EP0948237B1 - Procédé pour la suppression du bruit dans un signal de microphone - Google Patents

Procédé pour la suppression du bruit dans un signal de microphone Download PDF

Info

Publication number
EP0948237B1
EP0948237B1 EP99106123A EP99106123A EP0948237B1 EP 0948237 B1 EP0948237 B1 EP 0948237B1 EP 99106123 A EP99106123 A EP 99106123A EP 99106123 A EP99106123 A EP 99106123A EP 0948237 B1 EP0948237 B1 EP 0948237B1
Authority
EP
European Patent Office
Prior art keywords
signal
time
filtering function
microphone
frequency domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99106123A
Other languages
German (de)
English (en)
Other versions
EP0948237A2 (fr
EP0948237A3 (fr
Inventor
Hans-Jörg Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman Becker Automotive Systems GmbH
Original Assignee
Harman Becker Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman Becker Automotive Systems GmbH filed Critical Harman Becker Automotive Systems GmbH
Publication of EP0948237A2 publication Critical patent/EP0948237A2/fr
Publication of EP0948237A3 publication Critical patent/EP0948237A3/fr
Application granted granted Critical
Publication of EP0948237B1 publication Critical patent/EP0948237B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/007Protection circuits for transducers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02168Noise filtering characterised by the method used for estimating noise the estimation exclusively taking place during speech pauses

Definitions

  • the invention relates to a method for noise immunity of a microphone signal.
  • a particular situation is often given in vehicles in that a playback device such as a radio, a cassette or CD player via a loudspeaker Sound environment generates, which superimposed as an interference signal recorded by a microphone voice signal, for example, for speech recognition or telephone transmission.
  • a microphone voice signal for example, for speech recognition or telephone transmission.
  • the microphone signal must be freed as much as possible of interference signal components.
  • the interference signal emanating from a source of interference not only reaches the microphone on the shortest direct path, but also occurs via numerous reflections as a superposition of a plurality of echoes with different transit times in the microphone signal.
  • the entire effect of the interference signal from the source of interference on the microphone signal can be described by an a priori unknown transfer function of the room, such as the passenger compartment of a motor vehicle.
  • the transfer function changes depending on the occupation of the vehicle and the position of the individual persons.
  • a compensation signal can be generated which, by subtraction from the microphone signal, delivers a signal freed from the interference signal, for example a pure speech signal.
  • said replica represents a more or less good approximation to the unknown transfer function and the disturbance can not be completely eliminated.
  • EP 0 250 048 A1 discloses a digital block adaptable filter which is adapted in the frequency domain.
  • Object of the present invention is to provide a method for noise immunity of a microphone signal that has good characteristics hinsichltich the suppression with reasonable signal processing overhead.
  • the compensation of the Störsignalanteils in the microphone signal is made by means of a generated from the reference signal on the replica of the transfer function compensation signal in the frequency domain, so that the microphone signal, compensation signal and output signal in the frequency range, i. in the form of spectra.
  • the signal processing in this process step in the frequency domain requires a spectral transformation of the microphone signal, but takes into account that the reproduction of the transfer function in the frequency range is more advantageous and provides for a beneficial subsequent additional noise reduction of the output signal, which is typically also made in the frequency domain, already a particularly suitable Signal form ready.
  • an advantageous development of the invention provides for a division of the replica filter into a plurality of sub-filters at time-shifted segments of the segmented reference signal whose coefficient update can be staggered over time, whereby the signal processing effort can be minimized.
  • the division of the replica filter into a plurality of sub-filters and the noise removal on the basis of a filter setting obtained in a speech break are independent of the Störsignalkompensation in the frequency domain independently for the noise immunity of a microphone signal feasible and advantageous.
  • Fig. 1 represents the principle of a device for (single-channel) radio signal compensation.
  • the acoustic signal emitted by the loudspeaker reaches the microphone of the speech input system directly, but also via numerous reflections in the vehicle interior.
  • the transmission path G thus represents a transversal filter with a weighted sum of time-delayed echoes
  • the loudspeaker signal x is filtered by the a priori unknown transfer function G of the vehicle interior.
  • the result is the noise component r, which adds to the speech signal s to the microphone signal y.
  • an estimate r ⁇ is generated from the loudspeaker signal x by means of the filter simulation H.
  • the speech signal may still contain disturbances in the form of, for example, engine noise or external noise, but which are not explicitly dealt with in this context.
  • the H is an adaptive filter and works according to a standard method known in the literature, the LMS algorithm (Least Mean Squares).
  • the error signal E is still required in order to accomplish the coefficient adaptation in the filter H.
  • the output signal s ⁇ is fed to the determination of the filter coefficients.
  • Fig. 2a shows in another representation again the arrangement of Fig. 1 as a radio signal compensation.
  • the adaptive system H can be realized, for example, in the time domain as an FIR filter (finite-impulse-response filter). For large impulse response lengths, as they often occur in practice, however, this requires a very high computational effort.
  • FIR filter finite-impulse-response filter
  • FLMS frequency domain
  • Fig. 2b shows a block diagram of the FLMS algorithm.
  • F is a spectral transformation FFT of a time signal into the frequency domain and F -1 is the inverse IFFT.
  • the processing steps referred to as projections P1, P2 and P3 are used for the correct segmentation of the data by the block use with the FFT or IFFT and will be explained in more detail later.
  • the operation of the filter is to multiply the reference spectrum X by the filter coefficient vector H.
  • the spectrum of the filter output R ⁇ is transformed back into the time domain via F -1 .
  • the signal r ⁇ is available.
  • the projection P1 which is particularly complicated here with two spectral transformations, calculates from H 'the coefficient vector H required for the filtering.
  • the spectrum S 1 of the output signal evaluated with P 3 is calculated to calculate the correction vector ⁇ H' s + r - r ⁇ needed.
  • FIG. 3 A detailed block diagram of the in Fig. 2b shown FLMS algorithm Fig. 3 ,
  • the samples of a signal and the nodes of the FFT are commonly referred to as samples. All spectral transforms and their inverses are to be segmented as 256-point FFTs, each overlapping 128 samples.
  • the output signal s ⁇ in the time domain consists of 128 sample blocks. It arises from the difference of the second block halves (thus in each case the samples 129 to 256) of microphone signal and filtered compensation signal r ⁇ .
  • the projection P1 which requires 2 FFTs and converts the vector H 'into the vector H, is elaborate.
  • the first half (samples 1 to 128) is cut out of the complex 256-point result vector of the inverse transformation from the frequency to the time domain (IFFT) and the second half (samples 129 to 256) is set to zero.
  • the transformation into the frequency domain takes place again by means of FFT.
  • Simple is the projection P2. It consists of the above-described fragmentation of the last 128 samples, resulting in overlapping 256-sample blocks again resulting in non-overlapping 128-sample blocks.
  • the projection P3 is also very simple, which, in turn, provides overlapping 256-sample blocks from non-overlapping 128-sample blocks of the output signal by preprogramming 128 null values.
  • the adaptation of the filter coefficients H ' L + 1 for a cycle L + 1 consists of the addition of a renewal vector ⁇ H' L to the old coefficient vector H ' L.
  • the operation of the LMS algorithm is significantly influenced by the adaptation constant ⁇ and the smoothing constant ⁇ . Latches in recursion loops are labeled Sp.
  • the previously described arrangement of the FLMS algorithm allows filter emulations with a maximum impulse response length of half an FFT length, in the example case 128 samples. If longer impulse responses are to be compensated, the already known FLMS algorithm for a sub-filter ( Fig. 4a ) to n subfilters.
  • the im Fig. 4a Block B with the input signals X and S ⁇ and the compensation spectrum R ⁇ as the output is denoted by the Fig. 4b to replace the extension shown.
  • the spectrum X of the reference signal is delayed by latches D by 1 or 2 block lengths, and the instantaneous X1 and the two delayed spectra X2, X3 are separately multiplied by coefficient vectors H1, H2, H3 determined separately in an extended projection P1.
  • the formation of the coefficient vectors is analogous to the case of only a sub-filter, wherein in K1, K2, K3 respectively the associated reference spectrum is linked to the spectrum S ⁇ of the output signal.
  • the effort is considerably increased mainly by the tripling of the projection P1. Additional storage space is required to provide the spectra of the reference signal X which is older by 1 or 2 block lengths.
  • Fig. 6 provides a more detailed block diagram of the frequency domain output FLMS algorithm and again allows comparison with Fig. 3 (Time domain output).
  • the filter adaptation consisting of smoothing of the spectral power, power normalization and coefficient renewal has remained unchanged. What is new are the FFT in the microphone channel, the difference formation YR ⁇ in the frequency domain instead of in the time domain for output formation, and finally the newly defined projection P4, which differs from the projection P1 only by the complementary time domain window.
  • Fig. 7 Shown is the FLMS algorithm with 3 sub-filters (384 sample impulse response), which provides sufficient suppression of the radio signal in the microphone channel of the speech input system.
  • the projections P1 and P4 are shown simplified. It's already out Fig. 4b known additional effort in the form of the memory D and the tripling of the projection P1 visible.
  • the filter output is now practically 3 times the smoothed spectral power is taken into account after the inverse by multiplying by the constant 6 ⁇ .
  • the filter adaptation is now carried out separately for the 3 coefficient vectors of the 3 sub-filters.
  • FIG. 9 An example Z0 for the operation of the invention according to Fig. 7 shows Fig. 9 ,
  • Microphone signal Y resulted from convolution of this noise signal with a likewise constructed 384 sample impulse response and the addition of an extremely weak speech signal. While listening to this in Fig. 9 recorded above signal y, the 10 spoken numbers are barely visible in the colored (because filtered) noise.
  • the output signal of the estimator which was transformed back into the time domain, is freed after a transient of about 1 second (12,000 samples) very effective the speech input from noise and provides an undistorted but slightly reverberated speech signal S ⁇ ( Fig. 9 below).
  • the resulting 3 * 128 sample impulse response or the associated filter transfer function can be calculated at any time. So shows Fig. 10 above is the 384 sample impulse response as it appears at the very end of the scene, that is, after the digit "0" was spoken. It is a very accurate image of the impulse response that was used to convolve with white Gaussian noise and thus to synthetically generate the signal micro.
  • White noise as the reference input signal and filtered "colored" noise as the microphone input signal are the simplest case in terms of the task of finding a replica of this filter. Since the reference signal contains all frequency components by definition, the filter adaptation succeeds fastest here.
  • the additional additive speech input in the microphone input signal - ie the actual useful signal of the speech input system - represents a disturbance for the (F) LMS algorithm, which hinders the correct adaptation of the filter coefficients. In other words, the system is only able to correctly reproduce the room acoustics of the vehicle interior (distance between radio loudspeaker and microphone) during pauses in speech thereby causing a compensation of the radio playback.
  • Fig. 9 This works very well, since the microphone input consists essentially of noise and only a very small part of speech input.
  • the reference signal radio picked up from the radio speaker terminals and the signal micro recorded from the microphone of the voice input system came from the scene Z1.
  • This microphone signal is in Fig. 11 shown above, consists of 100000 samples and thus has a sampling time of 12 kHz a time duration of about 8.3 seconds. It is fluent and relatively fast spoken language of a vehicle occupant seated in the rear right of the car while at the same time sounding at normal volume from the car radio speaker.
  • the hearing test results in a clear elaboration of the language portion or a notable especially in the short language breaks music suppression.
  • a suitable feature is used together with a threshold as an indicator for a voice input. If the characteristic falls below the threshold, this is an indication of missing speech input. In this case, as already stated above, a largely undisturbed filter adaptation can take place.
  • the filter coefficient set is used, which was stored immediately before the threshold was exceeded, ie at the end of the preceding speech break.
  • these stored coefficients H10, H20, H30 provide significantly better radio signal compensation than the current coefficients H, H2, H3, which constantly change under the disturbing influence of the voice input.
  • Fig. 8 represents an embodiment with a further improved FLMS processing with 3 sub-filters.
  • Fig. 7 existing current filter coefficient vectors H1, H2, H3, which were needed to form the continuously adopted output signal yR, there now exists an additional output signal (y-Ro) formed using stored coefficients H10, H20, H30.
  • the current coefficient sets H1, H2, H3 represent a useful compensation filter in the frequency domain only in the absence of speech input in the steady state, however, provide insufficient filter characteristics in voice input, because the adaptation process in the control loop is constantly disturbed.
  • the outputs (y-Ro) and (y-Ra) are identical. Inserting voice inputs cause the 3 switches, whereby the last located in the memories M1, M2, M3 coefficients H10, H20, H30 are no longer overwritten and remain unchanged. This state, in which the outputs (Y-Ro) and (Y-Ra) differ, is maintained until a speech break is detected again and the switches are closed.
  • a smoothing filter for example a 1st order recursive low-pass filter with the input feat, provides at its output the smoothed speech pause feature fea which, after comparison with a threshold value th, controls the coefficients transfer switches.
  • the measured 384-sample impulse response with associated magnitude transfer function is in Fig. 15 represented as current impulse response (a) or current transfer function (b).
  • an impulse response (c) and a high-quality transfer function (d) can be calculated from the stored coefficients H10, H20, H30.
  • the impulse response from the stored coefficients has the typical zero samples at the beginning, which are caused by the transit time of the direct sound from the radio loudspeaker to the speech input microphone. From the dead time of about 40 samples to be read in the example, the distance between loudspeaker and microphone can be determined.
  • the complex projection P4 (IFFT, window on the right in the time domain, FFT) can be replaced without noticeable loss of quality by a relatively simple convolution in the frequency domain, thus saving 2 FFTs.
  • IFFT IFFT, window on the right in the time domain, FFT
  • the "right-sided" 128-sample rectangle window in the time domain ( Fig. 16a ) in the ideal projection replaced by a 128 sample Hamming window ( Fig. 16b ).
  • Fig. 16b the "right-sided" 128-sample rectangle window in the time domain in the ideal projection replaced by a 128 sample Hamming window ( Fig. 16b ).
  • Fig. 17 In the case of the rectangular window, the real part of the spectrum consists of a single line (DC component), whereas the antisymmetrical part of the imaginary spectrum consists of many slowly decreasing lines with alternating lines Zeroing exists.
  • the projection P1 (IFFT - left-sided rectangular window - FFT) can be replaced by a corresponding convolution operation in the frequency domain with the conjugate complex 7-line spectrum.
  • IFFT - left-sided rectangular window - FFT IFFT - left-sided rectangular window - FFT
  • Fig. 8 cost-effective solutions can be achieved by following the LMS algorithm Fig. 8 the 3 projections P1 need not be processed simultaneously in a 256 sample input data block.
  • the 128-sample overlapping input data blocks of length 256 are numbered beginning with "1" at random Fig. 19a outlined. For example, if the input data blocks are modulo-3, the 3 sub-filter projections are not possible in parallel ( Fig.
  • the first of these scenes Z2 involves voice input of digits, with the radio loudspeaker emitting near-white noise at a relatively high volume.
  • the corresponding 100000 sample microphone signal is in Fig. 20 above, the extracted output signal in Fig. 20 shown below.
  • a clear noise exemption of the output signal compared to the microphone input is found by interception comparison.
  • the time course of the speech pause feature is together with the constant threshold th Fig. 21 pictured above and derived therefrom language pauses or the associated switch positions in Fig. 21 below.
  • Fig. 22 in to Fig.
  • the first 100000 samples of a measurement scene Z3 with POP music on the radio and fluent to fast spoken language of the person sitting on the right back are in the form of the microphone signal y in Fig. 23 recorded above.
  • the radio signal is usefully suppressed ( Fig. 23 below).
  • the POP music suppression is effectively maintained, whereby the speech intelligibility here is markedly improved over the microphone signal.
  • Fig. 24 After a long linguistic break, there is no longer a threshold underrun because of the subsequent pause-free speech input ( Fig. 24 ). For this reason, the in Fig.

Claims (10)

  1. Procédé pour la suppression de parasites d'un signal de microphone de fractions d'un signal source, qui est présent sous forme de signal de référence (x) et, après le passage d'un tronçon de transmission avec une fonction de transmission (G) a priori inconnue, se superpose dans le signal de microphone sous forme de signal parasite (r) à un signal vocal (s), par simulation adaptative du signal parasite et compensation du signal parasite réel et du signal parasite simulé dans un signal de sortie, le signal de microphone étant transformé pareillement dans la plage de fréquences, la compensation en signaux étant effectuée dans la plage de fréquences et le signal de sortie présent dans la plage de fréquences étant associé pour l'adaptation de la simulation avec le signal de référence présent dans la plage de fréquences, une fonction de filtrage adaptative d'un filtre de simulation étant appliquée au signal de référence pour la simulation du signal parasite, caractérisé en ce que l'apparition du signal vocal est détecté dans le signal du microphone et, en cas d'apparition d'un signal vocal, la fonction de filtrage réglé avant l'apparition du signal vocal est conservée pour la formation du signal de sortie.
  2. Procédé selon la revendication 1, dans lequel le spectre des signaux de sortie est transformé dans la plage de temps, le signal de temps est amené, en plaçant devant des valeurs nulles, à la longueur double, est retransformé dans la plage de fréquences et sert de base à la simulation de la fonction de transmission.
  3. Procédé selon la revendication 1, dans lequel le spectre de signaux de sortie est plié avec le spectre d'une fenêtre temporelle de Hamming et sert de base à la simulation de la fonction de transmission.
  4. Procédé selon la revendication 1, dans lequel la fonction de filtrage est prédéfinie par un vecteur de coefficients, dont les coefficients sont réglés de façon adaptative.
  5. Procédé selon la revendication 1, dans lequel, également en cas de détection du signal vocal, l'asservissement adaptatif d'une fonction de filtrage actuelle est poursuivie en supplément de la formation du signal de sortie.
  6. Procédé selon la revendication 5, dans lequel la modification du signal vocal est détectée à partir d'une modification de la fonction de filtrage actuelle.
  7. Procédé selon la revendication 6, dans lequel la modification de la fonction de filtrage actuelle est lissée dans le temps pour la détection de l'apparition d'un signal vocal.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel la fonction de filtrage est dissociée en plusieurs fonctions de filtrage partielles à des périodes consécutives d'une réponse impulsionnelle globale de tous les filtres partiels et est appliquée à des spectres de signal de référence pour des segments de temps décalés dans le temps du signal temporel de référence segmenté.
  9. Procédé selon la revendication 8, dans lequel l'adaptation de la fonction de filtrage pour les filtres partiels est effectuée en parallèle.
  10. Procédé selon la revendication 9, dans lequel l'adaptation de la fonction de filtrage pour les filtres partiels individuels est effectuée par séquences de temps.
EP99106123A 1998-04-03 1999-04-01 Procédé pour la suppression du bruit dans un signal de microphone Expired - Lifetime EP0948237B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19814971A DE19814971A1 (de) 1998-04-03 1998-04-03 Verfahren zur Störbefreiung eines Mikrophonsignals
DE19814971 1998-04-03

Publications (3)

Publication Number Publication Date
EP0948237A2 EP0948237A2 (fr) 1999-10-06
EP0948237A3 EP0948237A3 (fr) 2006-02-08
EP0948237B1 true EP0948237B1 (fr) 2008-06-11

Family

ID=7863491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99106123A Expired - Lifetime EP0948237B1 (fr) 1998-04-03 1999-04-01 Procédé pour la suppression du bruit dans un signal de microphone

Country Status (4)

Country Link
US (1) US6895095B1 (fr)
EP (1) EP0948237B1 (fr)
AT (1) ATE398326T1 (fr)
DE (2) DE19814971A1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958836A1 (de) 1999-11-29 2001-05-31 Deutsche Telekom Ag Verfahren und Anordnung zur Verbesserung der Kommunikation in einem Fahrzeug
DE10041885A1 (de) * 2000-08-25 2002-03-07 Mueller Bbm Gmbh Sprachsignalübertragungssystem für Fahrzeuge
DE10052991A1 (de) * 2000-10-19 2002-05-02 Deutsche Telekom Ag Verfahren zur Ermittlung raumakustischer und elektroakustischer Parameter
DE10221990B4 (de) * 2002-05-17 2006-10-12 Audi Ag Reduzierung von Störgeräuschen an Autoradios mit Busanschlüssen
US20040047475A1 (en) * 2002-09-09 2004-03-11 Ford Global Technologies, Inc. Audio noise cancellation system for a sensor in an automotive vehicle
JP2005218010A (ja) * 2004-02-02 2005-08-11 Matsushita Electric Ind Co Ltd 車両用データ伝送システム
US7949520B2 (en) 2004-10-26 2011-05-24 QNX Software Sytems Co. Adaptive filter pitch extraction
US8170879B2 (en) 2004-10-26 2012-05-01 Qnx Software Systems Limited Periodic signal enhancement system
US8543390B2 (en) 2004-10-26 2013-09-24 Qnx Software Systems Limited Multi-channel periodic signal enhancement system
US7716046B2 (en) * 2004-10-26 2010-05-11 Qnx Software Systems (Wavemakers), Inc. Advanced periodic signal enhancement
US8306821B2 (en) 2004-10-26 2012-11-06 Qnx Software Systems Limited Sub-band periodic signal enhancement system
US7525440B2 (en) 2005-06-01 2009-04-28 Bose Corporation Person monitoring
ATE423433T1 (de) * 2006-04-18 2009-03-15 Harman Becker Automotive Sys System und verfahren zur mehrkanal- echokompensation
ATE445966T1 (de) * 2006-05-08 2009-10-15 Harman Becker Automotive Sys Echoverringerung für zeitvariante systeme
EP1855457B1 (fr) * 2006-05-10 2009-07-08 Harman Becker Automotive Systems GmbH Annulation d'écho à canaux multiples à l'aide d'une étape de décorrélation
EP1879181B1 (fr) * 2006-07-11 2014-05-21 Nuance Communications, Inc. Procédé pour la compensation des composants d'un signal audio dans un système de communication dans une voiture et un système pour ça
US20080063122A1 (en) * 2006-09-07 2008-03-13 Gwo-Jia Jong Method for suppressing co-channel interference from different frequency
EP1936939B1 (fr) * 2006-12-18 2011-08-24 Harman Becker Automotive Systems GmbH Annulation d'écho de faible complexité
US7577257B2 (en) * 2006-12-21 2009-08-18 Verizon Services Operations, Inc. Large scale quantum cryptographic key distribution network
US20080225688A1 (en) * 2007-03-14 2008-09-18 Kowalski John M Systems and methods for improving reference signals for spatially multiplexed cellular systems
EP1995940B1 (fr) * 2007-05-22 2011-09-07 Harman Becker Automotive Systems GmbH Procédé et appareil de traitement d'au moins deux signaux de microphone pour fournir un signal de sortie avec une réduction des interférences
ATE532324T1 (de) * 2007-07-16 2011-11-15 Nuance Communications Inc Verfahren und system zur verarbeitung von tonsignalen in einem multimediasystem eines fahrzeugs
US8850154B2 (en) 2007-09-11 2014-09-30 2236008 Ontario Inc. Processing system having memory partitioning
US8904400B2 (en) 2007-09-11 2014-12-02 2236008 Ontario Inc. Processing system having a partitioning component for resource partitioning
US8694310B2 (en) 2007-09-17 2014-04-08 Qnx Software Systems Limited Remote control server protocol system
US8209514B2 (en) 2008-02-04 2012-06-26 Qnx Software Systems Limited Media processing system having resource partitioning
EP2222091B1 (fr) * 2009-02-23 2013-04-24 Nuance Communications, Inc. Procédé pour déterminer un ensemble de coefficients de filtre pour un moyen de compensation d'écho acoustique
US9558752B2 (en) * 2011-10-07 2017-01-31 Panasonic Intellectual Property Corporation Of America Encoding device and encoding method
DE102014214143B4 (de) * 2014-03-14 2015-12-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Verarbeiten eines Signals im Frequenzbereich
US20180166073A1 (en) * 2016-12-13 2018-06-14 Ford Global Technologies, Llc Speech Recognition Without Interrupting The Playback Audio
KR102423744B1 (ko) * 2016-12-30 2022-07-21 하만 베커 오토모티브 시스템즈 게엠베하 음향 반향 제거
DE102017101497B4 (de) 2017-01-26 2020-08-27 Infineon Technologies Ag Mikro-Elektro-Mechanisches-System (MEMS) -Schaltkreis und Verfahren zum Rekonstruieren einer Störgröße

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8601604A (nl) * 1986-06-20 1988-01-18 Philips Nv Frequentie-domein blok-adaptief digitaal filter.
JP2748626B2 (ja) * 1989-12-29 1998-05-13 日産自動車株式会社 能動型騒音制御装置
US5649012A (en) * 1995-09-15 1997-07-15 Hughes Electronics Method for synthesizing an echo path in an echo canceller
US5937060A (en) * 1996-02-09 1999-08-10 Texas Instruments Incorporated Residual echo suppression
JP3654470B2 (ja) * 1996-09-13 2005-06-02 日本電信電話株式会社 サブバンド多チャネル音声通信会議用反響消去方法

Also Published As

Publication number Publication date
EP0948237A2 (fr) 1999-10-06
DE59914782D1 (de) 2008-07-24
DE19814971A1 (de) 1999-10-07
EP0948237A3 (fr) 2006-02-08
ATE398326T1 (de) 2008-07-15
US6895095B1 (en) 2005-05-17

Similar Documents

Publication Publication Date Title
EP0948237B1 (fr) Procédé pour la suppression du bruit dans un signal de microphone
DE19747885B4 (de) Verfahren zur Reduktion von Störungen akustischer Signale mittels der adaptiven Filter-Methode der spektralen Subtraktion
DE69738288T2 (de) Einrichtung zur unterdrückung einer störenden komponente eines eingangssignals
DE2207141C3 (de) Schaltungsanordnung zur Unterdrückung unerwünschter Sprachsignale mittels eines vorhersagenden Filters
EP0747880B1 (fr) Système de reconnaissance de la parole
EP0912974A1 (fr) Procede pour reduire les parasites dans un signal vocal
DE102006027673A1 (de) Signaltrenner, Verfahren zum Bestimmen von Ausgangssignalen basierend auf Mikrophonsignalen und Computerprogramm
DE112007003625T5 (de) Echounterdrückungsvorrichtung, echounterdrückungssystem, Echounterdrückungsverfahren und Computerprogramm
EP1189419B1 (fr) Procede et appareil pour eliminer l'interference d'un haut-parleur sur de signaux de microphone
DE19956088A1 (de) Einseiten-Unterband-Filter
DE102015222105A1 (de) Audiosignalverarbeitung in einem Fahrzeug
DE102013011761A1 (de) Kraftfahrzeug mit einer Freisprecheinrichtung und Verfahren zur Erzeugung eines Frequenzganges für Freisprecheinrichtungen
EP3065417B1 (fr) Procede de suppression d'un bruit parasite dans un systeme acoustique
EP0623995A1 (fr) Dispositif de réglage en fonction du bruit du volume d'un autoradio
EP2080197B1 (fr) Dispositif d'élimination du bruit dans un signal audio
DE10137348A1 (de) Verfahren und Schaltungsanordnung zur Geräuschreduktion bei der Sprachübertragung in Kommunikationssystemen
DE3230391C2 (fr)
EP0615226B1 (fr) Procédé de réduction de bruit pour canaux de parole perturbés
DE19729521A1 (de) Verfahren und Vorrichtung zur Stör- und Echounterdrückung
DE10140523B4 (de) Vorrichtung zum Feedback Cancelling bei der Ausgabe von Mikrofonsignalen durch Lautsprecher
EP1282297B1 (fr) Procede et dispositif pour la suppression du bruit et d'echo
DE102014221765A1 (de) Auf extern bestimmtem SNR basierte Modifizierer für interne MMSE-Berechnungen
EP0909029B1 (fr) Méthode d'adaptation des coefficients de filtrage et dispositif de filtrage numérique adaptatif
DE10356063B4 (de) Verfahren zur Entstörung von Audiosignalen
EP0644527B1 (fr) Terminal pour radio mobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HARMAN BECKER AUTOMOTIVE SYSTEMS (BECKER DIVISION)

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20060807

AKX Designation fees paid

Designated state(s): AT CH DE ES FR GB IT LI NL SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17Q First examination report despatched

Effective date: 20070803

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 3/00 20060101ALI20070927BHEP

Ipc: G10L 21/02 20060101AFI20070927BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59914782

Country of ref document: DE

Date of ref document: 20080724

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080611

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080922

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090401

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090427

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59914782

Country of ref document: DE

Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59914782

Country of ref document: DE

Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE

Effective date: 20120411

Ref country code: DE

Ref legal event code: R082

Ref document number: 59914782

Country of ref document: DE

Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE

Effective date: 20120411

Ref country code: DE

Ref legal event code: R081

Ref document number: 59914782

Country of ref document: DE

Owner name: NUANCE COMMUNICATIONS, INC. (N.D.GES.D. STAATE, US

Free format text: FORMER OWNER: HARMAN BECKER AUTOMOTIVE SYSTEMS GMBH, 76307 KARLSBAD, DE

Effective date: 20120411

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: NUANCE COMMUNICATIONS, INC., US

Effective date: 20120924

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180426

Year of fee payment: 20

Ref country code: IT

Payment date: 20180420

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180629

Year of fee payment: 20

Ref country code: GB

Payment date: 20180427

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59914782

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190331