EP0947787B1 - Device for a thermal connection in a cryogenic machine - Google Patents

Device for a thermal connection in a cryogenic machine Download PDF

Info

Publication number
EP0947787B1
EP0947787B1 EP99400772A EP99400772A EP0947787B1 EP 0947787 B1 EP0947787 B1 EP 0947787B1 EP 99400772 A EP99400772 A EP 99400772A EP 99400772 A EP99400772 A EP 99400772A EP 0947787 B1 EP0947787 B1 EP 0947787B1
Authority
EP
European Patent Office
Prior art keywords
cold finger
load
plate
gap
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99400772A
Other languages
German (de)
French (fr)
Other versions
EP0947787A1 (en
Inventor
Damien c/o Matra Marconi Space France Feger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space SAS
Original Assignee
Astrium SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium SAS filed Critical Astrium SAS
Publication of EP0947787A1 publication Critical patent/EP0947787A1/en
Application granted granted Critical
Publication of EP0947787B1 publication Critical patent/EP0947787B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Definitions

  • the subject of the present invention is a device comprising a cold finger and a device for thermal bond between the end of the cold finger and a load which should be brought to cryogenic temperature during use.
  • the invention finds a particularly application important, although not exclusive, when the machine refrigerator works using the Stirling cycle. However, it can also be used when this machine uses another closed cycle or even a cycle open, for example the Joule Thomson cycle.
  • the above machines provide cold to the end, generally consisting of a cover thick, with a cold finger whose base is directly or indirectly in contact with an environment high temperature.
  • a very thin-walled tube made of a material having low thermal conductivity, such as steel stainless or titanium.
  • the tube being thin, has a very low mechanical strength and very low stiffness. Any force exerted on its end can consequently deforming the cold finger, which has consequences particularly serious when this finger contains a moving element, which is the case with cycle machines Stirling.
  • thermal bonding devices consisting of a braid of copper wires having mass and stiffness also weak as possible.
  • thermal bonding devices consisting of a braid of copper wires having mass and stiffness also weak as possible.
  • a braid of mass and stiffness low to high thermal resistance To assemble the braid on the cover of the cold finger, you must access directly to that finger and to the charge, which is hardly compatible with the realization of a efficient thermal insulation. The fragility of the finger cold makes assembly delicate. So that the braid has the flexibility required it must have a length and a volume important.
  • the invention aims in particular to provide a device for thermal link for cryogenic machine responding better than those previously known to the requirements of the practical, in particular by reducing the thermal gradient between the end of the cold finger and the load, avoiding a mechanical connection between the cold finger and the load and allowing a realization of low mass and low volume with fewer assembly constraints.
  • the invention notably proposes a device thermal bonding according to claim 1.
  • the deformable wall can in particular be constituted by a thin-walled revolution bellows, connecting a base cold finger and the spray plate. He will be in generally preferable effect to avoid direct fixation bellows on the cold finger, the thickness of which is very weak, generally around a tenth of a mm.
  • the condensation and vaporization interval will be usually 1 to 10 mm.
  • the pumping element by capillarity interposed between the end of the finger and the plate reduces the entrainment of drops forming towards the outside by the gases.
  • This pumping element can have various constitutions. It can be made up of a pellet of wicking porous material, occupying the interval between the tip of the cold finger and the plate.
  • This tablet may in particular be made of felt of silica, or fiberglass, or even synthetic material, with pores of a few tens of microns diameter.
  • the circulation of the liquid from the periphery can also be facilitated by grooves engraved in the end.
  • the plate can be extended by a surrounding shirt the end part of the cold finger to avoid training liquid droplets outside the range by gas from vaporization.
  • Means of thermal insulation will be provided around enclosure and load to reduce losses thermal. However, such isolation is no longer necessary when the device is intended to operate in space, where there is a deep vacuum.
  • the device shown schematically on the Figure 1 comprises a thin tube 10, one end of which is attached to a base 12 belonging to the cryogenic machine and the other end of which is closed by a cover 14, which will generally be thicker than the cylindrical wall of the tube. In general this cover will be attached. he can however be in one piece with the rest of the tube.
  • the side wall of the tube is made up of a material with low thermal transmittance, for example stainless steel, titanium or alloy with titanium base.
  • cold finger can for example have a diameter of 12 mm, a thickness 0.1 mm and a length of about 60 mm.
  • the device shown in Figure 1 is intended for cool a charge contained in a vacuum cryostat.
  • This cryostat has an outer casing 16, for example glass with a silver inner side to be reflective.
  • This outer envelope 16 is fixed on the base 12 by means not shown and the sealing between the atmosphere and a volume 30 which will be defined later is ensured by an O-ring 18.
  • An annular zone 19 of the envelope intended for the fixing and the connection waterproof can be thickened to increase its rigidity.
  • the thermal bonding device includes a plate 20 slightly larger in diameter than the cover 14, having a face opposite that of the cover.
  • This plate can be made of metal with high conductivity thermal. It is intended to be rigidly connected to the load to be cooled (not shown).
  • the plate can be also attached to a partition 24 which can be viewed as the internal envelope of the cryostat. This envelope is fixed mechanically to the outer casing 16 at locations not shown in the figure.
  • the internal volume 30 is occupied by gas chosen in depending on the temperature to which the plate 20.
  • gas chosen in depending on the temperature to which the plate 20.
  • This latter gas has the advantage of being a neutral gas and to have a saturation curve slightly above that of nitrogen, resulting in pressure lower when the temperature of volume 30 is that of the environment on earth, for a quantity of liquid predetermined at 90K in enclosure 30.
  • a ballast tank 32 connected to volume 30, so that limit the pressure of the gas contained in volume 30 when the temperature is that of the environment.
  • the interval 22 a thickness nominal between 1 and 10 mm. This interval is occupied by a porous organ forming a wick of circulation of liquid by capillarity.
  • the thickness of the interval may also be chosen based on the accuracy of positioning that can be expected during assembly and risks of displacement during operation, by example following accelerations or vibrations.
  • the plate 20 is advantageously extended by a shirt 34 surrounding the end portion of the cold finger. So that the gas only liquefies against the cover 14, opposite the plate 20, the end part of the wall side of the cold finger can be isolated by a sleeve 36 made of thermal insulating material, over a length of the order of the centimeter.
  • This sleeve may in particular be made of material expanded with closed porosity.
  • the operation of the device is then as follows, when the assembly shown in the figure is initially at room temperature. Volume 30 is completely filled with gas. When the refrigeration machine works, the gas temperature gradually decreases. Finally she reaches, at the end of the cold finger, the liquefaction temperature. Drops of liquefied gas get form and accumulate against the cover 14 and get bigger, gradually invading the porous organ. If the plate 20 is then at a temperature higher than the boiling point of liquid at prevailing pressure in volume 30, liquid vaporizes on contact with the plate by absorbing heat. Steam recondense on cover 14 and the cycle continues until the temperature of the plate 20 reaches that of the tip of the cold finger.
  • Interval 22 can then fill completely with liquid which will vaporize again if the heat transfer by conduction of the insufficient liquid to keep plate 20 below of the boiling point.
  • Interval 22 can play the role of the condenser of a heat pipe using the same gas as that present in volume 30 and distributing the cold in the plate 20 and if necessary the wall 24.
  • a gas mixture in volume 30 so that the thermal bond can operate in a wider temperature range : for example, we will take a mixture of argon, methane, carbon dioxide and ammonia to cover an area ranging from ambience to - 180 ° C. So whatever the temperature of the working load, at least one of these gases will be in its boiling range, while the others will be in gaseous, liquid or solid form and will only intervene by conduction in the transfer thermal. This possibility can be interesting for applications operating at variable temperatures or to facilitate the transient for cooling the system, allowing the initiation of the thermal link to temperatures higher than the nominal temperature use.
  • the thermal gradient between the cover and the plate is very low, the boiling flow is usually 1 to 10 W / cm 2 , even under micro-gravity. No force is exerted by the load on the end of the cold finger, since there is no mechanical connection between the plate and the cold finger, the porous material having no appreciable stiffness.
  • the nominal difference between the cover and the plate can be chosen to a value sufficient to compensate for any manufacturing tolerance and any relative displacement. Because the tolerances are high, the cold finger can be easily integrated into a system.
  • the plate 20 constitutes only a small excess length, usually less than 10 mm.
  • thermal leaks generated by a faulty machine are very small, because stopping this machine will cause the cold finger, vaporization of the liquid and reduction of heat transfers which will only be done in mode conductive through steam, between the cover and the plate.
  • means can be designed to pump liquid to the center of the cover.
  • We can in particular provide means using capillary forces, such as furrows radials bringing the liquefied gas from the periphery of the cover towards its center.
  • the cryostat When the device is intended to operate only in space, therefore under vacuum, the cryostat can be omitted and in this case the bellows 26 simply connects a annular plate tightly fixed to the base 12 (or the base itself) at a bottom extending the plate 20.
  • the pumping element 40 constitutes the condenser of a heat pipe 42 for cooling a charge located at distance.
  • the porous material 40 does not occupy only the area facing the cold finger 14. It extends into a conduit 42.
  • the porous material does not introduce any mechanical coupling, due to its texture.
  • the liquid-gas interface 44 is likely to be move through the porous material, depending on the thermal power dissipated in the load. Grooves internal gas return to the condenser part can be arranged inside the duct 42.

Description

La présente invention a pour objet un dispositif comportant un doigt froid et un dispositif de liaison thermique entre l'extrémité du doigt froid et une charge qui doit être portée à une température cryogénique lors de son utilisation.The subject of the present invention is a device comprising a cold finger and a device for thermal bond between the end of the cold finger and a load which should be brought to cryogenic temperature during use.

L'invention trouve une application particulièrement importante, bien que non exclusive, lorsque la machine frigorifique fonctionne en utilisant le cycle de Stirling. Elle est toutefois également utilisable lorsque cette machine utilise un autre cycle fermé ou même un cycle ouvert, par exemple le cycle de Joule Thomson.The invention finds a particularly application important, although not exclusive, when the machine refrigerator works using the Stirling cycle. However, it can also be used when this machine uses another closed cycle or even a cycle open, for example the Joule Thomson cycle.

Les machines ci-dessus fournissent le froid à l'extrémité, généralement constituées par un couvercle épais, d'un doigt froid dont la base est directement ou indirectement en contact avec un environnement à température élevée. Pour réduire les pertes par conduction, on utilise un tube à paroi très mince en un matériau ayant une faible conductibilité thermique, tel que l'acier inoxydable ou le titane. Le tube, étant mince, présente une très faible tenue mécanique et une très faible raideur. Tout effort exercé sur son extrémité peut en conséquence déformer le doigt froid, ce qui a des conséquences particulièrement graves lorsque ce doigt contient un élément mobile, ce qui est le cas des machines à cycle de Stirling.The above machines provide cold to the end, generally consisting of a cover thick, with a cold finger whose base is directly or indirectly in contact with an environment high temperature. To reduce conduction losses, a very thin-walled tube made of a material having low thermal conductivity, such as steel stainless or titanium. The tube, being thin, has a very low mechanical strength and very low stiffness. Any force exerted on its end can consequently deforming the cold finger, which has consequences particularly serious when this finger contains a moving element, which is the case with cycle machines Stirling.

On a en conséquence cherché à réaliser des dispositifs de liaison thermique qui tout à la fois ont une faible résistance thermique et n'appliquent que de faibles efforts sur l'extrémité du doigt froid. On a notamment réalisé des dispositifs de liaison thermique constitués par une tresse en fils de cuivre ayant une masse et une raideur aussi faibles que possible. Cette solution n'est toutefois pas pleinement satisfaisante. Une tresse de masse et de raideur faibles a une résistance thermique élevée. Pour assembler la tresse sur le couvercle du doigt froid, il faut accéder directement à ce doigt et à la charge, ce qui est difficilement compatible avec la réalisation d'une isolation thermique performante. La fragilité du doigt froid rend l'assemblage délicat. Pour que la tresse ait la souplesse requise elle doit avoir une longueur et un volume important.We have therefore sought to make devices thermal bonding which both have low thermal resistance and apply only low forces on the end of the cold finger. We notably carried out thermal bonding devices consisting of a braid of copper wires having mass and stiffness also weak as possible. However, this solution is not fully satisfactory. A braid of mass and stiffness low to high thermal resistance. To assemble the braid on the cover of the cold finger, you must access directly to that finger and to the charge, which is hardly compatible with the realization of a efficient thermal insulation. The fragility of the finger cold makes assembly delicate. So that the braid has the flexibility required it must have a length and a volume important.

L'utilisation d'une tresse thermique a un inconvénient supplémentaire lorsqu'une même charge est refroidie par deux machines, cela pour assurer une redondance. Si une machine est arrêtée, par exemple par suite d'une panne, la fuite thermique parasite par le doigt froid de cette machine, qui reste en liaison thermique avec la charge, s'ajoute à la puissance requise par la charge.The disadvantage of using a thermal braid additional when the same load is cooled by two machines, this to ensure redundancy. If one machine is stopped, for example due to a fault, the parasitic thermal leak by the cold finger of this machine, which remains in thermal connection with the load, adds to the power required by the load.

On connaít également (US-A-4 802 345) un dispositif de liaison thermique entre un doigt froid et une charge, constitué par un jeu étroit dans lequel se trouvent des gaz dont au moins un est incondensable à la température de fonctionnement. Un jeu étroit est indispensable et rend difficile un découplage.Also known (US-A-4 802 345) a device for thermal bond between a cold finger and a load, consisting of a narrow clearance in which there are gases at least one of which is noncondensable at the temperature of operation. Close play is essential and makes difficult decoupling.

Le document US-A-4 178 775 décrit un cryostat pour un détecteur infrarouge refroidi par une machine frigorifique à cycle ouvert. Un papier buvard retient du gaz liquéfié à proximité du détecteur infrarouge. Ce buvard ne joue pas un rôle de pompage, mais seulement de réserve.Document US-A-4,178,775 describes a cryostat for a infrared detector cooled by a refrigerating machine open cycle. Blotting paper traps liquefied gas at near the infrared detector. This blotter doesn't play a pumping role, but only reserve.

L'invention vise notamment à fournir un dispositif de liaison thermique pour machine cryogénique répondant mieux que ceux antérieurement connus aux exigences de la pratique, notamment en réduisant le gradient thermique entre l'extrêmité du doigt froid et la charge, en évitant une liaison mécanique entre le doigt froid et la charge et en permettant une réalisation de faible masse et de faible volume avec moins de contraintes d'assemblage.The invention aims in particular to provide a device for thermal link for cryogenic machine responding better than those previously known to the requirements of the practical, in particular by reducing the thermal gradient between the end of the cold finger and the load, avoiding a mechanical connection between the cold finger and the load and allowing a realization of low mass and low volume with fewer assembly constraints.

Dans ce but l'invention propose notamment un dispositif de liaison thermique suivant la revendication 1. To this end, the invention notably proposes a device thermal bonding according to claim 1.

La paroi déformable peut notamment être constituée par un soufflet de révolution à paroi mince, reliant une embase du doigt froid et la plaque de vaporisation. Il sera en effet généralement préférable d'éviter une fixation directe du soufflet sur le doigt froid, dont l'épaisseur est très faible, généralement de l'ordre du dixième de mm.The deformable wall can in particular be constituted by a thin-walled revolution bellows, connecting a base cold finger and the spray plate. He will be in generally preferable effect to avoid direct fixation bellows on the cold finger, the thickness of which is very weak, generally around a tenth of a mm.

L'intervalle de condensation et de vaporisation sera généralement de 1 à 10 mm. L'élément de pompage par capillarité interposé entre l'extrémité du doigt et la plaque réduit l'entraínement des gouttes en formation vers l'extérieur par les gaz. Cet élément de pompage peut avoir des constitutions diverses. Il peut être constitué par une pastille de matériau poreux formant mèche, occupant l'intervalle compris entre l'extrémité du doigt froid et la plaque. Cette pastille peut notamment être en feutre de silice, ou de fibre de verre, voire même en matière synthétique, avec des pores de quelques dizaines de microns de diamètre. La circulation du liquide à partir de la périphérie peut également être facilitée par des sillons gravés dans l'extrémité.The condensation and vaporization interval will be usually 1 to 10 mm. The pumping element by capillarity interposed between the end of the finger and the plate reduces the entrainment of drops forming towards the outside by the gases. This pumping element can have various constitutions. It can be made up of a pellet of wicking porous material, occupying the interval between the tip of the cold finger and the plate. This tablet may in particular be made of felt of silica, or fiberglass, or even synthetic material, with pores of a few tens of microns diameter. The circulation of the liquid from the periphery can also be facilitated by grooves engraved in the end.

La plaque peut être prolongée par une chemise entourant la partie terminale du doigt froid pour éviter l'entraínement de gouttelettes de liquide en dehors de l'intervalle par le gaz provenant de la vaporisation.The plate can be extended by a surrounding shirt the end part of the cold finger to avoid training liquid droplets outside the range by gas from vaporization.

Des moyens d'isolement thermique, généralement constitués par un vase Dewar, seront prévus autour de l'enceinte et de la charge pour réduire les pertes thermiques. Un tel isolement n'est cependant plus nécessaire lorsque le dispositif est destiné à fonctionner dans l'espace, où règne un vide poussé.Means of thermal insulation, generally made up of a Dewar vase, will be provided around enclosure and load to reduce losses thermal. However, such isolation is no longer necessary when the device is intended to operate in space, where there is a deep vacuum.

Les caractéristiques ci-dessus ainsi que d'autres apparaítront mieux à la lecture de la description qui suit d'un mode particulier de réalisation, donné à titre d'exemple non limitatif. La description se réfère aux dessins qui l'accompagnent. Sur les dessins :

  • la figure 1 est une vue en coupe d'un dispositif ;
  • la figure 2 montre une variante.
The above characteristics as well as others will appear better on reading the following description of a particular embodiment, given by way of non-limiting example. The description refers to the accompanying drawings. In the drawings:
  • Figure 1 is a sectional view of a device;
  • Figure 2 shows a variant.

Le dispositif représenté schématiquement sur la figure 1 comprend un tube mince 10 dont une extrémité est fixée à une embase 12 appartenant à la machine cryogénique et dont l'autre extrémité est fermée par un couvercle 14, qui sera généralement plus épais que la paroi cylindrique du tube. En général ce couvercle sera rapporté. Il peut cependant être d'une seule pièce avec le reste du tube. En général, la paroi latérale du tube est constituée en un matériau à faible coefficient de transmission thermique, par exemple en acier inoxydable, en titane ou en alliage à base de titane. Dans le cas d'une machine destinée à fournir une puissance de réfrigération de 1W à 90K, dans une ambiance à température maximale de 300K, le doigt froid peut par exemple avoir un diamètre de 12 mm, une épaisseur de 0,1 mm et une longueur d'environ 60 mm.The device shown schematically on the Figure 1 comprises a thin tube 10, one end of which is attached to a base 12 belonging to the cryogenic machine and the other end of which is closed by a cover 14, which will generally be thicker than the cylindrical wall of the tube. In general this cover will be attached. he can however be in one piece with the rest of the tube. In general, the side wall of the tube is made up of a material with low thermal transmittance, for example stainless steel, titanium or alloy with titanium base. In the case of a machine intended for provide a cooling power of 1W to 90K, in an atmosphere at a maximum temperature of 300K, cold finger can for example have a diameter of 12 mm, a thickness 0.1 mm and a length of about 60 mm.

Le dispositif représenté sur la figure 1 est destiné à refroidir une charge contenue dans un cryostat sous vide. Ce cryostat comporte une enveloppe externe 16, par exemple en verre ayant une face interne argentée pour être réfléchissante. Cette enveloppe externe 16 est fixée sur l'embase 12 par des moyens non représentés et l'étanchéité entre l'ambiance et un volume 30 qui sera défini plus loin est assurée par un joint torique 18. Une zone annulaire 19 de l'enveloppe destinée à la fixation et à la liaison étanche peut être épaissie pour augmenter sa rigidité.The device shown in Figure 1 is intended for cool a charge contained in a vacuum cryostat. This cryostat has an outer casing 16, for example glass with a silver inner side to be reflective. This outer envelope 16 is fixed on the base 12 by means not shown and the sealing between the atmosphere and a volume 30 which will be defined later is ensured by an O-ring 18. An annular zone 19 of the envelope intended for the fixing and the connection waterproof can be thickened to increase its rigidity.

Le dispositif de liaison thermique comprend une plaque 20 de diamètre légèrement supérieur à celui du couvercle 14, présentant une face en regard de celle du couvercle. Cette plaque peut être en métal à forte conductivité thermique. Elle est prévue pour être reliée rigidement à la charge à refroidir (non représentée). La plaque peut être fixée également à une cloison 24 qu'on peut regarder comme l'enveloppe interne du cryostat. Cette enveloppe est fixée mécaniquement à l'enveloppe externe 16 en des emplacements non indiqués sur la figure. Une paroi souple, représentée sous forme d'un soufflet métallique 26, relie le fond de l'enveloppe 24, portée par la plaque 20, à la zone annulaire 19 de renfort de l'enveloppe externe 16. Elle sépare ainsi un espace sous vide 28 d'un volume interne 30 entourant le doigt froid 10. Du fait de la souplesse du soufflet, les pièces 20 et 24, liées mécaniquement à la charge d'utilisation, restent libres par rapport aux mouvements relatifs que peuvent avoir par rapport à elles les pièces 18 et 16 et donc l'extrémité du doigt froid 14.The thermal bonding device includes a plate 20 slightly larger in diameter than the cover 14, having a face opposite that of the cover. This plate can be made of metal with high conductivity thermal. It is intended to be rigidly connected to the load to be cooled (not shown). The plate can be also attached to a partition 24 which can be viewed as the internal envelope of the cryostat. This envelope is fixed mechanically to the outer casing 16 at locations not shown in the figure. A flexible wall, shown in the form of a metal bellows 26, connects the bottom of the envelope 24, carried by the plate 20, to the zone annular 19 for reinforcing the outer casing 16. It thus separates a vacuum space 28 from an internal volume 30 surrounding the cold finger 10. Due to the flexibility of the bellows, parts 20 and 24, mechanically linked to the load of use, remain free compared to relative movements that can have in relation to them the parts 18 and 16 and therefore the end of the cold finger 14.

Le volume interne 30 est occupé par du gaz choisi en fonction de la température à laquelle doit être portée la plaque 20. On peut notamment utiliser l'azote, l'oxygène, l'air ou l'argon. Ce dernier gaz présente l'intérêt d'être un gaz neutre et d'avoir une courbe de saturation légèrement au-dessus de celle de l'azote, d'où une pression plus faible lorsque la température du volume 30 est celle de l'environnement sur terre, pour une quantité de liquide prédéterminée à 90K dans l'enceinte 30. Souvent on prévoira un réservoir ballast 32 relié au volume 30, de façon à limiter la pression du gaz contenu dans le volume 30 lorsque la température est celle de l'environnement.The internal volume 30 is occupied by gas chosen in depending on the temperature to which the plate 20. One can in particular use nitrogen, oxygen, air or argon. This latter gas has the advantage of being a neutral gas and to have a saturation curve slightly above that of nitrogen, resulting in pressure lower when the temperature of volume 30 is that of the environment on earth, for a quantity of liquid predetermined at 90K in enclosure 30. Often we will provide a ballast tank 32 connected to volume 30, so that limit the pressure of the gas contained in volume 30 when the temperature is that of the environment.

On donnera généralement à l'intervalle 22 une épaisseur nominale comprise entre 1 et 10 mm. Cet intervalle est occupé par un organe poreux formant mèche de circulation de liquide par capillarité. L'épaisseur de l'intervalle pourra également être choisie en fonction de la précision de positionnement que l'on peut espérer lors de l'assemblage et des risques de déplacement en fonctionnement, par exemple à la suite d'accélérations ou de vibrations.We will generally give the interval 22 a thickness nominal between 1 and 10 mm. This interval is occupied by a porous organ forming a wick of circulation of liquid by capillarity. The thickness of the interval may also be chosen based on the accuracy of positioning that can be expected during assembly and risks of displacement during operation, by example following accelerations or vibrations.

Pour éviter que des gouttes formées sur le couvercle 14 ne soient entraínées vers une partie plus chaude du doigt froid, la plaque 20 est avantageusement prolongée par une chemise 34 entourant la partie terminale du doigt froid. Pour que le gaz ne se liquéfie que contre le couvercle 14, en face de la plaque 20, la partie terminale de la paroi latérale du doigt froid peut être isolée par un manchon 36 en matériau isolant thermique, sur une longueur de l'ordre du centimètre. Ce manchon peut notamment être en matériau expansé à porosité fermée.To prevent drops from forming on the cover 14 are dragged to a warmer part of the finger cold, the plate 20 is advantageously extended by a shirt 34 surrounding the end portion of the cold finger. So that the gas only liquefies against the cover 14, opposite the plate 20, the end part of the wall side of the cold finger can be isolated by a sleeve 36 made of thermal insulating material, over a length of the order of the centimeter. This sleeve may in particular be made of material expanded with closed porosity.

Le fonctionnement du dispositif est alors le suivant, lorsque l'ensemble représenté sur la figure est initialement à la température ambiante. Le volume 30 est entièrement rempli de gaz. Lorsque la machine frigorifique fonctionne, la température du gaz diminue progressivement. Finalement elle atteint, à l'extrémité du doigt froid, la température de liquéfaction. Des gouttes de gaz liquéfié se forment et s'accumulent contre le couvercle 14 et grossissent, envahissant progressivement l'organe poreux. Si la plaque 20 est alors à une température supérieure à la température d'ébullition du liquide à la pression qui règne dans le volume 30, du liquide se vaporise au contact de la plaque en absorbant de la chaleur. De la vapeur se recondense sur le couvercle 14 et le cycle se poursuit jusqu'à ce que la température de la plaque 20 atteigne celle de l'extrémité du doigt froid. L'intervalle 22 peut se remplir alors complètement de liquide qui se vaporisera de nouveau si le transfert thermique par conduction du liquide est insuffisant pour maintenir la plaque 20 en-dessous de la température d'ébullition. L'intervalle 22 peut jouer le rôle du condenseur d'un caloduc utilisant le même gaz que celui présent dans le volume 30 et distribuant le froid dans la plaque 20 et si nécessaire la paroi 24.The operation of the device is then as follows, when the assembly shown in the figure is initially at room temperature. Volume 30 is completely filled with gas. When the refrigeration machine works, the gas temperature gradually decreases. Finally she reaches, at the end of the cold finger, the liquefaction temperature. Drops of liquefied gas get form and accumulate against the cover 14 and get bigger, gradually invading the porous organ. If the plate 20 is then at a temperature higher than the boiling point of liquid at prevailing pressure in volume 30, liquid vaporizes on contact with the plate by absorbing heat. Steam recondense on cover 14 and the cycle continues until the temperature of the plate 20 reaches that of the tip of the cold finger. Interval 22 can then fill completely with liquid which will vaporize again if the heat transfer by conduction of the insufficient liquid to keep plate 20 below of the boiling point. Interval 22 can play the role of the condenser of a heat pipe using the same gas as that present in volume 30 and distributing the cold in the plate 20 and if necessary the wall 24.

Dans certains cas, on aura intérêt à utiliser un mélange de gaz dans le volume 30 pour que le lien thermique puisse fonctionner dans une plus large gamme de température : par exemple, on prendra un mélange d'argon, de méthane, de gas carbonique et d'ammoniaque pour couvrir un domaine allant de l'ambiance à - 180°C. Ainsi, quelle que soit la température de la charge d'utilisation, l'un au moins de ces gaz sera dans son domaine d'ébullition, alors que les autres seront sous forme gazeuse, liquide ou solide et n'interviendront que par conduction dans le transfert thermique. Cette possibilité peut être intéressante pour les applications fonctionnant à des températures variables ou pour faciliter le transitoire de mise en froid du système, en permettant l'amorçage du lien thermique à des températures plus élevées que la température nominale d'utilisation.In some cases, it would be beneficial to use a gas mixture in volume 30 so that the thermal bond can operate in a wider temperature range : for example, we will take a mixture of argon, methane, carbon dioxide and ammonia to cover an area ranging from ambience to - 180 ° C. So whatever the temperature of the working load, at least one of these gases will be in its boiling range, while the others will be in gaseous, liquid or solid form and will only intervene by conduction in the transfer thermal. This possibility can be interesting for applications operating at variable temperatures or to facilitate the transient for cooling the system, allowing the initiation of the thermal link to temperatures higher than the nominal temperature use.

Le gradient thermique entre le couvercle et la plaque est très faible, le flux d'ébullition étant habituellement de 1 à 10 W/cm2, même sous micro-gravité. Aucune force n'est exercée par la charge sur l'extrémité du doigt froid, puisqu'il n'y a pas de liaison mécanique entre la plaque et le doigt froid, le matériau poreux n'ayant pas de rigidité appréciable. L'écart nominal entre le couvercle et la plaque peut être choisi à une valeur suffisante pour compenser toute tolérance de fabrication et tout déplacement relatif. Du fait que les tolérances sont élevées, le doigt froid peut être facilement intégré dans un système. La plaque 20 ne constitue qu'une sur-longueur faible, habituellement inférieure à 10 mm.The thermal gradient between the cover and the plate is very low, the boiling flow is usually 1 to 10 W / cm 2 , even under micro-gravity. No force is exerted by the load on the end of the cold finger, since there is no mechanical connection between the plate and the cold finger, the porous material having no appreciable stiffness. The nominal difference between the cover and the plate can be chosen to a value sufficient to compensate for any manufacturing tolerance and any relative displacement. Because the tolerances are high, the cold finger can be easily integrated into a system. The plate 20 constitutes only a small excess length, usually less than 10 mm.

Dans le cas d'un système ayant une charge munie de deux machines pour créer une redondance, les fuites thermiques générées par une machine défaillante sont très réduites, car l'arrêt de cette machine provoque l'échauffement du doigt froid, la vaporisation du liquide et la réduction des transferts thermiques qui ne se feront plus qu'en mode conductif au travers de la vapeur, entre le couvercle et la plaque.In the case of a system with a load provided with two machines to create redundancy, thermal leaks generated by a faulty machine are very small, because stopping this machine will cause the cold finger, vaporization of the liquid and reduction of heat transfers which will only be done in mode conductive through steam, between the cover and the plate.

Comme il a été indiqué plus haut, des moyens peuvent être prévus pour réaliser un pompage de liquide vers le centre du couvercle. On peut en particulier prévoir des moyens utilisant les forces capillaires, tels des sillons radiaux amenant le gaz liquéfié de la périphérie du couvercle vers son centre.As indicated above, means can be designed to pump liquid to the center of the cover. We can in particular provide means using capillary forces, such as furrows radials bringing the liquefied gas from the periphery of the cover towards its center.

Lorsque le dispositif est destiné à fonctionner uniquement dans l'espace, donc sous vide, le cryostat peut être omis et dans ce cas le soufflet 26 relie simplement une plaque annulaire fixée de façon étanche à l'embase 12 (ou l'embase elle-même) à un fond prolongeant la plaque 20.When the device is intended to operate only in space, therefore under vacuum, the cryostat can be omitted and in this case the bellows 26 simply connects a annular plate tightly fixed to the base 12 (or the base itself) at a bottom extending the plate 20.

Sur la figure 2, où les organes correspondant à ceux de la figure 1 sont désignés par le même numéro de référence, l'élément de pompage 40 constitue le condenseur d'un caloduc 42 de refroidissement d'une charge située à distance. Pour cela, le matériau poreux 40 n'occupe pas seulement la zone qui est en face du doigt froid 14. Elle se prolonge dans un conduit 42. Le matériau poreux n'introduit aucun couplage mécanique, du fait de sa texture. L'interface liquide-gaz 44 est susceptible de se déplacer dans le matériau poreux, en fonction de la puissance thermique dissipée dans la charge. Des rainures internes de retour du gaz vers la partie formant condenseur peuvent être ménagées à l'intérieur du conduit 42.In Figure 2, where the organs corresponding to those of FIG. 1 are designated by the same reference number, the pumping element 40 constitutes the condenser of a heat pipe 42 for cooling a charge located at distance. For this, the porous material 40 does not occupy only the area facing the cold finger 14. It extends into a conduit 42. The porous material does not introduce any mechanical coupling, due to its texture. The liquid-gas interface 44 is likely to be move through the porous material, depending on the thermal power dissipated in the load. Grooves internal gas return to the condenser part can be arranged inside the duct 42.

Claims (9)

  1. Device comprising a cold finger and thermal link device for use between an end, at cryogenic temperature, of the cold finger and a load, comprising a plate (20) confronting said end, for connection with the load, mechanically separate from the end and defining with said end a condensation and vaporization gap occupied by a capillary pumping element and comprising also a deformable wall connected to the plate and defining an enclosure accommodating said gap and surrounding at least the end of the cold finger and the portion of the cold finger which is close to the end, said enclosure being occupied by at least one gas having a condensation temperature selected responsive to the cryogenic temperature to be given to the load.
  2. Device according to claim 1, characterized in that said pumping element is a pellet of wick-forming porous material occupying the whole gap comprised between the end of the cold finger and the plate (20).
  3. Device according to claim 1 or 2, characterized in that the plate (20) is extended by a jacket surrounding the end portion of the cold finger for hindering shift of drops of liquid out of said gap due to egress of said gas upon vaporization thereof.
  4. Device according to claim 3, characterized by a thermally insulating sleeve (36) surrounding the end portion of the cold finger.
  5. Device according to any one of claims 1 to 4, characterized in that the deformable wall comprises a flexible bellows having a rotational symmetry, and thin wall connecting a base of said cold finger and said plate.
  6. Device according to any one of Gaims 1 to 5, characterized in that thermally insulating means are positioned around the enclosure and the load.
  7. Device according to any one of claims 1 to 6, characterized in that said enclosure is occupied by a mixture of a plurality of gases having different boiling temperatures.
  8. Device according to any one of claims 1 to 7, characterized in that the gap (22) is sized to constitute a condenser of a heat pipe.
  9. System comprising a load and two cryogenic machines, characterized in that each of said machines comprises a cold finger and a link device connected to the load according to any one of claims 1-8.
EP99400772A 1998-03-31 1999-03-30 Device for a thermal connection in a cryogenic machine Expired - Lifetime EP0947787B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9803971A FR2776762B1 (en) 1998-03-31 1998-03-31 THERMAL BINDING DEVICE FOR CRYOGENIC MACHINE
FR9803971 1998-03-31

Publications (2)

Publication Number Publication Date
EP0947787A1 EP0947787A1 (en) 1999-10-06
EP0947787B1 true EP0947787B1 (en) 2003-09-03

Family

ID=9524690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400772A Expired - Lifetime EP0947787B1 (en) 1998-03-31 1999-03-30 Device for a thermal connection in a cryogenic machine

Country Status (6)

Country Link
US (1) US6164077A (en)
EP (1) EP0947787B1 (en)
JP (1) JPH11325629A (en)
DE (1) DE69910877T2 (en)
FR (1) FR2776762B1 (en)
IL (1) IL129271A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0125188D0 (en) * 2001-10-19 2001-12-12 Oxford Magnet Tech A pulse tube refrigerator sleeve
US6915642B2 (en) * 2002-01-22 2005-07-12 L'Air Liquide-Societe Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude Apparatus and method for extracting cooling power from helium in a cooling system regenerator
US7270302B1 (en) * 2003-04-22 2007-09-18 Lockheed Martin Corporation Scalable thermal control system for spacecraft mounted instrumentation
JP4494027B2 (en) * 2004-01-26 2010-06-30 株式会社神戸製鋼所 Cryogenic equipment
JP4290031B2 (en) * 2004-02-18 2009-07-01 株式会社サイニクス Cooling system
GB0408425D0 (en) * 2004-04-15 2004-05-19 Oxford Instr Superconductivity Cooling apparatus
US7415830B2 (en) * 2005-08-31 2008-08-26 Raytheon Company Method and system for cryogenic cooling
US8069675B2 (en) * 2006-10-10 2011-12-06 Massachusetts Institute Of Technology Cryogenic vacuum break thermal coupler
US7967256B2 (en) * 2007-05-08 2011-06-28 Lockheed Martin Corporation Spacecraft battery thermal management system
US20140202172A1 (en) * 2013-01-22 2014-07-24 Sunpower, Inc. Cold Finger For Cryocoolers
WO2014173809A1 (en) * 2013-04-24 2014-10-30 Siemens Plc An assembly comprising a two-stage cryogenic refrigerator and associated mounting arrangement
CN105333674B (en) * 2014-08-08 2019-03-05 青岛海尔特种电冰柜有限公司 A kind of refrigerating plant being adaptable to a variety of placed angles
DE102014218773B4 (en) 2014-09-18 2020-11-26 Bruker Biospin Gmbh Automatic thermal decoupling of a cooling head
US11287171B1 (en) 2017-07-05 2022-03-29 Rigetti & Co, Llc Heat switches for controlling a flow of heat between thermal stages of a cryostat
US11035807B2 (en) * 2018-03-07 2021-06-15 General Electric Company Thermal interposer for a cryogenic cooling system
CN109945542A (en) * 2019-03-29 2019-06-28 中国科学院上海技术物理研究所 A kind of resistance to stress linear type vascular refrigerator and Dewar coupled structure
KR102631379B1 (en) * 2022-12-09 2024-02-01 크라이오에이치앤아이(주) Cryogenic cooling device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1585049A (en) * 1968-06-12 1970-01-09
US3561525A (en) * 1969-07-02 1971-02-09 Energy Conversion Systemes Inc Heat pipe condensate return
US3894403A (en) * 1973-06-08 1975-07-15 Air Prod & Chem Vibration-free refrigeration transfer
US4178775A (en) * 1978-09-18 1979-12-18 Ford Aerospace And Communications Corporation Cryostat assembly
FR2619439B1 (en) * 1987-08-10 1990-01-12 Air Liquide METHOD AND DEVICE FOR CRYOGENIC COOLING OF AN OBJECT
US4771823A (en) * 1987-08-20 1988-09-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Self-actuating heat switches for redundant refrigeration systems
US4802345A (en) * 1987-12-03 1989-02-07 Hughes Aircraft Company Non-temperature cycling cryogenic cooler
EP0366818A1 (en) * 1988-11-02 1990-05-09 Leybold Aktiengesellschaft Cryostatic temperature regulator with a liquid nitrogen bath
US5228703A (en) * 1992-02-18 1993-07-20 Ronald White Sealing member
US5542254A (en) * 1993-04-15 1996-08-06 Hughes Aircraft Company Cryogenic cooler
FR2752287B1 (en) * 1996-08-07 1998-10-09 Sagem CRYOGENIC TEMPERATURE BINDING DEVICE

Also Published As

Publication number Publication date
FR2776762B1 (en) 2000-06-16
DE69910877D1 (en) 2003-10-09
IL129271A0 (en) 2000-02-17
FR2776762A1 (en) 1999-10-01
EP0947787A1 (en) 1999-10-06
IL129271A (en) 2001-11-25
DE69910877T2 (en) 2004-09-09
JPH11325629A (en) 1999-11-26
US6164077A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
EP0947787B1 (en) Device for a thermal connection in a cryogenic machine
EP2956729B1 (en) Heat transport device with diphasic fluid
EP2179240B1 (en) Passive device with capillary pumped fluidic micro loop
FR2638823A1 (en) REFRIGERATOR TYPE A MULTI-STAGE COLD STORAGE AND COOLING DEVICE HAVING SUCH A REFRIGERATOR
EP2181301B1 (en) Thermal regulation passive device with fluid micro loop and capillary pumping
EP0614059B1 (en) Cooler with a cold finger of pulse tube type
EP0832411A1 (en) Capillary pumped heat transfer loop
EP2795226B1 (en) Cooling device
EP3350501B1 (en) Liquefied-fluid storage tank
FR2899374A1 (en) Thermal switch for connecting cryogenic cooler, has actuator activated to apply force on thermal connecting element to obtain mechanical rupture of element, and outer spring exerting return force on interface to maintain opening of switch
EP1431638A2 (en) Cryogenic valve device with pneumatic actuator
FR2759120A1 (en) CRYOGENIC PUMP, AND SHIELDING FOR CRYOGENIC PUMP
FR2813662A1 (en) Capillary evaporator, for thermal transfer loop, comprises a housing made of material with low thermal conductivity
EP0493208B1 (en) Cold finger for semiconductor circuit and cryogenic device having such finger
EP0325873B1 (en) Liquefied gas transfer line having at least one vapour derivation
WO2022022920A1 (en) Facility and method for refrigerating a fluid
FR2720475A1 (en) Twin-wall insulated tank for storing liquid gases at very low temperatures
EP0220086B1 (en) Liquefied-gas transfer line comprising a thermal screen provided with a heat exchanger
US20190186481A1 (en) Cryogenic pump flange
JP2004076955A (en) Cryogenic temperature damper
EP2981781B1 (en) Heat pipe comprising a cut-off gas plug
FR2725779A1 (en) CRYOGENIC DEVICE FOR OPTRONIC AND / OR ELECTRONIC EQUIPMENT AND EQUIPMENT COMPRISING SUCH A DEVICE
FR2506069A1 (en) Heat sink for coaxial microwave output lines - has pressurised refrigerating fluid in inner cylinder and reinforcing annular sheath to support ceramic spacer discs
FR2815700A1 (en) Cryogenic closed cycle system, e.g. functioning in Stirling cycle, includes same guide ring which guides both regenerator tube and control rod, thus preventing misalignment
BE448680A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000323

AKX Designation fees paid

Free format text: DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASTRIUM SAS

17Q First examination report despatched

Effective date: 20020812

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69910877

Country of ref document: DE

Date of ref document: 20031009

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031210

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EADS ASTRIUM SAS

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: EADS ASTRIUM SAS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST