2 zeigen schematisch den Aufbau einer Stranggießform 10 für das erfindungsgemäße Verfahren. Diese Stranggießform 10 besteht zum Beispiel aus vier gekühlten Formplatten 12, 14, 16 und 18, die einen gekühlten Gießkanal 20 für eine Schmelze, zum Beispiel eine niedrig legierte Kupferschmelze ausbilden. Die Pfeile 22 und 24 in Figur 1 deuten Vorlaufanschlüsse und Rücklaufanschlüsse für ein Kühlmittel in den seitlichen Formplatten 12 und 14 an. Der Pfeil 25 in Figur 1 zeigt die Gießrichtung.Figure 1 and Figure 2 show schematically the structure of a continuous casting mold 10 for the method according to the invention. This continuous casting mold 10 consists of Example of four cooled mold plates 12, 14, 16 and 18, one cooled Pour 20 for a melt, for example a low alloy Form copper melt. The arrows 22 and 24 in Figure 1 indicate Flow connections and return connections for a coolant in the side Form plates 12 and 14. The arrow 25 in Figure 1 shows the pouring direction.

In Figur 1 sieht man, daß in den Gießkanal 20 drei stabförmige Einsätze 28 hineinragen. Letztere sind z.B. an einen Kühlmittelkollektor 30 angeschlossen, der oberhalb der Formplatten 12-18 über dem Gießkanal 20 angeordnet ist. Jeder dieser stabförmigen Einsätze 28 besteht vorteilhaft aus einem stirnseitig verschlossenen Außenrohr 32 und einem stirnseitig offenen Innenrohr 34, die derart angeordnet sind, daß sie einen Ringspalt 36 für das Kühlmittel ausbilden. Für jeden der drei stabförmigen Einsätze 28 ergibt sich somit folgende Kühlmittelströmung. im Kollektor 30 strömt das Kühlmittel über eine Vorlaufkammer 38 in den Ringspalt 36 ein. Es kühlt das Außenrohr 32 auf seiner ganzen Länge und tritt am unteren Ende aus dem Ringspalt 36 in das Innenrohr 34 ein. Dieses Innenrohr 34 leitet das Kühlmittel in eine Rücklaufkammer 40 im Kollektor 30 zurück. Die stabförmigen Einsätze 28 können jedoch auch als ungekühlte Graphitstäbe ausgebildet werden.In Figure 1 you can see that in the pouring channel 20 three rod-shaped inserts 28 protrude. The latter are e.g. to a coolant collector 30 connected, the above the mold plates 12-18 above the pouring channel 20 is arranged. Each of these rod-shaped inserts 28 advantageously consists of an outer tube 32 which is closed at the end and an open one at the end Inner tube 34 which are arranged such that they have an annular gap 36 for the Train coolant. For each of the three rod-shaped inserts 28 results thus the following coolant flow. the coolant overflows in the collector 30 a flow chamber 38 into the annular gap 36. It cools the outer tube 32 its entire length and emerges from the annular gap 36 in the lower end Inner tube 34 a. This inner tube 34 directs the coolant into a Return chamber 40 back in the collector 30. The rod-shaped inserts 28 can also be designed as uncooled graphite rods.

In Figur 2 sieht man, daß die vordere Formplatte 16 mehrere Zinken 26 aufweist. Letztere erstrecken sich im wesentlichen über die gesamte Länge der Formplatte 16 und ragen senkrecht zur Gießrichtung in den Gießkanal 20 hinein.In Figure 2 it can be seen that the front mold plate 16 has a plurality of tines 26 having. The latter extend essentially over the entire length of the Molding plate 16 and protrude perpendicularly to the casting direction into the pouring channel 20 inside.

Mit der vorbeschriebenen Stranggießform 10 wird erfindungsgemäß ein Strang gegossen, der eine Vorform der herzustellenden Kühlplatte ausbildet. Die stabförmigen Einsätze 28 erzeugen hierbei in der stranggegossenen Vorform in Stranggießrichtung verlaufende Kanäle, deren Querschnitt durch den Querschnitt der stabförmigen Einsätze 28 bestimmt wird. Die Zinken 26 in der Formplatte 18 erzeugen in der stranggegossenen Vorform in Stranggießrichtung verlaufende Längsnuten.The above-described continuous casting mold 10 is used in accordance with the invention Cast strand, which forms a preform of the cooling plate to be produced. The rod-shaped inserts 28 produce in the continuous cast Preform channels running in the continuous casting direction, the cross section of which the cross section of the rod-shaped inserts 28 is determined. The tines 26 in of the mold plate 18 produce in the continuously cast preform in Longitudinal grooves running in the casting direction.

Die Figuren 3 bis 4 zeigen eine fertige Kühlplatte 50 die auf Basis einer stranggegossenen Vorform hergestellt wurden. Es ist jedoch anzumerken, daß die Vorform der Kühlplatte 50 mit einer Stranggießform gegossen wurde, die keine Zinken 26 aufwies, so daß die ursprüngliche Vorform im wesentlichen einen rechteckigen Querschnitt ohne Nuten hatte. In Figur 3 sind mit gestrichelten Linien die drei Kanäle 52 angedeutet die erfindungsgemäß beim Stranggießen durch die Einsätze in der Stranggießform erzeugt wurden. Diese Einsätze hatten, wie aus Figur 5 ersichtlich, eine ovale Form. Sie waren in der Stranggießform, wie aus Figur 4 und 5 noch ersichtlich, außermittig im rechteckigen Querschnitt der Vorform angeordnet, d.h. sie lagen näher an der Oberfläche der Vorform die in der fertigen Kühlplatte 50 schlußendlich die Rückseite ausbildet.Figures 3 to 4 show a finished cooling plate 50 based on a continuously cast preform. However, it should be noted that the preform of the cooling plate 50 was cast with a continuous mold that had no tines 26 so that the original preform essentially had a rectangular cross section without grooves. In Figure 3 are with Dashed lines indicated the three channels 52 according to the invention Continuous casting through which inserts were created in the continuous casting mold. This The inserts had an oval shape, as can be seen in FIG. 5. You were in the Continuous casting mold, as can still be seen from FIGS. 4 and 5, off-center in the rectangular cross-section of the preform, i.e. they were closer to the Finally, the surface of the preform in the finished cooling plate 50 Rear forms.

Es hat sich von Vorteil erwiesen, die Vorform dicker als für die fertige Kühlplatte erforderlich zu gießen, und die Dicke der Vorform anschließend durch Walzen erst auf die Dicke der fertigen Kühlplatte zu reduzieren. Bei diesem Walzen der Vorform erhält das Kupfer eine feinere Kristallstruktur, was sich positiv auf die mechanischen und thermischen Eigenschaften der fertigen Kühlplatte auswirkt. Es bleibt in diesem Zusammenhang festzustellen, daß ein von Anfang an länglicher Querschnitt der Kühlkanäle beim Walzen weitaus vorteilhafter verformt wird als ein kreisrunder Querschnitt.It has proven advantageous to make the preform thicker than the finished one Cooling plate required to pour, and then the thickness of the preform by rolling to reduce the thickness of the finished cooling plate. At This rolling of the preform gives the copper a finer crystal structure, what positive on the mechanical and thermal properties of the finished Cooling plate affects. In this connection it remains to be stated that a from the beginning an elongated cross section of the cooling channels during rolling is deformed more advantageously than a circular cross section.

Anschließend hat man aus der gewalzten Vorform, durch zwei Schnitte quer zur Gießrichtung, eine rechteckige Rohplatte herausgetrennt. Hierdurch wurden die zwei Stirnflächen 54, 56 der fertigen Kühlplatte ausgebildet. In dieser Rohplatte erstreckten sich die Kanäle 52 folglich als Durchgangskanäle zwischen den beiden Stirnflächen 54, 56 und bildeten hierin offene Einmündungen 58 aus. In die Oberfläche dieser Rohplatte die den größten Abstand zu den außermittigen Kanälen 52 aufwies, wurden anschließend Nuten 58 quer zur Gießrichtung eingefräst. Um die mechanische Festigkeit der Platte noch weiter zu erhöhen, könnte sie jetzt kugelgestrahlt werden.You then have two cuts from the rolled preform transversely to the casting direction, a rectangular raw plate was cut out. Hereby the two end faces 54, 56 of the finished cooling plate were formed. In This raw plate, the channels 52 thus extended as through channels between the two end faces 54, 56 and formed open here Junctions 58 out. The largest in the surface of this raw plate Grooves were then spaced from the off-center channels 52 58 milled transversely to the casting direction. To the mechanical strength of the plate to increase it even further, it could now be shot peened.

Im nächsten Herstellungsschritt wurden in die Kanäle 52 einmündende Anschlußbohrungen 62 für Vor- und Rücklaufstutzen 64, 66 senkrecht zur Plattenoberfläche in die Rückseite 68 der Platte gebohrt. Bevor die stirnseitigen Einmündungen 58 der Kanäle 52 definitiv durch Stopfen 70 verschlossen werden, könnten die Kanäle gegebenenfalls noch mechanisch nachbearbeitet werden. Um die Kühlplatte 50 definitiv fertigzustellen mußten lediglich noch die Vor- und Rücklaufstutzen 64, 66, sowie Befestigungszapfen 72 und Abstandstutzen 74 an der Platte befestigt werden.In the next manufacturing step, ducts 52 opened Connection holes 62 for flow and return ports 64, 66 perpendicular to Plate surface drilled in the back 68 of the plate. Before the front The mouths 58 of the channels 52 are definitely closed by plugs 70 If necessary, the channels could be mechanically reworked become. To finalize the cooling plate 50 only had to Flow and return spout 64, 66, and mounting spigot 72 and Spacer 74 are attached to the plate.

In Figur 5 sieht man wie die fertige Kühlplatte 50 mittels der Abstandstutzen 74 auf einer Ofenpanzerplatte 76 aufliegt. Es bleibt anzumerken, daß die Kühlplatte 50 der Figuren 3-5 für einen senkrechten Einbau in den Ofen bestimmt ist, d.h. daß in den eingebauten Kühlplatten die Kühlkanäle 52 senkrecht und die Quernuten 60 waagerecht verlaufen. Anstelle der Quernuten 60, die quer zur Gießrichtung verlaufen, könnte die Kühlplatte 50 auch Längsnuten aufweisen die parallel zur Gießrichtung verlaufen. Letztere würden dann vorteilhaft, mit einer Gießform mit Zinken, wie sie in Figur 2 gezeigt ist, unmittelbar beim Stanggießen erzeugt.In Figure 5 you can see how the finished cooling plate 50 by means of Spacer 74 rests on a furnace plate 76. It stays it should be noted that the cooling plate 50 of Figures 3-5 is for a vertical one Installation in the oven, i.e. that in the built-in cooling plates Cooling ducts 52 run vertically and the transverse grooves 60 run horizontally. Instead of of the transverse grooves 60, which are transverse to the casting direction, could be the cooling plate 50 also have longitudinal grooves that run parallel to the casting direction. Latter would then be advantageous with a mold with tines, as shown in Figure 2 is shown, generated directly during continuous casting.

Figur 6 zeigt eine Anordnung von Kühlplatten 80, bei denen die Nuten 82 auf diese Art und Weise unmittelbar beim Stranggießen erzeugt wurden. Innerhalb der Kühlplatten 80 erstrecken sich die beim Stranggießen erzeugten Kühlkanäle 84 (siehe Figur 7) also parallel zu den Nuten 82. Es ist anzumerken, daß die Kühlplatten 80 im Ofen horizontal angeordnet sind, d.h. daß in den eingebauten Kühlplatten 80 die Kühlkanäle 84 und die Nuten 82 waagerecht verlaufen. Die Kühlplatten 80 sind derart gebogen und zentriert, daß ihre Krümmung der Krümmung des (nicht gezeigten) Hochofenpanzers angepaßt ist.FIG. 6 shows an arrangement of cooling plates 80 in which the grooves 82 were produced in this way directly during continuous casting. The cooling plates 80 which are produced during the continuous casting extend Cooling channels 84 (see FIG. 7) are therefore parallel to the grooves 82. It should be noted that that the cooling plates 80 are arranged horizontally in the oven, i.e. that in the built-in cooling plates 80, the cooling channels 84 and the grooves 82 horizontally run. The cooling plates 80 are bent and centered such that their Curvature adapted to the curvature of the blast furnace shell (not shown) is.

Figur 7 zeigt mit gestrichelten Linien eine vorteilhafte Anordnung der Kühlmittelkanäle in einer der Kühlplatten 80. Man erkennt drei stranggegossene Kanäle 841, 842 und 843, sowie zwei kurze Querbohrungen 86 und 88. Die Bohrung 86 verbindet die Kanäle 841 und 842 an einem Ende der Platte 80 und ist mit einem Stopfen 90 verschlossen. Die Bohrung 88 verbindet die Kanäle 842 und 843 an anderen Ende der Platte 80 und ist mit einem Stopfen 92 verschlossen. Wie die Kanäle 52 in der Platte 50, sind die Kanäle 841, 842 und 843 in den Stirnflächen 54, 56 der Platte 80 ebenfalls durch Stopfen 70 verschlossen. Die Referenzzahl 94 zeigt einen Vorlaufanschluß der in den Kanal 841 einmündet, und die Referenzzahl 96 einen Rücklaufanschluß der in den Kanal 843 einmündet. Das Kühlmittel das über Vorlaufanschluß 94 in die Platte 80 eintritt, muß letztere schlangenförmig durchströmen, bevor es sie wieder über den Rücklaufanschluß 96 verlassen kann. In Figur 6 ist schematisch dargestellt, wie die Vor- und Rücklaufanschlüsse 94, 96 der einzelnen Kühlplatten 80 über Rohrbrücken 98 miteinander verbunden sind. Selbstverständlich könnte die Kühlplatte 80, wie die Kühlplatte 50, ebenfalls je einen Vor- und Rücklaufanschluß pro Kühlkanal 841, 842 und 843 aufweisen. FIG. 7 shows with dashed lines an advantageous arrangement of the coolant channels in one of the cooling plates 80. Three continuously cast channels 84 1 , 84 2 and 84 3 and two short transverse bores 86 and 88 can be seen. The bore 86 connects the channels 84 1 and 84 2 at one end of the plate 80 and is closed with a plug 90. The bore 88 connects the channels 84 2 and 84 3 at the other end of the plate 80 and is closed with a plug 92. Like the channels 52 in the plate 50, the channels 84 1 , 84 2 and 84 3 in the end faces 54, 56 of the plate 80 are also closed by plugs 70. The reference number 94 shows a flow connection which opens into the channel 84 1 , and the reference number 96 shows a return connection which opens into the channel 84 3 . The coolant that enters the plate 80 via the supply connection 94 must flow through the latter in a serpentine fashion before it can leave it again via the return connection 96. FIG. 6 shows schematically how the supply and return connections 94, 96 of the individual cooling plates 80 are connected to one another via pipe bridges 98. Of course, the cooling plate 80, like the cooling plate 50, could also have a flow and return connection for each cooling channel 84 1 , 84 2 and 84 3 .

Es bleibt anzumerken, daß Kühlplatten die im Hochofen oberhalb der Blasformen angebracht werden vorteilhaft auf ihrer dem Inneren des Ofens zugekehrten Seite mit einer feuerfesten Spritzmasse versehen werden. Um die Haftung der feuerfesten Spritzmasse an den Kühlplatten zu verbessern, können die Nuten 60, 82 zum Beispiel als Schwalbenschwanznuten ausgebildet werden. Es ist weiterhin von Vorteil, die Kannten und Ecken der Nuten 60, 82 großzügig abzurunden. Hierdurch wird nämlich die Gefahr einer Rißbildung in der feuerfesten Masse reduziert.It should be noted that the cooling plates in the furnace above the Blow molds are advantageously attached to the inside of the furnace facing the side with a fireproof spray compound. To the Adhesion of the refractory spray compound to the cooling plates can improve the grooves 60, 82 are designed, for example, as dovetail grooves become. It is also advantageous to have the edges and corners of the grooves 60, 82 to round off generously. This will in fact increase the risk of cracking the refractory mass is reduced.

Kühlplatten für das Gestell des Hochofens weisen dagegen vorteilhaft eine glatte Vorder- und Rückseite auf. Sie sind dünner als die gezeigten Kühlplatten mit Nuten und werden vorteilhaft aus einer stranggegossenen Vorform hergestellt, deren Dicke durch Walzen reduziert wurde. Sie werden auf den Durchmesser des Panzers im Bereich des Gestells zentriert, so daß sie formschlüssig mit ihrer glatten Rückfläche an dem Hochofenpanzer anliegen. Die Gestellauskleidung mit Formsteinen aus Kohlenstoff liegt hierbei formschlüssig an der ebenfalls glatten Vorderseite der Kühlplatten an. Hierdurch wird gewährleistet, daß relativ dünne Kühlplatten die großen Drücke die auf die Gestellauskleidung einwirken problemlos auf den Hochofenpanzer übertragen können.In contrast, cooling plates for the frame of the blast furnace advantageously have one smooth front and back on. They are thinner than the cooling plates shown with grooves and are advantageous from a continuously cast preform manufactured, the thickness of which was reduced by rolling. You will be on the Diameter of the shell centered in the area of the frame, so that it Form-fit against the blast furnace shell with its smooth rear surface. The frame lining with shaped stones made of carbon lies here form-fitting on the likewise smooth front of the cooling plates. This ensures that relatively thin cooling plates can withstand the high pressures that act on the frame lining without problems on the blast furnace can transmit.

Alle gezeigten Kühlplatten weisen drei stranggegossene Kanäle auf. Selbstverständlich können mit dem erfindungsgemäßen Verfahren ebenfalls Kühlplatten mit mehr oder mit weniger als drei stranggegossenen Kanälen hergestellt werden.All cooling plates shown have three continuously cast channels. Of course, you can also use the method according to the invention Cooling plates with more or less than three continuously cast channels getting produced.

Claims (11)

  1. Method for production of a cooling plate (50, 80) with integrated coolant ducts (52, 84) for iron and steel making furnaces from an ingot of copper, characterised in that
    the ingot of copper is continuously cast by means of a continuous casting mould (10), wherein rod-shaped inserts (28) in the casting duct (20) of the continuous casting mould (10) produce ducts (52, 84) running in the continuous casting direction, which form coolant ducts in the finished cooling plate, so that the continuously cast ingot of copper forms a preform of the cooling plate (50, 80).
  2. Method according to claim 1, characterised in that the continuous casting mould (10) has prongs (26), which produce grooves (82) running in the continuous casting direction in a surface of the preform.
  3. Method according to claim 1 or 2, characterised in that grooves (60) running at right angles to the continuous casting direction are worked into a surface of the continuously cast preform.
  4. Method according to one of claims 1 to 3, characterised in that a plate is cut out of the preform by two cuts at right angles to the casting direction, whereby two end faces (54, 56) are formed at right angles to the casting direction, and the ducts (52, 84) extend as through ducts through the plate between the two end faces (54, 56) and form terminations (58) therein.
  5. Method according to claim 4, characterised in that connection holes (62) for feed and return pipes (64, 66) terminating in the ducts (52, 84) are drilled into the plate (50, 80) at right angles to the plate surface, and the end terminations (58) of the ducts (52, 84) are closed.
  6. Method according to one of claims 1 to 5, characterised in that the crosssection of the continuously cast ducts (52, 84) has an elongated shape which has its smallest dimension at right angles to the cooling plate (50, 80).
  7. Method according to one of claims 1 to 6, characterised in that the continuously cast ducts (52, 84) are connected to each other by transverse holes (86, 88).
  8. Method according to claim 7, characterised in that the transverse holes (86, 88) are arranged and closed in such a way that a spiral continuous duct with a feed connection (94) and a return connection (96) results.
  9. Method according to one of claims 1 to 8, characterised in that the cooling plate (80) is centered in such a way that its curvature is adapted to the curvature of a shaft furnace wall.
  10. Method according to one of claims 1 to 9, characterised in that the preform is continuously cast from a copper alloy.
  11. Method according to one of claims 1 to 10, characterised in that the thickness of the continuously cast preform is reduced by rolling.
EP98904032A 1997-01-08 1998-01-05 Method of producing a cooling plate for iron and steel-making furnaces Expired - Lifetime EP0951371B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
LU90003A LU90003B1 (en) 1997-01-08 1997-01-08 Method for producing a cooling plate for furnaces serving for iron and steel production - with a continuous casting mould used to produce a preliminary version of the cooling plate
LU90003 1997-01-08
LU90146A LU90146A7 (en) 1997-01-08 1997-09-30 Process for producing a cooling plate for shaft ovens
LU90146 1997-09-30
PCT/EP1998/000021 WO1998030345A1 (en) 1997-01-08 1998-01-05 Method of producing a cooling plate for iron and steel-making furnaces

Publications (2)

Publication Number Publication Date
EP0951371A1 EP0951371A1 (en) 1999-10-27
EP0951371B1 true EP0951371B1 (en) 2001-08-08

Family

ID=26640362

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98904032A Expired - Lifetime EP0951371B1 (en) 1997-01-08 1998-01-05 Method of producing a cooling plate for iron and steel-making furnaces

Country Status (13)

Country Link
US (1) US6470958B1 (en)
EP (1) EP0951371B1 (en)
JP (1) JP3907707B2 (en)
AT (1) ATE203941T1 (en)
AU (1) AU6207198A (en)
BR (1) BR9806859A (en)
CA (1) CA2274861C (en)
CZ (1) CZ293516B6 (en)
DE (1) DE59801166D1 (en)
ES (1) ES2159935T3 (en)
PL (1) PL185392B1 (en)
RU (1) RU2170265C2 (en)
WO (1) WO1998030345A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2344639A (en) * 1998-12-08 2000-06-14 British Steel Plc Cooling panels for blast furnaces
ID24579A (en) * 1998-12-22 2000-07-27 Outokumpu Oy METHODS TO MAKE ELEMENTS OF SOIL COOLING AND COOLING ELEMENTS MADE WITH THESE METHODS
FI107789B (en) * 1999-02-03 2001-10-15 Outokumpu Oy Casting mold for producing a cooling element and forming cooling element in the mold
DE10024587A1 (en) * 2000-05-19 2001-11-22 Km Europa Metal Ag Cooling plate
FI115251B (en) * 2002-07-31 2005-03-31 Outokumpu Oy Heat Sink
EP1391521A1 (en) * 2002-08-20 2004-02-25 Voest-Alpine Industrieanlagenbau GmbH & Co. Cooling plate for metallurgical furnace
DE102004035963A1 (en) 2004-07-23 2006-02-16 Km Europa Metal Ag cooling plate
WO2010076368A1 (en) * 2008-12-29 2010-07-08 Luvata Espoo Oy Method for producing a cooling element for pyrometallurgical reactor and the cooling element
KR101019794B1 (en) 2009-05-11 2011-03-04 주식회사 경동나비엔 Cooling structure for combustion chamber of boiler
US8268233B2 (en) * 2009-10-16 2012-09-18 Macrae Allan J Eddy-free high velocity cooler
FI124223B (en) 2010-06-29 2014-05-15 Outotec Oyj SUSPENSION DEFROSTING OVEN AND CONCENTRATOR
CN103476969A (en) * 2011-04-08 2013-12-25 Bhp比利顿铝技术有限公司 Heat exchange elements for use in pyrometallurgical process vessels
EP2951324B1 (en) * 2013-02-01 2021-07-07 Berry Metal Company Stave with external manifold
RU2600046C2 (en) * 2015-01-12 2016-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Чувашский государственный университет имени И.Н. Ульянова" Method for making cooling tray of metallurgical furnace

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1161664B (en) * 1956-10-31 1964-01-23 Ver Leichtmetallwerke Gmbh Heat exchange plate rolled from cast ingots
US3136008A (en) * 1960-06-20 1964-06-09 Continental Can Co Apparatus and method for continuous casting of ingots having longitudinal channels and spacer member therein
FR1432629A (en) * 1965-02-04 1966-03-25 Element for sealed tubular wall and its manufacture
GB1571789A (en) 1976-12-30 1980-07-16 Brown & Sons Ltd James Furnace cooling element
DE2907511C2 (en) * 1979-02-26 1986-03-20 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover Cooling plate for shaft furnaces, in particular blast furnaces, and method for producing the same
JPS59141347A (en) * 1983-02-01 1984-08-14 Kuroki Kogyosho:Kk Mold for continuous casting
DE3836328A1 (en) * 1988-10-25 1990-04-26 Emitec Emissionstechnologie METHOD FOR PRODUCING SINGLE CAMS FROM CAST MATERIAL
DE4035893C1 (en) * 1990-11-12 1992-01-30 Hampel, Heinrich, Dr., Moresnet, Be Cooling box for blast furnace - with groove for cooling medium in base, with cover attached by explosive welding to form closed channel
DE29611704U1 (en) * 1996-07-05 1996-10-17 Gutehoffnungshuette Man Cooling plate for metallurgical furnaces

Also Published As

Publication number Publication date
ES2159935T3 (en) 2001-10-16
AU6207198A (en) 1998-08-03
US6470958B1 (en) 2002-10-29
CZ293516B6 (en) 2004-05-12
CA2274861A1 (en) 1998-07-16
PL334628A1 (en) 2000-03-13
WO1998030345A1 (en) 1998-07-16
PL185392B1 (en) 2003-05-30
JP2001507630A (en) 2001-06-12
CA2274861C (en) 2005-04-12
DE59801166D1 (en) 2001-09-13
EP0951371A1 (en) 1999-10-27
JP3907707B2 (en) 2007-04-18
RU2170265C2 (en) 2001-07-10
BR9806859A (en) 2000-04-18
ATE203941T1 (en) 2001-08-15
CZ242599A3 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
EP1153142B1 (en) Process for producing a cooling panel for a furnace for producing iron or steel
EP0951371B1 (en) Method of producing a cooling plate for iron and steel-making furnaces
EP0974414B1 (en) Casting mould and a casting process for the production of an engine block
DE2907511C2 (en) Cooling plate for shaft furnaces, in particular blast furnaces, and method for producing the same
EP2091678A1 (en) Casting mould for casting a cast part and use of such a casting mould
DE3322424C2 (en)
DE2925967A1 (en) METHOD FOR PRODUCING HEAT EXCHANGERS
DE102007002208A1 (en) Formation of a partition window of a cylinder block casting
EP1317978B1 (en) Mould pipe for continuous casting of metals
DE1217556B (en) Continuous mold for continuous casting of metals
EP1499462A1 (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
DE3120221C2 (en) Production of thick-walled shielding transport and storage containers made of spherical cast iron
DE10024587A1 (en) Cooling plate
EP1918042A1 (en) Mould for continuous casting of pre-profiled billets
LU90146A7 (en) Process for producing a cooling plate for shaft ovens
EP3284550B2 (en) Method for producing a mould for continuous casting of metallic products, and a mould
EP1855824B1 (en) Method for producing a continuous casting mold and corresponding continuous casting mold
DE102005030814B4 (en) Casting mold for metal casting
DE10034506C1 (en) Process for producing cooling channels in shaping tools subject to operational thermal stress and associated shaping tool
EP2436458A1 (en) Strand cast mould
DE3216327C1 (en) Production of thick-walled shielded transport and storage containers of spherulitic cast iron
EP1247601A2 (en) Method for manufacturing a heat exchanger for a condensing boiler by casting and mould core used for carrying out said method
EP2723519A2 (en) Method for producing a mold tube
DE423183C (en) Device for the production of rollers
DE19852595A1 (en) Process and plant for the production of castings from aluminum with inlays

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FI FR GB IT NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000918

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FI FR GB IT NL SE

REF Corresponds to:

Ref document number: 203941

Country of ref document: AT

Date of ref document: 20010815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010808

REF Corresponds to:

Ref document number: 59801166

Country of ref document: DE

Date of ref document: 20010913

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2159935

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20091217

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101214

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110131

Year of fee payment: 14

Ref country code: SE

Payment date: 20110127

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20101214

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111221

Year of fee payment: 15

BERE Be: lapsed

Owner name: *OUTOKUMPU PORICOPPER OY

Effective date: 20120131

Owner name: S.A. PAUL *WURTH

Effective date: 20120131

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20111219

Year of fee payment: 15

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120106

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130801

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 203941

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131118

Year of fee payment: 17

Ref country code: FI

Payment date: 20140129

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801166

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150105

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801