EP0947787A1 - Dispositif de liaison thermique pour machine cryogénique - Google Patents
Dispositif de liaison thermique pour machine cryogénique Download PDFInfo
- Publication number
- EP0947787A1 EP0947787A1 EP99400772A EP99400772A EP0947787A1 EP 0947787 A1 EP0947787 A1 EP 0947787A1 EP 99400772 A EP99400772 A EP 99400772A EP 99400772 A EP99400772 A EP 99400772A EP 0947787 A1 EP0947787 A1 EP 0947787A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- finger
- plate
- load
- cold finger
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009833 condensation Methods 0.000 claims abstract description 6
- 230000005494 condensation Effects 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 12
- 238000005086 pumping Methods 0.000 claims description 6
- 238000009834 vaporization Methods 0.000 claims description 6
- 230000008016 vaporization Effects 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 2
- 238000005057 refrigeration Methods 0.000 claims description 2
- 239000008188 pellet Substances 0.000 claims 1
- 230000008020 evaporation Effects 0.000 abstract 2
- 238000001704 evaporation Methods 0.000 abstract 2
- 239000011148 porous material Substances 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005486 microgravity Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/043—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
Definitions
- the present invention relates to a device for thermal bond between the end of the cold finger of a refrigerating machine and a load which must be brought to cryogenic temperature during use.
- the invention finds a particularly application important, although not exclusive, when the machine refrigerator works using the Stirling cycle. However, it can also be used when this machine uses another closed cycle or even a cycle open, for example the Joule Thomson cycle.
- the above machines provide cold to the end, generally consisting of a cover thick, with a cold finger whose base is directly or indirectly in contact with an environment high temperature.
- a very thin-walled tube made of a material having low thermal conductivity, such as steel stainless or titanium.
- the tube being thin, has a very low mechanical strength and very low stiffness. Any effort exerted on its end can therefore deforming the cold finger, which has consequences particularly serious when this finger contains a moving element, which is the case with cycle machines Stirling.
- thermal bonding devices consisting of a braid of copper wires having mass and stiffness also weak as possible.
- thermal bonding devices consisting of a braid of copper wires having mass and stiffness also weak as possible.
- a braid of mass and stiffness low to high thermal resistance To assemble the braid on the cover of the cold finger, you must access directly to this finger and to the charge and this is hardly compatible with the realization of a efficient thermal insulation.
- the fragility of the finger cold makes assembly delicate. So that the braid has the flexibility required it must have a length and a volume important.
- the invention aims in particular to provide a device for thermal link for cryogenic machine responding better than those previously known to the requirements of the practical, in particular by reducing the thermal gradient between the end of the cold finger and the load, avoiding a mechanical connection between the cold finger and the load and allowing a realization of low mass and low volume with fewer assembly constraints.
- the invention notably proposes a device thermal bonding according to claim 1.
- the deformable wall can in particular be constituted by a thin wall revolution bellows, connecting a base cold finger and the spray plate. He will be in generally preferable effect to avoid direct fixation bellows on the cold finger, the thickness of which is very weak, generally around a tenth of a mm.
- the condensation and vaporization interval will be usually 1 to 10 mm.
- the pumping element by capillarity interposed between the end of the finger and the plate reduces the entrainment of drops forming towards the outside by the gases.
- This pumping element can have various constitutions. It can consist of a wafer of porous material forming a wick, occupying the interval between the tip of the cold finger and the plate.
- This tablet can in particular be made of felt of silica, or fiberglass, or even synthetic material, with pores of a few tens of microns diameter.
- the circulation of the liquid from the periphery can also be facilitated by grooves engraved in the end.
- the plate can be extended by a surrounding shirt the end part of the cold finger to avoid training liquid droplets outside the range by gas from vaporization.
- Means of thermal insulation will be provided around enclosure and load to reduce losses thermal. However, such isolation is no longer necessary when the device is intended to operate in space, where there is a deep vacuum.
- the device shown schematically on the Figure 1 comprises a thin tube 10, one end of which is attached to a base 12 belonging to the cryogenic machine and the other end of which is closed by a cover 14, which will generally be thicker than the cylindrical wall of the tube. In general this cover will be attached. he can however be in one piece with the rest of the tube.
- the side wall of the tube is made up of a material with low thermal transmittance, e.g. stainless steel, titanium or alloy titanium base.
- cold finger can for example have a diameter of 12 mm, a thickness 0.1 mm and a length of about 60 mm.
- the device shown in Figure 1 is intended for cool a charge contained in a vacuum cryostat.
- This cryostat has an outer casing 16, for example glass with a silver inner side to be reflective.
- This outer envelope 16 is fixed to the base 12 by means not shown and the seal between the atmosphere and a volume 30 which will be defined later is ensured by an O-ring 18.
- An annular zone 19 of the envelope intended for the fixing and the connection waterproof can be thickened to increase its rigidity.
- the thermal bonding device includes a plate 20 slightly larger in diameter than the cover 14, having a face opposite that of the cover.
- This plate can be made of metal with high conductivity thermal. It is intended to be rigidly connected to the load to be cooled (not shown).
- the plate can be also attached to a partition 24 which can be viewed as the internal envelope of the cryostat. This envelope is fixed mechanically to the outer casing 16 at locations not shown in the figure.
- the internal volume 30 is occupied by gas chosen in depending on the temperature to which the plate 20.
- gas chosen in depending on the temperature to which the plate 20.
- This latter gas has the advantage of being a neutral gas and to have a saturation curve slightly above that of nitrogen, resulting in pressure lower when the temperature of volume 30 is that of the environment on earth, for a quantity of liquid predetermined at 90K in enclosure 30.
- a ballast tank 32 connected to volume 30, so that limit the pressure of the gas contained in volume 30 when the temperature is that of the environment.
- the interval 22 a thickness nominal between 1 and 10 mm. This interval is occupied by a porous organ forming a wick of circulation of liquid by capillarity.
- the thickness of the interval may also be chosen based on the accuracy of positioning that can be expected during assembly and risks of displacement during operation, by example following accelerations or vibrations.
- the plate 20 is advantageously extended by a shirt 34 surrounding the end portion of the cold finger. So that the gas only liquefies against the cover 14, opposite the plate 20, the end part of the wall side of the cold finger can be isolated by a sleeve 36 made of thermal insulating material, over a length of the order of the centimeter.
- This sleeve may in particular be made of material expanded with closed porosity.
- the operation of the device is then as follows, when the assembly shown in the figure is initially at room temperature. Volume 30 is completely filled with gas. When the refrigeration machine works, the gas temperature gradually decreases. Finally she reaches, at the end of the cold finger, the liquefaction temperature. Drops of liquefied gas get form and accumulate against the cover 14 and get bigger, gradually invading the porous organ. If the plate 20 is then at a temperature higher than the boiling point of liquid at prevailing pressure in volume 30, liquid vaporizes on contact with the plate by absorbing heat. Steam recondense on cover 14 and the cycle continues until the temperature of the plate 20 reaches that of the tip of the cold finger.
- Interval 22 can then fill completely with liquid which will vaporize again if the heat transfer by conduction of the insufficient liquid to keep plate 20 below of the boiling point.
- Interval 22 can play the role of the condenser of a heat pipe using the same gas as that present in volume 30 and distributing the cold in the plate 20 and if necessary the wall 24.
- a gas mixture in volume 30 so that the thermal bond can operate in a wider temperature range : for example, we will take a mixture of argon, methane, carbon dioxide and ammonia to cover an area ranging from ambience to - 180 ° C. So whatever the temperature of the working load, at least one of these gases will be in its boiling range, while the others will be in gaseous, liquid or solid form and will only intervene by conduction in the transfer thermal. This possibility can be interesting for applications operating at variable temperatures or to facilitate the transient for cooling the system, allowing the initiation of the thermal link to temperatures higher than the nominal temperature of use.
- the thermal gradient between the cover and the plate is very low, the boiling flow is usually 1 to 10 W / cm 2 , even under micro-gravity. No force is exerted by the load on the end of the cold finger, since there is no mechanical connection between the plate and the cold finger, the porous material having no appreciable rigidity.
- the nominal distance between the cover and the plate can be chosen to a value sufficient to compensate for any manufacturing tolerance and any relative displacement. Because the tolerances are high, the cold finger can be easily integrated into a system.
- the plate 20 constitutes only a small excess length, usually less than 10 mm.
- thermal leaks generated by a faulty machine are very small, because stopping this machine will cause the cold finger, vaporization of the liquid and reduction of heat transfers which will only be done in mode conductive through steam, between the cover and the plate.
- means can be designed to pump liquid to the center of the cover.
- We can in particular provide means using capillary forces, such as furrows radials bringing the liquefied gas from the periphery of the cover towards its center.
- the cryostat When the device is intended to operate only in space, therefore under vacuum, the cryostat can be omitted and in this case the bellows 26 simply connects a annular plate tightly fixed to the base 12 (or the base itself) at a bottom extending the plate 20.
- the pumping element 40 constitutes the condenser of a heat pipe 42 for cooling a charge located at distance.
- the porous material 40 does not occupy only the area facing the cold finger 14. It extends into a conduit 42.
- the porous material does not introduce any mechanical coupling, due to its texture.
- the liquid-gas interface 44 is likely to be move through the porous material, depending on the thermal power dissipated in the load. Grooves internal gas return to the condenser part can be arranged inside the duct 42.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
- la figure 1 est une vue en coupe d'un dispositif ;
- la figure 2 montre une variante.
Claims (9)
- Dispositif de liaison thermique entre une extrémité, à température cryogénique, d'un doigt froid de machine frigorifique et une charge, comprenant une plaque (20) placée en face de l'extrémité, destinée à être reliée à la charge, découplée mécaniquement de l'extrémité et définissant avec elle un intervalle de condensation et de vaporisation occupé par un élément de pompage par capillarité et comprenant également une paroi définissant une enceinte incorporant ledit intervalle et entourant au moins l'extrémité du doigt froid et la partie du doigt froid proche de l'extrémité, ladite enceinte étant occupée par au moins un gaz ayant une température de condensation choisie en fonction de la température cryogénique à donner à la charge.
- Dispositif selon la revendication 1, caractérisé en ce que l'élément de pompage est une pastille de matériau poreux formant mèche, occupant tout l'intervalle compris entre l'extrémité du doigt froid et la plaque (20).
- Dispositif selon la revendication 1 ou 2, caractérisé en ce que la plaque (20) est prolongée par une chemise entourant la partie terminale du doigt froid pour éviter l'entraínement de gouttelettes de liquide en dehors de l'intervalle par le gaz provenant de la vaporisation.
- Dispositif selon la revendication 3, caractérisé par un manchon isolant thermique (36) entourant la partie terminale du doigt froid.
- Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la paroi déformable est constituée par un soufflet de révolution à paroi mince, reliant une embase du doigt froid et la plaque de vaporisation.
- Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que des moyens d'isolement thermique sont prévus autour de l'enceinte et de la charge.
- Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'enceinte est occupée par un mélange de plusieurs gaz ayant des températures d'ébullition différentes.
- Dispositif selon l'une quelconque des revendications 1 à 7, caractérisées en ce que l'intervalle (22) est dimensionné pour constituer un condenseur de caloduc.
- Système comportant une charge d'utilisation et deux machines frigorifiques, caractérisé en ce que chaque machine est reliée à la charge par un dispositif d'interface selon l'une quelconque des revendications 1 à 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9803971A FR2776762B1 (fr) | 1998-03-31 | 1998-03-31 | Dispositif de liaison thermique pour machine cryogenique |
FR9803971 | 1998-03-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0947787A1 true EP0947787A1 (fr) | 1999-10-06 |
EP0947787B1 EP0947787B1 (fr) | 2003-09-03 |
Family
ID=9524690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99400772A Expired - Lifetime EP0947787B1 (fr) | 1998-03-31 | 1999-03-30 | Dispositif de liaison thermique pour machine cryogénique |
Country Status (6)
Country | Link |
---|---|
US (1) | US6164077A (fr) |
EP (1) | EP0947787B1 (fr) |
JP (1) | JPH11325629A (fr) |
DE (1) | DE69910877T2 (fr) |
FR (1) | FR2776762B1 (fr) |
IL (1) | IL129271A (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7415830B2 (en) | 2005-08-31 | 2008-08-26 | Raytheon Company | Method and system for cryogenic cooling |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0125188D0 (en) * | 2001-10-19 | 2001-12-12 | Oxford Magnet Tech | A pulse tube refrigerator sleeve |
US6915642B2 (en) * | 2002-01-22 | 2005-07-12 | L'Air Liquide-Societe Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude | Apparatus and method for extracting cooling power from helium in a cooling system regenerator |
US7270302B1 (en) * | 2003-04-22 | 2007-09-18 | Lockheed Martin Corporation | Scalable thermal control system for spacecraft mounted instrumentation |
JP4494027B2 (ja) * | 2004-01-26 | 2010-06-30 | 株式会社神戸製鋼所 | 極低温装置 |
JP4290031B2 (ja) * | 2004-02-18 | 2009-07-01 | 株式会社サイニクス | 冷却装置 |
GB0408425D0 (en) * | 2004-04-15 | 2004-05-19 | Oxford Instr Superconductivity | Cooling apparatus |
US8069675B2 (en) * | 2006-10-10 | 2011-12-06 | Massachusetts Institute Of Technology | Cryogenic vacuum break thermal coupler |
US7967256B2 (en) * | 2007-05-08 | 2011-06-28 | Lockheed Martin Corporation | Spacecraft battery thermal management system |
US20140202172A1 (en) * | 2013-01-22 | 2014-07-24 | Sunpower, Inc. | Cold Finger For Cryocoolers |
US10181372B2 (en) * | 2013-04-24 | 2019-01-15 | Siemens Healthcare Limited | Assembly comprising a two-stage cryogenic refrigerator and associated mounting arrangement |
CN105333674B (zh) * | 2014-08-08 | 2019-03-05 | 青岛海尔特种电冰柜有限公司 | 一种可适应于多种放置角度的制冷装置 |
DE102014218773B4 (de) | 2014-09-18 | 2020-11-26 | Bruker Biospin Gmbh | Automatische thermische Entkopplung eines Kühlkopfs |
US11287171B1 (en) | 2017-07-05 | 2022-03-29 | Rigetti & Co, Llc | Heat switches for controlling a flow of heat between thermal stages of a cryostat |
US11035807B2 (en) * | 2018-03-07 | 2021-06-15 | General Electric Company | Thermal interposer for a cryogenic cooling system |
CN109945542A (zh) * | 2019-03-29 | 2019-06-28 | 中国科学院上海技术物理研究所 | 一种抗应力直线型脉管制冷机与杜瓦耦合结构 |
KR102631379B1 (ko) * | 2022-12-09 | 2024-02-01 | 크라이오에이치앤아이(주) | 초저온 냉각 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1585049A (fr) * | 1968-06-12 | 1970-01-09 | ||
US4178775A (en) * | 1978-09-18 | 1979-12-18 | Ford Aerospace And Communications Corporation | Cryostat assembly |
US4802345A (en) * | 1987-12-03 | 1989-02-07 | Hughes Aircraft Company | Non-temperature cycling cryogenic cooler |
EP0305257A1 (fr) * | 1987-08-10 | 1989-03-01 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et dispositif de refroidissement cryogénique d'un objet |
US4967564A (en) * | 1988-11-02 | 1990-11-06 | Leybold Aktiengesellschaft | Cryostatic temperature regulator with a liquid nitrogen bath |
EP0823601A1 (fr) * | 1996-08-07 | 1998-02-11 | Sagem Sa | Dispositif de liaison à température cryogénique |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3561525A (en) * | 1969-07-02 | 1971-02-09 | Energy Conversion Systemes Inc | Heat pipe condensate return |
US3894403A (en) * | 1973-06-08 | 1975-07-15 | Air Prod & Chem | Vibration-free refrigeration transfer |
US4771823A (en) * | 1987-08-20 | 1988-09-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Self-actuating heat switches for redundant refrigeration systems |
US5228703A (en) * | 1992-02-18 | 1993-07-20 | Ronald White | Sealing member |
US5542254A (en) * | 1993-04-15 | 1996-08-06 | Hughes Aircraft Company | Cryogenic cooler |
-
1998
- 1998-03-31 FR FR9803971A patent/FR2776762B1/fr not_active Expired - Fee Related
-
1999
- 1999-03-29 US US09/277,945 patent/US6164077A/en not_active Expired - Fee Related
- 1999-03-30 DE DE69910877T patent/DE69910877T2/de not_active Expired - Fee Related
- 1999-03-30 EP EP99400772A patent/EP0947787B1/fr not_active Expired - Lifetime
- 1999-03-30 IL IL12927199A patent/IL129271A/en not_active IP Right Cessation
- 1999-03-31 JP JP11093804A patent/JPH11325629A/ja not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1585049A (fr) * | 1968-06-12 | 1970-01-09 | ||
US4178775A (en) * | 1978-09-18 | 1979-12-18 | Ford Aerospace And Communications Corporation | Cryostat assembly |
EP0305257A1 (fr) * | 1987-08-10 | 1989-03-01 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et dispositif de refroidissement cryogénique d'un objet |
US4802345A (en) * | 1987-12-03 | 1989-02-07 | Hughes Aircraft Company | Non-temperature cycling cryogenic cooler |
US4967564A (en) * | 1988-11-02 | 1990-11-06 | Leybold Aktiengesellschaft | Cryostatic temperature regulator with a liquid nitrogen bath |
EP0823601A1 (fr) * | 1996-08-07 | 1998-02-11 | Sagem Sa | Dispositif de liaison à température cryogénique |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7415830B2 (en) | 2005-08-31 | 2008-08-26 | Raytheon Company | Method and system for cryogenic cooling |
WO2007027822A3 (fr) * | 2005-08-31 | 2009-10-08 | Raytheon Company | Procede et systeme de refroidissement cryogenique |
Also Published As
Publication number | Publication date |
---|---|
DE69910877T2 (de) | 2004-09-09 |
EP0947787B1 (fr) | 2003-09-03 |
FR2776762A1 (fr) | 1999-10-01 |
FR2776762B1 (fr) | 2000-06-16 |
JPH11325629A (ja) | 1999-11-26 |
IL129271A (en) | 2001-11-25 |
US6164077A (en) | 2000-12-26 |
DE69910877D1 (de) | 2003-10-09 |
IL129271A0 (en) | 2000-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0947787B1 (fr) | Dispositif de liaison thermique pour machine cryogénique | |
EP2956729B1 (fr) | Dispositif de transport de chaleur à fluide diphasique | |
FR2638823A1 (fr) | Refrigerateur du type a accumulation du froid a etages multiples et dispositif de refroidissement comportant un tel refrigerateur | |
FR2699365A1 (fr) | Système de dissipation de l'énergie calorifique dégagée par un composant électronique. | |
EP2795226B1 (fr) | Dispositif de refroidissement | |
EP0614059B1 (fr) | Refroidisseur muni d'un doigt froid du type tube pulsé | |
FR3027379A1 (fr) | Caloduc plat avec fonction reservoir | |
EP2143988A1 (fr) | Système de stockage de liquide cryogénique pour engin spatial | |
EP2181301B1 (fr) | Dispositif passif de regulation thermique a micro boucle fluide a pompage capillaire | |
EP3350501B1 (fr) | Réservoir de stockage de fluide liquéfié | |
FR2899374A1 (fr) | Interrupteur thermique | |
EP1431638A2 (fr) | Dispositif de vanne cryogénique à actionneur pneumatique | |
FR3128760A1 (fr) | Ensemble de connexion optimise entre deux portions d’une canalisation pour le transport d’un fluide cryogenique, comprenant une chambre d’isolation thermique additionnelle et une chambre d’expansion de fluide. | |
FR2743871A1 (fr) | Detendeur pour refroidisseur concentrique a tube a pulsion, ce refroidisseur et systeme de refroidissement l'utilisant | |
EP0084308B1 (fr) | Dispositif de régulation d'un réfrigérateur à effet Joule-Thomson | |
US11655809B2 (en) | Cryogenic pump flange | |
FR2813662A1 (fr) | Evaporateur capillaire pour boucle de transfert | |
EP0493208B1 (fr) | Doigt de refroidissement d'un circuit semi-conducteur et dispositif cryogénique pourvu d'un tel doigt | |
FR2720475A1 (fr) | Réservoir isolant à double paroi pour le stockage de gaz liquéfié à très basse température. | |
WO2022022920A1 (fr) | Installation et procédé de réfrigération d'un fluide | |
EP0220086B1 (fr) | Ligne de transfert de gaz liquéfié comportant un écran thermique muni d'un échangeur | |
FR2883365A1 (fr) | Appareil de refroidissement cryogenique pour un autodirecteur de projectile autoguide | |
FR2624949A1 (fr) | Ligne de transfert de gaz liquefie comportant au moins une derivation des vapeurs de ce gaz | |
FR2568350A1 (fr) | Col pour reservoir de liquide cryogenique, et reservoir comportant un tel col | |
FR2725779A1 (fr) | Dispositif cryogenique pour equipements optroniques et/ou electroniques et equipements comprenant un tel dispositif |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000323 |
|
AKX | Designation fees paid |
Free format text: DE FR GB NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASTRIUM SAS |
|
17Q | First examination report despatched |
Effective date: 20020812 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 69910877 Country of ref document: DE Date of ref document: 20031009 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20031210 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: EADS ASTRIUM SAS |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: EADS ASTRIUM SAS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040330 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041001 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041001 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041130 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20041001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |